
The Parallel C Preprocessor*

EUGENE D. BROOKS III, BRENT C. GORDA, AND KAREN H. WARREN

Massively Parallel Computing Initiative, Lawrence Livermore National Laboratory, Livermore, CA 94550

ABSTRACT

We describe a parallel extension of the C programming language designed for multi­

processors that provide a facility for sharing memory between processors. The pro­

gramming model was initially developed on conventional shared memory machines

with small processor counts such as the Sequent Balance and Alliant FX/8, but has more

recently been used on a scalable massively parallel machine, the BBN TC2000. The

programming model is split-ioin rather than fork-ioin. Concurrency is exploited to use a

fixed number of processors more efficiently rather than to exploit more processors as in

the fork-join model. Team splitting, a mechanism to split the team of processors execut­

ing a code into subteams to handle parallel subtasks, is used to provide an efficient

mechanism to exploit nested concurrency. We have found the split-join programming

model to have an inherent implementation advantage, compared to the fork-join model,

when the number of processors in a machine becomes large.© 1992 by John Wiley & Sons, Inc.

1 INTRODUCTION

Shared memory multiprocessors, wherein a small

number of processors access a common mono­

lithic system memory, have been around for a long

time. The frequently used parallel programming

model on these systems is the fork-join model,

where one processor starts out executing the serial

code and additional processors are acquired when

a parallel construct is encountered. Although the

fork-join model is serving well in the form of ven­

dor supplied implementations on machines with a

small number of processors such as the Cray YMP

and the Convex C-2 series, fundamental short­

comings in its implementation begin to surface

* Work performed under the auspices of the U.S. Depart­

ment of Energy by the Lawrence Livermore :'1/ational Labora­

tory under contract No. W-7405-ENG-48.

Received February 1992.

Revised April 1992.

© 1992 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 1, pp. 79-89 (1992)

CCC 1058-9244/92/010079-11$04.00

when the number of processors grows. These

shortcomings have become apparent through our

experiences with the vendor supplied fork-join ex­

tension of Fortran [1] supplied by BBN on their

TC2000 multiprocessor.

It is no longer possible to build a monolithic

shared memory system that can sustain the band­

width and latency demands of hundreds or thou­

sands of processors when the number of proces­

sors is scaled up. Large local memories are

introduced in order to provide an acceptable level

of memory performance in such systems. Use of

the shared memory facility in large parallel sys­

tems is best relegated to those times when com­

munication is absolutely required by the applica­

tion, as the bandwidth and latency of the shared

memory are likely to be an order of magnitude

short of the performance required to keep a pro­

cessor running at full speed. The problem with the

fork-join model is that the process of acquiring

and relinquishing processors requires highly con­

tended accesses for the shared memory, or some

specialized hardware mechanism to handle pro­

cessor dispatch. Although the fork-join program-

79

80 BROOKS, GORDA, AND WARREN

ming style is comfortable, the high overhead of its

implementation quickly becomes burdensome.

An alternative to the fork-join model is the

split-join programming model. In the split-join

paradigm, all the processors that the code will ever

have will enter the main program in a live manner

at the start of the job. Processors are not fetched

from and returned to a pool. This involves ac­

cesses to shared memory to implement. PCP [2] is

an implementation of the split-join programming

model that provides a good fit to massively parallel

machines offering a shared memory facility in ad­

dition to the local memory that such machines

usually have. Its constructs, though simple, pro­

vide powerful and efficient flow control in the form

of parallel loops and team splitting. The program­

ming model is a relatively straightforward exten­

sion of the conventional C programming model.

An arbitrary number of processors executes the

code stream as a single processor executes a serial

program.

Nested concurrency is exploited through the

structured mechanism of team splitting, in which

the team of processors divides up into sub teams in

order to address independent but parallel tasks at

a lower level. These subteams are relatively inde­

pendent of one another, and are free to execute

different code modules, until they rejoin the par­

ent team in a block structured manner.

The PCP programming language places the is­

sues of scheduling, communication, and synchro­

nization directly into the hands of the program­

mer. It does this in a simple manner by providing

useful constructs to handle these complexities.

PCP allows the user to specify which portions of

the program are to be executed in parallel, which

are to be executed by subteams, and which are to

be executed by one processor only. PCP allows

any number of processors to be allocated to a job,

the number of processors being a run time param­

eter that is set by the end user of the code when

the program is actually executed. Through the use

of a compile time flag, the PCP preprocessor can

also produce serial code that does not contain the

run time synchronization overhead required for

parallel execution. This feature is often used to

provide both a sanity check and a point of perfor­

mance comparison for parallel executions.

The split-join parallel programming paradigm

is independent of the target language. Examining

the basic programming model, it is quickly con­

cluded that any procedural programming lan­

guage could be extended with a split-join pro­

gramming model. This is indeed the case and on

the BBN TC2000 we have developed a Fortran

implementation, the Parallel Fortran Preproces­

sor (PFP). We discuss only the C syntax for the

split-join programming model for the sake of brev­

ity (see Warren et al. [3] if you are interested in the

Fortran syntax).

