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ABSTRACT 

We describe a parallel extension of the C programming language designed for multi­

processors that provide a facility for sharing memory between processors. The pro­

gramming model was initially developed on conventional shared memory machines 

with small processor counts such as the Sequent Balance and Alliant FX/8, but has more 

recently been used on a scalable massively parallel machine, the BBN TC2000. The 

programming model is split-ioin rather than fork-ioin. Concurrency is exploited to use a 

fixed number of processors more efficiently rather than to exploit more processors as in 

the fork-join model. Team splitting, a mechanism to split the team of processors execut­

ing a code into subteams to handle parallel subtasks, is used to provide an efficient 

mechanism to exploit nested concurrency. We have found the split-join programming 

model to have an inherent implementation advantage, compared to the fork-join model, 

when the number of processors in a machine becomes large.© 1992 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Shared memory multiprocessors, wherein a small 

number of processors access a common mono­

lithic system memory, have been around for a long 

time. The frequently used parallel programming 

model on these systems is the fork-join model, 

where one processor starts out executing the serial 

code and additional processors are acquired when 

a parallel construct is encountered. Although the 

fork-join model is serving well in the form of ven­

dor supplied implementations on machines with a 

small number of processors such as the Cray YMP 

and the Convex C-2 series, fundamental short­

comings in its implementation begin to surface 
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when the number of processors grows. These 

shortcomings have become apparent through our 

experiences with the vendor supplied fork-join ex­

tension of Fortran [1] supplied by BBN on their 

TC2000 multiprocessor. 

It is no longer possible to build a monolithic 

shared memory system that can sustain the band­

width and latency demands of hundreds or thou­

sands of processors when the number of proces­

sors is scaled up. Large local memories are 

introduced in order to provide an acceptable level 

of memory performance in such systems. Use of 

the shared memory facility in large parallel sys­

tems is best relegated to those times when com­

munication is absolutely required by the applica­

tion, as the bandwidth and latency of the shared 

memory are likely to be an order of magnitude 

short of the performance required to keep a pro­

cessor running at full speed. The problem with the 

fork-join model is that the process of acquiring 

and relinquishing processors requires highly con­

tended accesses for the shared memory, or some 

specialized hardware mechanism to handle pro­

cessor dispatch. Although the fork-join program-
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ming style is comfortable, the high overhead of its 

implementation quickly becomes burdensome. 

An alternative to the fork-join model is the 

split-join programming model. In the split-join 

paradigm, all the processors that the code will ever 

have will enter the main program in a live manner 

at the start of the job. Processors are not fetched 

from and returned to a pool. This involves ac­

cesses to shared memory to implement. PCP [2] is 

an implementation of the split-join programming 

model that provides a good fit to massively parallel 

machines offering a shared memory facility in ad­

dition to the local memory that such machines 

usually have. Its constructs, though simple, pro­

vide powerful and efficient flow control in the form 

of parallel loops and team splitting. The program­

ming model is a relatively straightforward exten­

sion of the conventional C programming model. 

An arbitrary number of processors executes the 

code stream as a single processor executes a serial 

program. 

Nested concurrency is exploited through the 

structured mechanism of team splitting, in which 

the team of processors divides up into sub teams in 

order to address independent but parallel tasks at 

a lower level. These subteams are relatively inde­

pendent of one another, and are free to execute 

different code modules, until they rejoin the par­

ent team in a block structured manner. 

The PCP programming language places the is­

sues of scheduling, communication, and synchro­

nization directly into the hands of the program­

mer. It does this in a simple manner by providing 

useful constructs to handle these complexities. 

PCP allows the user to specify which portions of 

the program are to be executed in parallel, which 

are to be executed by subteams, and which are to 

be executed by one processor only. PCP allows 

any number of processors to be allocated to a job, 

the number of processors being a run time param­

eter that is set by the end user of the code when 

the program is actually executed. Through the use 

of a compile time flag, the PCP preprocessor can 

also produce serial code that does not contain the 

run time synchronization overhead required for 

parallel execution. This feature is often used to 

provide both a sanity check and a point of perfor­

mance comparison for parallel executions. 

The split-join parallel programming paradigm 

is independent of the target language. Examining 

the basic programming model, it is quickly con­

cluded that any procedural programming lan­

guage could be extended with a split-join pro­

gramming model. This is indeed the case and on 

the BBN TC2000 we have developed a Fortran 

implementation, the Parallel Fortran Preproces­

sor (PFP). We discuss only the C syntax for the 

split-join programming model for the sake of brev­

ity (see Warren et al. [3] if you are interested in the 

Fortran syntax). 

