
1

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive
publisher-authenticated version is available on the publisher Web site.

In Tools and Techniques for High Performance Computing. HUST
2019, SE-HER 2019, WIHPC 2019. Communications in Computer
and Information Science, vol 1190, pp 190-204
2019
Eds Juckeland G., Chandrasekaran S., Springer
ISBN 9783030447274
https://doi.org/10.1007/978-3-030-44728-1_12
https://archimer.ifremer.fr/doc/00597/70946/

Archimer
https://archimer.ifremer.fr

The Pangeo Ecosystem: Interactive Computing Tools for the
Geosciences: Benchmarking on HPC

Odaka Tina 1, Banihirwe Anderson 2, Eynard-Bontemps Guillaume 3, Ponte Aurelien 1, Maze Guillaume
1, Paul Kevin 2, Baker Jared 2, Abernathey Ryan 4

1 Laboratory for Ocean Physics and Satellite Remote Sensing UMR LOPS, Ifremer, Univ. Brest, CNRS,
IRD, IUEM Brest, France
2 National Center for Atmospheric Research, Boulder, CO, USA
3 CNES Computing Center team Centre National d'Etudes Spatiales Toulouse, France
4 Lamont Doherty Earth Observatory, Columbia University, New York, USA

Abstract :

The Pangeo ecosystem is an interactive computing software stack for HPC and public cloud
infrastructures. In this paper, we show benchmarking results of the Pangeo platform on two di erent HPC
sys- tems. Four di erent geoscience operations were considered in this bench- marking study with varying
chunk sizes and chunking schemes. Both strong and weak scaling analyses were performed. Chunk sizes
between 64MB to 512MB were considered, with the best scalability obtained for 512MB. Compared to
certain manual chunking schemes, the auto chunk- ing scheme scaled well.

Keywords : Pangeo, interactive computing, HPC, cloud, benchmarking, Dask, Xarray

https://doi.org/10.1007/978-3-030-44728-1_12
https://archimer.ifremer.fr/doc/00597/70946/
http://archimer.ifremer.fr/

· ·

1 Introduction

In the geosciences, simulation of physical systems has long been the focus of
high-performance computing. Thanks to the excellent scaling properties of geo-
scientific simulations, scientists can now easily output petabytes of data, which
together with the massive increase in the volume of observational data, is leading
to a crisis for traditional data analytics workflows. In this community, traditional
methods of analysis depend upon serial, non-scalable tools, such as the NetCDF
Operators (NCO)[1], the NCAR Command Language (NCL)[2], or serial MAT-
LAB and Python scripts. Alternatively, each scientist had to develop parallel
(e.g., MPI) applications to perform specialized analysis on particular datasets,
a task that is time-consuming, error prone, and leads to duplication of effort

2 T.E. Odaka et al.

across the community. These methods of analysis are so time-consuming that
scientists have accepted, for many years now, a batch processing style for con-
ducting analysis, where the scientist spends considerable effort and time to write
a data analysis script that is then submitted to a traditional HPC batch queu-
ing system, such as PBS Pro [3] or SLURM[4]. These batch jobs can take hours
to days to complete. This kind of batch-style data analysis (with non-scalable
tools) interrupts the natural, iterative nature of the scientific process of data ex-
ploration. The geoscience community needs scalable tools that can free scientists
to explore their data interactively, and it is to this end that the Pangeo [5–7]
community exists.

2 Pangeo & the Pangeo Platform

Pangeo is a community devoted to the development of an ecosystem of inter-
operable, scalable, open source tools for interactive data analysis [8]. The com-
munity is diverse, comprising of members from traditional HPC as well as cloud
computing backgrounds, scientists and technologists, and involving both indus-
try and academia.

The Pangeo framework has allowed several scientific results already. Yu et
al [9], for example, processed global high resolution numerical simulation outputs
of the ocean circulation (a 30 TB dataset) in order to quantify its frequency
content and compare it with actual observations. The analysis required non-
trivial rechunking of a large dataset which was achieved on an HPC platform
with a remarkably light amount of code [10].

The Pangeo platform consists of five components: (a) a thin user interface,
such as JupyterLab or Jupyter Notebook [11], (b) a data model, such as Xarray
[12] or Iris [13], (c) a scalable computing system, such as Dask [14, 15] or Spark
[16], (d) a scalable storage system, such as a parallel filesystem or object storage,
and (e) a resource management system, such as an HPC batch job scheduling
system or Kubernetes. Exactly which choice you make for each component of
the platform depends on how you can access the underlying computing system,
the data you wish to analyze, and whether you are running the platform on a
traditional HPC system or in the public cloud.

