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Abstract. The implications of the parabolic umbilic catastrophe in the theory of elastic
stability are investigated. In particular, the influence of terms in the potential energy which
are deemed necessary for a complete analysis and the isolation of primary critical surfaces
are considered. The results are demonstrated for the example of the buckling and initial
post-buckling of a spherical shell under the influence of a constant as well as a spatially
variable pressure.

Introduction. Catastrophe theory has been hailed as the most important mathematical
discovery in decades. It has also been termed the Emperor with no clothes! This paper
makes no effort to address either of the above comments; rather, it is concerned with the
application of a specific catastrophe to problems in the theory of elastic stability. Thus, the
intended contribution is the evaluation of certain of the implications of catastrophe theory
in the context of the theory of elastic stability.

Catastrophe theory [1] and the theory of elastic stability are extremely similar and it is
fair to say that the latter is a special case of the former. This relationship has led to a
number of papers [2, 3] which provided comparisons between actual physical problems
and catastrophe theory as well as a description of areas in which catastrophe theory may be
applied. It has become apparent that catastrophe theory has certain features which are of
interest in the theory of elastic stability; however, it is equally obvious that the theory of
elastic stability is not a trivial application of catastrophe theory. In fact, catastrophe theory
does not even address some of the most difficult aspects of the prebuckling and buckling
solutions for a given problem [4, 5]. Furthermore, the physical implications involved in a
loss of stability play a predominant role in the analysis of physical systems. This has been
demonstrated in [6] where it is shown that the least critical surface for a problem is not
necessarily related to the initial loss of stability. The above points notwithstanding, it
appears that the contribution which catastrophe theory has to offer is in the realm of
classification for complex systems and of the determination of the correct number of loads,
imperfections, etc. (control parameters) which should be involved in a stability analysis.

This paper investigates the class of elastic stability problems which are described by a
potential energy expression that can be reduced to the parabolic umbilic form. This pa-
rticular problem is of interest for two reasons: first, the potential energy expression used is
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apparently inconsistent from a perturbation point of view and, second, catastrophe theory
dictates that this problem requires two independent load-type parameters in order to
achieve a proper unfolding. Neither of these features would be considered necessary in a
stability analysis and it is therefore appropriate to investigate their influence. Previous
investigations of the critical surfaces of the parabolic umbilic model have been examined by
Godwin [8] and Brocker and Lander [9], but they were not oriented towards the theory of
elastic stability. In particular, the aim of this paper is to analyze this model from a structur-
al stability point of view while taking advantage of the classification scheme provided by
Catastrophe theory.

The first portion of the paper is devoted to the evaluation and analysis of the critical
surfaces of the parabolic umbilic catastrophe. In particular, two forms are identified and
termed the parabolic umbilic types one and two. The particular critical surfaces which are
of relevance in a stability analysis have been isolated and extensive parameter studies have
been undertaken.

The above results are then demonstrated for the two-mode buckling problem of a
shallow section of a spherical shell. The influence of the additional parameters which are
implied by catastrophe theory are also evaluated and are demonstrated to be significant.

The parabolic umbilic catastrophe. The parabolic umbilic catastrophe arises in the
analysis of systems which have two coincident least eigenvalues and for which cubic terms
in the expansion of the potential energy function about the critical state are in general
non-vanishing. That is, if the expansion of the potential energy V, about the ideal critical
state, takes the form

V= Ax 3 + Bx2y + Cxy2 + Dy3

then there are a number of possibilities which arise. If the cubic equation V = 0 has one real
root and a pair of complex conjugate roots, then V leads to the hyperbolic umbilic catas-
trophe. If there are three real and unequal roots, then V is classed as an elliptic umbilic.
These particular forms have been considered previously in [2, 6], In addition, there are two
singular cases which occur for the three-real-root situation. These are the parabolic umbilic,
when there are two equal roots, and the symbolic umbilic, when there are three equal roots.
As may be appreciated from the root structure, the parabolic and symbolic umbilics are the
non-trivial transitions which exist between the hyperbolic and elliptic umbilics.