PCP was originally written to solve the problem 

of the portability of C language based parallel pro­

grams among several different shared memory 

multiprocessors. The PCP preprocessor is ma­

chine independent; the amount of machine de­

pendent run time support is small (200 lines of C 

on the BBN TC2000) and can be easily imple­

mented with fast inline code. PCP has been used 

successfully on the Alliant, Sequent, Cray, SCI, 

and Stellar machines. 

The sections of this paper are as follows. The 

split-join model and its memory model are de­

scribed in Sections 2 and 3. Details on how the 

implementation of these models take advantage of 

the architecture are included. The PCP team state 

is discussed in Section 4. The synchronization 

primitives offered in PCP are discussed in Section 

5. The actual PCP syntax is shown in Section 6. In 

Section 7 we discuss the issues of implementing 

and using PCP on a scalable machine such as the 

BBN TC2000. A general discussion follows in 

Section 8. 

2 THE SPLIT -JOIN MODEL 

In the traditional fork-join parallel programming 

model, a single processor starts the execution of 

the program and acquires more processors as 

concurrency is encountered in the code. The fork­

join programming model has been quite useful on 

tightly coupled shared memory machines with rel­

atively few processors. Some architectures such as 

the Alliant FX/ 8 and the Convex C2 provide spe­

cial hardware to make the dispatch of slave pro­

cessors happen as quickly as possible. Scalable 

machine architectures are not as tightly coupled 

and the cost of communication between proces­

sors, heavily used in process of dispatching pro­

cessors in the fork-join model, is relatively high. 

The BBN TC2000, described in more detail in 

Section 7, is a realistic example of what might be 

expected in this regard. The latency of a cache hit 

on local memory is 3 clocks (pipelined at a rate of 

one per clock) whereas the latency of a remote 

memory reference is roughly 40 clocks (not pipe­

lined). If one must deal with a 40 clock latency for 

every memory reference required in the code used 



to dispatch processors, even an efficient spanning 

tree implementation can have substantial over­

head. 

In the split-join paradigm we deal with the high 

cost of processor dispatch and communication 

between processors by minimizing their occur­

rence in the fundamental constructs of the pro­

gramming model. All of the processors the job will 

ever acquire are dispatched at the start of the pro­

gram and are immediately placed under the con­

trol of the programmer. This group of processors, 

which loosely follow each other through the code, 

is referred to as a team of processors. In a serial 

program a single processor enters the main( ) 
routine and executes code until it either retums 

from main( ) , calls exit( ) , or encounters an ex­

ception. In the PCP model we generalize this in a 

natural way, having a team of processors enter 

main() and having the job end when any team 

member returns from main(), calls exit( ), or en­

counters an exception. A team of processors con­

sists of a team master and zero or more other pro­

cessors, which travel through the code almost in 

unison. 

The split-join parallel programming model is 

very similar to Harry Jordan's Force [4] and the 

IBM SPMD [5] programming model, the most sig­

nificant difference being the support for team 

splitting and the arbitrary nesting of concurrency 

constructs. The PCP concept of team splitting al­

lows an arbitrary subdivision of the team of pro­

cessors executing the code and allows each sub­

team to execute arbitrarily different codes within 

the constraint of block structure. This is a flexible 

extension of the SPMD programming model that 

supports the exploitation of nested concurrency 

for both subroutines and nested loops. 

The PCP concept of teams is dynamic and well 

suited for massively parallel machines. The user 

synchronizes the members of a team, designates 

tasks for individual team members, and splits up 

the team into smaller sized teams to execute logi­

cally distinct code sections. All parallel constructs 

apply to teams. Working within any team the pro­

grammer has access to the parallel looping con­

structs, the barrier, locks, and even further team 

splitting. In the team splitting process the total 

number of processors remains constant. The pro­

cessors temporarily become members of new sub­

teams. As this happens, the processors save their 

old state for restoration at the end of the split con­

struct. As processors within a team complete their 

work, they then rejoin the parent team with no 

implicit serialization. 
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Team splitting is used to exploit nested concur­

rency with a fixed number of processors. In the 

split construct the user explicitly marks off sepa­

rate blocks of work that can be executed indepen­

dently (each block of work may itself be a job con­

sisting of subtasks that can be executed in 

parallel). The user may also indicate the relative 

amount of work in each block of code. The PCP 

split construct takes an optional weight parameter 

that controls the fraction of processors to send 

into each team. This form of load balance control 

is effective if the workload can be accurately pre­

dicted at execution time, as is the case for the two 

concurrent linear system solves below. The team 

splitting weights, which occur in an iterative loop 

during execution, might also be corrected by using 

a real time clock to detect imbalance in a prior 

iteration and adjusting the weights of the next iter­

ation appropriately. This second strategy would 

be effective if the relative load of two split tasks 

varied slowly with the iteration index. 

