
❉✉r❤❛♠ ❘❡s❡❛r❝❤ ❖♥❧✐♥❡

❉❡♣♦s✐t❡❞ ✐♥ ❉❘❖✿

✷✼ ◆♦✈❡♠❜❡r ✷✵✷✵

❱❡rs✐♦♥ ♦❢ ❛tt❛❝❤❡❞ ✜❧❡✿

P✉❜❧✐s❤❡❞ ❱❡rs✐♦♥

P❡❡r✲r❡✈✐❡✇ st❛t✉s ♦❢ ❛tt❛❝❤❡❞ ✜❧❡✿

P❡❡r✲r❡✈✐❡✇❡❞

❈✐t❛t✐♦♥ ❢♦r ♣✉❜❧✐s❤❡❞ ✐t❡♠✿

▼❛❣♥✐❡r✱ ❊✉❣❡♥❡ ❆✳ ❛♥❞ ❈❤❛♠❜❡rs✱ ❑✳ ❈✳ ❛♥❞ ❋❧❡✇❡❧❧✐♥❣✱ ❍✳ ❆✳ ❛♥❞ ❍♦❜❧✐tt✱ ❏✳ ❈✳ ❛♥❞ ❍✉❜❡r✱ ▼✳ ❊✳ ❛♥❞
Pr✐❝❡✱ P✳ ❆✳ ❛♥❞ ❙✇❡❡♥❡②✱ ❲✳ ❊✳ ❛♥❞ ❲❛t❡rs✱ ❈✳ ❩✳ ❛♥❞ ❉❡♥♥❡❛✉✱ ▲✳ ❛♥❞ ❉r❛♣❡r✱ P✳ ❲✳ ❛♥❞ ❍♦❞❛♣♣✱ ❑✳ ❲✳
❛♥❞ ❏❡❞✐❝❦❡✱ ❘✳ ❛♥❞ ❑❛✐s❡r✱ ◆✳ ❛♥❞ ❑✉❞r✐t③❦✐✱ ❘✳✲P✳ ❛♥❞ ▼❡t❝❛❧❢❡✱ ◆✳ ❛♥❞ ❙t✉❜❜s✱ ❈✳ ❲✳ ❛♥❞ ❲❛✐♥s❝♦❛t✱ ❘✳ ❏✳
✭✷✵✷✵✮ ✬❚❤❡ P❛♥✲❙❚❆❘❘❙ ❞❛t❛✲♣r♦❝❡ss✐♥❣ s②st❡♠✳✬✱ ❆str♦♣❤②s✐❝❛❧ ❥♦✉r♥❛❧ s✉♣♣❧❡♠❡♥t s❡r✐❡s✳✱ ✷✺✶ ✭✶✮✳ ♣✳ ✸✳

❋✉rt❤❡r ✐♥❢♦r♠❛t✐♦♥ ♦♥ ♣✉❜❧✐s❤❡r✬s ✇❡❜s✐t❡✿

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✸✽✹✼✴✶✺✸✽✲✹✸✻✺✴❛❜❜✽✷✾

P✉❜❧✐s❤❡r✬s ❝♦♣②r✐❣❤t st❛t❡♠❡♥t✿

❝© ✷✵✷✵✳ ❚❤❡ ❆♠❡r✐❝❛♥ ❆str♦♥♦♠✐❝❛❧ ❙♦❝✐❡t②✳ ❆❧❧ r✐❣❤ts r❡s❡r✈❡❞✳

❯s❡ ♣♦❧✐❝②

❚❤❡ ❢✉❧❧✲t❡①t ♠❛② ❜❡ ✉s❡❞ ❛♥❞✴♦r r❡♣r♦❞✉❝❡❞✱ ❛♥❞ ❣✐✈❡♥ t♦ t❤✐r❞ ♣❛rt✐❡s ✐♥ ❛♥② ❢♦r♠❛t ♦r ♠❡❞✐✉♠✱ ✇✐t❤♦✉t ♣r✐♦r ♣❡r♠✐ss✐♦♥ ♦r ❝❤❛r❣❡✱ ❢♦r
♣❡rs♦♥❛❧ r❡s❡❛r❝❤ ♦r st✉❞②✱ ❡❞✉❝❛t✐♦♥❛❧✱ ♦r ♥♦t✲❢♦r✲♣r♦✜t ♣✉r♣♦s❡s ♣r♦✈✐❞❡❞ t❤❛t✿

• ❛ ❢✉❧❧ ❜✐❜❧✐♦❣r❛♣❤✐❝ r❡❢❡r❡♥❝❡ ✐s ♠❛❞❡ t♦ t❤❡ ♦r✐❣✐♥❛❧ s♦✉r❝❡

• ❛ ❧✐♥❦ ✐s ♠❛❞❡ t♦ t❤❡ ♠❡t❛❞❛t❛ r❡❝♦r❞ ✐♥ ❉❘❖

• t❤❡ ❢✉❧❧✲t❡①t ✐s ♥♦t ❝❤❛♥❣❡❞ ✐♥ ❛♥② ✇❛②

❚❤❡ ❢✉❧❧✲t❡①t ♠✉st ♥♦t ❜❡ s♦❧❞ ✐♥ ❛♥② ❢♦r♠❛t ♦r ♠❡❞✐✉♠ ✇✐t❤♦✉t t❤❡ ❢♦r♠❛❧ ♣❡r♠✐ss✐♦♥ ♦❢ t❤❡ ❝♦♣②r✐❣❤t ❤♦❧❞❡rs✳

P❧❡❛s❡ ❝♦♥s✉❧t t❤❡ ❢✉❧❧ ❉❘❖ ♣♦❧✐❝② ❢♦r ❢✉rt❤❡r ❞❡t❛✐❧s✳

❉✉r❤❛♠ ❯♥✐✈❡rs✐t② ▲✐❜r❛r②✱ ❙t♦❝❦t♦♥ ❘♦❛❞✱ ❉✉r❤❛♠ ❉❍✶ ✸▲❨✱ ❯♥✐t❡❞ ❑✐♥❣❞♦♠
❚❡❧ ✿ ✰✹✹ ✭✵✮✶✾✶ ✸✸✹ ✸✵✹✷ ⑤ ❋❛① ✿ ✰✹✹ ✭✵✮✶✾✶ ✸✸✹ ✷✾✼✶

❤tt♣s✿✴✴❞r♦✳❞✉r✳❛❝✳✉❦

https://www.dur.ac.uk
https://doi.org/10.3847/1538-4365/abb829
http://dro.dur.ac.uk/32268/
https://dro.dur.ac.uk/policies/usepolicy.pdf
https://dro.dur.ac.uk

The Pan-STARRS Data-processing System

Eugene A. Magnier
1

, K. C. Chambers
1

, H. A. Flewelling
1

, J. C. Hoblitt
2
, M. E. Huber

1
, P. A. Price

3
, W. E. Sweeney

1
,

C. Z. Waters
1

, L. Denneau
1

, P. W. Draper
4

, K. W. Hodapp
1

, R. Jedicke
1

, N. Kaiser
1

, R.-P. Kudritzki
1
,

N. Metcalfe
4

, C. W. Stubbs
5

, and R. J. Wainscoat
1

1
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

2
LSST Project Management Office, Tucson, AZ, USA

3
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
4
Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

5
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Received 2019 May 9; revised 2020 January 28; accepted 2020 January 29; published 2020 October 30

Abstract

The Pan-STARRS data-processing system is responsible for the steps needed to downloaded, archive, and process
all images obtained by the Pan-STARRS telescopes, including real-time detection of transient sources such as
supernovae and moving objects including potentially hazardous asteroids. With a nightly data volume of up to
4 TB and an archive of over 4 PB of raw imagery, Pan-STARRS is solidly in the realm of Big Data astronomy. The
full data-processing system consists of several subsystems covering the wide range of necessary capabilities. This
article describes the Image Processing Pipeline and its connections to both the summit data systems and the
outward-facing systems downstream. The latter include the Moving Object Processing System (MOPS) and the
public database: the Published Science Products Subsystem.

Unified Astronomy Thesaurus concepts: Sky surveys (1464); Astronomy data analysis (1858); Astronomy
databases (83); Astronomy data reduction (1861); Photometry (1234); Astronomical techniques (1684);
Astrometry (80)

1. Introduction

The 1.8 m Pan-STARRS1 telescope is located on the summit
of Haleakala on the Hawaiian island of Maui. The wide-field
optical design of the telescope (Hodapp et al. 2004) produces a
3°.3 field of view with low distortion and minimal vignetting
even at the edges of the illuminated region. The optics and
natural seeing combine to yield good image quality: 75% of the
images have FWHM values less than (1 51, 1 39, 1 34, 1 27,
1 21) for (gP1, rP1, iP1, zP1, yP1), with a floor of ∼0 7.

The Pan-STARRS1 camera (Tonry & Onaka 2009), known as
GPC1, consists of a mosaic of 60 back-illuminated CCDs
manufactured by Lincoln Laboratory. The CCDs each consist of
an 8×8 grid of 590×598 pixel readout regions, yielding an
effective 4846×4868 detector. The GPC1 CCDs have the
ability to move charge in both dimensions on the detector and
are thus referred to as orthogonal transfer arrays (OTAs). Initial
performance assessments are presented in Onaka et al. (2008).
Routine observations are conducted remotely from the Advanced
Technology Research Center in Kula, the main facility of the
University of Hawaii’s Institute for Astronomy (IfA) operations
on Maui. The Pan-STARRS1 filters and photometric system
have already been described in detail in Tonry et al. (2012).

For nearly 4 yr, from 2010 May through 2014 March, this
telescope was used to perform a collection of astronomical
surveys under the aegis of the Pan-STARRS Science Con-
sortium. The majority of the time (56%) was spent on surveying
the three-quarters of the sky north of −30° decl. with gP1, rP1,
iP1, zP1, yP1 filters in the so-called 3π Survey. Another ∼25% of
the time was concentrated on repeated deep observations of 10
specific fields in the Medium-Deep Survey. The rest of the time
was used for several other surveys, including a search for
potentially hazardous asteroids in our solar system. The details
of the telescope, surveys, and resulting science publications are
described by Chambers et al. (2016).

Pan-STARRS produced its first large-scale public data

release, Data Release 1 (DR1) on 2016 December 16. DR1

contains the results of the third full reduction of the Pan-

STARRS 3π Survey archival data, identified as PV3. Previous

reductions (PV0, PV1, and PV2) were used internally for

pipeline optimization and the development of the initial

photometric and astrometric reference catalog (Magnier et al.

2020a). The products from these reductions were not publicly

released but have been used to produce a wide range of

scientific papers from the Pan-STARRS1 Science Consortium

members (Chambers et al. 2016). DR1 contained only average

information resulting from the many individual images

obtained by the 3π Survey observations. A second data release,

DR2, was made available 2019 January 28. DR2 provides

measurements from all of the individual exposures and include

an improved calibration of the PV3 processing of that data set.
This is the second in a series of seven papers describing the

Pan-STARRS1 Surveys, the data reduction techniques, and the

resulting data products. This paper (Paper II) presents a

description of the Pan-STARRS data handling systems, with an

emphasis on the Image Processing Pipeline (IPP). The Pan-

STARRS IPP consists of a suite of software programs and data

systems that are designed to reduce astronomical images,

measure astronomical sources on the images, perform the

calibration, and distribute the results to various users. The

processing system includes extensive parallelization across a

large cluster of computers in order to process the large amount

of data generated by the Pan-STARRS 1 telescope.
Chambers et al. (2016, Paper I) provide an overview of the

Pan-STARRS System, the design and execution of the Surveys,

the resulting image and catalog data products, a discussion of

the overall data quality and basic characteristics, and a brief

summary of important results.

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November https://doi.org/10.3847/1538-4365/abb829

© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0002-1341-0952
https://orcid.org/0000-0002-1341-0952
https://orcid.org/0000-0002-1341-0952
http://astrothesaurus.org/uat/1464
http://astrothesaurus.org/uat/1858
http://astrothesaurus.org/uat/83
http://astrothesaurus.org/uat/83
http://astrothesaurus.org/uat/1861
http://astrothesaurus.org/uat/1234
http://astrothesaurus.org/uat/1684
http://astrothesaurus.org/uat/80
https://doi.org/10.3847/1538-4365/abb829
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4365/abb829&domain=pdf&date_stamp=2020-10-30
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4365/abb829&domain=pdf&date_stamp=2020-10-30

Waters et al. (2020, Paper III) describe the details of the pixel
processing algorithms, including detrending, warping, and adding
(to create stacked images) and subtracting (to create difference
images), and the resulting image products and their properties.

Magnier et al. (2020b, Paper IV) describe the details of the
source detection and photometry, including point-spread-
function (PSF) and extended source fitting models, and the
techniques for “forced” photometry measurements.

Magnier et al. (2020a, Paper V) describe the final calibration
process and the resulting photometric and astrometric quality.

Flewelling et al. (2020, Paper VI) describe the details of the
resulting catalog data and its organization in the Pan-STARRS
database.

M. Huber et al. (2020, in preparation, Paper VII) describe the
Medium-Deep (MD) Survey in detail, including the unique
issues and data products specific to that survey. The Medium-
Deep Survey is not part of DR1 or DR2 and will be made
available in a future data release.

Section 2 provides an overview of the full data analysis
system and breaks down the major elements of the IPP.
Section 3 discusses in some detail each of the analysis steps
that may be applied to the images and resulting catalogs of
detected sources. Section 4 discusses the databasing system
used for calibration, the calibration operations, and summarizes
the construction of the public release database. Section 5
discusses the operational infrastructure of the IPP. Section 6
discusses the hardware systems used by the IPP for regular
nightly operations and for processing the PV3 data release,
with some details on the scale of computing needed to reduce
this large number of exposures.

In this article, we use the following typefaces to distinguish
different concepts:

1. SMALL CAPS for the analysis stages.
2. Italics for database tables and columns.
3. Fixed-width font for program names, variables, and

miscellaneous constants.

2. Overview of Pan-STARRS Data Processing

2.1. Elements of the Pan-STARRS Data-processing System

The Pan-STARRS data analysis system consists of many
elements to support a wide range of activities: archiving and
management of the raw and processed image files, real-time
nightly processing of images for transient and moving object
science, large-scale reprocessing and calibration to produce
measurements for the science collaboration and the wider
public, specialized image processing to facilitate research and
development of the analysis system itself, and distribution of
the resulting data products to various consumers in a variety of
formats and modes.

The Pan-STARRS data analysis system is divided internally
into several major components:

1. Summit Processing: both the camera and observatory
summit systems perform data analysis tasks needed to
support the ongoing observations. In this article, we focus
only on those aspects used by the off-summit analysis
stages.

2. IPP: this portion of the data analysis system takes the data
from raw pixels on the summit computers to calibrate
measurements of astronomical objects in an internal
databasing system.

3. Moving Object Processing System (MOPS): this system
is responsible for linking individual detections of solar
system objects together and determining the orbits
(Denneau et al. 2013).

4. Published Science Products Subsystem (PSPS): this
system ingests the calibrated measurements from the
IPP, MOPS, and others and generates a high-availability
database with web-based interactions for public con-
sumption (Paper VI).

Management of the above set of analysis stages takes place at
the IfA within the scope of responsibility of the Pan-STARRS
Observatory. Across the wider Pan-STARRS collaboration(s),
additional data analysis operations are performed to support
science results. These collaboration-wide analysis operations
range from those that are tightly coupled to the Pan-STARRS
Observatory system, such as the analysis of the transient search
teams and the public archive database at Mikulski Archive for
Space Telescopes (MAST), to those that perform offline
analysis for eventual ingest back into the Pan-STARRS
databases and archive. The latter category includes the ubercal
photometric analysis (Schlafly et al. 2012), the photoz analysis
(Saglia et al. 2012), and the QSO/RR Lyra search efforts
(Hernitschek et al. 2016). In addition, collaborations within the
wider Pan-STARRS community have implemented a variety of
science-level analyses of their own to support their science
goals (e.g., M31 variable search; Lee et al. 2012, 2014).
Figure 1 illustrates the many elements of the Pan-STARRS

data analysis system. This figure focuses on the data analysis
steps that occur within the Pan-STARRS Observatory, with an
emphasis on the analysis, calibration, and database ingest
stages. The MOPS is described in detail by Denneau et al.
(2013).

