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The Pan-Cancer analysis of pseudogene expression
reveals biologically and clinically relevant tumour
subtypes
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Yanxun Xu1, Roeland G.W. Verhaak1 & Han Liang1,2

Although individual pseudogenes have been implicated in tumour biology, the biomedical

significance and clinical relevance of pseudogene expression have not been assessed in a

systematic way. Here we generate pseudogene expression profiles in 2,808 patient samples

of seven cancer types from The Cancer Genome Atlas RNA-seq data using a newly developed

computational pipeline. Supervised analysis reveals a significant number of pseudogenes

differentially expressed among established tumour subtypes and pseudogene expression

alone can accurately classify the major histological subtypes of endometrial cancer. Across

cancer types, the tumour subtypes revealed by pseudogene expression show extensive and

strong concordance with the subtypes defined by other molecular data. Strikingly, in kidney

cancer, the pseudogene expression subtypes not only significantly correlate with patient

survival, but also help stratify patients in combination with clinical variables. Our study

highlights the potential of pseudogene expression analysis as a new paradigm for

investigating cancer mechanisms and discovering prognostic biomarkers.
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P
seudogenes are dysfunctional copies of protein-coding
genes that have lost their ability to encode amino acids
through the accumulation of deleterious mutations such as

in-frame stop codons and frame-shift insertions/deletions1. In the
human genome, there are pseudogene copies for many protein-
coding genes: for example, the ENCODE project recently
annotated B15,000 human pseudogenes2. Importantly, a large
fraction of pseudogenes are transcriptionally active2. Despite their
huge number and prevalent occurrence in the genome,
pseudogenes have long been considered as nonfunctional and
assumed to evolve neutrally3. In recent years, a growing body of
evidence has strongly suggested that individual pseudogenes play
critical roles in human diseases such as cancer4,5. For example,
NANOG and OCT4 are essential transcription factors for the
maintenance of pluripotency in embryonic stem cells6,7, while
their pseudogenes, NANOGP1 and POU5F1P1, are aberrantly
expressed in human cancers8. Poliseno et al.9 showed that the
pseudogenes of key cancer genes (for example, PTENP1 and
KRASP1) can regulate the expression of their wild-type (WT)
cognate genes by sequestering miRNAs. More recently,
Kalyana-Sundaram et al.10 performed the first genome-wide
characterization of pseudogene expression in human cancers
using the RNA-seq approach and revealed a considerable number
of pseudogenes with a lineage- or cancer-specific expression
pattern. These studies provide key insights into the potential role
of transcribed pseudogenes in tumour biology. However, due to
the limited number of patient samples surveyed in previous
studies, the biomedical significance of pseudogene expression in
cancer cannot be fully assessed. In particular, it remains unclear
whether pseudogene expression can effectively characterize the
tumour heterogeneity within a specific cancer type and represent
a meaningful dimension for patient stratification. Therefore, it is
essential to perform a systematic analysis across large patient
sample cohorts to evaluate the potential clinical utility of
pseudogene expression.

Taking advantage of large-scale RNA-seq transcriptomic
data recently made available from The Cancer Genome Atlas
(TCGA) project, we developed a computational pipeline and
characterized the pseudogene expression profiles of a large
number of patient samples in a wide range of cancer types. With
this unprecedented dataset, we first identified differentially
expressed pseudogenes among established tumour subtypes and
demonstrated the predictive power in classifying clinical tumour
subtypes of endometrial cancer. Then we examined the
biomedical relevance of the tumour subtypes revealed by
pseudogene expression and assessed the potential clinical utility
of pseudogene expression subtypes in terms of predicting patient
survival. Taken together, our results indicate that expressed
pseudogenes represent an exciting paradigm for investigating
cancer-related molecular mechanisms and discovering effective
prognostic biomarkers.