Splitting the team into smaller subteams to ex­

ploit nested concurrency is counter intuitive. The 

goal, however, in executing nested concurrency is 

to use a fixed number of processors more effi­

ciently, not to use more processors. The split-join 

programming model is in some sense the dual of 

the fork-join model. One finds that one can usu­

ally accomplish the task at hand with either pro­

gramming model. The advantage of the split-join 

model is its bottleneck free implementation 

through a highly portable preprocessor. As will be 

seen in Section 4, the process of team splitting is 

accomplished in a few instructions, independent 

of the size of the team, which only access local 

memory. 

Teams may be split both statically and dynami­

cally. Static team splitting is specified using the 

keywords split and and. As an example, consider 

the routines foo() and bar(), which perform an 

equal amount of work and can be called concur­

rently. In the PCP model the concurrent execution 

of the two routines is arranged through the syntax: 

split 

{ 

foo(); 
} 

and 
{ 

bar( ); 
} 

where the amount of work performed by foo() 
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and bar( ) is assumed to take the same amount of 

time. The team encountering the split divides into 

two subteams of equal size. The first subteam 

calls foo( ) while the second calls bar( ) concur­

rently, and the two subteams join again at the end 

of the and block. The tasks performed in foo( ) 

and bar( ) must be independent. If there is only 

one processor in the team that encounters the 

split, or if an implementation limit for team split­

ting has been reached, the encountering team 

calls foo( ) and then bar( ) sequentially in an im­

plementation dependent order. For this reason, 

one must view the execution of foo( ) and bar( ) 

to be completely asynchronous. The algorithms 

implemented by foo() and bar( ) should not be 

designed in a way that requires simultaneous pro­

gress in both routines. This could be done, but the 

code would not be portable to multiprocessors for 

which the team size entering the split block is 

unity. 

In addition to the static splitting described 

above wherein the amount of work performed in 

each block of code is assumed to be the same, 

weights may be assigned to the blocks of work. If 

the user has provided accurate loading informa­

tion, via the weight parameters for team splitting 

(see Section 6.5) that determine the subteam 

sizes, the processors in the subteams finish their 

work and rejoin to become the parent team nearly 

simultaneously. The total number of processors is 

conserved in the team splitting process. As an ex­

ample of team splitting with weights, consider the 

case of two concurrent linear system solves that 

are for potentially differing dimensions. (For a de­

scription of the Gauss elimination implementation 

in this model see Warren et al. [ 6]) 

int dim1, dim2; 

double **matrix1, **matrix2; 

double *rhs1, *rhs2; 

split dim1 *dim1 *dim1 { 

dgauss(matrix1, rhs1, dim1); 

} 

and dim2*dim2*dim2 { 

dgauss(matrix2, rhs2, dim2); 

} 

Here the routine dgauss( ) performs a linear 

system solve leaving the result in the vector rhs 

provided as an argument. The operations re­

quired scale like the cube of the dimension and 

this is noted by the weight expressions included on 

the split and and lines. The weight expressions 

are used to compute the sizes of the two subteams, 

dividing the parent team into two sub teams having 

relative sizes that match the ratio of weights as 

closely as possible. By specifying weights for the 

concurrent blocks of work some measure of load 

balancing can be achieved, subject to the alge­

braic restrictions caused by the fact that the num­

ber of processors is finite. 

Split constructs are not limited to the static bi­

nary form shown above. Static splits may have 

more parallel blocks specified by concatenating 

and blocks. 

Team splitting may also be treated dynami­

cally. The construct: 

splitall(int i = 0; i < imax; i += 1) 

{ 
<work dependent on the index, i>; 

} 

specifies that the body of the loop is to be exe­

cuted with the indices i = 0, 1, . . . , imax-1, 

parceling out the indices to a collection of sub­

teams that are split off from the team that encoun­

ters the split. The actual number of subteams is 

determined at run time, and is possibly influenced 

by a compile time flag. There may not be a split at 

all or the team may be split to individual proces­

sors, using the best heuristic algorithm that can be 

conjured up. Extra parameters (see Section 6.6) 

inside the splitall header can be used to establish 

firmer control of the team splitting mechanism. 