2.2. Nightly Processing Analysis Stages

Data analysis to support nightly science operations is driven
by two main goals: (1) rapid detection of the moving and
transient sources to enable recovery or follow-up with other
telescopes, and (2) regular analysis of the images to monitor data
quality and for use in longer-timescale science projects. Not all
of the analysis elements listed in Figure 1 are used by the nightly
analysis system. Each of the data analysis stages are discussed in
detail below. In short, each image is processed independently to
correct for instrumental signatures and to detect the astronomical
sources (CHIP), astrometric and photometric calibrations are
determined (CAMERA), and finally, images are geometrically
transformed to a common pixel representation (WARP). Warped
images may either be added together (STACK) or used in an
image subtraction (DIFF). As part of nightly science processing,
images for certain fields, such as the Medium-Deep survey fields
(see M. Huber et al. 2020, in preparation), are stacked together in
nightly chunks, providing deeper detection capability on 1 day
timescales. Depending on the survey mode, difference images
are generated for the nightly stack images (using a deep stack
template) or for individual warp images. In the latter case, the
warp images may be differenced against another warp from the
same night or against a reference stack from the appropriate part
of the sky.

2.3. Reprocessing Analysis Stages

Pan-STARRS has performed several large-scale reproces-
sings of both the Medium-Deep and 3π Survey data for internal

2

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

consumption. For the 3π Survey data, we identify these large-
scale reprocessings as PV1 (Processing Version 1), PV2, and
PV3, with PV3 the analysis used for the first public data
release, DR1. We also refer to the nightly science analysis of
the data as PV0. For these reprocessing stages, the standard
steps of CHIP through WARP, plus STACK and DIFF are
performed, starting from raw data, usually using a single
homogeneous version of the data analysis procedures. PV2 was
a special case in which we started from the camera-level
products of PV1 to speed up the turnaround to the community.
In addition to the analysis stages listed above which are shared
with the nightly processing, these large-scale reprocessing
analyses include additional processing steps. A more detailed
photometric analysis is performed on the stacks, including
morphological analysis appropriate to galaxies (model fits,
Kron and Petrosian aperture photometry, etc.). The results of
the stack photometry analysis are used to drive a forced
photometry analysis of the warp images. These analysis steps
are discussed in detail in Paper IV. The data products from the
camera, stack, and forced warp photometry analysis stages are
ingested into the internal calibration database (DVO, the
Desktop Virtual Observatory) and used for photometric and
astrometric calibrations (see Section 4.1 and Paper V).

2.4. Data Access and Distribution

During the PS1 Science Consortium operations, data
products were provided to the consortium members from many
different stages of the analysis process. Data access by the PS1
Science Consortium members was managed through a variety
of mechanisms depending on the data volume and type of data
products desired. Figure 1 illustrates some of these connec-
tions. Access to small samples of imaging data was provided on
demand via the Postage Stamp server; access to large sets of
predefined raw and reduced data products was provided via the
Distribution and Publication systems. The internal calibration
DVO databases were provided at several stages via a separate
DVO distribution mechanism. For the first two large-scale
reprocessings (PV1 and PV2), the data were ingested into the
PSPS database system and made available to the PS1SC

community through a web portal based at the IfA as well as the
MAST portal (see Paper VI for full details).

3. IPP Data-processing Stages

3.1. Processing Database

A critical element in the Pan-STARRS IPP infrastructure is
the processing database. This database, using the mysql
database engine, tracks information about each of the
processing stages. It is used as the point of mediation of all
IPP operations. Processing stages within the IPP perform
queries of the database to identify the data to be processed at a
given stage. As the processing for a particular stage is
completed, summary information about the stage is written
back to the database. In this way, the database records this
history of the processing and also provides the information
needed by successive processing stages to begin their own
tasks.
The processing database is colloquially referred to as the

“gpc1” database, because a single instance of the database is
used to track the processing of images and data products related
to the PS1 GPC1 camera. This same database engine also has
instances (same schema, different data) for other cameras
processed by the IPP, e.g., GPC2, the test cameras TC1 and
TC3, and the Imaging Sky Probe. In general, processing
information for different cameras is separate in different
processing database; merging of output products takes place
in DVO.
Within the processing database, the various processing

stages are represented as a set of tables. In general, there is a
top-level primary table which defines the conceptual list of
processing items either to be done, in progress, or completed.
An associated secondary table (or set of tables) lists the details
of component elements that have been processed for each top-
level item. Table 1 contains an outline of the database schema,
showing the relations between tables organized by processing
stage. As an example, one critical stage is the CHIP-processing
stage (see Section 3.4) in which the individual chips from an
exposure are detrended and sources are detected. Within the
gpc1 database, the primary table is called chipRun in which

Figure 1. Elements of the Pan-STARRS1 Data Analysis System. Rectangles represent data analysis steps, ellipses represent databases, and rounded rectangles
represent external groups (“customers”). The arrows show a simplified representation of the major flow of data between the analysis stages and data-processing
elements.

3

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

each exposure has a single entry. Associated with this table is
the chipProcessedImfile table, which contains one row for each
of the chips associated with the exposure (up to 60 for gpc1).
The primary tables, such as chipRun, are populated once the
system has decided that a specific item (e.g., an exposure)
should be processed at that stage. Initially, the entry is given a
state of “run,” denoting that the exposure is ready to be
processed. The low-level table entries, such as the chipPro-
cessedImfile entries, are only populated once the element (e.g.,
the chip) has been processed by the analysis system. Once all
elements for a given stage, e.g., chips in this case, are
completed, then the status of the top-level table entry (chipRun)
is switched from “run” to “full.”

If the analysis of an element (e.g., the individual OTA chip)
completed successfully, then the corresponding table row (e.g.,
chipProcessedImfile) is listed with a fault of 0. If the analysis
failed, then a nonzero fault is recorded. An analysis which
results in a fault is one in which the failure is thought to be
temporary. For example, if the processing computer had a
network interruption and was unable to write some of the
output files, this would be an ephemeral failure which was not a
failing of the data, but merely the processing system. On the
other hand, if the analysis failed because of a problem with the
input data, this is noted by setting a nonzero value in a different

table field, quality. For example, if the CHIP analysis failed to

discover any stars because the image was completely saturated,

the analysis can complete successfully (fault=0), but the

quality field will be set to a nonzero value. The various

processing stages are able to select only the good (quality=0)
elements of a prior stage when choosing items for processing.

For example, the CAMERA calibration stage will only use data

from chips with good quality data, dropping the failed chips

from the rest of the analysis. On the other hand, a fault in one

of the elements for a given stage will block any successive

stages that depend on that result from processing that item. In

this way, if such a temporary failure occurs, the system will not

process an exposure through subsequent stages without the

component that has failed temporarily. Because many of the

faults that occur are ephemeral due to current conditions of the

processing cluster, the processing stages are set up to

occasionally clear and retry the faulted entries. Some faults

represent software bugs and in the early stages of processing

were accumulated until the corresponding software issue could

be addressed; since the start of the PS1 Science Consortium

Surveys, these types of faults have largely been eliminated.

Thus, automatic processing is able to keep the data flowing

even in the face of occasional network glitches or hardware

crashes.

3.2. Summit Copy

As exposures are taken by the PS1 telescope and GPC1

camera system, the data from the 60 OTA devices are read out

by the camera software system and written to disk on a

collection of computers at the summit in the PS1 facility called

“pixel servers.” After the images are written to disk, a summary

listing of the information about the exposure and the chip

images are added to the summit datastore (an internal http-

based data-sharing tool; see Section 5.4).
During night-time operations, while the summit datastore is

being populated, the IPP subsystem called SUMMITCOPY

monitors the datastores listed in the pzDatastore table of the

database in order to discover new exposures ready for

download. Once a new exposure has been listed on the

datastore, SUMMITCOPY adds an entry of the exposure to a

table in the processing database (summitExp), indexed by an

identifier that simply increments the number of exposures

announced by the summit, the summit_id. This tells the

SUMMITCOPY system to look for the list of chips, which are

then added to another table (summitImfile). This system then

attempts to download the chips (registering the results of those

operations into the pzDownloadExp and pzDownloadImfile

tables) from the summit pixel servers via an http request. As the

image files are downloaded, their MD5 checksum values are

calculated and compared with the value reported by the summit

datastore. Download failures are rare and marked with a

nonzero fault, allowing for a manual recovery, rather than

automatically rejecting the failed chips. Once all the compo-

nents of the exposure have been downloaded, they are further

entered into the newExp and newImfile tables, which index the

exposures by exp_id. This switch in index indicates that the

exposure has successfully been copied from the summit to the

IPP cluster and that further processing is no longer dependent

on outside resources.

Table 1

GPC1 Database Schema Outline

Stage Primary Table Secondary Table(s) Key

SUMMITCOPY pzDataStore

summitExp summitImfile summit_id

pzDownloadExp pzDownloadImfile

newExp newImfile exp_id

REGISTRATION rawExp rawImfile exp_id

CHIP chipRun chipProcessedImfile chip_id

CAMERA camRun camProcessedExp cam_id

FAKE fakeRun fakeProcessedImfile fake_id

WARP warpRun warpImfile warp_id

warpSkyCellMap

warpSkyfile

STACK stackRun stackInputSkyfile stack_id

stackSumSkyfile

STATICSKY staticskyRun staticskyInput sky_id

staticskyResult

SKYCAL skycalRun skycalResult skycal_id

FULLFORCE fullForceRun fullForceInput ff_id

fullForceResult

fullForceSummary

DIFF diffRun diffSkyfile diff_id

diffInputSkyfile

DETREND detRun detRunSummary det_id

detInputExp

detRegisteredImfile

detStackedImfile

detProcessedExp detProcessedImfile

detResidExp detResidImfile

detNormalizedExp detNormalizedImfile

ADDSTAR addRun addProcessedExp add_id

DISTRIBUTION distRun distComponent dist_id

distTarget

PUBLISH publishRun publishDone pub_id

publishClient

LAP lapSequence lapRun seq_id

lapRun lapExp lap_id

REMOTE remoteRun remoteComponent remote_id

4

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

3.3. Image Registration

Once the chips for an exposure have all been downloaded,
the exposure is ready to be registered. In this context,
“registration” refers to the process of adding them to the
database listing of known, raw exposures (not to be confused
with “registration” in the sense of pixel realignment). The result
of the REGISTRATION analysis is an entry for each exposure in
the rawExp table and one for each chip in the rawImfile table.
These tables are critical for downstream processing to identify
what exposures are available for processing in any other stage.
At the REGISTRATION stage, a large amount of descriptive
metadata for each chip is added to the rawImfile table, the
majority of which is extracted from the chip FITS file headers
(e.g., R.A., decl., FILTER), some of which are determined by a
quick analysis of the pixels (e.g., mean pixel values, standard
deviation). The chip-level information is merged into a set of
exposure-level metadata and added to the rawExp table entry.
The exposure-level metadata may be the same as any one of the
chip, in the case where the values are duplicated across the chip
files (e.g., the name of the telescope or the date and time of the
exposure), or it may be a calculation based on the values from
each chip (e.g., average of the average pixel values).

Unlike much of the rest of the IPP stage, the raw exposures
may only have a single entry in the REGISTRATION tables of
the processing database tables (rawExp and rawImfile).

For GPC1, the REGISTRATION stage is also the stage at
which the burntool analysis is run. This analysis is more
completely described in Paper III. In brief, the burntool

program identifies bright sources on the image and identifies
persistence trails that result from the incomplete transfer of
charge. As this charge can leak out in subsequent exposures,
the burntool analysis is run sequentially on the exposures,
based on the observation date and time listed in the headers,
with the results stored on disk. As a result of the sequential
nature of this analysis, the REGISTRATION of exposures is
blocked until the burntool has been run on the previous
exposures. Because this stage is only run once per exposure,
changes to the burntool code require a semi-manual rerunning
of the analysis outside of the regular processing sequence.
Because this is a rare event, a standardized pipeline
infrastructure was not developed for this circumstance. In a
future reorganization, a standard serialized preprocessing step
may be needed in the pipeline.

Once the REGISTRATION process has finished, new science
exposures that have an obs_mode value that indicates they are
part of a particular science survey are automatically launched
into the science analysis by defining entries for the CHIP-
processing stage, as described above. The science analysis of a
given exposure can be relaunched multiple times, such as for
the large-scale PV3 reprocessing. The automatically launched
analysis process ensures the shortest time between observation
and analysis, particularly important in the search for transient
sources.

3.4. Chip Processing

The science analysis of an exposure begins with the CHIP

stage, which operates on the individual OTA image files. This
analysis step has two main goals: detrending the image to
remove the instrumental signature from the pixel values and the
detection of astronomical sources in the objects. Based on the
entry, the chipRun primary table defining the processing details

(with the state column indicating it needs processing) and the
associated information listed in the rawImfile, jobs can be
spawned for each component OTA.
The CHIP stage is naturally parallelized by processing data

from each of the 60 OTAs independently. Several stages in the
IPP analysis are parallelized in a similar fashion; although there
are multiple stages that operate on an entire exposure at once,
the majority of stages operate on smaller segments of a full
exposure, allowing the processing tasks to be spread over the
machines in the processing cluster. The pantasks environ-
ment (the system that manages the processing jobs; see
Section 5.1) attempts to target the processing to a computer
that is assigned to host data for the particular OTA. This
capability is implemented to reduce the network I/O load by
minimizing the number of operations done on nonlocal data. In
practice, this targeted processing has not had as large of an
impact as was originally intended: the data volume and
operational details of the hardware has reduced the ability of
any one node to reliably contain a particular OTA. The targeted
processing has probably reduced the network load somewhat,
but it has not been as critical of a requirement as originally
expected.
The actual image processing is performed by the ppImage

program. This program reads the raw data into memory and
applies the detrend corrections (see Paper III) to each cell in the
OTA (stored as different extensions in the FITS file format),
and then mosaics the cells into a single contiguous CHIP-stage
image. This step also creates in memory additional images to
hold the mask data, which indicates which pixels may not be
valid, and the variance image, constructed as the Poissonian
noise on the number of electrons detected based on the original
pixel value and the detector gain. A background model is then
fit across the image and subtracted to remove the expected
contribution from the sky (see Paper III for details).
With the image calibration procedure finished, object

identification and photometry can be performed. Although this
can be done using a standalone program, psphot, the
underlying functions are contained in a library that allows
ppImage to directly do this analysis, removing the need to
write out and reread the image data. The details of the detection
and characterization of the sources in the image are provided in
Paper IV.
The results of the image processing are then written to disk,

including the science, mask, and variance images; the binned
background model subtracted, the PSF model used in the
photometry process; and a FITS catalog of detected sources.
Additional binned images of the full OTA are also saved, using
16×16 and 256×256 pixel binning scales for quick
visualization. The processing log and a selection of summary
metadata describing the processing results are also written to
disk. This metadata is used to populate a row in the
chipProcessedImfile table to indicate that the processing of
this OTA is complete.
As each OTA is processed independently of the others across

a number of computers, the pantasks server managing the
jobs periodically runs an advance task that checks that the
number of rows in chipProcessedImfile with fault equal to zero
matches the associated number of rows in rawImfile. If this
condition is met, then all processing for that exposure is
finished, and the state field is set to “full.” If the chipRun.

end_stage field is set to CHIP, then no further action is taken.
However, this field is usually set to a subsequent stage (most

5

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

often WARP), in which case an entry for this exposure is added
to the camRun table, and processing continues.

3.5. Camera Calibration

After sources have been detected and measured for each of
the chips, the next stage is to perform a basic calibration of the
full exposure in the CAMERA stage. This runs as a single job for
the entire exposure, passing the collection of FITS table
catalogs generated from each OTA in the CHIP stage to the
psastro program. Although the full catalog is loaded, the
calibration primarily concerns the positions (xccd, yccd) and the
instrumental PSF magnitudes. The header information in these
catalogs is used to determine the coordinates of the telescope
boresite (R.A., decl., position angle). These three coordinates
are used, along with a predetermined model of the OTA layout
within the camera, to generate an initial guess for the
astrometry of each chip. Reference star coordinates and
magnitudes are loaded from a reference catalog for a region
corresponding to the boundaries of the exposure, padded by a
large fraction (25%) of the exposure diameter to help guarantee
a solution in the case of a modest pointing error. The guess
astrometry is used to match the reference catalog to the
observed stellar positions in the focal plane coordinate system.
Early on in the PS1SC mission, the nightly processing (PV0)
used a reference catalog based on a combination of external
catalogs (2MASS, Tycho, USNO). Later, reference catalogs
based on Pan-STARRS data was used. For the 3π PV3
analysis, the reference catalog was based on Pan-STARRS data
from the PV2 analysis (see Paper V for more details).