Results
Overview of pseudogene expression in multiple cancer types.
To comprehensively detect expressed pseudogenes and quantify
their expression levels in human cancer, we developed a com-
putational pipeline, as shown in Fig. 1. First, we combined the
latest pseudogene annotations from the Yale Pseudogene data-
base11 and the GENCODE Pseudogene Resource2 and filtered
those pseudogene exons overlapped with any known protein-
coding genes. Second, to address the issue of potential cross-
mapping between pseudogenes and their WT-coding genes,
we evaluated the sequence uniqueness of each exon of a
pseudogene12, and only retained those pseudogenes containing
exon(s) with sufficient alignability for further characterization
(Methods). Third, we filtered those reads mapped to multiple
genomic locations from TCGA BAM files. Through analysing
more than 378 billion RNA-seq reads, we measured the
expression levels of 9,925 pseudogenes (based on the regions of
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Figure 1 | A computational pipeline to quantify the expression of pseudogenes from TCGA RNA-seq data. First, we combined the latest pseudogene

annotations from the Yale Pseudogene database and the GENCODE Pseudogene Resource, and filtered those pseudogene exons that overlapped with any

known protein-coding genes. Second, we evaluated the sequence uniqueness of each exon of a pseudogene, and only retained those pseudogenes

containing exon(s) with sufficient alignability for further characterization. Third, we filtered those reads mapped to multiple genomic locations from TCGA

BAM files.
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high sequence uniqueness) in 2,808 samples of seven cancer types
(Table 1). These cancer types included breast invasive carcinoma
(BRCA)13, glioblastoma multiforme (GBM)14, kidney renal clear
cell carcinoma (KIRC)15, lung squamous cell carcinoma
(LUSC)16, ovarian serous cystadenocarcinoma (OV)17,
colorectal carcinoma (CRC)18 and uterine corpus endometrioid
carcinoma (UCEC)19.

Among the seven cancer types we surveyed, five data sets
(BRCA, GBM, LUSC, KIRC and OV) had been obtained through
a paired-end sequencing strategy, while the other two (CRC and
UCEC) had resulted from a single-end sequencing strategy.
Moreover, samples in the paired-end group had many more
mappable reads than those in the single-end group (Table 1,
Supplementary Fig. 1). For each cancer type, we observed
generally weak correlations between the expression level of
pseudogenes and WT genes, which is consistent with the previous
study10 (Supplementary Fig. 2). In general, the expression
correlation between a pseudogene and its WT-coding gene
could be affected by three factors: (i) the sequence similarity
between the pseudogene/gene pair; (ii) the molecular mechanisms
through which the pseudogene functions; and (iii) the detection
sensitivity given the setting of RNA-seq experiments. We detected
more expressed pseudogenes (with an average reads per kilobase
per million (RPKM))20 cutoff Z0.3, as in the literature21,22) in
the paired-end group (OV: 670, KIRC 712, LUSC 813, BRCA: 747
and GBM, 875) than in the single-end group (UCEC, 181 and
CRC, 168) (Table 1). Both the larger numbers of sequenced reads
and the higher read mapping accuracy in the paired-end group
contributed to this difference. Indeed, the two groups showed
distinct global patterns of pseudogene expression (Supplementary
Fig. 3). Considering the potential confounding factors (for
example, sequencing strategy and read coverage) for quantifying
the pseudogene expression, we performed the cross-tumour
analyses for these two groups separately. As observed in10, we
detected some tumour lineage-specific pseudogenes (296 from
the paired-end group and 41 from the single-end group,
Supplementary Fig. 4). In addition, for three cancer types with
available RNA-seq data from nontumour tissue samples, we
identified differentially expressed pseudogenes between tumour
and nontumour samples (54 in BRCA, 110 in KIRC and 138 in
LUSC, Supplementary Fig. 5).