PCP was originally written to solve the problem

of the portability of C language based parallel pro­

grams among several different shared memory

multiprocessors. The PCP preprocessor is ma­

chine independent; the amount of machine de­

pendent run time support is small (200 lines of C

on the BBN TC2000) and can be easily imple­

mented with fast inline code. PCP has been used

successfully on the Alliant, Sequent, Cray, SCI,

and Stellar machines.

The sections of this paper are as follows. The

split-join model and its memory model are de­

scribed in Sections 2 and 3. Details on how the

implementation of these models take advantage of

the architecture are included. The PCP team state

is discussed in Section 4. The synchronization

primitives offered in PCP are discussed in Section

5. The actual PCP syntax is shown in Section 6. In

Section 7 we discuss the issues of implementing

and using PCP on a scalable machine such as the

BBN TC2000. A general discussion follows in

Section 8.

2 THE SPLIT -JOIN MODEL

In the traditional fork-join parallel programming

model, a single processor starts the execution of

the program and acquires more processors as

concurrency is encountered in the code. The fork­

join programming model has been quite useful on

tightly coupled shared memory machines with rel­

atively few processors. Some architectures such as

the Alliant FX/ 8 and the Convex C2 provide spe­

cial hardware to make the dispatch of slave pro­

cessors happen as quickly as possible. Scalable

machine architectures are not as tightly coupled

and the cost of communication between proces­

sors, heavily used in process of dispatching pro­

cessors in the fork-join model, is relatively high.

The BBN TC2000, described in more detail in

Section 7, is a realistic example of what might be

expected in this regard. The latency of a cache hit

on local memory is 3 clocks (pipelined at a rate of

one per clock) whereas the latency of a remote

memory reference is roughly 40 clocks (not pipe­

lined). If one must deal with a 40 clock latency for

every memory reference required in the code used

to dispatch processors, even an efficient spanning

tree implementation can have substantial over­

head.

In the split-join paradigm we deal with the high

cost of processor dispatch and communication

between processors by minimizing their occur­

rence in the fundamental constructs of the pro­

gramming model. All of the processors the job will

ever acquire are dispatched at the start of the pro­

gram and are immediately placed under the con­

trol of the programmer. This group of processors,

which loosely follow each other through the code,

is referred to as a team of processors. In a serial

program a single processor enters the main()
routine and executes code until it either retums

from main() , calls exit() , or encounters an ex­

ception. In the PCP model we generalize this in a

natural way, having a team of processors enter

main() and having the job end when any team

member returns from main(), calls exit(), or en­

counters an exception. A team of processors con­

sists of a team master and zero or more other pro­

cessors, which travel through the code almost in

unison.

The split-join parallel programming model is

very similar to Harry Jordan's Force [4] and the

IBM SPMD [5] programming model, the most sig­

nificant difference being the support for team

splitting and the arbitrary nesting of concurrency

constructs. The PCP concept of team splitting al­

lows an arbitrary subdivision of the team of pro­

cessors executing the code and allows each sub­

team to execute arbitrarily different codes within

the constraint of block structure. This is a flexible

extension of the SPMD programming model that

supports the exploitation of nested concurrency

for both subroutines and nested loops.

The PCP concept of teams is dynamic and well

suited for massively parallel machines. The user

synchronizes the members of a team, designates

tasks for individual team members, and splits up

the team into smaller sized teams to execute logi­

cally distinct code sections. All parallel constructs

apply to teams. Working within any team the pro­

grammer has access to the parallel looping con­

structs, the barrier, locks, and even further team

splitting. In the team splitting process the total

number of processors remains constant. The pro­

cessors temporarily become members of new sub­

teams. As this happens, the processors save their

old state for restoration at the end of the split con­

struct. As processors within a team complete their

work, they then rejoin the parent team with no

implicit serialization.

PARALLEL C PREPROCESSOR 81

Team splitting is used to exploit nested concur­

rency with a fixed number of processors. In the

split construct the user explicitly marks off sepa­

rate blocks of work that can be executed indepen­

dently (each block of work may itself be a job con­

sisting of subtasks that can be executed in

parallel). The user may also indicate the relative

amount of work in each block of code. The PCP

split construct takes an optional weight parameter

that controls the fraction of processors to send

into each team. This form of load balance control

is effective if the workload can be accurately pre­

dicted at execution time, as is the case for the two

concurrent linear system solves below. The team

splitting weights, which occur in an iterative loop

during execution, might also be corrected by using

a real time clock to detect imbalance in a prior

iteration and adjusting the weights of the next iter­

ation appropriately. This second strategy would

be effective if the relative load of two split tasks

varied slowly with the iteration index.