Once an acceptable match is found, the astrometric
calibration of the individual chips is performed, including a
fit to a single model for the distortion introduced by the camera
optics. The astrometric model includes a set of third-order
polynomials for the transformations from the chip coordinate
system to the camera focal plane coordinate system and a single
additional third-order polynomial transformation from the
camera focal plane coordinate system to the tangent plane of
a tangent projection.

As discussed in detail in Paper V, we find that, for the PS1
images, small-scale structures are present in the astrometric
transformation. Some of these are due to ripples in the focal
surface, while others may be caused by the atmosphere. We
find that including higher-order terms in both the chip to focal
plane and focal plane to sky are necessary to capture significant
astrometric signals. Some care must be taken in the fitting
process to avoid degeneracies between terms on different
scales.

For the 3π PV3 analysis, the typical astrometric residuals are
in the range of 20–30 mas, sufficient to match observations of
the same objects between different exposures. There are,
however, inevitable outliers. Certain chips occasionally have
systematically worse astrometry, with OTA XY17 notably poor
in this respect.

After the astrometric analysis is completed, the photometric
calibration is determined using the final match to the reference
catalog. A single photometric zero point is determined for each
exposure, with the airmass term fixed to the nominal linear
slope for each filter. No color terms are measured between the
observed photometry and the reference photometry. However,
at this stage, predetermined color terms may be used to
transform the reference photometry to an appropriate photo-
metric system. For the PS1 nightly processing, the reference

catalog does not include wP1 photometry, so a fixed color
transformation is used to generate synthetic w-band photometry
from the rP1 and iP1 photometry. For more details, see Paper V.
The result of these calibrations is stored as a single multi-
extension FITS table containing the results from each OTA as a
separate extension.
In addition to the astrometric and photometric calibrations,

the CAMERA stage also generates the dynamic masks for the
images. These include masking for optical ghosts, glints,
saturated stars, diffraction spikes, and electronic crosstalk. The
mask information is generated based on the reference star
catalog, along with models for the various effects. Note,
however, that this analysis does not go back to the pixels to
validate the prediction. The mask images generated by the CHIP

stage are updated with these dynamic masks and a new set of
files are saved for the downstream analysis stages. The
CAMERA stage also merges the binned chip images (see
Section 3.4) into single jpeg images of the entire focal plane.
These jpeg images can then be displayed by the process
monitoring system to visualize the data processing.
Again, summary metadata is saved to disk as well, and the

results listed therein are used to populate a row in the
camProcessedExp database table. As the full exposure is
processed all at once, this update also updates the associated
camRun entry, linked by cam_id. As with the CHIP stage, if the
camRun.end_stage is for a subsequent stage, an appropriate
entry is added to the fakeRun table.

3.6. Fake Analysis

The FAKE stage was originally designed to do false source
injection and recovery, in order to determine the detection
efficiency of sources on the exposure. However, early in the
design of the IPP, this task was moved to the rest of the
photometry analysis done at the CHIP stage. Removing the
stage would require significant changes to the database schema.
As a result, this conveniently named stage generally does no
actual data processing and consists mainly of database
operations to move the exposure on to the WARP stage. The
operations mimic the CHIP stage, with individual jobs run for
each OTA that update rows in the fakeProcessedImfile and an
advance task that updates the fakeRun table and promotes the
exposure to the next stage by adding a row to the warpRun
table.

3.7. Image Warping

The WARP stage transforms the image pixels from the
regular grid laid out on the chips in the camera to a system of
pixels with consistent geometry for a location on the sky. The
new image coordinate system is defined by one of a number of
“tessellations” that specify how the sky is divided into
individual images. A single tessellation starts with a collection
of projection centers distributed across the sky. A grid of image
pixels about each projection center corresponds to sky positions
via a projection with a specified pixel scale and rotation. In
general, the pixel grid within the projection is defined as a
simplified grid with the y-axis aligned to the decl. lines and no
distortion terms. The projection centers are typically separated
by several degrees on the sky; for pixel scales appropriate to
GPC1, the resulting collection of pixels would be unwieldy in
terms of memory in the processing computers. The pixel grid is
thus subdivided into smaller sub-images called “skycells.”

6

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

A tessellation can be defined for a limited region, with only a
small number of projection centers (e.g., for processing the
M31 region) or even a single projection center (e.g., for the
Medium-Deep fields). For the 3π Survey, the tessellation
contains projection centers covering the entire sky. The version
used for the PV3 analysis is called RINGS.V3. In this
tessellation, projection centers are spaced every 4° in decl. and
the R.A. spacing is approximately 4° as well, adjusted to ensure
an integer number of equal-size regions. RINGS.V3 uses a
pixel scale of 0 25 per pixel. The projections are subdivided
into a 10×10 grid of skycells, with an overlap region of 60″
between adjacent skycells to ensure that objects of modest size
are not split on all images. The coordinate system used for
these images matches the parity of the sky, with north in the
positive y direction and east to the negative x direction. The
tessellations used by the IPP are stored in the DVO format (see
Section 4.1). A table in the processing database, SkyTable, lists
the projection centers and image boundaries for all skycells.

The first step of the WARP stage is to determine which
skycells overlap with the input exposure. These overlaps are
determined by the dvoImageOverlaps program, which
compares the astrometrically calibrated catalog from the
CAMERA stage to the DVO database defining the target
tessellation. The output of this command is used to populate the
warpSkyCellMap table in the database, which contains a row
for each skycell and OTA that overlap. Each skycell may
contain contributions from multiple OTAs; because they are
similar in size, in a typical situation, the warp is constructed
from four to six neighboring OTAs.

Once this mapping has been defined, jobs to warp the pixels
onto each skycell are run, passing the CAMERA stage catalog
and the CHIP stage images (including the variance images and
the updated masks) to the pswarp program. For details on the
warping algorithm, see Paper III. The outputs of this program
are the geometrically transformed images (signal, variance, and
mask) containing all input pixels warped to the common
skycell pixel grid. These can subsequently be used for stacking
and difference image analyses. For the 3π Survey data, the
signal, mask, and variance images generated at this stage are
being made available from the image extraction tools at the
MAST archive at STScI as part of the DR2 data release.

When the WARP jobs have completed, an entry for the
skycell is added to the warpSkyfile database table, linked to the
warpRun entry by a common warp_id. An advance task
again checks that all potential skycells have been generated. At
this point, the direct promotion of exposures from one stage to
the next stops, as the logic for matching exposures for other
combinations is more complicated than simply adding a single
entry.

3.8. Stack Combination

The skycell images generated by the WARP process can be
added together to make deeper, higher signal-to-noise images
in the STACK stage. These stacked images also fill in coverage
gaps between different exposures, resulting in an image of the
sky with more uniform coverage than a single exposure.

In the IPP processing, stacks may be made with various
options for the input images. During nightly science proces-
sing, the eight exposures per filter for each Medium-Deep field
are automatically combined into a set of stacks for that field.
These so-called “nightly stacks” are used by the transient
survey projects to detect faint supernovae, among other

transient events. For the PV3 3π analysis, all images in each
filter from the observations for this survey were stacked
together to generate a single set of images with ∼10×–20×the
exposure of the individual survey exposures.
For the PV3 processing of the Medium-Deep fields, stacks

have been generated for the nightly groups and for the full
depth using all exposures, producing “deep stacks.” In addition,
a “best seeing” set of stacks have been produced using image
quality cuts described in Paper VII. We have also generated
out-of-season stacks for the Medium-Deep fields, in which all
images not from a particular observing season for a field are
combined into a stack. These later stacks are useful as deep
templates when studying long-term transient events in the
Medium-Deep fields as they are not (or less) contaminated by
the flux of the transients from a given season.
When a given set of STACK stage processing is defined,

exposures with existing WARP entries that match the filter,
position, and other criteria such as seeing are identified (see
Section 5.2 for details on how this is automated). An entry is
then added for each skycell in the stackRun table, with the
warp_id entries for the exposures added to the stackInputSkyfile
table, linked to the stackRun entry by the stack_id field. This
defines the mapping for which exposures contribute to the
STACK. The STACK stage processing is performed at the
skycell level.
The STACK jobs pass the information about the input images

and catalogs to the ppStack program, which performs the
image combinations. Input warps are combined based on a
weighting defined by the median variance for each image;
seePaper III for details on the stack combination algorithm. In
addition to the standard image, mask, and variance produced at
other stages, additional images are constructed with informa-
tion about the contributions to each pixel. A number image
contains the number of input exposures used for each pixel,
along with an exposure time map, and a weighted exposure
time map that scales the exposure time based on the relative
variance of each input. These images for the 3π analysis are
currently available from the MAST image extraction tools at
STScI.
Upon completing the generation of these images, a row is

added to the stackSumSkyfile table with statistics about STACK
processing. As this completes all processing for the entry, no
advance job is required.

3.9. Stack Photometry

Although images are generated in the STACK stage of the
IPP, the source detection and analysis of those images is
deferred to the STATICSKY stage. This separation is maintained
because the photometry analysis of the STACK images,
including convolved galaxy model fitting, is performed on all
five filters simultaneously. By deferring this analysis, the
processing system may also decouple the generation of the
pixels from the source detection. This makes the sequencing of
analysis somewhat easier and less subject to blocks due to a
failure in the long-running stacking analysis. Similar to the
STACK stage, an entry is created in the staticskyRun table,
linked to a series of rows in the staticskyInput table by a
common sky_id, each of which also contains the appropriate
stack_id entries for the skycell under consideration.
The input images are passed to the psphotStack

program, which does the analysis. The stack photometry
algorithms are described in detail in Paper IV. In short, sources

7

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

are detected in all five filter images down to the 5σ significance.
The collection of detected sources is merged into a single
master list. If a source is detected in at least two bands, or only
in the yP1 band, then a PSF model is fitted to the pixels of the
other bands in which the source was not detected. This forced
photometry results in lower significance measurements of the
flux at the positions of objects that are thought to be real
sources, by virtue of triggering a detection in at least two
bands. The relaxed limit for the yP1 band is included to allow
for searches of yP1 dropout objects: it is known that faint, high-
redshift quasars may be detected in the yP1 band only. Sources
detected only in the yP1 band are therefore more likely to have a
higher false-positive rate than the other stack sources. The
parameters of the PSF model are allowed to vary with position
in the skycell. The PSF model is also used to convolve the
analytical galaxy models, which are the fitted to the observed
flux distributions. Galaxy models include Sérsic, de Vaucou-
leur, and exponential profiles.

The stack photometry output files consist of a set of FITS
table catalogs, with one file for each filter. Within these files,
there are multiple table extensions, with different classes of
measurements saved in the different extensions. The extensions
include a table of the measurements of sources based on the
PSF model, a table of aperture-like parameters such as the
Petrosian flux and radius, a table of the convolved galaxy
model fits, and a table of the radial aperture measurements.
Once the photometry is complete, a row is added to the
staticskyResult table with basic statistics from the analysis.

The stack photometry output catalogs are recalibrated for
both photometry and astrometry in a process very similar to the
CAMERA calibration stage. Although the individual warps that
go into the stack are calibrated based on the CAMERA stage
analysis, there was some concern that these calibrations might
not be sufficiently well defined for some of the input warps,
biasing the photometry of the stack. By recalibrating the stacks,
we can be sure that the stack photometry as measured is tied to
the photometric reference system.

In the case of this SKYCAL stage, each skycell is processed
independently. Because of this independence, when queued for
processing, the entries in the skycalRun table contain the sky_id
and stack_id entries of the parent data directly. As in the
CAMERA stage, the psastro program reads in the stack
photometry catalog, and produces a calibrated output, with
format matching the input. A different processing recipe is
supplied to psastro, which controls for the different data.
The same reference catalog is used for the CAMERA and STACK

calibration stages. Upon completion, the analysis statistics are
written to the skycalResult table.

3.10. Forced Warp Photometry

Traditionally, projects that use multiple exposures to
increase the depth and sensitivity of the observations have
generated something equivalent to the STACK images produced
by the IPP analysis (see CFHT Legacy survey, COSMOS, etc.).
In theory, the photometry of the STACK images produces the
“best” photometry catalog, with best sensitivity and the best
data quality at all magnitudes. In practice, these images have
some significant limitations due to the difficulty of modeling
the PSF variations. This difficulty is particularly severe for the
Pan-STARRS 3π Survey stacks due to the combination of the
substantial mask fraction of the individual input exposures,

the large intrinsic image quality variations within a single
exposure, and the wide range of image quality conditions under
which data were obtained and used to generate the 3π PV3
stacks.
For any specific stack, the PSF at a particular location is the

result of the combination of the PSFs for those individual
exposures that went into the stack at that point. Because of the
high mask fraction, the exposures that contributed to pixels at
one location may be somewhat different just a few tens of
pixels away. In the end, the STACK images have an effective
PSF that is not just variable, but changing significantly on small
scales in a highly textured fashion.
Any measurement that relies on a good knowledge of the

PSF at the location of an object needs to determine the PSF
variations present in the STACK image, or the measurement will
be somewhat degraded. The highly textured PSF variations
make this a very challenging problem: not only would such a
PSF model need to be highly fine-grained, there would likely
not be enough stars in a given STACK image to determine the
model at the resolution required. The IPP photometry analysis
code uses a PSF model with 2D variations using a grid of at
most 6×6 samples per skycell, a number reasonably well
matched to the density of stars at most moderate Galactic
latitudes for the PS1 3π depths. This scale is far too large to
track the fine-grained changes apparent in the stack images.
Thus, PSF photometry and convolved galaxy model analysis

in the stack are degraded by the PSF variations. Aperture-like
measurements are in general not as affected by the PSF
variations, as long as the aperture in question is large compared
to the FWHM of the PSF.
The IPP analysis solves this problem by using the sources

detected in the stack images and performing forced photometry
on the individual warp images used to generate the stack. This
FULLFORCE analysis is performed on all warps for a single
skycell and filter as a single unit within the processing
database, while individual warps are processed individually in
parallel as separate processing jobs. A separate PSF model is
determine for each of the warp images so that the combined
measurement is reliable.
When processing is queued for this stage, an entry is added

to the fullForceRun primary database table with a reference to
the corresponding stack and skycal_id entry that is the input
source of detections to be measured. The warp_id values for
the input WARP stage images that contributed to the STACK

associated with that skycal_id are then added to the full-

ForceInput table, linked to the primary table by the ff_id
identifier. The individual jobs for each warp are then run,
which passes the WARP stage image products along with the
SKYCAL catalog to the psphotFullForce program.
The convolved galaxy models are also remeasured by the

FULLFORCE stage analysis using the WARP images. In this
analysis, the galaxy models determined by the STATICSKY

photometry analysis are used to seed the analysis in the
individual WARP images. Galaxy models are not fitted
independently on each warp. Rather, the analysis tests a grid
of galaxy model parameters in the vicinity of the prior from the
stack.
For each warp image, each set of galaxy model parameter

values is used to generate a model that is then convolved with
the PSF for that warp image and then compared to the observed
data. A normalization and χ2 value is determined for each set

8

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

of parameter values for each warp image. For each set of
parameter values, the normalizations and χ2 values are
combined across all warps to generate a single grid of
parameters. The best set of galaxy model parameters, along
with the corresponding normalization and χ2 value, is then
determined from the grid by interpolation.

The purpose of this galaxy model analysis is the same as the
FULLFORCE PSF photometry: the PSF of the STACK image is
poorly determined due to the masking and PSF variations in the
inputs. Without a good PSF model, the PSF-convolved galaxy
models are of limited accuracy.

Upon completion of the forced photometry, an entry is added
to the fullForceResult table with the processing statistics for
that combination of ff_id and warp_id. The individual warp
measurements are combined together to produce an average
warp photometry value for each object within the context of the
DVO object database system, including recalibration of each
warp based on the tie to the average photometry of the objects
measured in the CAMERA stage.