The problem of interest in the present investigation is the parabolic umbilic model
which is described in standard form as

V= + x4 + xy2 + Ljx2 + L2 y2 — £iX - e2y (1)

where Lu L2, et, e2 are the control parameters and x, y are the behavior variables. In a
typical elastic stability analysis Lj and L2 would be related to some applied loads while
and e2 would be related to the amplitudes of certain geometric imperfections. This is, of
course, not necessary as Lu L2, ey, e2 may represent loads, imperfections, material par-
ameters, dimensions and so on. The behavior parameters x, y are related to the amplitudes
of the critical modes of the problem. As mentioned previously, the quartic term +x4 and
the independence of and L2 are not the norm in elastic stability analyses and are
therefore of particular interest. These factors have been included by catastrophe theorists to
provide a stable jet and a complete unfolding of the catastrophe, respectively. It should also
be emphasized that the plus or minus possibility for the quartic term is extremely important
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as the change in sign leads to quite different results. In the present paper, the cases with the
plus or minus sign are referred to as the parabolic umbilic type one or type two, respect-
ively.

Critical sets. The critical sets are defined by the criterion that the first and second
variations of the potential energy vanish simultaneously. This yields the equilibrium equa-
tions

+ 4x3 + y2 + 2 LjX = (2)

2y(x + L2) = e2, (3)

while critical states of equilibrium occur when the solutions of (2) and (3) also satisfy

{±6x2 + Lj)(x + L2) = y2. (4)

The critical sets are the surfaces defined by the relationship between Lt, L2, et, s2 when x
and y are eliminated from (2), (3) and (4). This elimination is not a trivial matter and it does
not appear that an explicit relationship can be obtained in closed form. In the present
circumstance it was accomplished numerically by first eliminating y from (2) and (3) by way
of Eq. (4). This operation yields

£i = ± 10x3 ± 6L2x2 + 3LjX + LlL2 (5)

and

82 = ±2(x + L2)n/(± 6x2 + Lt)(x + L2). (6)

In the solution for the critical surface it is required that this surface correspond to real
values of x, y, £,, e2, Ll and L2. Further, it may be noted that for real values ofe1; Lx and
L2 Eq. (5) has at least one real solution for x. In addition, for real values ofe2, Eq. (6)
implies that (x + L2)(± 6x2 + Lt) must be positive. Also, from Eq. (3) it follows that if x
and e2 are real then y is real. Therefore, the existence of real critical states is dependent only
on the condition that the discriminant in Eq. (6) be positive.

In practical stability problems Lj and L2 would represent load parameters which are
generally treated as the unknowns and which are functions of the imperfection parameters
ex and e2. There will be real solutions for Lj and L2 if the system is capable of buckling.
Thus the ideal computation technique is to determine and L2 given et ande2. This
method, however, leads to excess complexity and therefore the following procedure was
adopted in this study. Numerical values are provided fore1; Lt andL2 and the correspond-
ing value of e2 was to be evaluated. Thus, eu L, and L2 were substituted into Eq. (5) which
then yielded either one or three real roots for x. The real root(s) for x were then substituted
into Eq. (6) in order to determine the appropriate value of e2. Of course only real values of
e2 are acceptable and it can be seen that there may be one or three real values of e2
corresponding to each set of£l5 Lu L2.

