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In the last few years there has been a growing interest in the field of Estimation of 
Distribution Algorithms (EDAs), where crossover and mutation genetic operators 
are replaced by probability estimation and sampling techniques. The Bayesian 
Optimization Algorithm incorporates methods for learning Bayesian networks and 
uses these to model the promising solutions and generate new ones. The aim of 
this paper is to propose the parallel version of this algorithm, where the 
optimization time decreases linearly with the number of processors. During the 
parallel construction of network, the explicit topological ordering of variables is 
used to keep the model acyclic. The performance of the optimization process 
seems to be not affected by this constraint and our version of algorithm was 
successfully tested for the discrete combinatorial problem represented by graph 
partitioning as well as for deceptive functions. 

Introduction 

The proposed algorithm belongs to an EDA class of algorithm (Estimation of 
Distribution Algorithm) [1], based on probability theory and statistics. They use 
statistical information contained in the set of selected parents to detect gene 
dependencies. The estimated probability model is used to generate new promising 
solutions according to this distribution. The process can be described as follows: 
 
Generate initial population of size M (randomly); 
Repeat 
   Select parent population of N individuals according to a selection method (N ≤ M); 
   Estimate the distribution of the selected parents; 
   Generate new offspring  of size N’ according to the estimated model; 
   Replace some individuals in current population by generated offspring; 
Until termination criteria is met 



Sequential BOA 

BOA (Bayesian Optimization Algorithm) [2] uses Bayesian network (BN) to 
encode the structure of a problem. In the chromosome of length n each gene is 
treated as a variable and represented by one node in the dependency graph. For 
each  variable Xi it is defined a set of variables 

iXΠ  it depends on, so the 

distribution of individuals is encoded as 
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Generally, the existence of oriented edge from Xj to Xi in the network implies the 
belonging of the variable Xj to the set 

iXΠ . To reduce the space of networks, 

number of incomming edges into each node is  limited to k. 
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Fig.1 Example of Bayesian network for joint probability distribution of 4 variables 

The Bayessian Dirichlet metric (BD) [3] is used to measure the quality of the 
network. A special case of  BD metric, so-called K2 metric, is used when no prior 
information about the problem is available. 

 Many algorithms can be used to build up the network. The optimal search is NP-
hard, so in the sequential implementation [4] a simple greedy algorithm was used 
with only one edge addition in each step. The algorithm starts with an empty 
network B and for each edge that can be added it computes the K2 metrics of the 
network B’ that can be constructed from B by adding this edge. The edge giving 
the highest improvement is then added to the network B. This process is repeated 
until no more addition is possible. By the term ‘edge can be added’ we mean the 
test whether the edge keeps the network acyclic, meets the limit of incoming edges 
and does not belong to the network yet. 

After network construction new individuals are generated. First, the variables 
(genes) are ordered in the topological order and each iteration, the nodes whose 
parents are already determined are generated using the conditional probabilities. 
This is repeated until all the variables are generated. Since the sequence of 
generation should be defined, the dependencies between variables must be acyclic. 



Parallel approach 

As shown in [2], the overall time to construct the Bayesian network using the 
greedy search driven by BD metric is O(k2kn2N+kn3), where n is the length of a 
chromosome, k is the limit of incoming edges into each node and N is the size of 
parent population. The time complexity for generating N’ new individuals 
(offspring) is only O(knN’), where N’ is proportional to the number of parents N.  
The time complexity for offspring evaluation depends on the complexity of fitness 
computation itself and in the case of additively-decomposable functions is 
O(nN’).  
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Fig.2 The BOA time complexity profile         Fig.3 BN construction time for m processors 

Fig.2 shows the empirical confirmation of the time-complexity terms stated above: 
nearly all the execution time of sequential BOA is spent to find the structure of 
Bayesian network. The remaining time includes fitness computation, parent 
selection and offspring generation. In comparison to the construction of Bayesian 
network all of those remaining  tasks are easy to be done in parallel, but they take 
only less than 5% of the overall time. Fig.3 shows the time of Bayesian network 
construction using one processor of Sun Enterprise 450 server; for the case of 
m=2,4,8 the time was estimated with no communication overhead considered. 
Both experiments were done for f3deceptive function [2]. 

