
The Parallel Bayesian Optimization Algorithm

Jiří Očenášek, Josef Schwarz
Brno University of Technology

Faculty of Electrical Engineering and Computer Science

Department of Computer Science and Engineering

CZ - 61266 Brno, Božetěchova 2

e-mail: ocenasek@dcse.fee.vutbr.cz, schwarz@dcse.fee.vutbr.cz

In the last few years there has been a growing interest in the field of Estimation of
Distribution Algorithms (EDAs), where crossover and mutation genetic operators
are replaced by probability estimation and sampling techniques. The Bayesian
Optimization Algorithm incorporates methods for learning Bayesian networks and
uses these to model the promising solutions and generate new ones. The aim of
this paper is to propose the parallel version of this algorithm, where the
optimization time decreases linearly with the number of processors. During the
parallel construction of network, the explicit topological ordering of variables is
used to keep the model acyclic. The performance of the optimization process
seems to be not affected by this constraint and our version of algorithm was
successfully tested for the discrete combinatorial problem represented by graph
partitioning as well as for deceptive functions.

Introduction

The proposed algorithm belongs to an EDA class of algorithm (Estimation of
Distribution Algorithm) [1], based on probability theory and statistics. They use
statistical information contained in the set of selected parents to detect gene
dependencies. The estimated probability model is used to generate new promising
solutions according to this distribution. The process can be described as follows:

Generate initial population of size M (randomly);
Repeat
 Select parent population of N individuals according to a selection method (N ≤ M);
 Estimate the distribution of the selected parents;
 Generate new offspring of size N’ according to the estimated model;
 Replace some individuals in current population by generated offspring;
Until termination criteria is met

Sequential BOA

BOA (Bayesian Optimization Algorithm) [2] uses Bayesian network (BN) to
encode the structure of a problem. In the chromosome of length n each gene is
treated as a variable and represented by one node in the dependency graph. For
each variable Xi it is defined a set of variables

iXΠ it depends on, so the

distribution of individuals is encoded as

()∏
−

=
Π=

1

0
|)(

n

i
iXiXpXp (1)

Generally, the existence of oriented edge from Xj to Xi in the network implies the
belonging of the variable Xj to the set

iXΠ . To reduce the space of networks,

number of incomming edges into each node is limited to k.

)|(),|()|()()(10132313 XXpXXXpXXpXpXp ⋅⋅⋅=

Fig.1 Example of Bayesian network for joint probability distribution of 4 variables

The Bayessian Dirichlet metric (BD) [3] is used to measure the quality of the
network. A special case of BD metric, so-called K2 metric, is used when no prior
information about the problem is available.

 Many algorithms can be used to build up the network. The optimal search is NP-
hard, so in the sequential implementation [4] a simple greedy algorithm was used
with only one edge addition in each step. The algorithm starts with an empty
network B and for each edge that can be added it computes the K2 metrics of the
network B’ that can be constructed from B by adding this edge. The edge giving
the highest improvement is then added to the network B. This process is repeated
until no more addition is possible. By the term ‘edge can be added’ we mean the
test whether the edge keeps the network acyclic, meets the limit of incoming edges
and does not belong to the network yet.

After network construction new individuals are generated. First, the variables
(genes) are ordered in the topological order and each iteration, the nodes whose
parents are already determined are generated using the conditional probabilities.
This is repeated until all the variables are generated. Since the sequence of
generation should be defined, the dependencies between variables must be acyclic.

Parallel approach

As shown in [2], the overall time to construct the Bayesian network using the
greedy search driven by BD metric is O(k2kn2N+kn3), where n is the length of a
chromosome, k is the limit of incoming edges into each node and N is the size of
parent population. The time complexity for generating N’ new individuals
(offspring) is only O(knN’), where N’ is proportional to the number of parents N.
The time complexity for offspring evaluation depends on the complexity of fitness
computation itself and in the case of additively-decomposable functions is
O(nN’).

0

100

200

300

400

500

600

700

132 165 198
Problem size

Ex
ec

ut
io

n
tim

e
[s

]

Rest of time
BN construction time

0

2

4

6

8

10

12

14

0 50 100 150 200
Problem size

B
N

 c
on

st
ru

ct
io

n
tim

e
[s

] m=1
m=2
m=4
m=8

Fig.2 The BOA time complexity profile Fig.3 BN construction time for m processors

Fig.2 shows the empirical confirmation of the time-complexity terms stated above:
nearly all the execution time of sequential BOA is spent to find the structure of
Bayesian network. The remaining time includes fitness computation, parent
selection and offspring generation. In comparison to the construction of Bayesian
network all of those remaining tasks are easy to be done in parallel, but they take
only less than 5% of the overall time. Fig.3 shows the time of Bayesian network
construction using one processor of Sun Enterprise 450 server; for the case of
m=2,4,8 the time was estimated with no communication overhead considered.
Both experiments were done for f3deceptive function [2].

Proposed solution

The goal is to utilize more processors when searching for a good network. Our
consolation is that the BD metric is separable and can be written as a product of n
factors, where i-th factor expresses the influence of edges ending in the variable
Xi. It is possible to use up to n processors, each processor corresponds to one
variable and it examines only edges leading to this variable (it has its own local
copy of parent population).