On HPC systems, Pangeo is used mainly with Dask. Dask’s computing system
is based on a central Dask scheduler and multiple Dask workers. The Dask
scheduler orchestrates parallelisation tasks performed by Dask workers. Each
parallel task assigned to the Dask workers is based on a ‘chunk’ of grided data
in Xarray datasets. Users specify the size and shape of the ‘chunk’ and how many
(and what kind of) Dask workers to provide to Dask. Then, Dask takes care of
the parallelisation automatically. Dask-Jobqueue [15, 17] works with traditional
HPC job scheduling systems to launch Dask workers interactively, providing
both fixed and adaptive scaling capabilities.

For the purposes of this paper, we consider two specific deployments of the
Pangeo platform on HPC systems: (i) the HAL system at CNES [18], and (ii) the
Cheyenne system at NCAR’s Wyoming Supercomputing Center (NWSC) [19].

Title Suppressed Due to Excessive Length 3

The benchmarks performed for this paper consider only interactive compute
(i.e., no I/O), and so we only concern ourselves with the data model and scalable
compute components of the Pangeo platform.

3 HPC Deployments of the Pangeo Platform

As mentioned in the previous section, and for the purposes of this paper, an
HPC Pangeo deployment is distinguished from a cloud-based deployment by
the use of a Pangeo Python environment (containing Xarray, Dask, and Dask-
Jobqueue) and an HPC batch job scheduling system. Some HPC centers deploy
the JupyterHub [20] service, which provides a platform for authenticating users
and launching Pangeo Jupyter Notebooks on the remote HPC system.

3.1 Hal

CNES Cluster (Hal) Architecture Hal is an intermediate size HPC cluster,
with about 460 nodes, 12,000 cores and a 8.5 PB Spectrum Scale Storage. Nodes
and storage are interconnected with Infiniband at 56 Gb/s, and the storage
system provides a bandwidth up to 100 GB/s.

Benchmarks for this paper were run on Lenovo compute nodes installed in
Hal in 2017 with Intel Broadwell CPUs (2x E5-2650 per node, 24 cores per node)
and 128 GB of RAM. Hal has several powerful frontal nodes equipped with more
RAM and more powerful CPUs. Standard HPC users use the compute nodes by
logging on to the frontal nodes with ssh, develop their applications, then submit
their jobs on the command line through PBS Pro. Hal also provides Virtual
Machines (VMs) configured as cluster clients. These VMs are integrated into
the HPC’s network, enrolled in its LDAP directory, mounting the GPFS file
system through NFS, and have a PBS client installed and configured. Specific
projects or groups of users can ask for one of these VMs in order to have their
own environment upon cluster access.

Pangeo Deployment On Hal, JupyterHub was deployed on a VM cluster
client within a Conda environment. In order to launch the JupyterHub service,
a systemctl service file was set up. ProfileSpawner [21] and BatchSpawner [22] are
used to provide a selection of resource profiles for users through a web interface
(e.g., number of CPUs, amount of memory), and to start the user’s Jupyter
Notebook server in a batch job on HPC nodes. The Conda environment providing
Pangeo’s Python ecosystem Conda was copied from Pangeo’s Docker images[5],
installed and configured as a Jupyter kernel.

Lessons Learned On the admin side, JupyterHub is the most complex compo-
nent of the Pangeo deployment, but it was still relatively easy to set up. There
is a lack of complete integration, like a provided service file for main linux dis-
tributions. BatchSpawner was not compatible with the latest versions of PBS

4 T.E. Odaka et al.

Pro, which resulted in some Pull Requests to the BatchSpawner codebase. The
job script used by BatchSpawner was modified so that users could easily add
custom shared kernel folders and configure the Python environment from which
the Jupyter Notebook server is launched. Since the installation of JupyterHub
in 2018 October, i.e. one year ago, more than 100 accounts out of 800 active ac-
counts on Hal have used the service at least once, and nearly 50 accounts use on
a weekly basis. About a quarter of JupyterHub users are using Dask for workload
distribution. The principal feedback we’ve obtained on Dask is that it’s really
easy to start using it, but that it can be challenging to debug or optimize when
problems scale up. Distributed computing may look simple, but understanding
it and doing it well will always need some expertise, hence this benchmark to
determine optimal parameters for common operations.