Once all of the entries in the fullForceInput table have
finished, a summary operation is run to combine the galaxy
photometry analysis measurements into a single value. The
output catalogs listed in the fullForceResult table are passed to
the psphotFullForceSummary program to calculate the
averages of the individual warp measurements, weighted by the
signal-to-noise ratio of the flux measurements. When this
analysis completes, an entry is added to the fullForceSummary,
and the fullForceRun entry is marked as completed.

3.11. Difference Images

Two of the primary science drivers for the Pan-STARRS
system are the search for hazardous asteroids and the search for
Type Ia supernovae to measure the history of the expansion of
the universe. Both of these projects require the discovery of
faint, transient sources in the images. For the hazardous
asteroids, and solar system studies in general, the sources are
transient because they are moving between observations;
supernovae are stationary but transient in brightness. In both
cases, the discovery of these sources can be enhanced by
subtracting a static reference image from the image taken at a
certain epoch. The quality of such a difference image can be
enhanced by convolving one or both of the images so that
the PSFs in the two images are matched (e.g., Alard &
Lupton 1998).

In the DIFF stage, the IPP generates difference images for
appropriately specified pairs of images. It is possible for the
difference image to be generated from a pair of WARP stage
images, from a WARP and a STACK of some variety, or from a
pair of STACK stage images. During the PS1 survey, pairs of
exposures, called TTI pairs (see Survey Strategy in Paper I),
were obtained for each pointing within a ∼1 hr period in the
same filter and to the extent possible with the same orientation
and boresite position. The standard PS1 nightly processing
generated difference images from the resulting pairs of WARP

images. The nightly processing generated STACK images for
the Medium-Deep fields, and these were combined with a
template reference STACK image to generate “stack–stack
diffs” each night they were observed. For the PV3 3π
processing, the entire collection of WARP stage images for
the survey was combined with images generated by the STACK

processing to generate “warp–stack diffs,” for eventual public
release.
When a DIFF processing is defined, an entry is added to the

diffRun table, and the appropriate input images are added to the
diffInputSkyfile table, with one entry for each skycell that is
covered by the images. For a DIFF generated from two WARP

stage products, the input images have their warp_id values
recorded in warp1 and warp2 for each skycell that overlaps. If
two STACK stages are to be used in the difference, their
stack_id entries are recorded in the stack1 and stack2 fields. As
each STACK only covers a single skycell, the DIFF is usually
defined indirectly, using other information from the stackRun
table to select appropriate stack_id values. Similarly, DIFF

processing is defined for the mixed case by creating entries that
populate one of warp1 and stack1 and populating one of warp2
and stack2. In all cases, the minuend of the subtraction to be
performed is the “1” entry, and the subtrahend is the “2” entry.
Jobs are created based on the entries of diffInputSkyfile, with

the appropriate images and catalogs passed to the ppSub

program. This does the subtraction, as well as the photometry
of any sources detected in the DIFF image. Sources may be
detected as a positive source (flux in the minuend is higher than
the subtrahend) or as a negative source (flux in the subtrahend
is higher). The algorithm used for PSF matching is described in
Paper III. Upon completion of these jobs, statistics about the
processing are written to an entry in the diffSkyfile table. An
advance checks for the completion of all of the components
listed in diffInputSkyfile and marks the diffRun entry as such.

3.12. Processing Failure Rates

Table 2 lists the unrecoverable failure rates for several of the
major IPP stages for both the regular nightly processing and the
PV3 analysis of the 3π data set. The table gives the rate per
100,000 of the item processed. In the case of the CHIP and
WARP stages, the items correspond to individual chips and
skycells, respectively, while for the STACK stage, items are the
stack skycells. For the CAMERA stage, the items correspond to
complete exposures. The entire exposure fails for CAMERA

only in extreme cases. The astrometric calibration of individual
chips may fail if there are not enough stars in the image, but the
rest of the exposure may then still succeed. Chips that formally
succeed in the astrometry analysis but that have an astrometric
calibration quality worse than our specification will also be
excluded from ingest into the DVO database (see below).
We list the astrometry failure rate for chips based on their
absence from the DVO database.
For the warp analysis, the apparent high failure rate is

something of an artifact. Target output skycells are defined
based on conservatively generous boundaries for the

Table 2

Processing Failure Rates per 100,000 Items

Stage Nightly 3π

Processing PV3

Chip 48 34

Camera 262 280

Chip Astrom N/A 307

Warp 14244 13835

Warp Pixels N/A 3900

Stack N/A 5

9

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

corresponding chips. This results in a number of skycells with
only a small fraction of valid pixels, for which there are likely
few stars to measure the PSF. In the processing, any warp
skycell with less than 10% of its pixels unmasked in the output
are automatically rejected. In addition, the analysis will register
a poor quality if too few stars are available for the PSF
modeling. To judge the rate at which the warp stage is losing
pixels, either due to this effect or veritable analysis failures, we
compare the total area of good (unmasked) pixels in the warp
skyfiles to the total number of expected unmasked pixels from
the corresponding input exposures using the masking fractions
and total detector areas reported in Paper III. The result is that
roughly 3.9% of the good input pixels are lost to the warp
processing.

4. Database Ingest and Calibration

4.1. DVO

4.1.1. Overview

The Pan-STARRS IPP uses an internal database system,
distinct from the publicly visible database system, to determine
the association between multiple detections of the same
astronomical object and as part of the astrometric and
photometric calibration process. This database system, called
“DVO,” was developed originally for the LONEOS project
(Bowell et al. 1995) and used as part of the CFHT Elixir system
(Magnier & Cuillandre 2004). The capabilities of this
databasing system have been somewhat expanded for the
Pan-STARRS context.

DVO tracks three main classes of information: (1) average
properties of astronomical objects, (2) measurements of those
objects (from which the average properties are derived), and (3)
properties of the images that provided some or all of the
measurements. In addition, certain metadata tables define
general features of the database. Table 3 lists the full collection
of database tables used by DVO. In the current implementation,
as described in more detail below, the database tables are stored
on disk using a distributed collection of FITS files, potentially
distributed across a large number of computers in the cluster.

In the most basic implementation, a collection of measure-
ments for detections from a set of images is loaded into DVO
along with the metadata describing the images. The latter

includes properties such as the exposure time, airmass, filter,
time and date of the exposure, etc. Critically, the image
metadata includes an astrometric transformation relating the
detection coordinate on the image to the coordinate on the sky.
As the collection of measurements is loaded into DVO, the
software constructs astronomical objects based on those
detections. If images overlap, multiple observations of the
same astronomical object are grouped together. Thus, a single
DVO database will contain a one-to-many relationship between
the images and the measurements and a many-to-one relation-
ship between the measurements and the derived astronomical
objects.

4.1.2. DVO Schema

Photcodes—DVO has a special metadata table called
photcode which identifies the photometry filter systems. Entries
in this table are used to identify the source of measurements
and images. Each row in the photcode table includes a
photcode name, a unique numerical ID, and information about
that photometry system.
There are three classes of photcodes defined within the DVO

system. One class of photcodes defines the filter systems for the
average photometry measurements; these are called SEC

photcodes. A second class of photcode is associated with
measurements from a specific camera for which image
metadata is available, called DEP photcodes. There are also
those measurements that come from external data sources for
which DVO does not have any information to determine a
calibration (e.g., instrumental magnitudes and detector coordi-
nates). These measurements are reference values and are
assigned REF photcodes.
The names for SEC photcodes are the names of filter

systems, such as g, r, i or J, H, K. For DEP and REF photcodes,
the names are constructed from the name of a camera or
telescope (e.g., GPC1 or 2MASS), the name (or short-hand
name) of a filter (e.g., gP1), and an identifier for the detector, if
not unique (e.g., XY01 for a GPC1 OTA).
Additional information is associated with each photcode to

define the nominal zero point and airmass slope, as well as
color trends to transform a measurement in the specific
photcode to a common system. For example, a DEP photcode
GPC1.g.X01 would have the nominal zero point (24.563) and
airmass term (0.147). The database elements allow for
individual chips to have different color terms to bring them
to a common filter system.
DVO ingest methods are defined for several large-scale

surveys for which the published data represent average
properties derived from multiple measurements, and for which
the measurement-to-image relationship is not provided. Ingest
methods have been defined, for example, for 2MASS, WISE,
Gaia, and USNO-B. In each of these cases, the astrometric and
photometric measurements are stored in the Measure table,
with the data source identified by the photcode of the
measurement.
Measurement Tables—In most cases, the individual mea-

surements of the astronomical objects are carried in the table
Measure. For measurements from PS1 in the PV3/DR1 or
DR2 databases, this would consist of values determined by
psphot for each CHIP, WARP, or STACK stage image.
Measurements for other cameras processed by the IPP may
also be included similarly in a DVO database. Measurements
from other sources, such as SDSS, 2MASS, or WISE, can also

Table 3

DVO Database Tables

Table Name Description

Images The images that have objects in the DB

Average Astronomical objects including their astrometric properties

SecFilt Average photometry of the objects in multiple filters (one filter

per row)

Measure Detections of sources identified with an object, potentially

linked to an image

StarPar Stellar parameters determined by the Harvard group (Green

et al. 2015)

Lensing Lensing (KSB) parameters and fixed circular aperture photo-

metry from the warps

LensObj Average lensing and fixed circular aperture photometry

Galphot Result of galaxy model fits (forced galaxy models)

SkyRegions Spatial distribution of tables

Photcodes Transformations between different photometric systems

Hosts Computers used to store the tables

10

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

be included in this table, distinguished by their different
photcodes.

The Measure table includes the instrumental magnitudes for
the PSF, aperture, and Kron photometry; raw position (Xccd,
Yccd) and second moments (Mxx, Myy, Mxy); along with shape
parameters of the PSF model at the position of the object (FWx,
FWy, theta). Metadata about the exposure where the measure-
ment was derived from is also included, such as the exposure
time, the date and time of the observation, airmass, azimuth,
and photcode information specifying the filter. The Measure

table also carries the calibration magnitude offsets (Mcal and
Mflat, discussed below) and the astrometrically calibrated
position. Astrometric offsets for several systematic corrections
discussed below are also defined for each measurement.
Photometry from CHIP, WARP, and STACK are all placed in
the same table with photcodes distinguishing the source.
Because stacks and forced warp fluxes may have nonsignificant
values, the table is somewhat denormalized: it also carries both
magnitudes as well as instrumental flux values for the PSF,
aperture, and Kron photometry. In this case, we have chosen to
trade storage space for computing time.

For the warp images, we also measure the weak-lensing KSB
parameters related to the shear and smear tensors (Kaiser et al.
1995). These measurements are stored in the Lensing table,
along with the radial aperture fluxes for radii numbers 5, 6, and
7 (respectively 3 0, 4 63, and 7 43). This table contains one
row for every warp image on which the object was measured.

The Galphot table stores the results of the forced galaxy
fitting analysis for each object that has been measured. This
table contains one row per filter and model type (Sérsic,
exponential, or de Vaucouleur) if forced galaxy models have
been calculated for the object.

The Starpar table carries measurements provided by the
Harvard team (Green, Schlafly, Finkbeiner) from the analysis
of the SED of objects in the PS1 3π data, using the PV2
analysis version (Green et al. 2014, 2015). In this work, the
goal was a 3D model of the dust in the Galaxy based on Pan-
STARRS and 2MASS photometry. As part of this analysis, the
authors fit the SEDs of all stellar sources (as determined by a
cut based on the PSF–aperture magnitudes) with stellar models
including free parameters of extinction, distance modulus,
metallicity, and absolute r-band magnitude. While these
photometric distance modulus measurements are not extremely
precise, they provide a constraint on the distance that is used in
our analysis of the astrometry (see Paper V).

Object Tables—One of the main purposes of DVO is to
define the relationship between individual detections of an
astronomical object and the definition of that object. New
detections are generally added to the database in a group
associated with, for example, an image from the GPC1 camera.
As new detections are loaded, they are compared to the objects
already stored in the database. If an object is already found in
the database within the match radius, the new detection is
assigned to that object. If more than one object exists within the
database, the detection is associated with the closest object. For
most data sources, a match radius of 1 0 is used, but this may
be adjusted in special cases.

Two tables carry the most important information about the
astronomical objects in the database: Average and SecFilt.
These two tables specify the main average properties of the
astronomical object. The Average table includes the astrometric
information (α, δ, μα, μδ, π) and associated errors, data quality

flags for each object, links to the other tables, and a number of
IDs, with one row for each astronomical object. The SecFilt
table6 contains average photometric information for a collec-
tion of filters. A given DVO instance has a specified set of
filters for which average photometry is stored in the SecFilt
table. The number and choice of filters for the SecFilt may
be modified by the database administrator fairly easily, but
the process of updating the database is somewhat expensive
(∼24 hr for the current PV3 instance). Thus, the choice is
semistatic for a given DVO instance. In the case of the PV3
DVO instance, nine average bandpasses are defined: gP1, rP1,
iP1, zP1, yP1, J, H, K, and wP1. The SecFilt table contains one
row for each filter for each object, thus the PV3 DVO contains
nine times as many rows as the Average table. The order of
the table is fixed in relation to the Average table: row i of
Average defines the object with photometry contained in rows
 +i i9 9 8 (i is zero counting).
The values stored in the Lensing table are used to calculate

average values for each of these types of measurements in each
filter. The Lensobj table stores the averaged KSB and radial
aperture photometry for each of the five filters gP1, rP1, iP1, zP1,
yP1. This table contains one entry per object per filter. The table
is not generally stored unsorted as it is calculated after the full
database is populated. The link from Average to Lensobj is
defined by the fields Average.offsetLensobj and Average.
Nlensobj. Each Lensobj row also includes the photcode for
which the average lensing (and radial aperture) properties have
been calculated.
Image Tables—Measurements that are loaded into DVO

may be associated with a specific image (such as the
measurements for a single chip from the GPC1 camera) or
they may not have such an association (such as measurements
from 2MASS, WISE, or externally supplied reference mea-
surements). For data that are associated with an image, a subset
of the information about that image (e.g., from the header of the
FITS file) is used to populate a row in the DVO Image table.
This table contains one row for each chip image known to
DVO, with information such as the filter (photcode), the
exposure time, the airmass, the astrometric calibration terms,
the photometric zero point, etc. For GPC1 and other mosaic
cameras, an additional row is defined to carry the projection
and camera distortion elements of the astrometry model. As
images are loaded into this table, they are assigned an internal
ID (a running sequence in the table), stored in the field
imageID. Images may also be assigned an ID derived from the
external source of the image (field externID): in the case of the
GPC1 images, this ID is defined by the processing mysql
database and is guaranteed to be unique within the processing
system. In the case of GPC1 exposures, the external image ID
is set to the database field chipImfile.chip_imfile_id. A second
field (sourceID) identifies which of the possible image-like
tables supplied this image, guaranteeing the uniqueness of
image IDs across the different IPP stages.
Other Tables—Other tables are used to track information

used by the calibration system. This includes the complete
set of flat-field corrections determined by the photometry

6
The name SecFilt is a bit of a historical misnomer: originally, DVO was

designed for a monochromatic survey and data for a single photometric band
was maintained in the Average table. Later, DVO was adapted to a multifilter
system and additional filters were added to the SecFilt (Secondary Filter) table.
Eventually, the schema was normalized and all photometric data placed in
SecFilt, with the Primary filter concept being dropped, but the name has since
stuck.

11

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

calibration analysis and the astrometric flat-field corrections
determined by the astrometry calibration analysis (see
Paper V).

4.1.3. Sky Partition

Tables within DVO containing information about astronom-
ical objects are partitioned on the basis of position in the sky:
objects within a region bounded by lines of constant R.A., decl.
are contained in a specific file. The boundaries and the
associated partition names are stored in one of the supporting
tables, SkyTable. This table contains the definitions of the
boundaries for each sky region (R_MIN, R_MAX, D_MIN,
D_MAX), the name of the sky region, an ID (INDEX, equal to
the sequence number of the region in the table), and index
entries to enable navigation within the table. The regions are
defined in a hierarchical sense, with a series of levels each
containing a finer mesh of regions covering the sky.