Supervised analysis of pseudogene expression on tumour
subtypes. However, the tumour lineage-specific or cancer-specific
pseudogenes identified above may only reflect biological char-
acteristics unique to distinct tissue types rather than key biolo-
gical factors involved in tumorigenesis. Therefore, it is more
critical and informative to examine the expression patterns of
pseudogenes among tumour subtypes within a disease. For sev-
eral cancer types with established tumour subtypes, we performed
the supervised analysis and revealed substantial numbers of

pseudogenes with significant differential expression: 48 in UCEC
(endometrioid vs serous)23, 138 in LUSC (basal, classical,
primitive and secretory)16, 71 in GBM (classical, mesenchymal,
neural and proneural)24 and 547 in BRCA (PAM50 subtypes:
luminal A, luminal B, basal-like, Her2-enriched and normal-
like)25 (Methods, Fig. 2a, Supplementary Data 1). This analysis
not only reveals a large number of pseudogenes with potential
biomedical significance, but also provides new insights
into known oncogenic pseudogenes. For example, ATP8A2P1
has been reported to play a growth regulatory role and to be
expressed in a BRCA-specific manner10. Through the analysis of
the large BRCA sample cohort, we further demonstrated that this
pseudogene shows significant expression variation across
subtypes, with the highest level in luminal A and the lowest
level in the basal-like subtype (analysis of variance
Po2.2� 10� 16, Fig. 2b).

Among the tumour subtypes we surveyed, endometrioid
and serous endometrial tumours are two major histological
subtypes for UCEC, which are defined independently from the
molecular data. Importantly, these two subtypes have distinct
pathological characteristics and clinical behaviours. Early-stage
endometrioid cancers are often treated with surgery only, whereas
serous tumours are usually treated with chemotherapy26.
Therefore, subtype classification is crucial for selecting
appropriate therapy. To assess the clinical utility of pseudogene
expression in UCEC, we applied a rigorous machine-learning
approach to assess the power of expressed pseudogenes in
classifying these two subtypes. First, we divided the TCGA UCEC
samples into training and test sets according to their
tissue source sites (Fig. 3a). Second, within the training set, we
applied three well-established machine-learning algorithms
(random forest (RF)27; support vector machine (SVM)28; and
logistic regression (LR)) and evaluated their performance based
on the area under the receiveroperating characteristics curve (area
under curve (AUC) score) through fivefold cross-validation
(Methods, Fig. 3b). Strikingly, we found that the pseudogene
expression profile can accurately classify these two histological
subtypes (RF, AUC score¼ 0.944, SVM, AUC score¼ 0.962, LR,
AUC score¼ 0.892, Fig. 3c). Moreover, the best-performing
algorithm, SVM, achieved a high AUC of 0.922 on the
independent test set (Fig. 3d). The predictive power of
pseudogene expression is comparable with those achieved by
the mRNA expression profiles, suggesting that both pseudogene
and mRNA expression can classify the UCEC subtypes
independently (Supplementary Fig. 6). These results indicate
that pseudogene expression can effectively capture clinically
relevant information and may provide an independent approach
to validate the classification of tumour subtypes.

Assessment of pseudogene expression tumour subtypes. Cancer
is a complex disease involving multiple layers of aberrations that

Table 1 | Summary of The Cancer Genome Atlas RNA-seq data sets used in this study.