It is clear that a graphical presentation of the critical surfaces is difficult and they are
four-dimensional. Thus the figures are presented as projections of the general surfaces onto
a two-dimensional plane. This is usually accomplished by introducing the relation L2 =
hcLi where k is a constant which is assigned a series of values. The critical surfaces are then
evaluated on the L2 versus e2 plane for different values of £x and a series of figures are
presented for each value of k.
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A particularly interesting aspect of this class of problem is the existence of more than
one critical surface for a given combination of el5 e2. All of the critical surfaces so obtained
are of interest; however, they are not all of physical relevance, as it is only the first critical
load encountered on a particular load-deflection path which specifies the buckling load.
Furthermore, it may not be the least critical load on a given load deflection path which is
predominant and it is often difficult to assess which is the predominant critical load. It
should also be pointed out that the critical sets do not allow this interpretation and it is
only the combination of the equilibrium equations of the stability criterion that contains
the complete information. In this paper, the locus of critical loads which are encountered
first as the applied load is increased from zero will be termed the primary critical surface,
whereas all other critical surfaces will be termed secondary surfaces.

Typical results of the numerical work are presented in Figs. 1-8, where Figs. 1-4 and
Figs. 5-8 are devoted to the type-one and type-two parabolic umbilics respectively. Figs. 1
and 5 are of particular interest as they are representative of the calculations which must be
considered in order to distinguish between primary and secondary critical surfaces. In
addition, Figs. 2-4 and 6-8 demonstrate the influence of the independence of the " load "
parameters Lx and L2. All of the figures are plotted with the ordinate being expressed as
I = 1 — Lj, which is the usual way of presenting load-imperfection curves in a stability
analysis. These figures demonstrate quite dramatically the influence of the independence of
the " load " parameters, even in the region of = L2 = 0. The influence of the quartic term
in the potential energy has been demonstrated in Fig. 9 where sample critical load-initial
imperfection results are calculated for the case of a positive, zero and negative quartic term
respectively. It may be appreciated that in certain cases the quartic term may be quite
significant.

Example: buckling of a shallow segment of a spherical shell. The results obtained for
the parabolic umbilic catastrophe are completely general within the context of the asymp-
totic nature of the analysis. It is therefore of interest to investigate the implications of the
terms which are peculiar to catastrophe theory on a real problem.

The problem under consideration is that of the two-mode buckling of a shallow spheri-
cal shell under the influence of external pressure. It represents the extension of a portion of
an analysis by Hutchinson [7] in 1967. Within the context of the assumptions presented in
that paper, the two-mode buckling case reduces to the analysis of the potential energy
expression

- £ V3C - v'K.it " T {,{, " IT fi (i f (?)
iZ /cl Z Xci J

where A is the load parameter corresponding to the magnitude of the external pressure, Acl is
the classical critical load, v is Poisson's ratio, ^ and £2 are the amplitudes of the critical
modes while and £2 are the amplitudes of imperfections with mode shapes identical to
those of and £2 respectively. It should be noted that the above Eq. (7) is expressible as

V = (A- Acl)(x2 + y2) + xy2 - exx - e2 y (8)

which is of precisely the form which leads to the parabolic umbilic catastrophe. It should be



THE PARABOLIC UMBILIC CATASTROPHE 205

- ' ' .' ' .x/' .' » '

.£5e

o
u.

S *
•C -1
Jo ™~ +
3 r»>

S"4f
£ ii
0 _

ky£■ ii= ^
s II
1
o -

It
Uc «N
o3 kJa-

a
£



206 DAVID HUI AND JORN S. HANSEN

. * \ "•

• dA



THE PARABOLIC UMBILIC CATASTROPHE 207

(V) to

   /i !*-'t'.V,q5- - -X
_L ~ ~ "V — - *' €\ =2'P] -'

*v.

S
3

vO

o
u.

a
£ **

la+
f *
g 1

k -
o O

1'
o

X)
cd

\ ^r-—-j <2
x. in

| .1 ~ £CD



208 DAVID HUI AND JORN S. HANSEN

o
X)
aJ
Uh
cd

CU

O
£

0
£

1
X)
£
3

O
Xas



THE PARABOLIC UMBILIC CATASTROPHE 209

l-L,

V = ix4t-xy2» 1~lx2+L2y2- g,x-%y

(♦) POSITIVE QUARTIC TERM
(0) OUARTIC TERM NEGLECTEE
(-) NEGATIVE QUARTIC TERM

Fig. 9. Effect of the quartic term of the potential energy on the imperfection-sensitivity of the parabolic umbilic
model, L2 = L,.

cautioned that there may be some debate as to whether this is in fact enough justification to
assume that this problem is representable as a parabolic umbilic [3]. This is particularly
true since there exists the possibility of coupling with other buckling modes. However, it is
the opinion of the present authors that if this two-mode problem is going to be investigated
then the least that must be done is to analyze it as if it were equivalent to the parabolic
umbilic.