In the default used by the PV3 DVO, the partitioning scheme
is based on the one used by the Hubble Space Telescope Guide
Star Catalog files. Level 0 is a single region covering the full
sky. Level 1 divides the sky in decl. into bands 7°.5 high, as
defined by the HST Guide Star Catalog (GSC, Jenkner et al.
1990; Lasker et al. 1990). Level 2 subdivides these decl. bands
in the R.A. direction, with spacing related to the stellar density.
Level 3 divides these R.A. chunks into four to eight smaller
partitions (see Figure 2). This level exactly matches the HST
GSC layout and uses the same naming convention to identify
the partitions: n0000/0000, etc. Level 4 further divides these
regions by a factor of 16. In the SkyTable, a region at one level
has a pointer to its parent region (the one which contains it) and
a sequence pointing to its children (regions it contains). The
SkyTable enables fast lookups of the on-disk partitions that
map to a specific coordinate on the sky. In general, a single
DVO will have the full sky represented with tables at a single
level, although it is possible for mixed levels to be used. For the
PV3 master database, the partitioning is at Level 4, resulting in
∼150,000 regions to cover the full sky, of which ∼110,000 are
used for the PV3 3π data. The densest portions of the bulge
contain at most ∼300,000 astronomical objects in the database
files, with an associated maximum of ∼30 million measure-
ments in these files. With the compression scheme described

below, the largest database files are ∼3 GB, which can be
loaded into memory in 30 s on the processing machines that
contain partition data.
The DVO software system allows the tables that are

partitioned across the sky to also be distributed across multiple
computers, which we call partition hosts. A single file identifies
these partition hosts and the location of the database partition
on the disks of that machine. The SkyTable contains elements
to define by ID the partition host to which a set of tables has
been assigned. Operations that query the database, or perform
other operations on the database, are aware of the partitioning
scheme and will launch their operations as remote processes on
the machines that contain the data they need. For example, a
query for data from a small region will launch subquery
operations on the machines that contain the data overlapping
the region of interest. These remote query operations will select
the database information that matches the query request (i.e.,
applying restrictions as defined) and return the results to the
master process. The results from the various partition hosts are
then merged into a single result by the master process. When
the parallel partitioning for a DVO instance is defined, the
tables are randomly assigned to the partition hosts. As a result,
queries which span more than a single partition are likely to
spread the I/O load across a large number of machines. This
parallelization is critical to querying and manipulating the
enormous database on a reasonable timescale.

4.1.4. Object and Measurement IDs

Within the DVO system, certain integer fields are used to
provide unique identifiers for measurements and objects. The
original implementation of DVO was limited to 32 bit integer
fields, but since the maximum number of objects and
measurements was expected to be larger than 232, two 32 bit
integer fields are joined together to make sufficiently large IDs.
In the table of objects (Average), the fields objID and catID

together form a unique 64 bit integer value to identify the
objects. The catID field is a sequence number for the sky
partition table (the “catalog”) in which the object is contained,
while objID is an incrementing sequence number within that
sky partition table. As long as no sky partition tables contain
more that 232 objects, these fields will not overflow. These two

Figure 2. Level 3 sky partitioning. The blue grid shows the outlines of the different regions assigned to separate tables in the sky partitioning scheme. The Galactic
plane is shown as a solid red line while the ecliptic is shown in green. This organization of the sky duplicates that used by the HST Guide Star Catalog (Jenkner
et al. 1990).

12

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

fields are included in the Measure, GalPhot, StarPar, Lensing,
and LensObj tables to link the entries in those tables back their
corresponding object. Note that SecFilt does not contain these
ID fields; the rows in this table are maintained in the correct
sequence to match the Average table entries.

The Measure table, containing the detections of objects from
individual exposures or stack, or the (potentially nonsignifi-
cant) measurements from a warp, uses the 32 bit integer fields
detID and imageID to uniquely identify each entry. The
imageID is the running sequence number of the “image”
(GPC1 OTA, stack, warp, or other other source of the
measurement) in which the object was measured. The imageID
is a value internal to DVO and is unique across all types of
images. The detID field is a 32 bit integer giving the sequence
number of the detection within the image. For images
processed by the IPP (e.g., using psphot), the detID
corresponds to the output field labeled as IPP_IDET in those
data products. Because measurements from the same image
may be spread across multiple sky partition tables, both detID
and imageID must be used to uniquely identify a detection
within the database.

In the Measure table, the field averef specifies the row
number in the Average table of the associated object. The
Measure table may be unsorted, in which case it is slow to find
the measurements associated with a specific object (a full table
scan is required, referencing objID). After the table is sorted
and indexed, the Measure rows for a given object are grouped
together. In this case, the fields Average.measureOffset and
Average.Nmeasure define an index for the code to jump to the
list of measurements for a single object. The field Measure.
imageID defines the link from the measurement to the image
that supplied the measurement.

DVO is also used to construct the unique object and
detection IDs used by the PSPS. Within the PSPS, the field
named objID in that database is used to allow valid joins
between tables to select the different kinds of attributes of the
same astronomical objects. This 64 bit integer ID is constructed
based on the coordinates of the object, as described in
Paper VI. In short, the digits of the R.A. and decl. coordinates
are used to define a single 64 bit integer with spatial resolution
of roughly 3 mas. These values used by this field are generated
by the DVO system and stored in the Average table in the field
extID.

Within the PSPS, the Detection table carries an ID that is
unique for each measurement, equivalent to the DVO detID,
imageID pair. In this case, the PSPS detectID is constructed
from the MJD of the exposure, the number of the OTA (e.g.,
OTA64), and the detection sequence within the image to form a
single unique 64 bit integer value. For detections from the stack
images, the MJD is not unique, so a different rubric is used to
define IDs for those detections. The field XstackDetectID
(where “X ” is one of g, r, i, z, y) is constructed from the GPC1
stack ID (stackRun.stack_id), the detection sequence within the
stack image, and the same value used to define sourceID above.
These two types of detection IDs are generated by the program
addstar when the images and stacks are ingested into DVO.

4.1.5. DVO Data Storage

In the implementation of DVO used for the PV3 calibration
analysis, the database tables are stored on disk using binary
FITS tables. Each type of database table is stored as a separate
file, or a collection of files for tables that are spatially

partitioned. The binary FITS tables are compressed using the
(to date) experimental FITS binary table compression strategy
outlined by Pence et al. (2012). Table compression is an option
in DVO; for the PV3 database, the large data volume (70 TB
compressed) drove the decision to compress the tables.
The FITS binary table compression scheme uses a strategy

similar to that used for FITS image compression (White &
Greenfield 1999; Pence et al. 2000). The binary tabular data are
compressed and stored in the “HEAP” section of the FITS table
extension, with pointers to the compressed data stored in the
regular data section. Each column in the FITS table is
compressed as one (or more) blocks. The standard header
keywords that describe the data column format (e.g.,
TFORM1) are replaced with keywords that describe the
location and size of the compressed data in the HEAP section;
the information about the uncompressed data is moved to a
keyword with “Z” prepended (e.g., ZFORM1) and an
additional field is added to define the compression algorithm
(e.g., ZCTYP1). The column names (e.g., TTYPE1) and units
(e.g., TUNIT1) are retained in their original form.
The compression algorithm can treat the entire column as a

single block of data, or it may be broken into a number of
chunks, each compressed in turn (this must be the same for all
columns). Additional header information is added to describe
the block sizes and information needed to describe the HEAP
data section. The compression algorithms currently defined
consist of the GZIP, RICE, PLIO, and HCOMPRESS (REFS).
For GZIP, the compression algorithm may transpose the byte
order before compression: for floating point data of a similar
dynamic range, this choice may allow for better compression as
each byte in the 4 or 8 byte floating point value is more likely to
be similar to the same byte in other rows than to the other bytes
of the same row value. This option is called GZIP_2 in the
FITS standard, as opposed to the standard order, GZIP_1. The
DVO system can be set to specify the compression options for
each column in the tables. In practice, we have chosen a default
in which floating point numbers use GZIP_2, character strings
use GZIP_1, and integers use RICE.

4.1.6. Addstar: DVO Ingest

Upon completion of the processing of each stage, the results
of the photometry analysis are stored in a large number of
individual catalog files as described in Paper IV. The data from
these files are loaded into a DVO database to define the
astronomical objects and to allow for calibration analysis. The
program that loads the data into the DVO database is called
addstar and is associated with the the ADDSTAR processing
stage. The measurement catalogs generated by the CAMERA,
SKYCAL, FULLFORCE, and DIFF stages are loaded into DVOs
in this fashion, although not every measurement in each catalog
is included in the master DVO that is constructed. For a
particular reprocessing version, a single master DVO is
constructed for the positive image stages (CAMERA, SKYCAL,
FULLFORCE) and a separate one is constructed for the
difference image analysis stage results.
The construction of the master DVO is performed in a

hierarchical fashion. The individual catalogs are added to a
mini-DVO, which is simply a DVO database defined over
some subset of possible inputs. These mini-DVOs are then
merged by stage into larger databases to construct a single
master DVO database. In the process, an intermediate master
DVO for each stage is generated. The dvomerge program is

13

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

responsible for merging two DVO databases together. In the
merge, astronomical objects are joined together using essen-
tially the same rules as those used to associated detections into
objects with one exception: the match radius may be chosen to
be a different size depending on the data source. For example,
when WISE data are merged with PS1 data, as discussed
below, a match radius of 3″ is used due to the large beam size
of the WISE telescope.

As of PV3, the process of merging mini-DVOs is not highly
automated, requiring manual attention. The generation of the
mini-DVOs is automated and managed by the ADDSTAR stage.
Each catalog that is to be added to DVO has an entry created in
the addRun database table. This entry notes which stage is the
source of the catalog and links to the appropriate database table
with the stage_id field. As some stages, such as the DIFF stage,
create more than a single catalog, multiple entries with the
stage_id are created, with the stage_extra1 field containing an
index to the individual components. The catalog specified by
the entry is added to the target mini-DVO by the addstar

program, updating the measurements in the appropriate DVO
tables. When this completes, an entry containing the statistics
of the job is added to the addProcessedExp table.

After the master DVO is constructed containing the PS1
data, data from other sources are also added to the database.
For the PV3 DVO database, data were added from 2MASS,
WISE, Gaia DR1, and Tycho. These external data sources are
added by first generating a DVO database containing just the
particular data source, then using the same DVO merging
method to merge the external data DVO into the PS1 master.

4.2. Calibration Operations

Once the master DVO database has been constructed, high-
quality astrometric and photometric calibrations can be
calculated. The details of the calibration analysis are discussed
in Paper V. We present a brief summary here.

Astrometric calibration consists of measuring and correcting
systematic structures along with improved calibration of the
transformations from chip to focal plane coordinates based on
relative astrometry. These steps are performed iteratively. First,
the relative astrometry analysis generates an improved solution
without correction for systematic effects. Next, systematic
effects are measured by querying the DVO database to
determine the residual astrometric error as a function of some
parameters. In the case of the PV3 astrometry analysis,
systematic errors have been determined as a function of
position in the camera (essentially an astrometric flat-field
correction), as a function of the brightness of the star (the so-
called Koppenhöfer effect; see Paper V), and as a function of
airmass and color (differential chromatic refraction). Once the
systematic errors have been measured, they are applied back to
the measurements in the database. Within the DVO Measure
table, the different types of systematic effects are included as
separate offsets (in chip pixel coordinates) for each measure-
ment. A single “corrected” version of the chip pixel coordinates
is stored in which the systematic offsets are combined with the
raw pixel coordinates for each measurement. After the
systematic effects have been applied to the database, relative
astrometry is again performed this time using the corrected
positions.

Photometric calibration consists of determination of zero
points for each exposure along with corrections for systematic
effects. In this case, we rely on efforts of our external

collaborators for the initial zero-point determination. The team
at CfA downloaded the per-exposure catalog files (“smf files”)
and determined the zero points of those exposures which were
believed to be obtained in photometric conditions. This
process, called “ubercal,” is described in detail by Schlafly
et al. (2012) for the first (PV1) version and is based on the
process of the same name used for SDSS calibration
(Padmanabhan et al. 2008). In brief, photometric periods, with
timescales of a large fraction of a night, are identified by a
combination of automatic analysis and manual inspection. A
single solution for all images in a given filter is determined to
minimize scatter for individual stars. The free parameters in this
solution consist of a single zero point and airmass slope for
each photometric period along with a collection of flat-field
offsets for several large time range (“flat-field seasons”). For
the PV3 ubercal analysis, the flat-field offsets were determined
on a 2×2 grid for each chip and five flat-field seasons were
identified. The boundaries of the flat-field seasons were
determined by independent inspection of the residuals observed
in the Medium-Deep fields.
After the ubercal analysis of the photometric periods is

completed, the determined zero points, airmass corrections, and
flat-field terms are transmitted back to the IfA IPP team. These
values are then ingested into the master DVO database. An
initial relative photometry analysis is performed to tie the
images without ubercal zero points to the ubercal system. Zero
points from the ubercal analysis are not allowed to change, but
zero points of the rest of the exposures are determined to
minimize the photometric scatter for bright stars. These zero
points are determined uniquely for each image. After an initial
relative photometry analysis, the photometric residuals are used
to determine a systematic correction as function of position in
the camera. This correction is equivalent to the flat-field
corrections determined as part of the ubercal analysis, but have
much higher spatial resolution (40× 40 corrections per chip)
and are determined for only the full time range of PV3. This
high-resolution flat-field correction addresses photometric
variations due to spatial variations in the PSF due to the optics
and low-level effects on the chips (see Paper V). After the
systematic corrections have been determined and applied back
to the database, a final relative photometry analysis pass is
performed.

4.3. Construction of the PSPS Database

The publicly visible Pan-STARRS database is hosted by the
Space Telescope Sciences Institute through their MAST. The
underlying database at MAST is a copy of a database generated
at the IfA by the PSPS. Both MAST and IfA versions of the
PSPS are implemented using a collection of Microsoft SQL
server instances as the underlying database engine. As in DVO,
the tables holding the large volume of measurements are
distributed across the different computers based on their
location on the sky. Unlike DVO, the spatial distribution uses
slices that span all R.A. values for a narrow range of decl. on a
single computer. The PSPS design and implementation are
described in some detail in Paper VI.
The construction of the PSPS version of the PS1 database

starts once the PS1 photometry and astrometry measurements
have been calibrated within the DVO system. The construction
takes place in several stages, described in detail in Paper VI.
We summarize those steps here.

14

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

The first stage of constructing the PSPS database consists of
the generation of small files called “batches” which contain a
complete set of measurements for a small chunk of the database
tables. The program that is responsible for the construction of
these batches is called ipptopsps. Several different types of
batches are generated, relating to the different types of tables in
PSPS. The details of the batch construction depend on the
batch type.

One type of batch consists of measurements from the
individual exposures. These batches are generated based on the
output catalog files generated at the CAMERA stage (“smf
files”). The ipptopsps program loads the complete set of
measurements and metadata from the smf catalog file, then
queries the DVO database for calibration parameters related to
that smf file. The batch is constructed by applying the
photometric calibrations to the raw flux measurements in the
smf file.

A second type of batch file consists of the measurements
related to the stack images. Again, ipptopsps starts with the
output catalog files, selects the appropriate calibration informa-
tion from the DVO, and applies the calibration data to the raw
measurements in the stack catalog files.

A third type of batch file consists of average properties of the
astronomical objects in the DVO database. Unlike the other
two batch types, this operation is performed solely via queries
to the DVO database. The complete set of average measure-
ments for objects in a single DVO spatial partition is loaded by
ipptopsps and used to generate the batch file.

As the batch files above are generated, the PSPS system can
run in parallel to ingest the measurements from these batch
files. PSPS downloads in sequence the batch files as they are
generated and unpacks the data. The data are then loaded into a
small-scale version of the PSPS database, using the full
schema. After a large chunk of batches have been loaded, the
resulting tables are then merged into the master PSPS database.
After another large chunk of data has been merged into the
master PSPS database, a large-scale copy of the database is
made internally to provide a long-term backup and to aid in
error recovery.

Once the full PSPS database has been loaded, or a complete
set of batches for a given batch type, the entire database is
copied to STScI where it can then be made visible either to the
Pan-STARRS Science Consortium or to the wider public.