Cancer type Number of

nontumour samples

Number of

tumour samples

Sequencing

strategy

Number of

mappable reads

Number of detectable

pseudogenes

Breast invasive carcinoma 105 837 Paired-end 161M 747

Kidney renal clear cell carcinoma 67 448 Paired-end 166M 712

Lung squamous cell carcinoma 17 220 Paired-end 171M 813

Ovarian serous cystadenocarcinoma 0 412 Paired-end 170M 670

Glioblastoma multiforme 0 154 Paired-end 106M 875

Colorectal carcinoma 0 228 Single-end 22M 168

Uterine corpus endometrioid carcinoma 4 316 Single-end 26M 181
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cannot be sufficiently captured by any single type of molecular
data. In recent years, various ‘omic’ data, such as mRNA
expression, microRNA expression, DNA methylation, somatic
copy number alteration and protein expression, have been
widely used to classify tumour samples into different molecular
subtypes13–19. The integrative analysis across these molecular
subtypes, especially through the efforts in TCGA, often provide
crucial insights into pathobiology and help stratify patients for
predicting prognosis and selecting effective treatment. To
complement the supervised analysis in the above section, we
next performed unsupervised analyses and explored the
biomedical relevance of tumour subtypes based on pseudogene
expression profiles. For each cancer type, we selected the
pseudogenes with the most variable expression (500 for each
cancer in the paired-end group and 100 for each cancer in the
single-end group, respectively) and used non-negative matrix
factorization (NMF)29 to classify tumour samples into subtypes
(clusters). Strikingly, in multiple cancer types, we observed that
subtypes based on pseudogene expression had high concordance
with other molecular subtypes (Fig. 4a, w2 tests).

Here, we present breast cancer as an example (Fig. 4b).
Based on the NMF consensus clustering, 837 BRCA samples
can be classified into four distinct subtypes (cophenetic
correlation¼ 0.98, Supplementary Fig. 7): subtype 1 (n¼ 144),
subtype 2 (n¼ 390), and subtype 3 (n¼ 303) (Fig. 4b,
Supplementary Data 2). These pseudogene subtypes show high
concordance with the well-established PAM50 molecular sub-
types25 and the status of ER/PR/HER2 markers (w2 test, Fig. 4b).
Subtype 1 is significantly enriched for basal-like samples,
containing 70 of 139 basal-like samples; subtype 2 is enriched
for luminal A and luminal B samples that 382 of 390 samples are
these two subtypes; subtype 3 is enriched for Her2 samples,
containing 50 of 67 HER2 samples. The pseudogene expression
subtypes also correlate with the mutation status of key cancer
genes13: subtype 1 shows a depletion of GATA3 mutations;
subtype 2 has many samples with PIK3CA mutations; subtype 3
shows a significant enrichment of TP53 mutations. These results
strongly indicate that pseudogene expression represents a novel
and relevant dimension for investigating cancer-related molecular
mechanisms; and integrating it with other molecular data-related

Classical (n= 39, 27%)

Mesenchymal (n= 49, 34%)
Neural (n= 25, 18%)
Proneural (n= 30, 21%)

Basal (n= 42, 24%)
Classical (n= 65, 37%)
Primitive (n= 27, 15%)
Secretory (n= 42, 24%)

Endometrioid (n= 258, 84%)
Serous (n= 50, 16%)

Luminal A (n= 417, 50%)
Luminal B (n= 191, 23%)
Basal-like (n= 139, 17%)
Her2 (n= 67, 8%)
Normal-like (n= 23, 3%)

Luminal A

(n= 417)

Luminal B

(n= 191)

HER2

(n= 67)

Normal−like

(n= 23)

Basal−like

(n= 139)

0

2

4

6

8

L
o
g

2
 R

P
K

M

ATP8A2P1: P -value < 2.2×10–16b

a

0 200 400 600 800 1,000

BRCA

GBM

LUSC

UCEC

Number of expressed pseudogenes

With a differential expression among subtypes

Figure 2 | Identification of differentially expressed pseudogenes among established tumour subtypes. (a) Numbers of significantly differentially

expressed pseudogenes in multiple cancer types. For each cancer type, the whole bar represents the number of expressed pseudogenes (mean RPKM

Z0.3) in the analysis; the black part represents the number of expressed pseudogenes with a detected significance for differential expression among

tumour subtypes (t-test or single-factor analysis of variance, corrected Po0.05) and the pie chart shows the sample numbers and percentages in each

cancer type. (b) The box plot for the expression pattern of ATP8A2P1 in 837 BRCA samples based on PAM50 subtypes: luminal A (n¼417), luminal B

(n¼ 191), basal-like (n¼ 139), Her2-enriched (n¼67) and normal-like (n¼ 23). The boxes show the median±1 quartile, with whiskers extending

to the most extreme data point within 1.5 interquartile range from the box boundaries.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4963

4 NATURE COMMUNICATIONS | 5:3963 | DOI: 10.1038/ncomms4963 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


analysis may help characterize the molecular basis of
tumorigenesis in a more comprehensive way.