3.2 Cheyenne

NCAR Cluster (Cheyenne) Architecture Cheyenne is a 5.34 petaflops
peak, high-performance computer. It features 145,152 Intel Xeon ”Broadwell”
processor cores in 4,032 dual-socket nodes (36 cores per node) and 313 TB total
system memory (64 GB/node on 3,168 nodes and 128 GB/node on 864 nodes).
Cheyenne uses Mellanox EDR InfiniBand in a partial 9D Enhanced Hypercube
single-plane interconnect topology with a 25 GB/s bidirectional per link band-
width. Standard users access the Cheyenne system via ssh with LDAP authen-
tication to 6 dual-socket ”Broadwell” login nodes with 256 GB memory/node.
Resource management on Cheyenne is provided through PBS Pro.

A separate cluster, named Casper, exists for data analysis and visualization.
The Casper system, procured from PCPC Direct, Ltd., is comprised of 28 Su-
permicro nodes featuring Intel Skylake processors (36 cores per node). Twenty
(20) Casper nodes provide 384 GB of RAM for general purpose data analysis
and visualization. Six (6) Casper nodes are high-memory nodes with 768 GB of
RAM, and two (2) Casper nodes are login nodes. NCAR’s JupyterHub provides
access to both the Cheyenne and Casper systems, though the benchmarks for
this paper where run only on Cheyenne.

Pangeo Deployment Users can access Cheyenne’s Pangeo deployment through
an experimental JupyterHub deployment running on one of the Cheyenne login
nodes, in a setup similar to CNES’s Hal JupyterHub. Users are also allowed to
launch their own personal installations of JupyterLab over ssh tunnels. NCAR is
using this experimental JupyterHub deployment to assess how best to deploy an
officially supported JupyterHub for the follow-on machine to Cheyenne in 2021.

Lessons Learned Over the last year, we have made several observations that
will help with agility, stability, and upgrades of the JupyterHub service in the
future. We have learned that it is extremely beneficial to provide a single access
point for the user community with a single web address. Leveraging a reverse
proxy has really helped with this but not without difficulties. One issue was

Title Suppressed Due to Excessive Length 5

being too restrictive when proxying WebSocket connections as Jupyter applica-
tions can heavily rely on the protocol upgrade to function properly. Secondly,
as data grows, the size of the Jupyter Notebooks increases as well, necessitat-
ing special attention to configuration and sizing of buffering capabilities on the
reverse proxy. Additionally, Jupyter, and projects around Jupyter, move quite
quickly, and therefore upgrades are expected to be delivered at a more rapid
pace than other systems-based software. Currently all JupyterHub installations
are kept around to revive them if needed. Separation of services is also critical.
The reverse proxy, the different JupyterHub instances, and the site-provided ker-
nels all run in different environments to allow each component to be updated
individually. The site-provided kernels remain in a fixed state after they are val-
idated to encourage as much repeatability as possible. Finally, the JupyterHub
instances all run within a containerization environment called Inception that
allow us to run with necessary changed system configuration files on already ex-
isting hardware as part of the machines. The site service has been well adopted
and provided great value to workshops and hackathons that have taken place.

In the future, there are plans to increase database resilience by moving to
PostgreSQL, or another potentially compatible database, and implementing bet-
ter telemetry and utilization metric tracking. Finally, we are planning additional
investigations into adaptively balancing the use of traditional batch schedulers
(e.g., PBS Pro, SLURM) for both batch jobs and interactive computing (via the
JupyterHub and Dask-Jobqueue).

4 Benchmark of Pangeo on HPC

4.1 Benchmark Method

During this study, we varied our benchmarking computations in following ways:

– Dask chunk size, Schunk,

– cluster size (number of HPC nodes), Nnode, and

– the chunking scheme used for Dask arrays.

To be able to compare the performance between different architectures we
placed only one Dask worker with one thread on each HPC node. On Hal (Sec.
3.1), Dask-Jobqueue was used to submit jobs to PBS Pro job scheduler reserving
24 cores (the entire node) and 128 GB of memory for each Dask worker, ensuring
that no other jobs would run on the node for benchmark. On Cheyenne (Sec. 3.2),
Dask-Jobqueue was used to submit jobs to the regular queue, which reserves
entire nodes for each job.