The addition of edges is parallel, so we need an additional mechanism to keep the
network acyclic. The most simple way how to do it is to predetermine the
topological ordering of nodes in advance. At the beginning of each generation, the
random permutation of numbers {0,1,…,n-1} is created and stored in the perm
array. Each processor generates the same permutation (the initial seed of
permutation generator is distributed via set of processors in the initial phase). The
direction of all edges in the network should be consistent with the ordering, so the
addition of an edge from Xj to Xi is allowed if perm[j] < perm[i]. Evidently, the
variable Xi with perm[i]=0 has no predecessor and is forced to be independent,
thus the space of possible networks is reduced. To compensate this phenomenon
we use new permutation for each generation.

The algorithm can be written as follows:

Start with an empty network B;
Generate the permutation array perm;
for i := 0 to (n - 1) do in parallel
begin
 while any edge ending in the variable Xi can be added do
 begin
 for each possible start of new edge (variable Xj having perm[j]<perm[i]) do
 begin
 Compute the local increase of K2 metrics after adding edge (Xj,Xi);
 end
 Add the edge (Xj,Xi) giving the highest improvement to the network B;
 end
end

Fig. 4 Example with n=3 and perm=(1,2,0). The dashed edges are not allowed, so the
three processors do not have to communicate to keep the network acyclic.

Moreover, the explicit ordering of nodes enables the generation of new individuals
in a linear pipeline way. If we use n processors, then the i-th processor receives
from (i-1)-th processor the chromozome with i positions fixed and generates the
value of variable Xk, where perm[k] = i.

Time complexity for parallel BOA (PBOA)

When using only m processors (m ≤ n), the time complexity of the greedy search
for a network structure is O(n/m (k2knN+kn2)) and the time for generating N’
new individuals in a pipeline is O(n/m (kn+kN’)). This algorithm requires no
cooperation between processors, so the time estimation shown in Fig.3 is valid.
When we use m=n processors, the time complexity is decreased roughly from
O(n3) to O(n2).

Experimental results

20
30
40
50
60
70
80
90

100

250 750 1250 1750 2250
Population size

Pr
op

or
tio

n
of

 c
or

re
ct

 B
Bs

PBOA
BOA

15,0

20,0

25,0

30,0

35,0

40,0

45,0

33 66 99 132 165 198
Problem size

of

 g
en

er
at

io
ns

PBOA
BOA

Fig.5 Proportion of correct BBs Fig.6 Number of generations until convergence

In Fig.5 and Fig.6 the experimental results for f3deceptive function [2] are shown.
The population size needed to get the same quality of solution as well as the
number of generations until successful convergence is similar for both BOA and
PBOA. The same conclusion we obtained for f5deceptive function [2].

Table 1. The results of grid graphs bisection [5]

Graph name Grid 100.2 with bottleneck Grid 100.10
BOA: Min. population size for 90% success 2500 2400
PBOA: Min. population size for 90% success 2600 2500
BOA: Avg. # of generations until convergence 47,9 57,9
PBOA: Avg. # of generations until convergence 51,2 66,3
BOA: Average # of fitness evaluations 119750 138960
PBOA: Average # of fitness evaluations 133120 165750

The values in the Table 1 indicate that for real problems like graph bisectioning
the PBOA needs slightly higher population size and number of generations, but
this is not critical because PBOA reduces the additional time by the parallel
processing too.

Conclusion and future work

This paper is focused on the parallelization of the original (sequential) Bayesian
Optimization Algorithm [4] – namely on the parallel construction of Bayesian
network. The proposed approach with predetermined topological ordering of BN
nodes keeps the network inherently acyclic, so the time complexity of parallel BN
construction is linearly reduced by the number of processors. The performance of
the algorithm was tested for the discrete combinatorial problem represented by
graph bisectioning [5] as well as for deceptive functions [2] and our results show
that the capability of finding global optima is really not affected by the used
simplification of network construction.

We have also described how to generate new individuals using the linear pipeline
architecture with n processors - each processor is responsible for generation of one
variable. We are currently working on a coarse-grained version of PBOA, where
the cluster of workstations and message passing techniques are used. Each process
receives from other processes the remaining parts of Bayesian network and is
responsible for generation, evaluation and distribution of its portion of population.
This helps us to overlap the communication latency between workstations.

Acknowledgement

This research has been carried out under the financial support of the Research
intention No. CEZ: J22/98: 262200012 – “Research in information and control
systems” and it was also supported by the Grant Agency of Czech Republic grant
No. 102/98/0552 “Research and Application of Heterogeneous Models“.

References

[1] Muehlenbein, H., Rodriguez, A. O.: Schemata Distributions and Graphical Models in
Evolutionary Optimization. GMD Forschungs Zentrum Informationstechnik, 53754-St.
Augustin, 1998, pp.1-21.

[2] Pelikan, M., Goldberg, D. E., Cantú-Paz, E.: Linkage Problem, Distribution Estimation,
and Bayesian Networks. IlliGal Report No. 98013, November 1998, pp. 1-25.

[3] Heckerman, D., Geiger, D., Chickering, M.: Learning Bayesian networks: The
combination of knowledge and statistical data, Technical Report MSR-TR-94-09,
Redmond, Microsoft Research, 1994, pp. 1-53.

[4] Pelikan, M.: A Simple Implementation of Bayesian Optimization Algorithm in
C++(Version1.0). Illigal Report 99011, February 1999, pp. 1-16.

[5] Schwarz, J., Očenášek, J.: Experimental study: Hypergraph partitioning based on the
simple and advanced genetic algorithms BMDA and BOA, 5th International Mendel
Conference, 1999, FME VUT Brno, Czech Republic, pp. 124-130.

