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Abstract. QUESO is a collection of statistical algorithms and program-
ming constructs supporting research into the uncertainty quantification
(UQ) of models and their predictions. It has been designed with three
objectives: it should (a) be sufficiently abstract in order to handle a large
spectrum of models, (b) be algorithmically extensible, allowing an easy
insertion of new and improved algorithms, and (c) take advantage of
parallel computing, in order to handle realistic models. Such objectives
demand a combination of an object-oriented design with robust software
engineering practices. QUESO is written in C++, uses MPI, and lever-
ages libraries already available to the scientific community. We describe
some UQ concepts, present QUESO, and list planned enhancements.
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1 Introduction

QUESO stands for Quantification of Uncertainty for Estimation, Simulation
and Optimization, and it is a library of statistical algorithms and programming
classes for research on uncertainty quantification (UQ) of mathematical models
and their predictions. We have three main objectives for QUESO. It should (a)
be model agnostic, i.e., it should be able to handle a large spectrum of models;
(b) be algorithmically flexible, allowing for easy insertion of new and improved
algorithms; and (c) take advantage of parallel computing, enabling it to be used
on realistic problems. Its design then follows three main principles. The library
should (d) be object-oriented, naturally mapping into the code the mathematical
concepts present in the models and algorithms; (e) leverage existing libraries and
packages (e.g. GSL [7], Trilinos [10], PETSc [17], DAKOTA [6]); and (f) have
its algorithms implemented in a way such that they become independent of the
underlying vectors and matrices. Our decision to implement QUESO with the
object oriented programming language C++ and with the message passing in-
terface (MPI) standard is consistent with such objectives and principles. Class
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derivation, polymorphism and templating give QUESO the desired levels of ab-
stractness and adaptability, allowing researchers to concentrate their efforts on
algorithms rather than spending time on the details of underlying datatypes.

In Section 2 we present some concepts and algorithms supported by QUESO,
paving the path for the description, in Section 3, of QUESO’s main features and
classes. We conclude with a list of planned enhancements in Section 4. Through-
out the paper we use boldface letters to denote vector and matrix quantities.

2 Stochastic Models and Algorithms

In order to comprehend an actual phenomenon and to predict the future behavior
of the actual system underlying it, one needs to (a) collect experimental data d,
and (b) construct a computational model, which refers to the combination of a
mathematical model with a discretization procedure that enables one to compute
an approximate solution using computer algorithms. At its core, a computational
model (see Figure 1) is composed of two parts: a vector θ of n parameters, and
a set of governing equations r(θ,u) = 0, whose solution u represents the state
variables, or model state. By parameters we designate various concepts, e.g.,

Fig. 1. Computational model: parameters θ, state u, equations r, output y, QoIs q

material properties, coefficients, constitutive parameters, boundary and initial
conditions, external forces, parameters for describing the model inadequacy and
characteristics of an experimental apparatus. The computational model includes
functions for the calculation of model output data y = y(θ,u), and the prediction
of a vector q = q(θ,u) of m quantities of interest (QoIs). Model output data is
compared against experimental data during a model calibration, while QoIs are
predicted during a model prediction and might not be directly measurable.

There are many possible sources of uncertainty on procedures (a) and (b)
above. First, d need not be equal to the actual values of observables because of
errors in the measurement process. Second, the values of the input parameters
to the phenomenon might not be precisely known. Third, the appropriate set of
equations governing the phenomenon might not be well understood.

In deterministic models, all parameters are assigned numbers, and no param-
eter is related to the parametrization of a random variable (RV) or field. As a
consequence, a deterministic model assigns a number to each of the components
of quantities u, y and q. In stochastic models, however, at least one parameter is
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assigned a probability density function (PDF) or is related to the parametriza-
tion of a RV or field, causing u, y and q to become random. Parameters that are
not directly measurable need to be estimated through the solution of an inverse
problem (IP) [12,14], where d is given and one estimates the values of θ that
cause y to best fit d. A computational model might also be used in a forward
problem (FP), where θ is given and one computes u, y and/or q.