Dataset For each chunk size, we created a random float64 Xarray dataset
called ds with the following 3 coordinates: time, lon (longitude) and lat (lat-
itude). This synthetic dataset mirrors the structure of many real datasets in

6 T.E. Odaka et al.

weather and climate research, such as satellite products or climate model out-
puts. The size of the total dataset Stotal is a function of chunk size Schunk, cluster
size Nnode and number of chunks per node F according to:

Stotal = Schunk ×Nnode × F . (1)

In this benchmark study, we used F = 10 chunks per node, fixing the number
of points in lon and lat dimensions to 384 and 320, respectively.

The size of the temporal dimension is varied in order to meet the desired total
dataset size as defined be (1). For example, a computation with a chunk size of
Schunk = 128 MB, Nnode = 16 HPC nodes, leads to a total dataset size of 20.48
GB, and the ds(time, lon, lat) shape corresponds to (20834, 384, 320).
For Hal, the time coordinate contained daily values ranging from 1 January 1980
to the year 2037. On Cheyenne, the time coordinate contained hourly data. The
longitude varies from -180 to +180 degrees, and latitude varies from -90 to 90
degrees.

Chunking Scheme Three different chunking schemes were tested:

– The auto chunking scheme lets Dask automatically determine the shape
of each chunk, given a particular chunk size. The auto chunking scheme
subdivides every dimension in order to achieve the desired chink size.

– The spatial chunking scheme keeps the temporal dimension contiguous in
one chunk, dividing data along spatial dimensions.

– The temporal chunking scheme keeps all spatial dimensions contiguous in
one chunk, dividing data long the temporal dimension.

With the above Dask dataset example, ds(20834, 384, 320), the auto, spatial
and temporal chunking schemes will lead respectively to the following chunk
sizes: (251, 192, 160), (20834, 28, 28), and (131, 384, 320).

Geoscience Operations The following four geoscience operations were used
to measure performance:

– The temporal mean operation is a temporal average. It corresponds to the
following code in Xarray:

ds.mean(dim=’time’)

– The spatial mean operation is a spatial (i.e., along lon and lat) average.
On Hal, it corresponds to the following line of code in Xarray:

ds.mean(dim=[’lat’, ’lon’])

while on Cheyenne, the spatial mean includes weights.
– The climatology operation calculates a standard climatology analysis by

calculating the seasonal mean value of ds(time,lat,lon). This operation
runs along the time axis. It corresponds to the following lines of code in
Xarray:

ds g = ds.groupby(’time.season’)

climatology = ds g.mean(dim=’time’)

Title Suppressed Due to Excessive Length 7

– The anomaly operation computes the anomaly of ds(time,lat,lon) with
respect to the seasons (i.e., the climatology result). It corresponds to the
following line of code in Xarray:

ds g - climatology

The run time for each operation was measured after the dataset was created
and loaded into memory. For each choice of chunk size, chunking scheme, the
geoscience operation was performed multiple times, and the median run time for
each operation in shown in this paper, reflect the real usage of an typical HPC
user.

Strong Scaling Analysis A strong scaling analysis keeps the total size of a
problem constant (i.e., the dataset) and evaluates computation times with an
increasing number of processes. It allows the problem to possibly scale with the
increase of parallel processors and to highlight critical values. Without parallel
computing overhead, such as communication or synchronisation, the run time is
expected to decrease as 1/Nnode. In this study, we fixed the total dataset size to
20.48 GB. The number of nodes Nnode was varied over 1, 2, 4, 8 and 16, while
the chunk size Schunk was varied with the number of nodes from 2.048 GB to
128 MB, such that the total dataset size as defined in (1) stayed constant.

We produced and analyized 60 sets of benchmark results (four geoscience op-
erations × three chunking schemes × five values for Nnode). We have performed
this benchmark both on the Hal and Cheyenne supercomputers. Using Hal, a
total of 1056 computations were performed, with each test set being performed
10 to 28 times. The run times on Hal varied from 1.25 to 77.61 seconds. Using
Cheyenne, a total of 96 computations were performed, with each test set being
performed one to three times. The run times on Cheyenne varied from 1.10 to
57.39 seconds.

Weak Scaling Analysis A weak scaling analysis aims to determine how the
time to solution varies with processor count for a fixed problem size per processor.
In an ideal case, we expect to observe a constant time to solution, independent
of the total number of processors in the system.