A comparison of the present potential energy expression, Eq. (8), with the form of the
parabolic umbilic expression, Eq. (1), reveals that Eq. (8) must be supplemented by the
addition of quartic terms and another independent load parameter. The first of these is
accomplished by extending the analysis [7] to include fourth-order terms while the second
is accomplished by assuming that the shell is acted upon by a constant and a spatially
variable applied pressure.

For the analysis, the applied load parameter A is taken in the form

, , . , q0x y/3q0yX = /„ + /„ cos — cos -— (9)
K K

where ql = 2CR/t. In the above expression, the first term represents applied uniform press-
ure and is independent of the coordinates, while Xn is the amplitude of the non-uniform
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applied sinusoidal pressure. Thus, the problem considered results from the influence of
perturbations in the uniform and non-uniform pressure about the critical uniform pressure
state (2.u = 2.Ucl and k„ = 0). With these modifications, the approximation to the potential
energy becomes (as shown in the appendix)

Et_ (tq0v
4 1 R

PE
I crc]

1 -T8- (£i)2 + - (i - A.j + ±ii
2 v KJ 32 ;.UclJ

(«2)
2

+f6(,0)
It can readily be shown that this problem transforms to a type-one parabolic umbilic

V= x4 + xy2 + L1x2 + L2 y2 — E{X — e2y (11)

and is therefore properly unfolded. When Eqs. (10) and (11) are compared, it may be noted
that L2 may be expressed as L2 = + L'2. Thus, in Figs. 10, the influence of the L'2

TYPE ONE
- TYPE TWO

Fig. 10a. Influence of two independent applied loads on the imperfection sensitivity of the parabolic umbilic
type-one and type-two models, L2 = 0.5L, + L'2, e{ = 0.



THE PARABOLIC UMBILIC CATASTROPHE 211

.o

e +
~ o
§ II« J*■a -J
cd —o v— T3

.2 £
a os-*
s |
<U >1

"S.s8-2•Si
.£ 3
o £
? o~ X)

u_ cd° S3
8 o-
C 0)
<u -C
3 ~

en <~c o~ >*

I!
o'l
u. g

8.^1
E +
J* -Jwo
C o
° II
</3■so _r

1 t>a £
« o
g k
8La
£ £3
w 0

o •§

3 Jcn ~c
~ o
x> >>o •-

a
£



212 DAVID HUI AND JORN S. HANSEN

factor (or nonuniform pressure component) has been considered. In addition, both the
type-one and type-two cases have been plotted as these represent the extremes which may
be encountered in a critical load-initial imperfection plot. In Fig. 10a the type-one results
are shown as dotted lines while the type-two results are given as a solid line. Although there
are some differences, it is evident that the inclusion of the quartic term does not play a vital
role. On the other hand, when the same cases are plotted for£2 = 0 (Figs. 10b and 10c), it
may be appreciated that the results are significantly different. This is because^ = 0 implies
that the cubic term xy2 has no influence and thus the quartic term x4 predominates.
Furthermore, from the equilibrium paths given in Figs. 1 and 5, it is clear that the type-two
situation (Fig. 10c) is far more imperfection-sensitive than the type-one model (Fig. 10b).
Also, since the effect ofL'2 is to raise or lower the linear stability boundaries in Figs. 1 and 5,
the type-two model is relatively unaffected by changes in L'2 ■ In order to illustrate other
situations, the case L2 = Ll + L'2 has been investigated in Figs. 11, These results de-
monstrate the same trends as in the previous case. Thus, it may be concluded that for
certain situations the retention of the quartic term is essential.