Prognostic power of pseudogene expression in kidney cancer.
To study the potential clinical value of pseudogene expression, we
examined whether the pseudogene subtypes correlate with clinical
outcomes in KIRC. Currently, neither prognostic nor predictive
markers are recommended for clinical use by the College of
American Pathologists. Based on the 500 pseudogenes with the
most variable expression, we were able to classify 446 KIRC
samples into two distinct subtypes (Fig. 5a, Supplementary
Data 3). Tumour samples in subtype 1 convey a much better
patient prognosis (n¼ 234, survival time of 75.8±3.7 months)
than those in subtype 2 (n¼ 212, survival time of 63.1±3.7
months) (Fig. 5b, log-rank test P¼ 0.019). To assess whether
individual pseudogenes can confer prognostic power given clinical
variables, for each pseudogene, we built the full multivariate Cox
model, consisting of both clinical variables and the pseudogene
expression. We observed an enrichment of pseudogenes (115 out of
500) with a statistically significant P-value (false discovery rate
(FDR)o0.05) (Fig. 5c, Supplementary Data 4). Noteworthy, among
the 115 pseudogenes, only 19 (16.5%) showed relatively high-
expression correlations (Spearman correlation Z0.5) with their
WT genes, suggesting that the predictive power of pseudogene
expression is largely independent of the corresponding WT genes.

To further assess the clinical utility of the observed pseudogene
expression subtypes, we classified the KIRC samples into four risk
quartiles based on the risk scores (in terms of overall survival)
calculated from the multivariate Cox model, employing only
clinical variables: low-risk group (Q1, n¼ 110), low-medium-risk
group (Q2, n¼ 111), medium-high-risk group (Q3, n¼ 112) and

high-risk group (Q4, n¼ 112) (Methods, Supplementary Data 3).
Although the survival curves of these four risk groups are
significantly separated (Fig. 5d, log-rank test P¼ 0), the clinical
variables actually fail to separate the two medium-risk groups
(Fig. 5d, Q2 vs Q3, log-rank test P¼ 0.48). In contrast, the
samples in these two groups can be well separated based on the
pseudogene expression subtypes (Fig. 5e, log-rank test P¼ 9.6
� 10� 3). For comparison, we performed the same analysis on
the two medium-risk groups (Q2 and Q3) using the subtypes
defined by mRNA and microRNA expression (obtained from
TCGA KIRC Analysis Working Group15) or other molecular data
(obtained from TCGA Pan-Cancer Analysis Working Group)
and observed no significant correlations with overall survival
(log-rank test, mRNA expression, P¼ 0.84; microRNA
expression, P¼ 0.13; DNA methylation, P¼ 0.44; somatic copy
number alteration, P¼ 0.77; and protein expression, P¼ 0.14).
The results in the above survival data analyses underscore the
potential prognostic value of pseudogene expression in KIRC.

Although they do not generate functional protein products,
pseudogenes may act as regulatory RNAs and affect the
expression of coding genes through multiple mechanisms5. To
gain some mechanistic insight into how expressed pseudogenes
contribute to the observed KIRC pseudogene expression subtypes,
we performed a systematic analysis (Supplementary Fig. 8a and
Supplementary Data 5). Among 102 expressed pseudogenes
without a clear WT cognate gene, 44 pseudogenes showed a
significant differential expression between the two subtypes
(t-test, corrected Po0.05, fold change 41.5), with potential
function as lncRNAs5. For those pseudogenes with a WT cognate
gene, 93 pairs of pseudogenes and their WT genes showed a
significant differential expression between the two subtypes
(t-test, corrected Po0.05). Among them, 64 showed strong

False-positive rate

T
ru

e
-p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC = 0.922 :  SVM

False-positive rate

T
ru

e
-p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC = 0.944 :  RF
AUC = 0.962 :  SVM
AUC = 0.892 :  LR

Fivefold

cross-validation
RF

LASSO feature selection

Perform prediction 20%

SVM LR

Training set

(n= 223)