To give a trivial application of the splitallloop, 

consider the parallel computation of a set of ma­

trix vector products. 

double **result; 

double ***matrices; 

double **multplcnd; 

int dim; 

int number; 

splitall(int i = 0; i < number; i += 1) { 

mvprod(result[i], matrices [i], 

multplcnd[i], dim); 

} 

If a team split would be profitable, the team 

encountering the splitall block is divided into 

subteams, each subteam handling a subset of the 

indices i. The library routine mvprod( ) is de­

signed for team entry and contains parallel lan­

guage constructs designed to efficiently exploit the 

parallelism of each matrix vector product. If the 

team that enters the splitallloop has 100 proces­

sors and the number and dimension of the matrix-



vector products is 5 and 20, respectively, we see 

that the use of team splitting will have a substan­

tial impact on program performance. 

3 THE MEMORY MODEL 

PCP allows the user to designate the memory class 

for all data. In the split-join programming para­

digm itself, three types of memory are provided to 

fully exploit the notion of team splitting. These 

are: 

1. Memory that is private to a processor, pri­

vate memory 

2. Memory that is shared among all proces­

sors, shared memory 

3. Memory that is shared among the mem­

bers of a given team or grouping of proces­

sors, but private to the team, teamprivate 

memory 

Private memory is implemented on the proces­

sor that requires access to it. Shared memory is 

implemented in the interleaved shared memory 

facility (see Section 7) of the BBN TC2000. There 

are many situations where a user would like to 

have static data that is not shared by all proces­

sors, but is shared by all of the processors within a 

given team. This type of data is declared using the 

storage class modifier teamprivate. Teamprivate 

memory is allocated as an array in the interleaved 

shared memory, indexed by a team descriptor that 

is unique to a given team. More details on the 

team descriptor are given in Section 4. 

By default, all statically allocated data is shared 

and thus accessible by all of the processors. Stack, 

or auto, data is private to a processor and is 

stored in a processor's local memory if it exists. 

The choice of default for statically allocated data 

is a holdover from the days of running PCP codes 

on shared memory machines such as those manu­

factured by Sequent or Alliant, and is not that 

appropriate for a scalable machine such as the 

BBN TC2000. Fortunately, the default can be 

switched to private through the use of a compile 

time flag. 

4 TEAM STATE 

The PCP concept of teams is implemented using a 

small amount of local memory. The team state, 

which is carried by the processors, is made avail-
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able to the programmer who may use it to con­

struct parallel language extensions that are not di­

rectly supported. The current features of PCP 

were not postulated before its first implementa­

tion. These features evolved over time as users 

constructed some of their own using the team state 

variables. Those features that were found to be 

generally useful have been standardized and ele­

vated to constructs directly supported by the Par­

allel C Preprocessor itself. Further evolution of the 

parallel programming model in this manner will 

reduce the need to directly use the team state, but 

the team state will always remain accessible to the 

programmer both for backward compatibility and 

to facilitate the creation of new language con­

structs that might eventually find their way into 

PCP. 

The team state consists of five values that are 

carried along by the processors. Two of these val­

ues are implicitly read only (not to be touched by 

user programs). They are: 

1. _NPROCS, that is, the number of proces­

sors that execute the program. It is the size 

of the team that enters main. 

2. _IPROC, that is, the processor index. It has 

a value unique to each executing processor 

in the range from 0 to _NPROCS-1. 

These two values are set by the run time system 

before main ( ) is entered and under no conditions 

should they be changed. In implementations 

where the target multiprocessor does not support 

local memory directly, the processor index is used 

to index an array to simulate local memory. To 

support the concept of team splitting three more 

variables were added to the set carried along by 

the processors, and the name team state was 

coined. Unlike the processor index and the num­

ber of processors, these values are read/ write and 

are manipulated by the language constructs of 

PCP: 

1. _ TSIZE, that is, the team size. If no team 

splitting has occurred, this will be equal to 

_NPROCS. 

2. _ TINDEX, that is, the index of the member 

within the team. It must have a unique value 

within the team in the range, 0 to - TSIZE-

1. The team master is the processor with a 

team index of zero. 

3. _TDESC, that is, the team descriptor, a 

non-negative value unique to the team. 
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Teams are a dynamic association of physical 

processors and because of this teams can be cre­

ated and destroyed as these associations change 

during split-join operations. The team descriptor 

is a small positive integer used to identify the team 

and provide for teamprivate memory, which is pri­

vate to the team but shared among the team mem­

bers. Arrays in shared memory are indexed by this 

value to simulate the notion of privacy. Without 

the team descriptor distinct teams could not have 

independent barrier operations. 

PCP quickly calculates the new team descriptor 

for team splits in local memory by shifting the cur­

rent team descriptor left n times where n is the log 

(base 2) of the number of new subteams and 'or­

ing' in an integer from 0 to (the number of sub­

teams -1 ). Team private memory is not initialized. 