I- L,

TYPE ONE
■ TYPE TWO

Fig. 11a. Influence of two independent applied loads on the imperfection sensitivity of the parabolic umbilic
type-one and type-two models, L2 = -I- L'2, =0.
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Finally, it should be noted that although the spherical shell buckling problem clearly
displays the effects of the independence of the two applied loads, the effect of the quartic
term is not particularly decisive because the coefficient of this term turns out to be positive,
and thus the resulting potential energy expression is classified as parabolic umbilic type
one. Nevertheless, the work involved in computing this term is not wasted, since there is no
a priori way to predict whether it is positive or negative. Further, even though the quartic
term found is positive, a close examination of its equilibrium paths (Fig. 1) shows that the
buckling load for positive values of geometric imperfection e, is always above 1.5, which is
quite different from the prediction of 1.0 if the quartic term is omitted. The complementary
(secondary) paths for the spherical shell problem, as shown in dotted lines in Fig. 1, would
have been also totally different if the quartic term were omitted. Further applications of this
model can be found in [10].

Summary. The parabolic umbilic catastrophe has been solved in its most general form
and the critical surfaces have been determined. In addition, those critical surfaces which are
encountered first as the load is increased from zero have been isolated and designated as the
primary critical surfaces. The results have been demonstrated in the two-mode buckling
problem of a pressured spherical shell. It has been demonstrated that the addition of terms
which are dictated by catastrophe theory is indeed highly important and can alter the
critical surfaces significantly.
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Appendix: expanded potential energy of a complete spherical shell under a uniform and a
non-uniform applied pressure. The membrane strain-displacement relations are nonlinear
of the form

= UiX + W/R + jW2x,

ey=Vy+ W/R + $W2y,

exy = HUj+VJ + ±WxW„ (A.l)
while the bending strain-displacement relations are taken in the linear form as

«x = Wxx, Ky = Wyy, Kxy = Wxy. (A.2)
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Furthermore, the stress-strain relationship is assumed so that,

Et
Nx = (ex + v<g, Mx = D(kx + vKy),

Et
Ny = ! _ (ey + vej, My = D(Ky + vkx), (A.3, A.4)

Et
NXy ~~ j y &xy' — D( 1 V)/CX)I,

where E is Young's modulus and t is the thickness of the spherical shell, Nx, Ny and Nxy are
the membrane stress resultants, Mx, My and Mxy are the bending stress resultants and D is
the flexural rigidity which equals Et3/(4C2) with C = (3(1 — v2))1/2.

The potential energy is therefore expressible as

PE=Um + U„-n (A.5)

where Um is the membrane strain energy, Ub is the bending strain energy and f2 is the work
term. These quantities are defined by

Um = -2

Q =

Nxex + Nyey + (Nxy){2exy) dx dy, (A.6)

Mx Kx + My Ky + (Mxy)(2Kxy) dx dy, (A.7)

pW dx dy, (A.8)

where negative values of p indicate external pressure and negative values of W denote an
inward displacement.

It is assumed that the pre-buckling state is linear so that there is a uniform contraction
of the spherical shell with no in-plane displacements. The total displacement can therefore
be expressed as

U = u, V = v, W = c0R + w, (A.9)

where u, v and w are incremental quantities which represent the change in displacements
from the pre-buckling state to the equilibrium state under consideration. Also, c0 is pro-
portional to the applied pressure and is independent of the coordinates.