Test set

(n= 83)

Expressed: 181

Pseudogenes

Endometroid: 256

Serous: 50

Histological subtypes

UCEC (n= 306)

Predict

a b

cd

80%

Figure 3 | The predictive power of pseudogene expression in classification of UCEC subtypes. (a) The UCEC dataset (n¼ 306) was split into training

(n¼ 223) and test (n¼ 83) sets. (b) Schematic representation of feature selection and classifiers building through fivefold cross-validation within

the training set. (c) The receiver operating characertistic curves of the three classifiers based on the cross-validation within the training set. (d) The

receiver operating characertistic curve from applying the best-performing classifier (SVM) built from the whole training set to the test set.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4963 ARTICLE

NATURE COMMUNICATIONS | 5:3963 |DOI: 10.1038/ncomms4963 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


positive correlations (RsZ0.3), suggesting that they may regulate
their WT counterparts through competing for shared regulatory
RNAs5,30; while 4 showed strong negative correlations with
their WT cognate genes (Rs r� 0.3), suggesting that they
may function as antisense transcripts to inhibit the WT gene
expression. Further analyses on independent, strand-specific
RNA-seq data would provide more insights into these
mechanisms. Among the WT cognate genes with strong
positive correlations with their pseudogenes, we noticed that
the survival correlations of individual WT genes with prognostic
value match the survival pattern of the pseudogene-expression
subtypes: WT genes with better prognosis (potentially tumor
suppressors, hazard ratio o1) show higher expression levels in
subtype 1 (the better survival group) and the genes with worse
prognosis (potentially oncogenes, hazard ratio 41) show higher
expression levels in subtype 2 (the worse survival group,
Supplementary Fig. 8b). Finally, we examined the classic
miRNA decoy model as proposed in Poliseno et al. (2010)9 and

identified 38 such candidates (Methods and Supplementary Data
5). One candidate of interest is the potential regulation of
a putative tumor suppressor a-catenin (CTNNA1) by the
pseudogene PGOHUM00000257111 through competition for
up to 9 shared miRNA regulators (Supplementary Data 5).
Indeed, the expression levels of PGOHUM00000257111 were
significantly higher in cluster 1 (t-test P¼ 1.48� 10� 7), which
may lead to the elevated levels of CTNNA1 in subtype 1
(Supplementary Fig. 8b) and therefore better survival. Further
experimental investigations (for example, cell proliferation assays,
siRNA-mediated pseudogene knockdown10) are needed to study
these cases in detail.

Discussion
Recently, pseudogenes have emerged as new players in tumour
biology5,10. However, a crucial question remains unclear: does
pseudogene expression, as a whole, represent a biologically
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meaningful dimension that can characterize tumour
heterogeneity and provide clinical applications? Here, we
performed a Pan-Cancer analysis of pseudogene expression for
what is, to our knowledge, the largest number of cancer patient
samples (B3,000) in one such analysis. Utilizing TCGA patient
cohorts with a sufficient sample size, we show the predictive
power of pseudogene expression in classifying established tumour
types and the high concordance of tumour subtypes based on
pseudogene expression with other molecular subtypes as well as
clinically established biomarkers (such as ER and PR status in
breast cancer). It should be emphasized that a large number of
tumour lineage-specific pseudogenes identified through between-
disease comparisons10 do not imply our findings through the
within-disease analyses. Because many tumour lineage- or cancer-
specific pseudogenes could arise from tissue-related rather than
tumorigenesis-related effects, they may or may not have the
power to differentiate tumour subtypes.