Splitting the team into smaller subteams to ex­

ploit nested concurrency is counter intuitive. The

goal, however, in executing nested concurrency is

to use a fixed number of processors more effi­

ciently, not to use more processors. The split-join

programming model is in some sense the dual of

the fork-join model. One finds that one can usu­

ally accomplish the task at hand with either pro­

gramming model. The advantage of the split-join

model is its bottleneck free implementation

through a highly portable preprocessor. As will be

seen in Section 4, the process of team splitting is

accomplished in a few instructions, independent

of the size of the team, which only access local

memory.

Teams may be split both statically and dynami­

cally. Static team splitting is specified using the

keywords split and and. As an example, consider

the routines foo() and bar(), which perform an

equal amount of work and can be called concur­

rently. In the PCP model the concurrent execution

of the two routines is arranged through the syntax:

split

{

foo();
}

and
{

bar();
}

where the amount of work performed by foo()

82 BROOKS, GORDA, AND W AHREN

and bar() is assumed to take the same amount of

time. The team encountering the split divides into

two subteams of equal size. The first subteam

calls foo() while the second calls bar() concur­

rently, and the two subteams join again at the end

of the and block. The tasks performed in foo()

and bar() must be independent. If there is only

one processor in the team that encounters the

split, or if an implementation limit for team split­

ting has been reached, the encountering team

calls foo() and then bar() sequentially in an im­

plementation dependent order. For this reason,

one must view the execution of foo() and bar()

to be completely asynchronous. The algorithms

implemented by foo() and bar() should not be

designed in a way that requires simultaneous pro­

gress in both routines. This could be done, but the

code would not be portable to multiprocessors for

which the team size entering the split block is

unity.

In addition to the static splitting described

above wherein the amount of work performed in

each block of code is assumed to be the same,

weights may be assigned to the blocks of work. If

the user has provided accurate loading informa­

tion, via the weight parameters for team splitting

(see Section 6.5) that determine the subteam

sizes, the processors in the subteams finish their

work and rejoin to become the parent team nearly

simultaneously. The total number of processors is

conserved in the team splitting process. As an ex­

ample of team splitting with weights, consider the

case of two concurrent linear system solves that

are for potentially differing dimensions. (For a de­

scription of the Gauss elimination implementation

in this model see Warren et al. [6])

int dim1, dim2;

double **matrix1, **matrix2;

double *rhs1, *rhs2;

split dim1 *dim1 *dim1 {

dgauss(matrix1, rhs1, dim1);

}

and dim2*dim2*dim2 {

dgauss(matrix2, rhs2, dim2);

}

Here the routine dgauss() performs a linear

system solve leaving the result in the vector rhs

provided as an argument. The operations re­

quired scale like the cube of the dimension and

this is noted by the weight expressions included on

the split and and lines. The weight expressions

are used to compute the sizes of the two subteams,

dividing the parent team into two sub teams having

relative sizes that match the ratio of weights as

closely as possible. By specifying weights for the

concurrent blocks of work some measure of load

balancing can be achieved, subject to the alge­

braic restrictions caused by the fact that the num­

ber of processors is finite.

Split constructs are not limited to the static bi­

nary form shown above. Static splits may have

more parallel blocks specified by concatenating

and blocks.

Team splitting may also be treated dynami­

cally. The construct:

splitall(int i = 0; i < imax; i += 1)

{
<work dependent on the index, i>;

}

specifies that the body of the loop is to be exe­

cuted with the indices i = 0, 1, . . . , imax-1,

parceling out the indices to a collection of sub­

teams that are split off from the team that encoun­

ters the split. The actual number of subteams is

determined at run time, and is possibly influenced

by a compile time flag. There may not be a split at

all or the team may be split to individual proces­

sors, using the best heuristic algorithm that can be

conjured up. Extra parameters (see Section 6.6)

inside the splitall header can be used to establish

firmer control of the team splitting mechanism.

To give a trivial application of the splitallloop,

consider the parallel computation of a set of ma­

trix vector products.

double **result;

double ***matrices;

double **multplcnd;

int dim;

int number;

splitall(int i = 0; i < number; i += 1) {

mvprod(result[i], matrices [i],

multplcnd[i], dim);

}

If a team split would be profitable, the team

encountering the splitall block is divided into

subteams, each subteam handling a subset of the

indices i. The library routine mvprod() is de­

signed for team entry and contains parallel lan­

guage constructs designed to efficiently exploit the

parallelism of each matrix vector product. If the

team that enters the splitallloop has 100 proces­

sors and the number and dimension of the matrix-

vector products is 5 and 20, respectively, we see

that the use of team splitting will have a substan­

tial impact on program performance.

3 THE MEMORY MODEL

PCP allows the user to designate the memory class

for all data. In the split-join programming para­

digm itself, three types of memory are provided to

fully exploit the notion of team splitting. These

are:

1. Memory that is private to a processor, pri­

vate memory

2. Memory that is shared among all proces­

sors, shared memory

3. Memory that is shared among the mem­

bers of a given team or grouping of proces­

sors, but private to the team, teamprivate

memory

Private memory is implemented on the proces­

sor that requires access to it. Shared memory is

implemented in the interleaved shared memory

facility (see Section 7) of the BBN TC2000. There

are many situations where a user would like to

have static data that is not shared by all proces­

sors, but is shared by all of the processors within a

given team. This type of data is declared using the

storage class modifier teamprivate. Teamprivate

memory is allocated as an array in the interleaved

shared memory, indexed by a team descriptor that

is unique to a given team. More details on the

team descriptor are given in Section 4.