At this stage, the potential energy can be grouped according to the degree of the
incremental displacements u, v and w into the form

PE = P\[u] + (P°[u] + P'2[u]) + (PjM + F3[u]) + P°M + • • • (A. 10)

where P,[u] contain terms which are of the ith degree in the displacements. The superscript
" 0 " denotes that the functional is independent of the applied load while a prime denotes
that the functional is a linear function of the applied load.
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Substituting the total displacement into the potential energy expression and grouping
the result according to the powers of u, v and w yields

P',[«] =
Et 2(1 + v)

1 - v2 C° R ~P
w dx dy, (A. 11)

+ P'2 [»] = 2(\E1v2
w \2 ( w 2+ Rj + V,y+ R

+ (2v)l ux + — Yvy + ) + (1 — v)(uy + viX)2

t2
+ Jj l"> xx + Ky + 2vW.xxW,yy + 2(1 - v)»Vx),]

+ c0(l + vXw^ + w2) dx dy, (A. 12)

n Et
"* ~ j w){w^2 + \-y+i

+{v->+Rr->)+v{u-*+R)K)2

+ (1 - v)(u„ + uj(wxvvy) dx dy, (A. 13)

Et 1
P°4 M =

2(1 - V2) 4 .
(w x + w „) dx dy. (A. 14)

By stipulating that the pre-buckling state is an equilibrium state, that is, setting
SP\{_u] to zero, one obtains

_ pO-vjR
0 2EI

Furthermore, the differential equations for classical buckling are obtained by setting the
first variation of P°[u] + PiM to zero, so that

<5(P°[u] + P'2[u])

Et
2(1 - v2

+ (-2)

(-2) + ™,xy + W,x) + (Su)

+ (2)

1 + v \ (I - V
V.yy + VUxy + —— W J + ( —^+ ».„)

1 + vV 2w\ t2 4

(<5t>)

R jy.x ,y ■ R J 12

C0(l + v)(w ^ + wj (<5w) > dx dy = 0.
(A-16)
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Note that by assuming that the buckling wavelength is small compared with the radius of
the shell, all the forced and natural boundary conditions are replaced by periodicity re-
quirements. The solution is of the form

Uc = 1 sin cos (^j,

= X Bk xky cos (~y) sin (^r)' ^A'17^

Wc = I Ckxky cos (^j cos (^j,

where the summation is taken over all possible wave numbers kx and ky. Thus, the three
equations for classical buckling can be expressed as

k2x + ]—^k1y ~2~~ kxky Ml+v)

1 + v \, , ,, / 1 - v
2 My k2x[—^—] + k2y (1 + V)fey

t2
(1 +v)kx (1 + v)ky 2(1 + v) + K2

+ c0(l + v)K

(A.18)

where K is defined to be kx + k2. Also, since no confusion can arise, the subscripts on A, B
and C have been dropped. By setting the determinant of the above homogeneous system to
zero, the eigenvalue is found to be

_ A = I , *
1 - v P 2Et K qt^7-^ = -pwtz = i; + -4- (A,19)

Minimizing the eigenvalue X with respect to K yields the condition for minimum eigenvalue

K = q20 (A.20)

which implies that

Acl = 2/ql (A.21)

Setting the quantity C to be the thickness of the shell, the quantities A and B are found to be

— (I + v)kxt —(1 + v)k t
K K (A.22)

It was shown in Hutchinson's paper [7] that the two-mode case occurs for the following
two sets of wave numbers:

kx= 1 ky = 0 Set 1, kx = \ K = ^r Set 2 (A-23)
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The first set of wave numbers implies

vi1)

wi1'

= « i

-(1 + v) . q0x
sin

Qo R
0

cos —

(A.24)

while the remaining set imDlies

„<2)

vl2)

wi2>

= ^2

-(1 + v) <?0x—r  cos —— cos J!———
2q0 2 R 2 R

-y/3(l + v) q0x . J3q0y  cos —— sin —2q0 2 R. 2R

q0x yjlq0y
cos —— cos ——2 R 2R

(A.25)

For the analysis of the post-buckling behavior of the system it is necessary to include
higher order terms in the potential energy. The cubic term of a two-mode system is found to
be