As team descriptors are reused, initializations of 

teamprivate data are almost guaranteed to have 

been corrupted. The team descriptor and team 

size are identical for all of the members of a given 

team but each team member carries its own pri­

vate copy in order to prevent hot spots [7] as the 

team state is accessed.* 

Team splitting is handled in a block structured 

way. Each time a processor becomes a member of 

a new subteam, it computes a new team descriptor 

and its position in the new team without accessing 

any shared memory or synchronization resources. 

This leads to an efficient bottleneck free imple­

mentation of team splitting, the cost of which is 

completely independent of the number of proces­

sors in the team. As the processor computes a new 

team descriptor, it pushes the old one onto a pri­

vate stack for recovery when it reaches the end of 

its share of the work in the split block. 

Since a processor carries the team descriptors 

of all its antecedent teams on a stack, it has access 

to the teamprivate memory of a parent team. This 

can be very useful in a situation where the tasks in 

the split blocks are to compute some results re­

quired by all the members of the parent team, but 

for which the use of the top level shared memory 

would pose an access hazard due to nested use of 

team splitting in a reentrant way. We have not 

given the syntax for this here, as the notion of 

accessing the teamprivate data of a parent team is 

still undergoing exploratory use. We expect 

changes in syntax and functionality as we learn 

from the experience of users. 

* Hot spots are shared memory locations for which many 

processors are contending. 

The sophisticated user will find the team index 

and team size useful when a custom scheduling 

algorithm for a segment of code is desired. By cus­

tomizing the scheduling algorithms for certain 

tasks the need for barrier synchronization can of­

ten be reduced, with an attendant increase in effi­

ciency. Programmers must be careful to design the 

custom algorithm so that it will work properly for 

any team size. The more aggressive programmer 

could also manipulate the team state values, per­

haps creating custom splitting algorithms. t Simple 

heuristic techniques are used for team splitting 

and sometimes a customized heuristic is war­

ranted for special circumstances. Programmers 

must be careful to preserve the integrity of the 

team state. The correct functioning of nearly all 

the parallel language constructs is dependent on 

the team state being consistent on each processor. 

5 SYNCHRONIZATION 

Barrier synchronization and the notion of locks 

are provided in the PCP implementations of the 

split-join programming model. 

In barrier synchronization, all of the processors 

in a given team are forced to wait at the barrier 

until the last processor arrives. A bottleneck free 

software implementation [8] is used, requiring 30 

to 40 microseconds to synchronize 32 processors. 

The execution time of the barrier scales as the log 

of the processor count. Each team has its own 

unique barrier. 

A lock is used to provide for critical region ac­

cess to data. A processor attempting to acquire a 

lock spin-waits until the lock is unlocked and then 

indivisibly locks it. When the processor unlocks 

the lock it is available for others immediately. 

Locks may be declared by the user in either 

shared memory or teamprivate memory. When in 

shared memory, the lock is visible to all the pro­

cessors, regardless of the team to which they be­

long. Locks declared in teamprivate memory are 

visible only within a team. 

In addition to the use of barriers and locks, the 

user may implement event notifications by simply 

spin-waiting on a location in shared or team­

private memory to change. On a machine sup­

porting coherent shared memory caches this is 

particularly effective and has no negative impact. 

t It was, in fact, through such activity that the notion of 

team splitting was invented initially. 



If the machine lacks this support, as is the case for 

the BBN TC2000, users must be careful about the 

possibility of generating adverse impact on avail­

able memory bandwidth through the introduction 

of a hot spot. 

6 PCP SYNTAX 

A well structured C code requires very few changes 

to make effective use of parallelism. While this 

typically does not take into account data locality 

issues, simply getting a program running correctly 

with the split-join programming model is usually 

not a difficult task. This has been our experience 

with PCP on systems providing a monolithic 

shared memory. On systems with a hierarchical 

memory structure, such as the BBN TC2000, fur­

ther work optimizing the code to exploit data lo­

cality is required to get the expected performance 

out of the hardware. In this section, we describe 

the lightweight parallel excecution mechanisms of 

PCP. 

Under the assumption that nonlocal memory 

references are expensive relative to local refer­

ences, PCP control constructs generate fast inline 

code involving only local references. The typical 

control construct requires only a few local memory 

references for execution. The absence of overhead 

in this area has allowed programmers to exploit 

parallelism in sections of their applications that 

were previously deemed not heavy enough to am­

ortize the overhead. In addition, the control struc­

tures contain no implicit barrier synchronization. 

If there is no data dependency explicitly involved 

with the construct, processors are free to run 

ahead in the execution of subsequent code. 

A short summary of the PCP syntax follows. 