5. Operations and Automation

5.1. Pantasks and Parallel Processing

5.1.1. Pantasks

Sections 3 and 4 describe the analysis steps that take place in
the Pan-STARRS data analysis systems. Individually, these
steps appear as commands which could be run by a user within
the UNIX environment of the PS1 data system. The processing
database (Section 3.1) provides the logical links to relate the
results of one analysis stage to another. In order to make a
complete system which can run automatically, it is necessary to
have a software system that can use the contents of the
processing database to generate the commands corresponding
to the analysis stages. This system needs to (1) regularly
examine the database to find items from stages that are ready to
be processed, (2) have rules that define how to construct the
appropriate commands, (3) cause those commands to be
executed within the processing system, (4) monitor the active

processing jobs for completion, and (5) check on the results of
those commands and update the processing database as needed.
Within the Pan-STARRS IPP, the top-level management of
these operations is performed by the program called
pantasks.
The core capability of the pantasks program is to take a

collection of “tasks” which describe the concept of a command
which might be run and to regularly generate new commands
based on that concept. The “tasks” are defined using the
opihi scripting language (also shared by DVO and other
user-interactive programs within the IPP).
Pantasks repeatedly checks each task in an attempt to

generate a new command: we say pantasks attempts to
“execute” the task. Tasks may specify the time between
execution attempts, with a 1 s default.
Each task must at a minimum define a command to generate.

Commands may be static or dynamic. For a task with a static
command, the command is explicitly defined in the task block
(see code example in Figure 3) and is identical each time the
task is executed. A dynamic command is defined within a
special block of the task, called task.exec. This block is a
snippet of code (in the opihi language) that is run each time
the task is executed. The task.exec code may refer to
variables or other data structures defined by the opihi

language within the pantasks environment. Within a single
pantasks instance, all opihi variables and data structures
have global context by default (i.e., all are visible to all tasks).
Within the context of an opihi macro (equivalent of a
function call), variables may be locally scoped. Other data
structures (see below) are global and must be protected with
name space choices.
Within the task.exec macro, the command to be run is

defined by the script. Once the task.exec macro exits
successfully, the defined command is then added to the list of
jobs to be run within the UNIX environment. Jobs may be run
in one of two ways: locally or via the parallel processing
system. The task, or the task.exec macro, uses the host

command to define how to run the job. If the host is set to
“local,” then the job is run in the background by pantasks

itself (using the C execvp function). Otherwise, the job is sent
to the parallel processing system to be run on another machine
within the cluster. If the host is set to the special value
“anyhost,” then the parallel processing system is allowed to
choose the processing computer arbitrarily. Any other value is
taken to be the DNS name of the computer on which this job
should run. The host may (optionally) be required for the
command, in which case the parallel processing system must
ensure that the job only runs on the specifically named
computer. Otherwise, the parallel processing system may
choose to redirect the command to another computer using
its own rules, e.g., to balance processing load across the cluster.
When the task.exec macro is run, the code may choose

(e.g., based on tests of some global variables) to exit the macro
with an error condition. In this circumstance, no job is
produced by the task. The task will be tried again the next time
it is executed. This feature allows for the user to set processing
blocks that depend on some external tests. For example, some
task may check external network connectivity and set a variable
based on the network status; other tasks may then choose to
wait until the network is available before attempting to run.
Other task options exist to control the system behavior in

detail. These options may be dynamically reset by the task.

15

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

exec macro. Some options control the number of jobs, such as
limiting the number of currently outstanding jobs for a given
task, or limiting the total number generated. Other options can
be used to control the time when jobs of a certain task are
allowed to run. It is also possible to specify the UNIX “nice”
level at which the job is run when it is executed. Finally,
individual tasks may be disabled while the system is still
running.

5.1.2. Pcontrol

Jobs that are generated by pantasks may be run locally on
the machine running pantasks or they may be distributed
across many machines in the computing cluster. The parallel
processing system used by pantasks is an independent
software system called pcontrol.7

This program is based on the same opihi shell language
used by pantasks. The two programs communicate via a
shared set of pipes: pantasks sends commands to the
standard input of the pcontrol and accepts back responses
on the standard output and standard error.

pcontrol maintains a list of jobs (commands to be run)
and a list of hosts (computers on which a job could be run).
Jobs may have one of several states: pending (ready to run),
running (jobs that are running), exit (job has completed), busy
(job is being checked by pcontrol), crash (job has exited
with a signal, normally segv).

Similarly, the hosts may also have one of several states: off,
down, busy, idle, etc. A single host can accept a single job at a
time. Multiple host instances corresponding to the same
machine may be specified allowing a single computer to run
more than one simultaneous job.

During operation, pcontrol accepts new jobs from
pantasks and adds them to the list of jobs to execute. It
also accepts from pantasks the names of computers on
which it is allowed to run those jobs.

5.1.3. Pclient

When pcontrol is provided with the name of a computer,
it will attempt to make an connection to that machine via ssh.
When a connection is made, the remote shell is used to run a
special interface program call pclient. This program accepts
command lines from pcontrol and is responsible for
executing the individual commands in the local shell environ-
ment. A single ssh connection to a remote host keeps a single
pclient shell running for a somewhat arbitrarily long time,
executing many shell commands as needed. This architecture
avoids wasting overhead making the ssh connection to the
remote machine each time a command is executed, allowing for
rapid execution of many commands. As a result, a single job

within the IPP architecture is allowed to be very light and short
running if needed.
After pcontrol sends a job (commands) to a specific

pclient, it checks back occasionally to see if the command
has been run and executed. If it has finished, then pcontrol

will query for the exit status, the standard output and standard
error streams from the command (where do these go, back to
pantasks?), with the results associated with the job statistics.
At that point, the pclient on the remote machine is ready to
accept a new job from pcontrol. If any jobs are pending in
the list of jobs known to pcontrol, it will send those jobs to
any machines which are idle.
While pcontrol interacts with the many remote machines,

it occasionally interacts with pantasks to report the results
from the jobs it has been monitoring. Pantasks occasionally
requests a list of the completed jobs. It then requests the status
information for each completed job, including the standard
error and standard output. As pantasks receives this
completion information, the jobs are removed from the list
managed by pcontrol. Thus, pcontrol maintains at most
a modest list of jobs that are “in flight,” leaving all
interpretation work to pantasks.
At the pantasks level, the tasks define how pantasks

should use the exit status and output products from each job.
For example, the stderr and stdout may be specified to go to a
file (with static name or name dependent on the specific job).
The task may define a different behavior depending on the exit
code from the job.
The pantasks program can be run as a standalone

program that presents an opihi shell interface to the user
when it is started. This mode is useful for testing as all errors
are reported back to the opihi shell. However, when the user
exits the shell, the pantasks instance exits, shutting down
pcontrol and all remote client connections. In standard
operations, pantasks is run in a client server mode. The
server runs continuously in the background, and multiple users
may connect via the pantasks_client program. Users can
the send commands to the server to load scripts, add parallel
hosts, check status, and start or stop the pantasks operations.

5.1.4. Pantasks Scripts: ippTasks

Pantasks provides an environment in which commands
can be generated and extensive parallel processing managed.
The details of how to implement the different stages of IPP
processing are captured in a collection of scripts written for
pantasks in the opihi language. In general, each stage is
defined by an associated script collected together under the
ippTasks collection. While each script has its own details,
there are a number of common elements.
Most stages consist of two related tasks: a load task, which

is responsible for querying the processing database to identify
entries to be processed, and a run task, which is responsible
for managing the processing of the individual entries.
The load task for a particular stage generates load jobs,

which query the processing database via a dedicated database
interface program (see the discussion of ippTool in
Section 5.5 below) for a list of processing stage entries that
are waiting to be run. The load jobs are executed on the host
running the pantasks server. Only one of each type of load
job is permitted to run simultaneously, preventing race
conditions.

Figure 3. Example of a simple static task in the opihi-based scripting language
used by pantasks. In this example, pantasks would run a single instance of the
command (ls/tmp) every 5 s, sending the stdout and stderr to the listed files.

7
Alternatives are possible: e.g., condor has been experimentally integrated

with pantasks for tests.

16

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

The results from the database query job are stored in an
opihi data structure called a book within the pantasks

environment. Each row in the result set is saved to a separate
entry within the book. These books are a hierarchical
associative array indexing the entries (pages to continue the
analogy) to be accessed via a particular key. Keys for most
stages are a combination of the stage ID and an identifier for
the individual component for the job that will be executed. For
a given row in the result set, each column in the row is stored as
a separate line on the page, identified by the database column
name. An additional line, the pantasksState, is added so
pantasks can manage the processing of the job that will be
generated by this page. When the page is first generated, the
pantasksState is set to INIT, indicating that this page is a new
addition to the book. Once all new pages have been added,
the task then scans the book for any pages with pantasksState

set to DONE and removes them from the book, as these
represent jobs that have finished.

The associated run task generates jobs constructed from the
collection of pages in the book. The task examines the book
and selects the first available page with pantasksState of INIT.
The task uses the information in the page to construct the
appropriate command-line (e.g., lines in the page may include
input file names and output file names for the specific item in
the database). The resulting command becomes a job in the
pantasks collection of jobs. Most IPP analysis stages specify
that the jobs are then sent to pcontrol for a parallel process.
Before task generates the job, the pantasksState is set to RUN so
a future execution of the task will not attempt to rerun this
specific job.

Upon completion of the job, it is necessary to update the
processing database with the results, specifically indicating in
the database that the job has completed and if it was successful.
Within the IPP, this responsibility is left to the program which
ran the analysis. IPP analysis steps normally consist of two
main elements: a C-language program to do the data analysis
work and a supporting Perl script that performs the database
update upon completion. Upon completion, the pantasks

RUN task is responsible for updating the status within the book,
but not within the processing database. This split keeps the
interactions at the pantasks level relatively light, leaving the
overhead of the database interaction within the job running on
one of the computing machines in the cluster.

In addition to these tasks, most stages have a revert task
paired with the run task. These tasks run infrequently and
generate jobs that perform an operation on the processing
database to clear jobs that have failed with one of the
ephemeral failure modes (see the discussion in Section 3.1).
This step allows these failures to be cleared from the system,
allowing those jobs to be scheduled again.

Similarly, some stages have advance tasks that update the
primary table to indicate that all of its components are
complete. For many of the early stages of the pipeline (the
CHIP through WARP stages), this advance task also adds an
entry into the database table for the next stage of processing for
the exposure being considered. This step allows the data to
process automatically from stage to stage without intervention.

The IPP processing database is used to manage all versions
of an analysis for all analysis stages. In addition to the regular
processing of the nightly data products, there may be large-
scale reprocessing analysis tasks or tests of various kinds. It
may be necessary for a test analysis of a particular item to use a

different version of the processing software from the regular
nightly analysis (for example, when testing a new algorithm for
release). A mechanism is needed to manage these different
processing attempts of the same items. With the IPP, this is
accomplished with an extra field, label, for each processing
stage. Within the load, revert, and advance tasks
discussed above, the query to the processing database for
new items is restricted to a set of user-defined labels. A given
instance of pantasks will be supplied a set of labels that are
then applied to all tasks managed by that pantasks. For
example, the pantasks that manages the nightly processing
of the basic science analysis stages (CHIP-WARP, STACK, DIFF)
is supplied with several labels that correspond to the different
kinds of observations being performed. In this way, the
analysis of the nightly observations is kept separate from other
processing attempts.

5.2. Stage Automation

Beyond of the basic sequence of CHIP to WARP, there is no
single natural “next step.” For example, a stack can be
generated with any number of input warps; a difference image
can be generated between a warp and any one of many other
warps or stacks. Without a single sequence, more complex and
sophisticated decisions much be made.
For nightly processing of data obtained at the summit, this is

handled by a set of “nightly science” tasks and an associated
ippScript. These scripts have a well-defined and restricted
set of goals: to ensure that difference images are generated for
each exposure (either by pairing together warps or pairing
warps with predefined stacks), that nightly stacks are generated
for MD fields, and that the nightly stacks are also differenced
against an appropriate reference.
For the warp–warp difference images, pairing warps together

is simplified by the observing strategy in which the same
pointing is observed multiple times in a night. By limiting to
warp–warp pairs from the same pointing, the problem is
significantly reduced from the arbitrary case.
Queuing these warp–warp difference images is done by first

examining the set of all exposures that have been taken at the
summit on the current night of observing and querying
information from each stage up through WARP stage. These
exposures are grouped by filter and object, which is a unique
identifier for each telescope pointing on the sky. Exposures in
each group are then sorted by increasing observation date
(dateobs).
The database results for each stage (CHIP-WARP) are checked

to ensure that the selected exposures have been successfully
processed for all stages through WARP. Exposure groups are
ignored until all exposures have either been processed through
warp or have failed with a bad quality, meaning the exposure
(or portion) cannot be processed. Failed exposures are rejected.
The remaining exposures are then paired sequentially, with the
final exposure ignored in the case of an odd number of accepted
exposures. Exposures paired in this way are sent to the DIFF

analysis stage. Nightly processing also ensures that the
difference image analysis is run using the warps in comparison
to the reference stack images generated for the full 3π region.
Once observations have been completed for the night

(signaled by the end-of-night dark exposures that are taken
each morning after the telescope closes), and the script has
generated all DIFF pairs that can be made with the above rules,
a second pass is performed, this time with the exposures in each

17

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

group sorted by decreasing observation date. This change in
ordering allows exposures that were excluded due to an odd
number of exposures to be paired with the exposure closest in
time (with the exposure that was previously first ignored).
Exposure pairs in which at least one exposure does not have a
preexisting difference image are queued for difference image
analysis.

The nightly stacks are queued based on checking that a
minimum number of complete WARP entries exist for each filter
and field. For the nightly MD processing, this minimum
number was set to eight exposures, as this is the number of
exposures taken for each field. Once this number was reached,
no more exposures are expected, so STACK database entries can
be queued from the WARP entries. Again, failures and weather
can reduce the number of usable exposures. If no stack could
be made for a given MD field with the minimum number of
inputs by the time of the end-of-night darks, stacks are
generated using whatever exposures are available. Nightly
processing also ensures that the difference image analysis is run
on these nightly stacks using a predefined reference stack.

The automatic nightly processing ensures that data are
processed as soon as they are downloaded from the summit,
reducing the lag between an observation and the reduced data.

The other processing task that requires automation is the
reprocessing of the entire 3π Survey, as the size of the data set
makes it challenging to organize the analysis manually. To
manage large-scale analyses, the “large area processing” (LAP)

task and script are used. The first stage of LAP generates an
entry in the lapSequence table defining a new reprocessing.
After this, individual lapRun entries can be queued that define a
filter and a projection_cell to be considered. These projection
cells correspond to the projections used by the warp tessellation
to define the skycells (see Section 3.7), which have tangent
plane centers matching those in the warp tessellation. For the
3π Survey analysis, a projection_cell is a unit of sky defined to
be a square 4° on each side which has a single tangent plane
projection (Paper III).

Once this entry is defined, it is populated with all exposures
(stored in the lapExp table in the database) that are located
within 5° of the center of the projection cell included. This
radius ensures that any exposure that overlaps the projection
cell will be included. Once the exposures have been added, the
other exposures within the same sequence are checked to see if
a CHIP stage entry has been generated, and if so, the chip_id for
that entry is saved into the lapExp as well. This linkage ensures
that each exposure is only processed once. If no entry is found,
a new CHIP entry is queued for processing. The task
periodically checks the status of the exposures in each lapRun
entry, and if they have all completed the WARP stage, then a
STACK is queued for each skycell contained within the
projection_cell.