W + «42)] = PMl)] + PiJPK *42)] + Pi iH1], "j2)] + PM2)] (A.26)

where P,j[«, t>] means that the functional is of the ith power in u and y'th power in v.
Substituting the first and second modes into the above and carrying out the integration,
one obtains, after some manipulation,

PM", i42>] = till So (A.27)

where S0 is the area of a section of the shell and Pjfu'11] = P2[u<1), m<2)] = P3[t42)] = 0.
Since the non-vanishing cubic term is of the form xy2 it is necessary to compute the

quartic term. The desired coefficient of this term is

(A.28)

where the differential equation for (p is given by <5P2[</>] = — ̂ ^3[««*]• Thus the appropri-
ate equations are

<P"XX + ^ C W) = +Z1t2( %Y sin 2<?0 X
R R (dp)

(4>uxxim = 0,

Sr)(^+ r r)+12+ li(1 ~v2)C*
(1 + v) /qo\2[ 11 2q0x= - COS

R \RJ \2 2 R

(Scf>w)

t2(d(f)w). (A.29)
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Since the buckling mode uj.1' is axisymmetric, — (^[h'1'] will also be axisymmetric. Thus,
in the above, only terms independent of the y coordinate are retained. Furthermore, we
have replaced X by Xcl as a first approximation. Again, all boundary conditions are replaced
by the periodicity requirements. Thus, the solution of these differential equations is found to
be

0 =

(jpu

V
r

= «?
t q0 ■ 2q0x
—— sin 
8 R R

+ y0

1 q2ot2
8 R

(A.30)

Since the modification term ( — 1)P2[0] is identical to^P2l\_u'c1), 0] [4], and the cubic term
(upon neglecting all terms which involve derivatives with respect to y coordinates) is
independent of cj>v, the constant should be set to zero. By inspection, the constant y0 has
no influence on the modification term.

Thus, the modification term is found to be

( - 1 )P2W = ^2i[«i1), </>] = (j£)<2 + v)£?S0 (A.31)

and the desired quartic term is

= P4[u<1)] - P2[</>] = ^ ^ (1 - vKtSo (A.32)

For the case of a uniform and a non-uniform applied pressure, the eigenvalue parameter X
(which is a small positive nondimensional quantity) can be expressed as

X = Xu + Xn cos ^ cos n//3J0> (A.33)
K K

so that in a two-mode system,

Et
P'2[w] = Xu + Xn cos cos )(i _ v2)

2(1 - v2)

• Oc.'J + w(c2l)2 + «2>!)2] dx dy. (A.34)

The Taylor's expanded potential energy at the point Xu = A„cl and Xn = X„cl is

PE = (Xu - XJ jr (P2[«]) + (Xn - XJ jr (P2[«])

+ PMl\ "[2,1 + (^[w'1'] - PiW) + CiM (A.35)

where, from the classical buckling analysis, XUc] = 2/q0, X„cl = 0. Furthermore, it is found
that

d ,D r.n, „ , J~Et3\ q20Vu - Aj IT C2M) = (K - AUc" dXuy 2L Jl Vu u<"\ R2 )\2. _

(K - 0 )jr (P2 M) = W S0 ). (A.37)

S0, (A.36)
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From the above, the imperfection terms are easily found to be

w -Mill +^2«2) + w(^ <^2 So-

Thus the expanded potential energy is found to be

PE
I..

+
2 V kj 32 VAUcl,(£2)2

9 C
+ Zl%2 + 1(1 ~ v)£l

-(t)(2^, + (-t + ^t),{^,}S- ,A38)
Minimizing the above expanded potential energy expression with respect to the amplitudes
of the buckling modes and £2 yields the equilibrium equations of the two-mode system

1 - ^)(2Zi) + (^W + Kl - v)tf = 2 jS- Ti
4UC1

+ (A'39)

V16

1_A + 1A
A J Vl6 AUc

This is the appropriate set of equations which has been analyzed in general terms in the
paper.