For more detailed specification, see the PCP us­

er's manual [9]. Anyone interested in the equiva­

lent PFP syntax for Fortran should refer to the 

PFP user's manual [3]. 

6.1 master 

Within the context of a specific team, that proces­

sor whose current team index is 0 executes the 

code delimited by a master block. Arbitrary PCP 

constructs may be enclosed by a master block. A 

master block is often used in the portion of the 

program that performs initialization as well as in­

put, output, and memory allocation. At a much 

smaller scale of granularity, master blocks are 
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used to initialize shared data such as accumula­

tors, which all team members will access. 

master { 

<declarations> 

<executable code> 

} 

Note that a master block does not provide a 

serial critical region in the sense that most people 

think. If team splitting has occurred, several teams 

exist each with its own master and each executing 

its own task. Multiple teams may be in master 

blocks concurrently. A race condition could exist 

within a master block for access to shared data if 

it is possible for the teams to encounter the block 

asynchronously. (A simple global semaphore is all 

that would be required to protect the region). 

Thus master blocks do not necessarily have the 

Amdahl's law* impact that they might be other­

wise expected to have. 

6.2 forall 

The forall loop is the PCP concurrent equivalent 

of the C language for loop. It achieves a fine­

grained parallelism by dividing the passes of the 

for loop among the members of the team: 

forall (inti= <start>; <cond>; 

} 

i += <step>) { 

<work dependent on the index, i>; 

The indices of the loop are interleaved among 

the members of the executing team. The loop in­

dex variable must be declared in the forall state­

ment. We have borrowed this syntax from c++t to 

remind the user that the loop index is not defined 

after the closing brace of the loop body. The 

<start> and <step> expressions are currently 

restricted to simple constants or variables. The 

<cond> expression is unrestricted and not 

checked for sanity. forallloops may be nested ar­

bitrarily. The team index inside the loop body is 

set to 0 and the team size to 1. This makes a team 

of size 1 for the scope of the loop iteration, ena-

*Amdahl's law states that a program's performance is 

dominated by its slowest component, typically a serial section. 

t In C++, the index i would be defined outside of the loop 

body. We borrowed the syntax, but not the semantics. 
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bling any enclosed PCP constructs to work cor­

rectly. 

6.3 barrier 

The team of processors executing the code freely 

run through it unless explicit synchronization 

primitives are encountered. One basic and fre­

quently used form of synchronization is the bar­

rier: barrier;. 

A barrier requires all members of the team to 

arrive at the barrier before any are allowed to con­

tinue. Each team has its own distinct barrier. A 

barrier is often used after a master block or a 

forall loop to ensure that the preceding work is 

complete before any processor is allowed to con­

tinue. A fast algorithm8 that has no hot spots or 

critical regions has been implemented for PCP run 

time support. 

6.4 lock, unlock 

Concurrency must be inhibited in a statement that 

modifies a variable that many processors are ac­

cessing for both reading and writing. To prevent 

processors from destructively interfering with each 

other, entrance to a critical section of a code must 

be restricted so that only one processor may exe­

cute it at a time. This is accomplished by using a 

lock. 

PCP offers spin-wait locks that are imple­

mented by variables of the lock data type, which 

has the two states locked and unlocked. A lock 

variable is a statically allocated and initialized 

PCP data type: . 

lock var = unlocked; 

The functions that change the state of a lock 

are lock( ) and unlock( ) , which take the pointer 

to the lock variable as an argument. lock( ) , when 

passed a pointer to a variable of the data type, 

lock, waits until the lock is unlocked and then 

atomically sets it to locked. unlock, when passed 

a pointer to a lock, sets it to unlocked. A lock is 

used to protect a critical section in the following 

way: 

lock(&var); 

<critical section> 

unlock(&var); 

The lock variable may be declared as either 

shared or teamprivate. If the lock variable is 

shared, then the critical section is global. If the 

lock is declared teamprivate, then the critical sec­

tion is local to the team. 

6.5 split 

To divide a number of tasks, which is known at 

compile time, among subteams that are split from 

the parent, static team splitting is used: 

split <weightt > { 
<taskt> 

} 

and <weight2> { 
<task2> 

} 

and <weightn> { 

<taskn> 

} 

The tasks may be executed in any order, in­

cluding sequentially if the team encountering the 

split statement cannot be split for some reason. If 
one task contains more work than another, 

weights may be assigned to the blocks of work to 

achieve some measure of load balancing. The 

weights determine the fraction of the current 

team's processors that are split into each sub­

team. 