5.3. Nebulous

5.3.1. Motivation and Concept

A major concern recognized early in the Pan-STARRS
project is the challenge of storing and managing the large
volume of data generated by the GPC1 camera. The
Nebulous system was designed to aid in this process.
Nebulous is not a file system per se, but only a method of
tracking the locations of files within the file system and of
tracking duplicate copies of the same file. The core of

Nebulous is a mysql database that tracks “storage objects,”
the equivalent concept of a file within the system. Each storage
object may be associated with a number of copies of the actual
files on the disks in the storage system (called “instances”),
which are also recorded by the database. In the IPP cluster, the
file instances are stored on a collection of computers with
substantial disk partitions shared via network file sys-
tem (NFS).
Nebulous also explicitly tracks the different computers on

which the file instances are stored. This allows the system to
expose files to the user only on machines that are currently
active in Nebulous. If, for example, a storage computer
crashes or needs to be taken offline, the machine can be made
unavailable in Nebulous, in which case only instances on
other machines will be supplied to users.
This localization is also useful for allowing the IPP

processing to target processing to computers based on the
location of the data. For example, all raw images from a
specific chip in the camera could be stored on a specific
computer (for at least one of the instances). All of the analysis
stages that interact with that chip could then be preferentially
targeted to be run on that computer. The localization in
Nebulous and the host-targeted processing in pantasks

can therefore work together to encourage processing to require
only local disk access, reducing the I/O local on the network
infrastructure. In the early stages of the Pan-STARRS project,
this was important because network bandwidth was an
expensive resource. In practice, the as-built IPP has had
sufficient network bandwidth that this targeting was not
completely required. In practice, due to the timing of hardware
acquisition, occasional hardware failures, and other organiza-
tional details, targeted processing has only been used to a
moderate degree within the Pan-STARRS cluster.
All of the IPP low-level C-based processing programs (e.g.,

ppImage and ppStack interact with Nebulous to find
existing files and to create new files. The supporting Perl scripts
also interact with Nebulous to perform file instance duplication
as needed and to check for the existence of required input files
and expected output files.

5.3.2. Implementation Details

The user interfaces to Nebulous consist of command-line
programs as well as APIs in both C and Perl. The basic user
commands to interact with Nebulous are to (1) query the
database for an existing storage object and find a valid file
instance associated with that object; (2) create a new storage
object, which instantiates an empty file that can be opened for
writing; (3) replicate an existing storage object to create more
file instances; (4) cull a single file instance of storage object
from the cluster; and (5) remove a storage object and ensure
that all file instances are removed. The file handles returned for
newly created instances can then be opened for reading and
writing data to that instance.
For the Nebulous users, the identifier of a storage object is a

unique string with the form of a UNIX file path: e.g., a/b/c/
file. When a program creates a new file in Nebulous, it
supplies a URI of the form neb://HOST.VOL/PATH/

FILE. The HOST and VOL(ume) specifiers are optional,
allowing a file to be created on a specific computer (HOST) and
disk (VOL). The path and file name portions become the
identifier and are recorded in the storage_object table in
the ext_id field. A storage object entry is then created in the

18

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

database for this ID, and an instance of the file created on the
specified node. If the host is unspecified, or if the specified
volume is full, then a host is chosen at random from available
nodes.

Files are stored on specific computers in a Nebulous

directory or directories on that computer. In the IPP system, the
top-level Nebulous directories are usually placed at the root
of the storage device as mounted on the machine, in a
subdirectory named nebulous. Beneath the top-level direc-
tory are 256 subdirectories with names of the form 00—ff (i.e.,
two-digit hexadecimal number). Each subdirectory has 256
subdirectories with the same naming scheme.

The file name of an instance in Nebulous is deterministic and
derived from the ext_id: the ext_id is hashed using the
SHA-1 function, and the first four hexadecimal digits of this
hash are separated into two two-digit strings and used as the
top- and second-level directory location for the disk file. The
instance table in the Nebulous database includes a unique auto-
incrementing index to provide a unique SQL ID for each
instance. Under the subdirectory identified above, the disk file
name is by appending the database instance id with a string
derived from the ext_id: forward slash characters are
replaced in the name with colons so the string can represent
a file in the UNIX file system. For the example URI above, this
results in a file located on disk in a location like /data/HOST.
VOL/nebulous/d5/d8/42.PATH:FILE. This file-naming
structure has the benefit of providing redundancy between the file
name on disk and the instance in the database.

Nebulous tracks additional information beyond just the
storage objects and the associated instances. As mentioned
above, the storage volumes are tracked to provide a link
between a top-level nebulous directory and the computer that
contains that directory. The locations and mount points for the
actual NFS storage are listed in the volume table. This table
contains columns indicating if the volume should be used for
reading (available) and writing (allocate). As noted above,
Nebulous will not return a file to the user if the storage volume
is marked as not available. If a storage volume is marked as not
to be allocate-ed, then new storage objects will not generate
instances on that volume, but existing instances may be
supplied to the user.

Another column, xattr, is used to control the behavior of this
volume, with specific values used to denote desired behavior.
For instance, the volume may be marked to be used only for
backup, in which case it will not be used to store an instance by
default, but will be used preferentially if an instance noted as a
backup when it is generated. Alternatively, a volume may be
marked as permanently unavailable, and should be ignored in
most contexts. This latter option allows the system to retain the
memory of hardware that has been retired (and potentially to
retain information about instances that were previously on such
machines).

In addition to the static table describing the volumes, a
second dynamically generated table, mountedvol, lists those
volumes that are currently visible and accessible from the
Nebulous database server. This table also lists the total and
currently available disk space on each volume, allowing the
Nebulous load balancing routines to prioritize those volumes
with large unused disk space before filling the volumes with
only small amounts remaining. This table is updated every 10
to 20 minutes, after a scan of each of the volumes listed in the
volume table.

The cabinet table organizes the individual volumes into
“cabinets,” a concept loosely based on the physical arrange-
ment of the storage servers in the data center. These cabinets
are used to prevent the replication of a storage object within a
group of volumes where all instances of the object could be
taken offline by a single failure. Because servers within a given
cabinet in the data center share a common set of power delivery
units (PDUs), it is important to ensure physical distance
between replicated copies to guarantee that a temporary failure
of one of the cabinet PDUs does not significantly impact
processing.
The nebulous user APIs do not interact directly with the

Nebulous mysql database. Instead, they interact with one of
several computers with an Apache web server. Interactions
with the Apache server are performed using the Simple Object
Access Protocol (SOAP) interface, while the Apache servers
interact directly with the mysql database server. This
architecture avoids the overhead of setting up and tearing
down the mysql connection for each Nebulous command,
instead using only the low-latency SOAP communications.
The Nebulous database currently (2017 July) contains informa-

tion about 5,560,533,654 file instances for 3,543,240,981 storage
objects. All raw data, along with permanent products such as
catalogs and the current versions of full-sky stacks, are replicated
to ensure at least two copies exist in case of hardware failure.
Based on the most recent database ID values (which are unique
and never reused), this corresponds to roughly half of all the
storage objects and file instances ever created, due to the transient
nature of many pipeline products.

5.4. Datastore Repositories

Transferring data between the IPP and other parts of the Pan-
STARRS system is generally accomplished via a “datastore,”
an HTTP service that exposes data in a common form. One of
the main datastores used by the IPP is the one located at the
summit. This datastore exposes a list of the exposures obtained
since the start of the PS1 operations. Requests to this server
may restrict to the latest by time. Each row in the listing
includes basic information about the exposure: an exposure
identifier (e.g., o5432g0123o; see Paper I for details), the date
and time of the exposure, the telescope-commanded pointing,
the filter and exposure time, and the observation comment for
that exposure. The row also provides a link to a listing of the
chips associated with that exposure. This listing includes a link
to the individual chip FITS files as well as an md5 checksum.
Systems that are allowed access may download the raw chip
FITS files via HTTP requests to the provided links.
The IPP also uses datastores to provide access to its own data

products. The detections identified in the DIFF stage images are
organized by the PUBLISH stage, which writes output files
containing those detections to a datastore that is monitored by
the MOPS (Denneau et al. 2013), which analyzes the detections
to identify asteroids. Separate datastores are also used by the
DISTRIBUTION stage to provide access to data products to the
Pan-STARRS Science Consortium members.

5.5. ippTools and ippScripts

The IPP relies on a number of common libraries and
programs to handle various tasks that are shared between
multiple stages of the processing. These subsystems are

19

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

described in this section, to provide an introduction to these
essential components that underlie the rest of the pipeline.

As shown above, the pantasks tasks rely on ippTools

calls for database queries. Each stage has an appropriate
ippTool, allowing the database interaction to be governed by
a fixed set of inserts and queries. Isolating the database
interaction in this way adds a layer of validation before queries
are executed and ensures that all database modifications are
handled in a uniform fashion.

In addition to simple queries and updates to entries already
in the database, the various ippTools programs can also be
used to define new processing runs for a stage. Again, using
predefined queries wrapped in a program allows the options to
be parsed to ensure that any new processing run definitions are
appropriately restricted in scope, reducing the chance that
mistakes will fill the database with many unwanted jobs.

Connecting the pantasks parallel processing environment
to the actual IPP analysis programs are a series of ipp-

Scripts written in Perl. These scripts are what are actually
executed by pantasks, with command-line options provided
based on the database query performed there by the load task.
These options are combined with configuration information
stored in ippconfig recipe files.

The appropriate recipe is selected from the configuration
information, based on the source camera of the data to be
processed, and optionally modified by the reduction field in the
database. These optional reduction entries provide a way to
group a nonstandard set of processing options together across
multiple stages by selecting a recipe that is not the default.

With the set of configuration options and database entries for
the data to be processed, the ippScript checks the input files
that will be used and confirms that a valid copy of each is
available from the Nebulous system. For stages that have a
large number of inputs (such as the STACK stage, which
requires images, masks, variance maps, and detection catalogs
from each of the potentially large number of WARP stage
inputs), the input files are organized into temporary input list
files, formatted in an appropriate way for the analysis program
that will process them.

The script also sets up an output log file for this processing
run, ensuring that any status information from either the script
itself or the underlying analysis is stored on disk. The majority
of this information is identical between calls to the script, but
for rare failures of the analysis programs, retaining this
information allows for such problems to be diagnosed and
repaired.

The command line for the main analysis program is
constructed based on the database values, the recipe options,
and the input file names. The analysis program is then
executed, and any failure reported back to the parent
pantasks process. In the standard case of the analysis
completing successfully, the script checks that the expected
output products were generated, preventing hidden I/O errors
from being a problem with subsequent processing of those
output products.

One output product that must exist is the stats file, which
is generated by the analysis program and contains statistics
about the processing, including such things as the image
background level, the fraction of masked pixels, and the
version numbers of the analysis program. This stats file is then
parsed by the ppStatsFromMetadata program, which
uses the information within to generate command options for

the ippTool program to ensure that these statistics are
included in the database row that is created in the secondary
database table for the individual component processed.

5.6. psLib and psModules

Underlying all of the analysis programs are the psLib and
psModules C libraries. The more fundamental psLib

library defines the internal data structures that are used (arrays
of arbitrary type, vectors, images, and hash tables among
others), manage data access (particularly for FITS images and
tables), and organize string and error handling in a uniform
fashion. This library also contains fundamental math opera-
tions, covering vector statistics, matrix operations, and function
minimization. Common image operations such as binning,
interpolation, and convolution are also provided, as well as the
methods to to write JPEG versions of the data for visualiza-
tions. Finally, general coordinate transformations are provided
between planes and projections of spheres.
The functions provided by psModules have more focused

scopes that are nevertheless still shared between multiple
programs. The isolation of source objects is included, providing
the organization of detections that is used in the psphot

photometry analysis (Paper IV). The PSF matching required for
STACK and DIFF stage image combinations is as well. The
unification of configuration options between config files on
disk and the options specified on the command line is handled
by psModules functions, as is the construction of data
structures in memory to represent the astronomical camera
based on the header information in the input file. The functions
to generate and apply the detrend corrections to the data are
also provided by this library.

6. IPP Hardware Systems

6.1. Kihei Processing Cluster

The majority of all Pan-STARRS processing has been
performed on the dedicated IPP cluster, located in Kihei on
Maui. This cluster was originally located at the Maui High
Performance Computing Center (MHPCC), a United States Air
Force research laboratory center managed by the University of
Hawaii. This site was chosen based on the original develop-
ment funding provided by the Air Force Research Labs (see
Paper I for more details). Once the Air Force funding stopped
being a significant driver for Pan-STARRS, the cluster was
physically moved from the MHPCC to a similar nearby
computing center located at the Maui Research and Technology
Center.
The computing cluster comprises three main types of

computers, with a variety of individual specifications due to
the cluster being assembled from multiple generations of
purchases. The data storage nodes contain several petabytes of
storage space that are used to store both the raw exposure data
downloaded from the telescope as well as processed data
products. These nodes are also used to do processing and have
jobs targeted to them in an effort to reduce the network I/O
demands (see Section 3.4 for more on this process).
These storage nodes are not fully capable of completing all

processing on the short timescale necessary for each night’s
worth of data. To increase the processing capability, we have
212 “compute” nodes that have small amounts of local storage,
but are able to provide additional processing power. In addition
to the direct processing of image data, these nodes are also used

20

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

to manage the Nebulous file interface, as well as controlling
the job scheduling for the processing.

The final type of computer in the cluster is the database
servers. These computers have large memory capacity and
high-speed disk access (originally fast spindle spinning disks,
now migrated to SSDs) are used to store and manage both the
IPP gpc1 and Nebulous databases. In addition to the main
master servers, we have duplicate servers used as database
replicants, which allow for quick switching from the main to
backup servers in case of a hardware issue that cannot be
resolved immediately. The IPP uses a set of three computers to
host the Nebulous mysql database and live backups. A second
set of computers is used to host the processing database and
backups.

6.2. Los Alamos National Laboratory

In order to increase the processing rate for the 3π PV3 data,
we partnered with Los Alamos National Laboratory to gain
access to the Mustang supercomputer. The supercomputer
comprises 3088 processing nodes, each with 12 cores and
64 GB of RAM. The processing nodes do not have significant
local disks, but are connected to multiple petabyte scale scratch
disks. Job management is controlled by the Moab HPC
system,8 which schedules resource requests among users,
allocating processing nodes to satisfy jobs and terminating
those jobs if they exceed their scheduled time limit.

This system is part of the lab’s “Turquoise” network,
allowing it to be used for research projects that do not handle
sensitive data. It is, however, subject to stricter access controls
than are in place at the main IPP processing cluster. Login
sessions are terminated after 12 hr, requiring new sessions to be
initiated regularly. Network access is also filtered, with only
SSH connections allowed between the IPP cluster and Los
Alamos. This restriction removes the ability for the processing
to contact the IPP processing database directly.

To work around this, additional steps were needed to ensure
efficient use of the computing resources. A periodic poll of
outstanding tasks was done on the IPP cluster, using the
information stored in the database and those tasks assigned to a
processing bundle. Each component task in the bundle was
then checked to identify the set of input files needed to
complete the task, the commands necessary to complete the
task, and the set of output files that should be generated if the
task completed successfully. Once this information had been
generated for all tasks, the component lists were merged, and
the Moab job control file was constructed.

The control file contains the resource requests for the
job, as well as the commands to be executed to complete it.
The resource request was calculated based on the number
of tasks included in the job bundle Ntasks and scaled by
the expected execution time (ttask) and computational
intensity of the component tasks (Stask). For a given
job bundle, an initial estimate of the number of compute
nodes needed is simply = *S Nnodes 12task tasks . To ensure
that jobs were not prematurely terminated, we attempted to
design the requested job processing time to be 25% longer
than the expected time to complete the component tasks.
Based on the initial node count, we calculated the request

time as
⎢
⎣

⎥
⎦= +*

t 1.25 1
t

request
nodes

nodes

task

max

, where nodesmax is the

maximum number of nodes that can be requested in a single
job (1000 for Mustang). Table 4 contains the cost values used
for the various IPP processing stages.
Once the preparation for the job is complete, the input and

output file lists, the task list, and the job control file are transferred
via secure copy protocol (SCP) to the Mustang cluster. Local tasks
are then initiated on the user interface nodes to SCP the input files
onto the scratch storage disks if they do not already exist. Once all
the input files have been copied, the job is submitted to Moab for
scheduling. The Moab interface is periodically polled to determine
the job status, and after it has completed, the results are retrieved
in a similar way. Local tasks again SCP the output products, but
copy the results back to the IPP cluster.
In addition to the standard output products, “dbinfo” files are

constructed as part of the job execution. These files contain
database update commands to ensure that the IPP processing
database has the correct entries for the tasks that were remotely
executed. These commands are executed after confirming that
all retrieved output products are present.
Approximately half of the CHIP through WARP processing for

the PV3 reduction was performed on Mustang, with 201,040/
375,573 of the CAMERA stage products reduced there. Only
processing through the STACK stage was attempted, although
with a smaller fraction of the total compared to the CAMERA

stage, with 290,257/998,886 being produced at Los Alamos.
One reason for this decrease is that due to the memory
constraints on the Mustang processing nodes, we were unable to
run stacks with more than 25 inputs there. Stacks with larger
numbers of inputs overflow the memory of the processing node,
and as they do not have disk space available for use as virtual
memory, cause the machine to hang until the job time limit is
reached. These stacks were instead processed on the regular IPP
cluster, where hosts with sufficient memory were available.