Strikingly, our analysis reveals an unexpected prognostic power
of pseudogene expression in kidney cancer: pseudogene expres-
sion subtypes not only correlate with patient survival but also
confer additional prognostic powers for a group of patients whose
survival times cannot be well predicted based on conventional
clinical variables. This finding implies a novel prognostic
strategy that incorporates both the risk scores defined by the
clinical-variable model and the tumour subtypes revealed by
pseudogene expression (subtype 1 and subtype 2): among

medium-risk patients, patients of subtype 2 may benefit from
earlier, more aggressive therapies. Interestingly, although the
tumour subtypes defined by other molecular data (for example,
mRNA and miRNA) show high concordance with the pseudo-
gene expression subtypes based on the whole patient cohort, they
do not confer additional prognostic power based on the medium-
risk patient subset. These aggregate results provide a strong
rationale for further investigation of the clinical utility of
pseudogene expression, which has been understudied in the field.
Since TCGA patient samples were collected for the purpose of
comprehensive molecular profiling and were collected from
different institutions, this practice might introduce some bias. In
addition, the resulting clinical annotation of patient samples and
related records may not be as rigorous and complete as those
obtained from standard clinical trials. Therefore, further efforts
should be made to validate the clinical utility of pseudogene
expression in a more formal clinical setting (for example, clinical
trials).

Although our study primarily focused on the biomedical
significance and clinical relevance of pseudogene expression as a
whole (that is, the subtypes that collectively represent the
information of many pseudogenes), an intriguing question is
how individual pseudogenes are functionally involved in
tumorigenesis. This is a challenging but exciting topic since
pseudogenes may affect their WT-coding genes or unrelated
genes through multiple mechanisms such as microRNA decoys
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and antisense transcripts. From a systems biology point of view,
the informative behaviour of pseudogenes may originate from a
role such as ‘regulator.’ Our preliminary analysis here revealed
some candidates of potential interest. Further efforts are required
to elucidate how these pseudogenes functionally contribute to
tumour initiation and development and how they are regulated
through the complex gene regulatory network.

Methods
Pseudogene expression quantification. We downloaded RNA-seq BAM files of
2,808 samples (only primary tumour samples) in seven TCGA cancer types and
their related normal tissue samples (if available) from UCSC Cancer Genomics
Hub on January, 2013 (CGHub, https://cghub.ucsc.edu/). TCGA BAM files were
generated based on Mapsplice2 algorithm32 for alignment against the hg19
reference genome using default parameters. We further filtered the reads mapped
with multiple locations in BAM files. To perform a comprehensive survey of
pseudogenes, we obtained the genomic information of 16,892 human pseudogenes
through combining the latest pseudogene annotations from the Yale Pseudogene
Database (build 73)11 and the GENCODE Pseudogene Resource (version 18)2. We
further filtered those pseudogene exons that overlapped with any known coding
genes. To address the potential cross-mapping issue, we calculated the alignability
score12 for each pseudogene exon. Alignability provides a measure of how often the
sequence at a given location will align within the whole genome (up to two
mismatches). For each 75-mer window, an alignability score S was defined as
1/(number of matches found in the genome): S¼ 1 means one match in the
genome, S¼ 0.5 for two matches in the genome and so on12. To count mapped
reads for a pseudogene, we only retained those exons with an average alignability
score SZ0.95 to ensure mapping accuracy; and quantified pseudogene expression
as RPKM20. The pseudogenes with detectable expression were defined as those with
an average RPKM Z0.3 across all samples in each cancer type, as used in the
literature21,22. We then log-transformed the RPKM values for further analysis. We
used Spearman rank correlations to assess the co-expression patterns between
pseudogenes and their WT cognate genes. The pseudogene expression data have
been deposited into Synapse (https://www.synapse.org/) with ID syn1732077.

Supervised analysis of expressed pseudogenes. To identify tumour lineage-
specific/cancer-specific pseudogenes, or those differentially expressed among
established molecular or histological subtypes, we used analysis of variance or
Student’s t-test to detect the statistical difference between two or more groups. To
correct for multiple comparisons, we used the Bonferroni method, with a corrected
P-value cutoff of 0.05.