Proposed solution 

The goal is to utilize more processors when searching for a good network. Our 
consolation is that the BD metric is separable and can be written as a product of n 
factors, where i-th factor expresses the influence of edges ending in the variable 
Xi. It is possible to use up to n processors, each processor corresponds to one 
variable and it examines only edges leading to this variable (it has its own local 
copy of parent population).  



The addition of edges is parallel, so we need an additional mechanism to keep the 
network acyclic. The most simple way how to do it is to predetermine the 
topological ordering of nodes in advance. At the beginning of each generation, the 
random permutation of numbers {0,1,…,n-1} is created and stored in the perm 
array. Each processor generates the same permutation (the initial seed of  
permutation generator is distributed via set of processors in the initial phase). The 
direction of all edges in the network should be consistent with the ordering, so the 
addition of an edge from Xj to Xi is allowed if perm[j] < perm[i]. Evidently, the 
variable Xi with perm[i]=0 has no predecessor and is forced to be independent, 
thus the space of possible networks is reduced. To compensate this phenomenon 
we use new permutation for each generation.  

The algorithm can be written as follows: 
 
Start with an empty network B; 
Generate the permutation array perm; 
for i := 0 to (n - 1) do in parallel 
begin 
   while any edge ending in the variable Xi can be added do 
   begin  
       for each possible start of new edge (variable Xj  having perm[j]<perm[i])  do 
       begin 
           Compute the local increase of K2 metrics after adding edge (Xj,Xi);  
       end 
       Add the edge (Xj,Xi) giving the highest improvement to the network B; 
   end  
end 
 

 
Fig. 4  Example with  n=3 and perm=(1,2,0). The dashed edges are not allowed, so the 
three processors do not have to communicate to keep the network acyclic. 

Moreover, the explicit ordering of nodes enables the generation of new individuals 
in a linear pipeline way. If we use n processors, then the i-th processor receives 
from (i-1)-th processor the chromozome with i positions fixed and generates the 
value of variable Xk, where perm[k] = i. 



Time complexity for parallel BOA (PBOA) 

When using only m processors (m ≤ n), the time complexity of the greedy search 
for a network structure is O( n/m (k2knN+kn2) ) and the time for generating N’ 
new individuals in a pipeline is O( n/m (kn+kN’) ). This algorithm requires no 
cooperation between processors, so the time estimation shown in Fig.3 is valid. 
When we use m=n processors, the time complexity is decreased roughly from 
O(n3) to O(n2). 

Experimental results 
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Fig.5 Proportion of correct BBs        Fig.6  Number of generations until convergence 

In Fig.5 and Fig.6 the experimental results for f3deceptive function [2] are shown. 
The population size needed to get the same quality of solution as well as the 
number of generations until successful convergence is similar for both BOA and 
PBOA. The same conclusion we obtained for f5deceptive function [2]. 

 

Table 1. The results of grid graphs bisection [5] 

Graph name Grid 100.2 with bottleneck Grid 100.10 
BOA: Min. population size for 90% success 2500 2400 
PBOA: Min. population size for 90% success 2600 2500 
BOA: Avg. # of generations until convergence  47,9 57,9 
PBOA: Avg. # of generations until convergence 51,2 66,3 
BOA: Average # of fitness evaluations  119750 138960 
PBOA: Average # of fitness evaluations 133120 165750 

The values in the Table 1 indicate that for real problems like graph bisectioning 
the PBOA needs slightly higher population size and number of generations, but 
this is not critical because PBOA reduces the additional time by the parallel 
processing too. 



Conclusion and future work 

This paper is focused on the parallelization of the original (sequential) Bayesian 
Optimization Algorithm [4] – namely on the parallel construction of Bayesian 
network. The proposed approach with predetermined topological ordering of BN 
nodes keeps the network inherently acyclic, so the time complexity of parallel BN 
construction is linearly reduced by the number of processors. The performance of 
the algorithm was tested for the discrete combinatorial problem represented by 
graph bisectioning [5] as well as for deceptive functions [2] and our results show 
that the capability of finding global optima is really not affected by the used 
simplification of network construction. 

We have also described how to generate new individuals using the linear pipeline 
architecture with n processors - each processor is responsible for generation of one 
variable.  We are currently working on a coarse-grained version of PBOA, where 
the cluster of workstations and message passing techniques are used. Each process 
receives from other processes the remaining parts of Bayesian network and is 
responsible for generation, evaluation and distribution of its portion of population. 
This helps us to overlap the communication latency between workstations.  
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