In this study, we fixed the chunk size Schunk and varied the total dataset
size Stotal with the number of nodes Nnode. We performed four different weak
scaling analyses using a chunk size Schunk of 64, 128, 256 and 512 MB. For each
analysis, the number of nodes Nnode varied over 1, 2, 4, 8, and 16. We produced
and analyzed 240 sets of benchmark results (four geoscience operations × three
chunking schemes × five values for Nnode × four variations of chunk size).

At the time of this publication, the weak scaling study results for Cheyenne
are incomplete and are not shown. However, a thorough weak scaling study
was performed on Hal. In total, we performed 5268 computations using the Hal
supercomputer. Each test set was computed from 20 to 28 times on Hal and
from 1 to 2 times on Cheyenne. The run times on Hal varied from 0.49 to 125.22
seconds, and the run times on Cheyenne varied from 0.40 to 91.75 seconds. For

8 T.E. Odaka et al.

Fig. 1. Strong scaling analysis results for a total dataset size of 20.48 GB using the
Hal supercomputer. The x axis shows number of nodes used for each test, shown on log
scale. The y axis shows the run time in seconds on a log scale. The blue, orange, green
and red lines correspond respectively to the run times for the anomaly, climatology,
spatial mean and temporal mean operations. Curves corresponds to the median run
time, and the shadowed area shows a single standard deviation from the mean run
time. The black line corresponds to the expected strong scaling curve, a−1. From the
top, figures a), b) and c) show the run times with auto, spatial and temporal chunking
schemes, respectively.

each set of tests, the run time was normalized by the median of non-parallel
(Nnode = 1) test.

4.2 Results and Discussions

Strong Scaling Analysis The benchmark results using Hal and Cheyenne are
shown in Figures 1 and 2, respectively. For the auto (Figures 1-a and 2-a) and
temporal (Figures 1-c and 2-c) chunking schemes, the run time decreases for all
four geoscience operations with a a−1 power law. This is consistent with the
expectation.

Title Suppressed Due to Excessive Length 9

Fig. 2. Strong scaling analysis results for a total dataset size of 20.48 GB using the
Cheyenne supercomputer. The x axis shows the number of nodes used for each test,
shown on a log scale. The y axis shows the run time in seconds on a log scale. The blue,
orange, green and red lines correspond respectively to the run times for the anomaly,
climatology, spatial mean and temporal mean operations. Curves correspond to the
median run time, and the shadowed area shows a single standard deviation from the
mean run time. When only one run was performed, the standard deviation is displayed
on plots as zero. The black line corresponds to the expected strong scaling curve, a−1.
From the top, figures a), b) and c) show run times with auto, spatial and temporal
chunking schemes, respectively.

Dask’s automatic parallelism scales well for this cluster size for most chunking
schemes. With the spatial chunking scheme, each chunk holds all the data along
the time dimension. It is appropriate for operations that run along time (i.e.,
the temporal mean and climate operations). The anomaly operation also runs
along the time coordinate, so we expect it to scale appropriately as well. Run
time decreases for the temporal and climatology operations as expected (Figures
1-b and 2-b, red and orange lines). However, the anomaly operation does not
scale after 8 nodes (Figures 1-b and 2-b, blue lines.)

10 T.E. Odaka et al.

We do not fully know why the anomaly operation does not show scaling
beyond 8 nodes when using spatial chunking. We suspect that it is due to ex-
tra overhead or unnecessary communication or both. Further investigation is
planned to understand this problem.

It is clear from the findings that the auto chunking scheme would be a suitable
choice for general use cases on HPC.

Weak Scaling Analysis The benchmark results for spatial and auto chunking
scheme are shown in Figures 3 and 4 respectively.

None of the operations studied, for either the spatial or auto chunking schemes,
show a constant normalized run time as the number of nodes increases. Most
operations show a deviation from ideal scaling over 1 to 16 nodes, ranging from
roughly 10% to 40% when the idea chunk size is used. However, the anomaly
operation, when used with the spatial chunking scheme (Figure 3-a), shows ex-
tremely poor scaling. However, the anomaly operation, when used with the auto
chunking scheme (Figure 4-a), shows better scaling, though not ideal. These
results are consistent with the results in the strong scaling analysis.