By default, all statically allocated data is shared

and thus accessible by all of the processors. Stack,

or auto, data is private to a processor and is

stored in a processor's local memory if it exists.

The choice of default for statically allocated data

is a holdover from the days of running PCP codes

on shared memory machines such as those manu­

factured by Sequent or Alliant, and is not that

appropriate for a scalable machine such as the

BBN TC2000. Fortunately, the default can be

switched to private through the use of a compile

time flag.

4 TEAM STATE

The PCP concept of teams is implemented using a

small amount of local memory. The team state,

which is carried by the processors, is made avail-

PARALLEL C PREPROCESSOR 83

able to the programmer who may use it to con­

struct parallel language extensions that are not di­

rectly supported. The current features of PCP

were not postulated before its first implementa­

tion. These features evolved over time as users

constructed some of their own using the team state

variables. Those features that were found to be

generally useful have been standardized and ele­

vated to constructs directly supported by the Par­

allel C Preprocessor itself. Further evolution of the

parallel programming model in this manner will

reduce the need to directly use the team state, but

the team state will always remain accessible to the

programmer both for backward compatibility and

to facilitate the creation of new language con­

structs that might eventually find their way into

PCP.

The team state consists of five values that are

carried along by the processors. Two of these val­

ues are implicitly read only (not to be touched by

user programs). They are:

1. _NPROCS, that is, the number of proces­

sors that execute the program. It is the size

of the team that enters main.

2. _IPROC, that is, the processor index. It has

a value unique to each executing processor

in the range from 0 to _NPROCS-1.

These two values are set by the run time system

before main () is entered and under no conditions

should they be changed. In implementations

where the target multiprocessor does not support

local memory directly, the processor index is used

to index an array to simulate local memory. To

support the concept of team splitting three more

variables were added to the set carried along by

the processors, and the name team state was

coined. Unlike the processor index and the num­

ber of processors, these values are read/ write and

are manipulated by the language constructs of

PCP:

1. _ TSIZE, that is, the team size. If no team

splitting has occurred, this will be equal to

_NPROCS.

2. _ TINDEX, that is, the index of the member

within the team. It must have a unique value

within the team in the range, 0 to - TSIZE-

1. The team master is the processor with a

team index of zero.

3. _TDESC, that is, the team descriptor, a

non-negative value unique to the team.

84 BROOKS, GORDA, AND WARREN

Teams are a dynamic association of physical

processors and because of this teams can be cre­

ated and destroyed as these associations change

during split-join operations. The team descriptor

is a small positive integer used to identify the team

and provide for teamprivate memory, which is pri­

vate to the team but shared among the team mem­

bers. Arrays in shared memory are indexed by this

value to simulate the notion of privacy. Without

the team descriptor distinct teams could not have

independent barrier operations.

PCP quickly calculates the new team descriptor

for team splits in local memory by shifting the cur­

rent team descriptor left n times where n is the log

(base 2) of the number of new subteams and 'or­

ing' in an integer from 0 to (the number of sub­

teams -1). Team private memory is not initialized.

As team descriptors are reused, initializations of

teamprivate data are almost guaranteed to have

been corrupted. The team descriptor and team

size are identical for all of the members of a given

team but each team member carries its own pri­

vate copy in order to prevent hot spots [7] as the

team state is accessed.*

Team splitting is handled in a block structured

way. Each time a processor becomes a member of

a new subteam, it computes a new team descriptor

and its position in the new team without accessing

any shared memory or synchronization resources.

This leads to an efficient bottleneck free imple­

mentation of team splitting, the cost of which is

completely independent of the number of proces­

sors in the team. As the processor computes a new

team descriptor, it pushes the old one onto a pri­

vate stack for recovery when it reaches the end of

its share of the work in the split block.

Since a processor carries the team descriptors

of all its antecedent teams on a stack, it has access

to the teamprivate memory of a parent team. This

can be very useful in a situation where the tasks in

the split blocks are to compute some results re­

quired by all the members of the parent team, but

for which the use of the top level shared memory

would pose an access hazard due to nested use of

team splitting in a reentrant way. We have not

given the syntax for this here, as the notion of

accessing the teamprivate data of a parent team is

still undergoing exploratory use. We expect

changes in syntax and functionality as we learn

from the experience of users.

* Hot spots are shared memory locations for which many

processors are contending.