6.6 splitall 

The dynamic version of team splitting 1s the 

splitall loop: 

splitall (inti= <start>; <cond>; 

i += <step>[;nteams[;tsize]]) { 

<work dependent on the index, i>; 

} 

When a team encounters a splitallloop, it disso­

ciates into subteams to which the indices of the 

loop are interleaved. The number and size of the 

subteams may be determined by the optional inte­

ger expressions, nteams (for specifying desired 

number of teams) and lsize (for desired size of 

teams), or by compile time flags to PCP. If the 

appropriate number of processors are available at 

run time the user supplied directives are followed. 

Otherwise the number of teams and team size are 

picked by the implementation giving priority to the 

nteams parameter. 



7 PCP AND THE BBN TC2000 

On conventional shared memory multiprocessors, 

which provide a single monolithic shared memory 

system to the programmer, a great deal of effort 

does not have to be expended to restructure a se­

rial code to exploit data locality in order to closely 

approach the performance limits of the machine. 

This situation is characteristic of the shared mem­

ory machines manufactured by Cray Research, 

Alliant, Convex, and Sequent. There is perhaps 

the slight exception of those systems that employ 

coherent caches in an attempt to insulate an in­

adequate shared memory system from the de­

mands of the processors. 

Massively parallel systems, on the other hand, 

can have a rather complex structure, which in­

cludes local memory, finely interleaved shared 

memory scattered across the processor boards, 

and shared memory, which all processors can ac­

cess but which remains on a given processor 

board as the physical address is incremented. We 

call this last form of shared memory block shared 

memory, for lack of a better term. Block shared 

memory has the characteristic that the processsor 

on the same card as the memory accesses it with­

out going through the interconnection network. 

The other processors access this memory through 

the interconnection network and face latency and 

contention problems in order to gain access. Ma­

chines with this complex memory structure have 

the advantage of being scalable to very high pro­

cessor counts, but the programmer pays for this 

advantage with a much more demanding coding 

effort being required to obtain a reasonable frac­

tion of the performance capability offered by the 

architecture. 

On the BBN TC2000, accesses through the net­

work have priority over local memory references. 

We have exploited this feature in the supplied 

PCP synchronization constructs by arranging that 

a processor that is busy polling does so in a mem­

ory location residing in the on-card block shared 

memory. This has been done in the barrier syn­

chronization algorithm, the most heavily used 

synchronization operation. Doing this is a simple 

matter of allocating the barrier data structure used 

to control the progress of the processors in appro­

priate segments of block shared memory. For 

locks, the data structure representing the state of 

the lock resides in interleaved shared memory, but 

a linked list of pointers to locations in block 

shared memory can be used to control processors 

that are waiting for the lock. This is referred to as a 
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queueing lock [ 1 0] . Using a lock data structure 

of this sort, users again arrange that busy polling 

is done in the on-card block shared memory at low 

priority on the BBN TC2000 so that the progress 

of processors accessing this memory through the 

switch in the course of performing real work is not 

retarded. We have not implemented queueing 

locks, as application codes have typically used 

locks in a way that avoids contention. 

As if having to deal with local, interleaved 

shared, and block shared memory is not compli­

cated enough, the performance of the network 

used to support memory references between pro­

cessors can be highly dependent on how the run 

time communication pattems clash with the to­

pology of the network. If the interconnection net­

work is a 2-D mesh, for instance, a remote mem­

ory reference to a neighboring processor is 

accomplished with a much lower latency and 

higher bandwidth than a remote memory refer­

ence to a random processor in the machine. For­

tunately, we have not had to face this problem on 

the BBN TC2000 as the latency and bandwidth of 

the interconnection network used in this architec­

ture are rather independent of the source and des­

tination addresses for memory traffic flowing 

through the network. 

The BBN TC2000 [11 J is a scalable multipro­

cessor architecture that can support up to 512 

Motorola 88100 RISC microprocessors running at 

20 MHz. The processors, with their 16 megabyte 

memories, are interconnected to each other in a 

PE-to-PE model using a variant of a multistage 

cube network [12], which BBN refers to as the 

"butterfly switch." The BBN TC2000 supports 

local memory, block shared memory wherein suc­

cessive cache lines reside on one processor card, 

and interleaved shared memory wherein succes­

sive cache lines are placed on successive cards 

and wrap around the machine. The aggregate 

bandwidth to interleaved shared memory scales 

linearly with the number of processor cards con­

tributing to this memory pool. 

The contribution of each node to the inter­

leaved shared memory pool is made at boot time, 

set via device registers in the interface to the 

switch that connects the processors. Any number 

of processors can be configured to contribute to 

the interleaved shared memory pool and it is use­

ful and convenient to set the number of contribut­

ing processors to a prime number to avoid band­

width reductions when accessing arrays in a 

strided manner. The rest of the memory in each 

node can be used for either local memory or block 
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shared memory. The division between these two 

memory types is enforced by the memory manage­

ment unit attached to the processor and is set at 

the time an application is run using operating sys­

tem calls in a completely flexible way. 