For the auto chunking scheme, Figures 4-c and 4-d show that the spatial
mean and temporal mean operations scale fairly well regardless of chunk size.
However, for the anomaly (Figure 4-a) and climatology (Figure 4-b) operations,
a chunk size of between 256 MB and 512 MB scales better compare to other
smaller chunk sizes. Larger chunk sizes places more data on each Dask worker,
therefore reducing the communication overhead. Dask’s default chunk size for
the auto chunking scheme is 128 MB. Note that a bigger chunk size requires
more memory on the HPC node.

5 Conclusion and Further

The Pangeo community unites scientists and technologists together to make it
possible to explore geoscience data using HPC or cloud in an interactive manner.
Interactive usage gives a way for researchers to rapidly code and test their ideas
[9], but our experiences suggest that it may also introduce some ’blind spots’
due to its ease of use. For example, such an easy-to-use parallel platform makes
it also easy for users to forget that they are dealing with Terabytes of data with
hundreds of workers (i.e., that their machine has real limits and that not all
data sizes can easily be analyzed).

This benchmark study of the Pangeo platform shows that the best scalability
was obtained with chunk sizes between 256 MB and 512 MB, and, compared to
certain manual chunking schemes, the auto chunking scheme scaled well.

Compared to legacy parallel programming models (e.g., MPI), users of Dask
do not have to deal with the difficulty of coding their own parallelism. However,
they still have to think about grid size and related issues, such as the chunk size
and the chunking scheme most appropriate to the computation and the machine
they are using. Fortunately, Dask’s auto chunking scheme seems to scale quite

Title Suppressed Due to Excessive Length 11

Fig. 3. This figure shows the weak scaling analysis results for the spatial chunking
scheme. The x axis shows number of nodes used for each test. The y axis shows the
operation run time normalized by the 1-node runtime. The red, blue, orange and green
colors correspond to chunk sizes of 64, 128, 256 and 512 MB, respectively. The curves
correspond to the medians of run time, and the shadowed areas show a single standard
deviation from the mean run time. From the top, figures a), b), c) and d) show the
anomaly, climatology spatial mean and temporal mean operations, respectively.

12 T.E. Odaka et al.

Fig. 4. This figure shows the weak scaling analysis results for the auto chunking scheme.
The x axis shows number of nodes used for each test. The y axis shows the run time
normalized by the 1-node run time. The red, blue, orange and green colors correspond
to chunk sizes of 64, 128, 256 and 512 MB, respectively. The curves correspond to
median run times, and the shadowed areas show a single standard deviation from the
mean runtime. From the top, figures a), b), c) and d) shows the anomaly, climatology
spatial mean and temporal mean operations, respectively.

Title Suppressed Due to Excessive Length 13

well, and the knowledge of using a larger-than-default chunk size (i.e., larger
than 128 MB) is easy to communicate to users.

The benchmark code used for this paper is open source, and it is published on
GitHub [23]. The development of the benchmarking suite continues, with the goal
of this benchmarking suite being that user (or administrator of an HPC center)
can run these benchmarks and find out what is the best chunk size, chunking
scheme, workers per node, and threads per node for a given HPC cluster for
geoscience applications. This will help both optimising the usage of the cluster
for HPC administrators and optimise the time for HPC users.

Pangeo is still new to HPC platforms. HPC communities have a history of
optimisation and parallelism using HPC platforms. For example, there is a his-
tory of automatic parallelism methods (e.g., Fortran co-arrays) and the use of
RDMA for communication between nodes [24]. These knowledge and specializa-
tion from the HPC community may help the development and optimisation of
the Pangeo platform.

Acknowledgment

Dr. Abernathey was supported by NSF Earthcube award 1740648. Dr. Paul and
Mr. Banihirwe were both supported by NSF Earthcube award 1740633.

References

1. Zender, C.S.: Analysis of self-describing gridded geoscience data with netCDF Op-
erators (NCO). Environmental Modelling & Software 23(10-11), 1338–1342 (Oct
2008). https://doi.org/10.1016/j.envsoft.2008.03.004

2. Brown, D., Brownrigg, R., Haley, M., Huang, W.: NCAR Command Language
(NCL). UCAR/NCAR - Computational and Information Systems Laboratory
(CISL) (2012). https://doi.org/10.5065/d6wd3xh5

3. Nitzberg, B., Schopf, J.M., Jones, J.P.: PBS Pro: Grid Computing and Scheduling
Attributes. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource Man-
agement: State of the Art and Future Trends, pp. 183–190. International Series
in Operations Research & Management Science, Springer US, Boston, MA (2004).
https://doi.org/10.1007/978-1-4615-0509-9 13

4. Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.): SLURM: Simple Linux Util-
ity for Resource Management, pp. 44–60. Lecture Notes in Computer Science,
Springer Berlin Heidelberg (2003)

5. Community, T.P.: Pangeo: A community platform for big data geoscience.
http://pangeo.io

6. Robinson, N.H., Hamman, J., Abernathey, R.: Science needs to rethink how it
interacts with big data: Five principles for effective scientific big data systems.
arXiv e-prints p. arXiv:1908.03356 (Aug 2019)

7. Guillaume Eynard-Bontemps, Joseph Hamman, A.P.W.R.R.A.: The PANGEO big
data ecosystem and its use at CNES. In: Proceedings of 2019 Big Data from Space.
pp. 49–52. Munich, Germany (2019). https://doi.org/10.2760/848593

14 T.E. Odaka et al.

8. Abernathey, R., Paul, K., Hamman, J., Rocklin, M., Lepore, C., Tippett, M.,
Henderson, N., Seager, R., May, R., Vento, D.D.: Pangeo NSF Earthcube Proposal
(2017). https://doi.org/10.6084/m9.figshare.5361094.v1

9. Yu, X., Ponte, A.L., Elipot, S., Menemenlis, D., Zaron, E.D., Abernathey, R.:
Surface Kinetic Energy Distributions in the Global Oceans From a High-Resolution
Numerical Model and Surface Drifter Observations. Geophysical Research Letters
46(16), 9757–9766 (Aug 2019). https://doi.org/10.1029/2019GL083074

10. Ponte, A.: Rotary spectral analysis of surface currents and zonal average.
https://github.com/apatlpo/mit equinox/blob/master/hal/
rechunk rotspectra.ipynb

11. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic,
J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S.,
Willing, C., Jupyter development team: Jupyter Notebooks — a Publishing Format
for Reproducible Computational Workflows. In: Loizides, F., Scmidt, B. (eds.)
Positioning and Power in Academic Publishing: Players, Agents and Agendas. pp.
87–90. IOS Press (2016). https://doi.org/10.3233/978-1-61499-649-1-87

12. Hoyer, S., Hamman, J.: Xarray: N-D labeled Arrays and Datasets in
Python. Journal of Open Research Software 5(1), 10 (Apr 2017).
https://doi.org/10.5334/jors.148

13. Met Office: Iris: A Python library for analysing and visualising meteorological and
oceanographic data sets. Exeter, Devon (2010 - 2013), http://scitools.org.uk/iris

14. Matthew Rocklin: Dask: Parallel Computation with Blocked algorithms
and Task Scheduling. In: Kathryn Huff, James Bergstra (eds.) Proceed-
ings of the 14th Python in Science Conference. pp. 126 – 132 (2015).
https://doi.org/10.25080/Majora-7b98e3ed-013

15. Dask Development Team: Dask: Library for dynamic task scheduling (2016),
https://dask.org

16. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker,
S., Stoica, I.: Apache Spark: A Unified Engine for Big Data Processing. Commun.
ACM 59(11), 56–65 (Oct 2016). https://doi.org/10.1145/2934664

17. Hamman, J.: Dask-jobqueue. https://github.com/dask/dask-jobqueue/ (2018)
18. CNES: The Centre National dEtudes Spatiales (CNES) is the government

agency responsible for shaping and implementing frances space policy in europe.
https://cnes.fr/

19. Computational, Laboratory, I.S.: Cheyenne: SGI ICE XA Cluster (2017).
https://doi.org/10.5065/d6rx99hx

20. Ragan-Kelley, B., et al.: JupyterHub — JupyterHub 1.0.0 documentation.
https://jupyterhub.readthedocs.io/

21. Willing, C., Zonca, A., et al.: Jupyterhub/wrapspawner.
https://github.com/jupyterhub/wrapspawner

22. Milligan, M., Gilbert, M., et al.: Jupyterhub/batchspawner.
https://github.com/jupyterhub/batchspawner

23. Paul, K., Banihirwe, A., Odaka, T.: Benchmarking and scaling studies of the pangeo
platform. https://github.com/pangeo-data/benchmarking

24. Liu, J., Wu, J., Panda, D.K.: High Performance RDMA-Based MPI Implementa-
tion over InfiniBand. International Journal of Parallel Programming 32(3), 167–198
(Jun 2004). https://doi.org/10.1023/B:IJPP.0000029272.69895.c1