The sophisticated user will find the team index

and team size useful when a custom scheduling

algorithm for a segment of code is desired. By cus­

tomizing the scheduling algorithms for certain

tasks the need for barrier synchronization can of­

ten be reduced, with an attendant increase in effi­

ciency. Programmers must be careful to design the

custom algorithm so that it will work properly for

any team size. The more aggressive programmer

could also manipulate the team state values, per­

haps creating custom splitting algorithms. t Simple

heuristic techniques are used for team splitting

and sometimes a customized heuristic is war­

ranted for special circumstances. Programmers

must be careful to preserve the integrity of the

team state. The correct functioning of nearly all

the parallel language constructs is dependent on

the team state being consistent on each processor.

5 SYNCHRONIZATION

Barrier synchronization and the notion of locks

are provided in the PCP implementations of the

split-join programming model.

In barrier synchronization, all of the processors

in a given team are forced to wait at the barrier

until the last processor arrives. A bottleneck free

software implementation [8] is used, requiring 30

to 40 microseconds to synchronize 32 processors.

The execution time of the barrier scales as the log

of the processor count. Each team has its own

unique barrier.

A lock is used to provide for critical region ac­

cess to data. A processor attempting to acquire a

lock spin-waits until the lock is unlocked and then

indivisibly locks it. When the processor unlocks

the lock it is available for others immediately.

Locks may be declared by the user in either

shared memory or teamprivate memory. When in

shared memory, the lock is visible to all the pro­

cessors, regardless of the team to which they be­

long. Locks declared in teamprivate memory are

visible only within a team.

In addition to the use of barriers and locks, the

user may implement event notifications by simply

spin-waiting on a location in shared or team­

private memory to change. On a machine sup­

porting coherent shared memory caches this is

particularly effective and has no negative impact.

t It was, in fact, through such activity that the notion of

team splitting was invented initially.

If the machine lacks this support, as is the case for

the BBN TC2000, users must be careful about the

possibility of generating adverse impact on avail­

able memory bandwidth through the introduction

of a hot spot.

6 PCP SYNTAX

A well structured C code requires very few changes

to make effective use of parallelism. While this

typically does not take into account data locality

issues, simply getting a program running correctly

with the split-join programming model is usually

not a difficult task. This has been our experience

with PCP on systems providing a monolithic

shared memory. On systems with a hierarchical

memory structure, such as the BBN TC2000, fur­

ther work optimizing the code to exploit data lo­

cality is required to get the expected performance

out of the hardware. In this section, we describe

the lightweight parallel excecution mechanisms of

PCP.

Under the assumption that nonlocal memory

references are expensive relative to local refer­

ences, PCP control constructs generate fast inline

code involving only local references. The typical

control construct requires only a few local memory

references for execution. The absence of overhead

in this area has allowed programmers to exploit

parallelism in sections of their applications that

were previously deemed not heavy enough to am­

ortize the overhead. In addition, the control struc­

tures contain no implicit barrier synchronization.

If there is no data dependency explicitly involved

with the construct, processors are free to run

ahead in the execution of subsequent code.

A short summary of the PCP syntax follows.

For more detailed specification, see the PCP us­

er's manual [9]. Anyone interested in the equiva­

lent PFP syntax for Fortran should refer to the

PFP user's manual [3].

6.1 master

Within the context of a specific team, that proces­

sor whose current team index is 0 executes the

code delimited by a master block. Arbitrary PCP

constructs may be enclosed by a master block. A

master block is often used in the portion of the

program that performs initialization as well as in­

put, output, and memory allocation. At a much

smaller scale of granularity, master blocks are

PARALLEL C PREPROCESSOR 85

used to initialize shared data such as accumula­

tors, which all team members will access.

master {

<declarations>

<executable code>

}

Note that a master block does not provide a

serial critical region in the sense that most people

think. If team splitting has occurred, several teams

exist each with its own master and each executing

its own task. Multiple teams may be in master

blocks concurrently. A race condition could exist

within a master block for access to shared data if

it is possible for the teams to encounter the block

asynchronously. (A simple global semaphore is all

that would be required to protect the region).

Thus master blocks do not necessarily have the

Amdahl's law* impact that they might be other­

wise expected to have.

6.2 forall

The forall loop is the PCP concurrent equivalent

of the C language for loop. It achieves a fine­

grained parallelism by dividing the passes of the

for loop among the members of the team:

forall (inti= <start>; <cond>;

}

i += <step>) {

<work dependent on the index, i>;

The indices of the loop are interleaved among

the members of the executing team. The loop in­

dex variable must be declared in the forall state­

ment. We have borrowed this syntax from c++t to

remind the user that the loop index is not defined

after the closing brace of the loop body. The

<start> and <step> expressions are currently

restricted to simple constants or variables. The

<cond> expression is unrestricted and not

checked for sanity. forallloops may be nested ar­

bitrarily. The team index inside the loop body is

set to 0 and the team size to 1. This makes a team

of size 1 for the scope of the loop iteration, ena-

*Amdahl's law states that a program's performance is

dominated by its slowest component, typically a serial section.

t In C++, the index i would be defined outside of the loop

body. We borrowed the syntax, but not the semantics.