To assess the predictive power of pseudogene expression for two UCEC
histological subtypes (endometrioid vs serous), we divided the samples into
training and test sets according to the institutions where the samples were
collected. Adapted from Yuan et al.33, we applied three well-established machine-
learning algorithms ((RF)27, (SVM)28 and (LR)) to predict the subtype (as a binary
variable) using the log-transformed expression levels of pseudogenes (or mRNA) as
candidate features. We evaluated the performance of classifiers through fivefold
cross-validation within the training set. In detail, we randomly divided the training
set into five equal portions; then, during each of the five iterations, we first applied
the least absolute shrinkage and selector operator34 as the feature selection method
on 4/5 of the training data and trained the classifiers (1,000 trees for RF, radial
kernel for SVM, other parameters set by default) with the selected features. Next,
we applied the trained classifiers to the remaining 1/5 of the training data for
prediction. The predictions from all five iterations were then combined and
compared with the truth, based on which a receiver operating characertistic curve
was drawn35 and the AUC score was calculated accordingly. Finally, we performed
feature selection (Supplementary Data 6) and built the classifier from the whole
training set using the best-performing algorithm (with the highest AUC) identified
through the cross-validation, and applied it to the test set in order to independently
validate the predictive power.

Analysis of tumour subtypes revealed by pseudogene expression. To classify
tumour subtypes based on pseudogene expression, for each cancer type, we selected
the pseudogenes with the most variable expression pattern (500 for each cancer in
the paired-end group and 100 for each cancer in the single-end group), used NMF
to classify the tumour samples into clusters29 and then used the cophenetic
correlation to select the optimized clusters. To perform an objective assessment, we
obtained independently defined molecular subtypes by other genomic data from
TCGA marker papers13–19 whenever possible; and if not, then from TCGA Pan-
Cancer Analysis Working Group (through a similar NMF-based unsupervised
analysis) (syn1688309 for microRNA expression, syn1701558 for DNA
methylation and syn1682511 for mRNA expression, copy number variation and
protein expression (reverse phase protein array)36). All related subtype
classifications and method details are publically available at Synapse37. To assess
correlations among the subtypes, we used the w

2 test or Fisher’s exact test, as
applicable, and considered Po0.05 to be statistically significant.

KIRC patient survival analysis. We obtained the clinical information associated
with the KIRC samples, including the patient’s overall survival time, age and
the tumour grade and stage from TCGA data portal (https://tcga-data.nci.nih.gov/
tcga/). We used a log-rank test to examine whether the subtypes significantly
correlated with patient survival, and a multivariate Cox proportional hazards
model to assess whether the subtype provided additional prognostic power,
given the clinical variables; to correct for multiple comparisons, we used the
Benjamini–Hochberg method38, with an adjusted FDR cutoff of 0.05. To calculate
the risk score for patients, we first built a Cox proportional hazard model by fitting
the clinical variables (that is, patient age, cancer stage and grade) with the
censored survival data, and then plugged the original clinical variables back into the
obtained model (that is, the regression function) to calculate the linear predictor or
the risk score for each patient. Patients were classified into quartiles grouped by the
risk scores (which are essentially continuous values). To display the difference
between groups, we used Kaplan–Meier plots, presenting the average survival
time as the means±s.e.m., for which we estimated the mean survival time as the
area under the survival curve39.

Mechanistic analysis of pseudogene-driven regulation. We downloaded KIRC
mRNA expression and miRNA expression from Synapse (syn300013), and used
analysis of variance (Bonferroni corrected Po0.05) to identify differentially
expressed pseudogenes or mRNAs among the subtypes. We used Spearman rank
correlations to assess the expression patterns between a pseudogene and its WT
cognate genes: Rs Z0.3 (or r� 0.3) were considered as strong positive (or
negative) correlation. To identify candidates for the miRNA decoy model, we
obtained the predicted conserved target sites from MicroRNA.org40 and used the
following criteria: (i) the expression levels of a pseudogene and its WT cognate
genes were strongly positively correlated (Rs Z0.3); (ii) its WT cognate gene
showed a significant negative correlation with the miRNA of interest (FDRo0.05)
and contained predicted target sites in its 30 untranslated region; and (iii) the
pseudogene showed a significant negative correlation with the expression of the
same miRNA (FDRo0.05).
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