On the BBN TC2000, the memory latency for a 

cache hit is 3 clocks, the latency for a cache miss 

to the local memory card is 8 clocks, and the la­

tency for a remote memory reference satisfied 

through the switch is 39 clocks. Cache hits are 

fully pipelined at a rate of one access per clock. 

Cache misses, or noncached accesses, cause the 

processor to stall until the request is satisfied. Be­

cause of the rather large performance penalty for 

accesses to interleaved shared memory compared 

to cache hits users are required to expend a con­

siderable amount of effort in localizing data struc­

tures if they are to achieve a substantial fraction of 

the performance potential of the machine. Using 

the current PCP facilities, users have typically 

managed the interleaved and local memories [13] 

to accomplish this. The use of block shared mem­

ory has usually been implicit, but critical, having 

been hidden in the provided synchronization con­

structs. Some users have gone further by using 

block shared memory directly for their own data 

structures, 14 but have found doing this to be tedi­

ous. 

8 DISCUSSION 

PCP was originally developed on shared memory 

systems with small processor counts to solve the 

code portability problem for parallel applications 

written in C for this class of machines. During this 

period, which in fact has not yet ended, each ven­

dor of a parallel machine developed and marketed 

its own parallel execution environment, which was 

incompatible with those of other vendors. The im­

plementation of PCP as a preprocessor, with a 

minimal amount of machine dependent run time 

support, was critical to being successful in achiev­

ing this goal. The split-join paradigm, an exten­

sion of the simple SPMD model [5], allows nested 

concurrency to be exploited while still preserving 

the simple preprocessor implementation and high 

efficiency. 

In the early days of using PCP on a 12-proces­

sor Sequent Balance or on an 8-processor Alliant 

FX/8, users did not have to concern themselves 

with exploiting data locality. Team splitting was 

used to improve the concurrency available and 

was used to reduce overhead by reducing the cost 

of a barrier within a team. PCP was used to obtain 

rather efficient execution on shared memory 

multiprocessors [ 15], but users had to be very 

careful about the quantization error involved 

when splitting a team of a few processors in size 

and this tended to restrict the use of team splitting 

to the trivial case of binary splits of an even num­

ber of processors for two equally sized subtasks. 

With the BBN TC2000, we have up to 128 pro­

cessors available* and the quantization error for 

team splitting is an order of magnitude smaller. 

This allows much more accurate matching of the 

team size to the work involved for the sub tasks. 

The sheer number of processors available begins 

to support deeply nested team splitting. With the 

earlier shared memory systems possessing only a 

few processors, a programmer could essentially 

enumerate the task for each processor individually 

and keep track of them. With hundreds or more 

processors, the programmer ceases to think of in­

dividual processors and begins to think of teams 

as abstract aggregates of processors. 

PCP provides no frills for the programmer. No 

attempt is made to automatically parallelize serial 

code, and in particular, data dependence analysis 

is entirely up to the user. If users write code that 

allows a race condition, they are likely to get bitten 

by it sooner or later. Adding data dependence 

analysis to aid the user in spotting the rather trivial 

race conditions that often bite would be useful, 

and is most certainly technically possible, but 

would require a compiler development that is en­

tirely beyond the scope of the effort to date. 

PCP, in its current form, only offers easy man­

agement of data structures in private and inter­

leaved shared memory. Users must allocate and 

manage data structures in block shared memory 

by hand, and as reported, this is profitable but 

very tedious [ 14]. Data distribution models sup­

porting data parallel computation, which have re­

cently been a very popular research area [16], 

provide a means of exploiting data structures 

allocated in block shared memory. We are devel­

oping such a programming model as a high level 

layer on top of our Fortran implementation of the 

split-join programming model, PFP. This will 

hopefully provide the ease of programming that 

Fortran 90 offers for array operations, while 

maintaining an efficient escape to the PFP split­

join programming model for everything else. The 

*The largest BBN TC2000 delivered to date is the 128 

processor machine at Lawrence Livermore National Labora­

tory. 



resulting Parallel Data Distribution Preprocessor 

(PDDP) is expected to be useful on the BBN 

TC2000, and will likely be even more useful on 

future machines of this general architectural class 

employing substantially faster processors. The la­

tency of communication networks is not improving 

at the same rate as the speeds of microprocessors 

and this will make the successful exploitation of 

data locality even more important in the future. 
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