86 BROOKS, GORDA, AND WARREN

bling any enclosed PCP constructs to work cor­

rectly.

6.3 barrier

The team of processors executing the code freely

run through it unless explicit synchronization

primitives are encountered. One basic and fre­

quently used form of synchronization is the bar­

rier: barrier;.

A barrier requires all members of the team to

arrive at the barrier before any are allowed to con­

tinue. Each team has its own distinct barrier. A

barrier is often used after a master block or a

forall loop to ensure that the preceding work is

complete before any processor is allowed to con­

tinue. A fast algorithm8 that has no hot spots or

critical regions has been implemented for PCP run

time support.

6.4 lock, unlock

Concurrency must be inhibited in a statement that

modifies a variable that many processors are ac­

cessing for both reading and writing. To prevent

processors from destructively interfering with each

other, entrance to a critical section of a code must

be restricted so that only one processor may exe­

cute it at a time. This is accomplished by using a

lock.

PCP offers spin-wait locks that are imple­

mented by variables of the lock data type, which

has the two states locked and unlocked. A lock

variable is a statically allocated and initialized

PCP data type: .

lock var = unlocked;

The functions that change the state of a lock

are lock() and unlock() , which take the pointer

to the lock variable as an argument. lock() , when

passed a pointer to a variable of the data type,

lock, waits until the lock is unlocked and then

atomically sets it to locked. unlock, when passed

a pointer to a lock, sets it to unlocked. A lock is

used to protect a critical section in the following

way:

lock(&var);

<critical section>

unlock(&var);

The lock variable may be declared as either

shared or teamprivate. If the lock variable is

shared, then the critical section is global. If the

lock is declared teamprivate, then the critical sec­

tion is local to the team.

6.5 split

To divide a number of tasks, which is known at

compile time, among subteams that are split from

the parent, static team splitting is used:

split <weightt > {
<taskt>

}

and <weight2> {
<task2>

}

and <weightn> {

<taskn>

}

The tasks may be executed in any order, in­

cluding sequentially if the team encountering the

split statement cannot be split for some reason. If
one task contains more work than another,

weights may be assigned to the blocks of work to

achieve some measure of load balancing. The

weights determine the fraction of the current

team's processors that are split into each sub­

team.

6.6 splitall

The dynamic version of team splitting 1s the

splitall loop:

splitall (inti= <start>; <cond>;

i += <step>[;nteams[;tsize]]) {

<work dependent on the index, i>;

}

When a team encounters a splitallloop, it disso­

ciates into subteams to which the indices of the

loop are interleaved. The number and size of the

subteams may be determined by the optional inte­

ger expressions, nteams (for specifying desired

number of teams) and lsize (for desired size of

teams), or by compile time flags to PCP. If the

appropriate number of processors are available at

run time the user supplied directives are followed.

Otherwise the number of teams and team size are

picked by the implementation giving priority to the

nteams parameter.

7 PCP AND THE BBN TC2000

On conventional shared memory multiprocessors,

which provide a single monolithic shared memory

system to the programmer, a great deal of effort

does not have to be expended to restructure a se­

rial code to exploit data locality in order to closely

approach the performance limits of the machine.

This situation is characteristic of the shared mem­

ory machines manufactured by Cray Research,

Alliant, Convex, and Sequent. There is perhaps

the slight exception of those systems that employ

coherent caches in an attempt to insulate an in­

adequate shared memory system from the de­

mands of the processors.

Massively parallel systems, on the other hand,

can have a rather complex structure, which in­

cludes local memory, finely interleaved shared

memory scattered across the processor boards,

and shared memory, which all processors can ac­

cess but which remains on a given processor

board as the physical address is incremented. We

call this last form of shared memory block shared

memory, for lack of a better term. Block shared

memory has the characteristic that the processsor

on the same card as the memory accesses it with­

out going through the interconnection network.

The other processors access this memory through

the interconnection network and face latency and

contention problems in order to gain access. Ma­

chines with this complex memory structure have

the advantage of being scalable to very high pro­

cessor counts, but the programmer pays for this

advantage with a much more demanding coding

effort being required to obtain a reasonable frac­

tion of the performance capability offered by the

architecture.

On the BBN TC2000, accesses through the net­

work have priority over local memory references.

We have exploited this feature in the supplied

PCP synchronization constructs by arranging that

a processor that is busy polling does so in a mem­

ory location residing in the on-card block shared

memory. This has been done in the barrier syn­

chronization algorithm, the most heavily used

synchronization operation. Doing this is a simple

matter of allocating the barrier data structure used

to control the progress of the processors in appro­

priate segments of block shared memory. For

locks, the data structure representing the state of

the lock resides in interleaved shared memory, but

a linked list of pointers to locations in block

shared memory can be used to control processors

that are waiting for the lock. This is referred to as a

PARALLEL C PREPROCESSOR 87

queueing lock [1 0] . Using a lock data structure

of this sort, users again arrange that busy polling

is done in the on-card block shared memory at low

priority on the BBN TC2000 so that the progress

of processors accessing this memory through the

switch in the course of performing real work is not

retarded. We have not implemented queueing

locks, as application codes have typically used

locks in a way that avoids contention.