6.3. UH Cray Cluster

In 2014 December, the University of Hawaii installed a 178
compute node Cray supercomputer on the main Manoa
campus. As part of the initial commissioning of this computer,
Pan-STARRS was invited to use this resource in 2015
February, roughly corresponding with the completion of the
initial processing of the CHIP through STACK processing.
Although the number of nodes was much smaller than that
available on Mustang, the nodes were more robust, with 20
cores and 128 GB of memory. The scratch data storage was
somewhat smaller than at Los Alamos, with only a single
600 TB volume. We had the unique ability to rapidly deploy to
the UH Cray, using almost all nodes for IPP processing as other
users at the university were designing code. This rapid
deployment was made possible by the similarity of the Slurm9

Table 4

Cost Values for Remote Processing

IPP Stage ttask (s) Stask

CHIP 150 2

CAMERA 1700 2

WARP 110 2

STACK 1500 6

STATICSKY 7200 6

FULLFORCE 300 2

8
http://www.adaptivecomputing.com/

9
https://slurm.schedmd.com/

21

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

http://www.adaptivecomputing.com/
https://slurm.schedmd.com/

scheduler and tools to those used by Moab (although the UH
Cray has a smaller nodesmax of 10).

The UH Cray was used to do processing for the STATICSKY

stage, running approximately half of that photometry
(101,528/200,720). We were also able to run part of the
FULLFORCE photometry there as well, although more had to be
run on the IPP cluster as other users started to utilize the
system, with 168,685/994,890 runs processed there.

7. Conclusion

We began the development of the IPP in early 2004, soon
after the initial funding for the construction of the Pan-
STARRS telescopes was awarded to UH. The landscape of the
software and computing world has changed in a number of
ways. Some of the decisions we made at the beginning have
held up well while in other cases we would probably make a
different choice today.

One choice we made early on was to develop new code for
the data analysis programs. This choice was driven partly by
some of our experiences with the existing major systems of the
time. We were advised by those with close experience with the
SDSS data analysis code base against attempting to modify that
system for our purposes. It was also our opinion that the IRAF
suite of packages was not well suited to the large-scale
automated pipeline needed for the Pan-STARRS data. The Pan-
STARRS data analysis rate was going to surpass previous
astronomical projects, and the cameras (with 60 detectors each
of 64 cells) would have an unprecedented level of complexity.
The original survey was intended to run for 10 yr, so long-term
supportability was also a priority. With these design constraints
in mind, we decided to develop a new code base that would be
able to address the data rate and complexity.

In our design, we have tried to make the analysis programs
as generic as possible, with all instrument-specific details
addressed in the configuration files. Our implementation has
been generally successful in this regard. The ppImage

program contains most of the highly specific detrending details,
with much more limited camera-specific features needed in the
configuration files for psastro and pswarp. This general-
ization of the software has made it easy to run the full analysis
pipeline on other cameras, both for testing and for other science
analysis projects. We have used the full IPP analysis system for
data from the CFHT Megacam and CFH12K cameras as well
as the Subaru Hypersuprime Camera. The generalization made
is relatively simple to add the second telescope and camera
(PS2 + GPC2) to the regular processing when they came
online for science operations in 2018.

In retrospect, the additional design and coding effort needed
to keep the system general were worthwhile and have paid off.
However, if we were to start from scratch today, we would
probably choose to adapt the LSST pipeline for our use because
it has been developed with some of the same constraints.

One early choice was to use standard C for analysis
programs and to use Perl as a wrapper language. We considered
other language choices, including C++ and Python. Our
choice of C over C++ has not held up well: we would have
done well to have the modern object-oriented features of C++,
some aspect of which we have imitated in our C coding style.
The choice of Perl over Python has also fared poorly. At the
time, Python was fairly new and did not have the widespread
acceptance it has today. The capabilities available within the
Python environment would have allowed us to include

interesting visualization and other high-level analysis options.
It is also easier to hire astronomers with good Python coding
skills than Perl coding skills.
We also find that maintaining support for our Perl code has

been a challenge: changes to the Perl language syntax and
changes in externally supported Perl modules have required
significant effort to keep our code compatible with the changes.
It is not obvious that Python would obviate that particular
problem, however.
One important aspect of the design of the IPP is to use a single

database to manage the processing stages, with regular queries to
the database to choose the tasks that are ready to proceed. Other
choices were possible. In some pipelined processing systems,
completed jobs trigger the next processing step. For example,
ppImage or its wrapper (chip_imfile.pl) could have been
responsible for launching the psastro analysis, eliminating the
pantasks manager entirely. Alternatively, a manager process
could be responsible for launching the next processing step when
one step has completed. For example, pantasks could note
when the ppImage jobs were complete and launch the psastro
analysis. Both of these choices can potentially result in lower
latency because the next step is in principle run immediately when
the previous step is completed.
Our design choice has two important advantages: first, error

and failure recovery are trivial. If one of the many programs
fails or is interrupted, the system can easily notice and retry the
job. In a triggered system, a failure of one stage could mean the
trigger never happens. Some external cleanup system would
need to be implemented to check for the failures and relaunch.
The second advantage of our design is that each analysis stage
is highly independent and can thus be flexibly run in different
ways. For example, alternative test systems can run in parallel
with the nightly operations system, using the outputs of the
nightly processing by simple changes to the queries used to
select the elements for an analysis stage. In addition, it is easy
to add new stages because they do not need to be injected into
the standard processing manager (pantasks).
The main challenge related to this database-managed design

is that the database can become a bottleneck. If the queries used
to select the processing items become too large and too slow,
the whole system can be slowed down. Care must be taken to
avoid poorly implemented queries, and in some cases, the
queries need to be restricted. For example, if too many items
are queued for processing at one time under the same
processing label, the associated queries can bog down. This
issue is one of the reasons we manage the large-scale
processing with the LAP system as it provides a method to
automatically limit the scale of the queries. In addition, it is
critical that the database hardware be sufficiently powerful to
keep up with the demand from the processing system.
Finally, the choice to use Nebulous as a file management

system is ambiguous. When we began this project, the existing
cluster file systems did not seem to match the level of our
project. Some were still very much in an early development
state (e.g., GFS from Red Hat), while others seemed designed
for much larger-scale systems, with very expensive hardware
requirements (e.g., Lustre). The requirements for the file system
for Pan-STARRS are somewhat different from the large-scale
computing clusters such as those used by the US national labs.
Because the data processing is very parallel, we do not have
any strong requirements on data access concurrency. In theory,
we could have simply used NFS and made backup copies of the

22

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

files using some simple name-convention rules. We decided to
implement the Nebulous system to allow the targeted analysis
and to automate the replication of the data. In retrospect, the
system has succeeded in these goals and has behaved reliably.
However, the support level has been somewhat high, especially
when we have needed to migrate large amounts of data within
the cluster. If we were to start from scratch today, it is possible
that some of the existing cluster file systems would address our
needs within our budget.

Since the Pan-STARRS 1 telescope first came online in
2007, this telescope has obtained 1.43 million exposures with
GPC1, amounting to a raw data volume of 4.32 PB. The Pan-
STARRS IPP has archived and processed these images on the
fly to produce discoveries of transient events and hazardous
asteroids in real time. The IPP has been used to perform several
reprocessings of large fractions of the science exposures to
produce a well-calibrated data release of the 3π Survey data. To
date, and including repeated analysis, the IPP has processed 2.1
million exposures, detecting 900 billion sources in those
exposures (real and otherwise!). The Pan-STARRS data-
processing system represents a real example of astronomy data
processing on the very large scale.

The Pan-STARRS1 Surveys (PS1) have been made possible
through contributions of the Institute for Astronomy, the
University of Hawaii, the Pan-STARRS Project Office, the
Max-Planck Society and its participating institutes, the Max
Planck Institute for Astronomy, Heidelberg, and the Max
Planck Institute for Extraterrestrial Physics, Garching, The
Johns Hopkins University, Durham University, the University
of Edinburgh, Queen’s University Belfast, the Harvard-
Smithsonian Center for Astrophysics, the Las Cumbres
Observatory Global Telescope Network Incorporated, the
National Central University of Taiwan, the Space Telescope
Science Institute, the National Aeronautics and Space Admin-
istration under grant No. NNX08AR22G issued through the
Planetary Science Division of the NASA Science Mission
Directorate, the National Science Foundation under grant No.
AST-1238877, the University of Maryland, and Eötvös Loránd
University (ELTE) and the Los Alamos National Laboratory.

ORCID iDs

Eugene A. Magnier https://orcid.org/0000-0002-7965-2815
K. C. Chambers https://orcid.org/0000-0001-6965-7789

H. A. Flewelling https://orcid.org/0000-0002-1050-4056
M. E. Huber https://orcid.org/0000-0003-1059-9603
C. Z. Waters https://orcid.org/0000-0003-1989-4879
L. Denneau https://orcid.org/0000-0002-7034-148X
P. W. Draper https://orcid.org/0000-0002-7204-9802
K. W. Hodapp https://orcid.org/0000-0003-0786-2140
R. Jedicke https://orcid.org/0000-0001-7830-028X
N. Kaiser https://orcid.org/0000-0001-6511-4306
N. Metcalfe https://orcid.org/0000-0001-9034-4402
C. W. Stubbs https://orcid.org/0000-0003-0347-1724
R. J. Wainscoat https://orcid.org/0000-0002-1341-0952

References

Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325
Bowell, E., Koehn, B. W., Howell, S. B., Hoffman, M., & Muinonen, K. 1995,

AAS/DPS Meeting, 27, 1057
Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv:1612.05560
Denneau, L., Jedicke, R., Grav, T., et al. 2013, PASP, 125, 357
Flewelling, H. A., Magnier, E. A., Chambers, K. C., et al. 2020, ApJS, 251, 7
Green, G. M., Schlafly, E. F., Finkbeiner, D. P., et al. 2014, ApJ, 783, 114
Green, G. M., Schlafly, E. F., Finkbeiner, D. P., et al. 2015, ApJ, 810, 25
Hernitschek, N., Schlafly, E. F., Sesar, B., et al. 2016, ApJ, 817, 73
Hodapp, K. W., Siegmund, W. A., Kaiser, N., et al. 2004, Proc. SPIE,

5489, 667
Jenkner, H., Lasker, B. M., Sturch, C. R., et al. 1990, AJ, 99, 2082
Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460
Lasker, B. M., Sturch, C. R., McLean, B. J., et al. 1990, AJ, 99, 2019
Lee, C.-H., Koppenhoefer, J., Seitz, S., et al. 2014, ApJ, 797, 22
Lee, C.-H., Riffeser, A., Koppenhoefer, J., et al. 2012, AJ, 143, 89
Magnier, E. A., & Cuillandre, J.-C. 2004, PASP, 116, 449
Magnier, E. A., Schlafly, E. F., Finkbeiner, D. P., et al. 2020a, ApJS, 251, 6
Magnier, E. A., Sweeney, W. E., Chambers, K. C., et al. 2020b, ApJS, 251, 5
Onaka, P., Tonry, J. L., Isani, S., et al. 2008, Proc. SPIE, 7014, 70140D
Padmanabhan, N., Schlegel, D. J., Finkbeiner, D. P., et al. 2008, ApJ,

674, 1217
Pence, W., Seaman, R., & White, R. L. 2012, arXiv:1201.1340
Pence, W., White, R. L., Greenfield, P., & Tody, D. 2000, in ASP Conf. Ser.

216, Astronomical Data Analysis Software and Systems IX, ed. N. Manset,
C. Veillet, & D. Crabtree (San Francisco, CA: ASP), 551

Saglia, R. P., Tonry, J. L., Bender, R., et al. 2012, ApJ, 746, 128
Schlafly, E. F., Finkbeiner, D. P., Jurić, M., et al. 2012, ApJ, 756, 158
Tonry, J., & Onaka, P. 2009, in Proc. Advanced Maui Optical and Space

Surveillance Technologies Conf., ed. S. Ryan (Kihei, HI: Maui Economic
Development Board), E40

Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99
Waters, C. Z., Magnier, E. A., Price, P. A., et al. 2020, ApJS, 251, 4
White, R. L., & Greenfield, P. 1999, in ASP Conf. Ser. 172, Astronomical Data

Analysis Software and Systems VIII, ed. D. M. Mehringer, R. L. Plante, &
D. A. Roberts (San Francisco, CA: ASP), 125

23

The Astrophysical Journal Supplement Series, 251:3 (23pp), 2020 November Magnier et al.

https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0002-1050-4056
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1059-9603
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0003-1989-4879
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7034-148X
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0002-7204-9802
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0003-0786-2140
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-7830-028X
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0003-0347-1724
https://orcid.org/0000-0002-1341-0952
https://orcid.org/0000-0002-1341-0952
https://orcid.org/0000-0002-1341-0952
https://orcid.org/0000-0002-1341-0952
https://orcid.org/0000-0002-1341-0952
https://orcid.org/0000-0002-1341-0952
https://orcid.org/0000-0002-1341-0952
https://orcid.org/0000-0002-1341-0952
https://doi.org/10.1086/305984
https://ui.adsabs.harvard.edu/abs/1998ApJ...503..325A/abstract
https://ui.adsabs.harvard.edu/abs/1995DPS....27.0110B/abstract
http://arxiv.org/abs/1612.05560
https://doi.org/10.1086/670337
https://ui.adsabs.harvard.edu/abs/2013PASP..125..357D/abstract
https://doi.org/10.3847/1538-4365/abb82d
https://doi.org/10.1088/0004-637X/783/2/114
https://ui.adsabs.harvard.edu/abs/2014ApJ...783..114G/abstract
https://doi.org/10.1088/0004-637X/810/1/25
https://ui.adsabs.harvard.edu/abs/2015ApJ...810...25G/abstract
https://doi.org/10.3847/0004-637X/817/1/73
https://ui.adsabs.harvard.edu/abs/2016ApJ...817...73H/abstract
https://doi.org/10.1117/12.550179
https://ui.adsabs.harvard.edu/abs/2004SPIE.5489..667H/abstract
https://ui.adsabs.harvard.edu/abs/2004SPIE.5489..667H/abstract
https://doi.org/10.1086/115485
https://ui.adsabs.harvard.edu/abs/1990AJ.....99.2082J/abstract
https://doi.org/10.1086/176071
https://ui.adsabs.harvard.edu/abs/1995ApJ...449..460K/abstract
https://doi.org/10.1086/115483
https://ui.adsabs.harvard.edu/abs/1990AJ.....99.2019L/abstract
https://doi.org/10.1088/0004-637X/797/1/22
https://ui.adsabs.harvard.edu/abs/2014ApJ...797...22L/abstract
https://doi.org/10.1088/0004-6256/143/4/89
https://ui.adsabs.harvard.edu/abs/2012AJ....143...89L/abstract
https://doi.org/10.1086/420756
https://ui.adsabs.harvard.edu/abs/2004PASP..116..449M/abstract
https://doi.org/10.3847/1538-4365/abb82a
https://doi.org/10.3847/1538-4365/abb82c
https://doi.org/10.1117/12.788093
https://ui.adsabs.harvard.edu/abs/2008SPIE.7014E..0DO/abstract
https://doi.org/10.1086/524677
https://ui.adsabs.harvard.edu/abs/2008ApJ...674.1217P/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJ...674.1217P/abstract
http://arxiv.org/abs/1201.1340
https://ui.adsabs.harvard.edu/abs/2000ASPC..216..551P/abstract
https://doi.org/10.1088/0004-637X/746/2/128
https://ui.adsabs.harvard.edu/abs/2012ApJ...746..128S/abstract
https://doi.org/10.1088/0004-637X/756/2/158
https://ui.adsabs.harvard.edu/abs/2012ApJ...756..158S/abstract
https://ui.adsabs.harvard.edu/abs/2009amos.confE..40T/abstract
https://doi.org/10.1088/0004-637X/750/2/99
https://ui.adsabs.harvard.edu/abs/2012ApJ...750...99T/abstract
https://doi.org/10.3847/1538-4365/abb82b
https://ui.adsabs.harvard.edu/abs/1999ASPC..172..125W/abstract