As if having to deal with local, interleaved

shared, and block shared memory is not compli­

cated enough, the performance of the network

used to support memory references between pro­

cessors can be highly dependent on how the run

time communication pattems clash with the to­

pology of the network. If the interconnection net­

work is a 2-D mesh, for instance, a remote mem­

ory reference to a neighboring processor is

accomplished with a much lower latency and

higher bandwidth than a remote memory refer­

ence to a random processor in the machine. For­

tunately, we have not had to face this problem on

the BBN TC2000 as the latency and bandwidth of

the interconnection network used in this architec­

ture are rather independent of the source and des­

tination addresses for memory traffic flowing

through the network.

The BBN TC2000 [11 J is a scalable multipro­

cessor architecture that can support up to 512

Motorola 88100 RISC microprocessors running at

20 MHz. The processors, with their 16 megabyte

memories, are interconnected to each other in a

PE-to-PE model using a variant of a multistage

cube network [12], which BBN refers to as the

"butterfly switch." The BBN TC2000 supports

local memory, block shared memory wherein suc­

cessive cache lines reside on one processor card,

and interleaved shared memory wherein succes­

sive cache lines are placed on successive cards

and wrap around the machine. The aggregate

bandwidth to interleaved shared memory scales

linearly with the number of processor cards con­

tributing to this memory pool.

The contribution of each node to the inter­

leaved shared memory pool is made at boot time,

set via device registers in the interface to the

switch that connects the processors. Any number

of processors can be configured to contribute to

the interleaved shared memory pool and it is use­

ful and convenient to set the number of contribut­

ing processors to a prime number to avoid band­

width reductions when accessing arrays in a

strided manner. The rest of the memory in each

node can be used for either local memory or block

88 BROOKS, GORDA, AND WARREN

shared memory. The division between these two

memory types is enforced by the memory manage­

ment unit attached to the processor and is set at

the time an application is run using operating sys­

tem calls in a completely flexible way.

On the BBN TC2000, the memory latency for a

cache hit is 3 clocks, the latency for a cache miss

to the local memory card is 8 clocks, and the la­

tency for a remote memory reference satisfied

through the switch is 39 clocks. Cache hits are

fully pipelined at a rate of one access per clock.

Cache misses, or noncached accesses, cause the

processor to stall until the request is satisfied. Be­

cause of the rather large performance penalty for

accesses to interleaved shared memory compared

to cache hits users are required to expend a con­

siderable amount of effort in localizing data struc­

tures if they are to achieve a substantial fraction of

the performance potential of the machine. Using

the current PCP facilities, users have typically

managed the interleaved and local memories [13]

to accomplish this. The use of block shared mem­

ory has usually been implicit, but critical, having

been hidden in the provided synchronization con­

structs. Some users have gone further by using

block shared memory directly for their own data

structures, 14 but have found doing this to be tedi­

ous.

8 DISCUSSION

PCP was originally developed on shared memory

systems with small processor counts to solve the

code portability problem for parallel applications

written in C for this class of machines. During this

period, which in fact has not yet ended, each ven­

dor of a parallel machine developed and marketed

its own parallel execution environment, which was

incompatible with those of other vendors. The im­

plementation of PCP as a preprocessor, with a

minimal amount of machine dependent run time

support, was critical to being successful in achiev­

ing this goal. The split-join paradigm, an exten­

sion of the simple SPMD model [5], allows nested

concurrency to be exploited while still preserving

the simple preprocessor implementation and high

efficiency.

In the early days of using PCP on a 12-proces­

sor Sequent Balance or on an 8-processor Alliant

FX/8, users did not have to concern themselves

with exploiting data locality. Team splitting was

used to improve the concurrency available and

was used to reduce overhead by reducing the cost

of a barrier within a team. PCP was used to obtain

rather efficient execution on shared memory

multiprocessors [15], but users had to be very

careful about the quantization error involved

when splitting a team of a few processors in size

and this tended to restrict the use of team splitting

to the trivial case of binary splits of an even num­

ber of processors for two equally sized subtasks.

With the BBN TC2000, we have up to 128 pro­

cessors available* and the quantization error for

team splitting is an order of magnitude smaller.

This allows much more accurate matching of the

team size to the work involved for the sub tasks.

The sheer number of processors available begins

to support deeply nested team splitting. With the

earlier shared memory systems possessing only a

few processors, a programmer could essentially

enumerate the task for each processor individually

and keep track of them. With hundreds or more

processors, the programmer ceases to think of in­

dividual processors and begins to think of teams

as abstract aggregates of processors.

PCP provides no frills for the programmer. No

attempt is made to automatically parallelize serial

code, and in particular, data dependence analysis

is entirely up to the user. If users write code that

allows a race condition, they are likely to get bitten

by it sooner or later. Adding data dependence

analysis to aid the user in spotting the rather trivial

race conditions that often bite would be useful,

and is most certainly technically possible, but

would require a compiler development that is en­

tirely beyond the scope of the effort to date.

PCP, in its current form, only offers easy man­

agement of data structures in private and inter­

leaved shared memory. Users must allocate and

manage data structures in block shared memory

by hand, and as reported, this is profitable but

very tedious [14]. Data distribution models sup­

porting data parallel computation, which have re­

cently been a very popular research area [16],

provide a means of exploiting data structures

allocated in block shared memory. We are devel­

oping such a programming model as a high level

layer on top of our Fortran implementation of the

split-join programming model, PFP. This will

hopefully provide the ease of programming that

Fortran 90 offers for array operations, while

maintaining an efficient escape to the PFP split­

join programming model for everything else. The

*The largest BBN TC2000 delivered to date is the 128

processor machine at Lawrence Livermore National Labora­

tory.

resulting Parallel Data Distribution Preprocessor

(PDDP) is expected to be useful on the BBN

TC2000, and will likely be even more useful on

future machines of this general architectural class

employing substantially faster processors. The la­

tency of communication networks is not improving

at the same rate as the speeds of microprocessors

and this will make the successful exploitation of

data locality even more important in the future.

REFERENCES

[1] TC2000 Fortran Reference, BBN Advanced

Computers, Inc., Cambridge, MA, 1991.

[2] E. D. Brooks III, PCP: A Parallel Extension of C

that is 99% Fat Free, UCRL-99673, Lawrence

Livermore]'\;ational Laboratory, Livermore, CA,

1988.

[3] K. H. Warren, B. Gorda, and E. D. Brooks, III,

Programming in PFP, UCRL-MA-107028, Liver­

more, CA, Lawrence Livermore National Labora­

tory, 1991.
[4] H. F. Jordan, "The force: A highly portable par­

allel programming language," Proc. of the Inter­

national Conference on Parallel Processing. Uni­
versity Park and London: The Pennsylvania State

University Press, August 1989, pp. II-112-II-
117.

[5] F. Darema, D. A. George, V. A. Norton, and G. F.

Pfister, "A single-program-multiple data compu­

tational model for EPEX/FORTRAN," Parallel

Comput., vol. 7, no. 1, pp. 11-24, April1988.

[6] K. H. Warren and E. D. Brooks III, "Gauss elimi­

nation: A case study on parallel machines," Proc.

of Compean '91. Los Alamitos, CA: IEEE Com­

puter Society Press, February 1991, pp. 57-61.

[7] D. M. Dias and M. Kumar, "Preventing conges­

tion in multistage networks in the presence of hot­
spots," Proc. of the 1989 International Confer-

PARALLEL C PREPROCESSOR 89

ence on Parallel Processing. University Park and

London: The Pennsylvania State University

Press, August 1989, pp. 1-9-1-13.
[8] D. Hensgen, R. Finkel, and U. Manber, "Two

algorithms for barrier synchronization," Int.].

Parallel Programming, vol. 17, no. 1, pp. 1-17,

1988.
[9] B. Gorda, K. Warren, and E. D. Brooks III, Pro­

gramming in PCP, UCRL-MA 107029, Lawrence

Livermore National Laboratory, Livermore, CA,

1991.
[10] T. E. Anderson, "The performance of spin lock

altematives for shared-memory multiproces­

sors," IEEE Trans. Parallel and Distributed

Syst., vol. 1, no. 1, pp. 6-16, January 1990.
[11] Inside the TC2000, BBN Advanced Computers

Inc., Cambridge, MA, 1989.

[12] H. J. Siegel, Interconnection Networks for Large­

Scale Parallel Processing, 2nd edition. New York:

McGraw-Hill, 1990, pp. 113-174.
[13] L. H. Yang, E. D. Brooks III, and J. Belak, A

Linked-Cell Domain Decomposition Method for

Molecular Dynamics Simulation on a Scalable

Multiprocessor, UCRL-JC-1 09752, Lawrence

Livermore National Laboratory, Livermore, CA,

1992 (submitted to Scientific Programming).

[14] S. Picano, E. D. Brooks III, and J. E. Hoag, As­

sessing Programming Costs of Explicit Memory

Localization on a Large Scale Shared Memory

Multiprocessor, UCRL-JC-1 09751, Lawrence
Livermore National Laboratory, Livermore, CA,

1992. Scientific Programming, vol. 1, no. 1, pp.
65-76, Fall 1992.

[15] E. D. Brooks III, "Effective use of shared memory
multiprocessors," Proc. Third International Con­

ference on Supercomputing, May 15-20, 1988,
Vol. II, pp. 365-371, lntemational Supercom­

puting Institute, Inc.
[16] G. Fox et al., "Fortran D Language Specifica­

tion," Rice COMP TR90-141, Rice University,

December, 1990.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