QUESO supports a Bayesian approach [11,16], i.e., the posterior PDF

πpost(θ|d,M) =
πlike(d|θ,M) · πprior(θ|M)

π(d|M)
(1)

is the solution of statistical IPs, combining the prior information πprior(θ|M)
about the parameters with the likelihood πlike(d|θ,M) of observing the data
d given parameter values θ. The letter M designates a model class [2,4,5] and
represents all the assumptions and mathematical statements that are involved
in the modeling of the system. The choice of a particular θ ∈ R

n specifies a
particular model in the set M of models. The denominator

π(d|M) =

∫
πlike(d|θ,M) · πprior(θ|M) dθ (2)

is called the evidence [3] for M provided by d, and it can be used for ranking
competing candidate model classes that reflect different modeling choices. Given
M , d, and a conditional PDF π(q|θ,d,Mj) of q, the predictive PDF of q is [2]

πpredicted(q|d,M) =

∫
π(q|θ,d,M) · πpost(θ|d,M) dθ. (3)

Stochastic algorithms are used to generate samples from (1). Metropolis Hastings
(MH) [13,9] is one of them. Given (a) the target PDF πtarget : B ⊂ R

n → R+, up
to a multiplicative constant, (b) the number npos � 2 of positions in the chain,

(c) an initial guess θ(0) ∈ R
n, and (d) a symmetric positive definite proposal

covariance matrix C ∈ R
n×n. MH runs as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

01. Do {
02. Generate candidate z ∈ R

n by sampling from q(θ(k), z);

03. If z /∈ supp(πtarget) then θ(k+1) = θ(k);
04. If z ∈ supp(πtarget) then {
05. Compute acceptance probability α(θ(k), z);
06. Generate sample 0 < τ � 1 from uniform RV defined over (0, 1];

07. If α � τ then θ(k+1) = z; else θ(k+1) = θ(k);
09. }
10. Set k = k + 1;
11. } while (k + 1 < npos),

where q : Rn × R
n → R+ is a proposal distribution [8,12], e.g.

q(x,y) ∝ e
− 1

2

{
[y − x]T · [C]−1 · [y − x]

}
,

supp(·) denotes the support of a function, and
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α(θ(k), z) =
πtarget(z)

πtarget(θ
(k))

· q(z, θ
(k))

q(θ(k), z)
.

A sample z is given by θ(k) +C1/2N (0, I), where N (0, I) designates a Gaussian
RV of zero mean and unit covariance matrix. MH can be improved in different
ways, e.g. delayed rejection adaptive Metropolis [8] and stochastic Newton.

Stochastic algorithms are also needed to compute high dimensional integrals
like (2). One example is the adaptive multilevel sampling [4] that simultaneously
generates samples and computes (2) through a sequence of intermediate PDFs

πi(θ|d,M) ∝ πlike(d|θ,M)αi · πprior(θ|M), i = 0, 1, . . . , L,

where 0 = α0 < α1 < . . . < αL−1 < αL = 1 are adaptively selected exponents.
A load balanced parallel version is proposed in [15].

Many other statistical calculations are also important, e.g. Monte Carlo (MC)
for (3), autocorrelation, kernel density estimations, and accuracy assessment.

3 The QUESO Design and Implementation

Section 2 identified many mathematical entities present in the description of
statistical problems and in some algorithms used for their solution. As part of
the design, QUESO attempts to conceptually implement these entities in order
to allow algorithmic researchers to manipulate them at the library level, as well
as for algorithm users (the modelers interested in UQ) to manipulate them at
the application level. Examples of entities are vector space R

n; vector subset
B ⊂ R

n; vector θ ∈ B; matrix C ∈ R
n × R

n; function π : R
n → R+, e.g.

joint PDF; function π : R → R+, e.g. marginal PDF; function π : R → [0, 1],
e.g. cumulative distribution function; realizer function; function q : Rn → R

m;
sequences of scalars; and sequences of vectors. QUESO tries to naturally map
such entities through an object-oriented design. Indeed, QUESO C++ classes
include vector spaces, subsets, scalar sequences, PDFs, and RVs.

An application using QUESO will fall into three categories: a statistical IP, a
statistical FP, or combinations of both. In each problem the user might deal with
up to five vectors of potentially very different sizes: parameters θ, state u, output
y, data d and QoIs q. Figure 2 shows the software stack of a typical application
that uses QUESO. Even though QUESO deals directly with θ and q only, it is
usually the case the one of the other three vectors (u, y and d) will have the
biggest number of components and will therefore dictate the size of the minimum
parallel environment to be used in a problem. So, for example, even though one
processor might be sufficient for handling θ, y, d and q, eight processors at
least might be necessary to solve for u. QUESO currently only requires that the
amounts n and m can be handled by the memory available to one processor,
which allows the analysis of problems with thousands of parameters and QoIs,
a large amount even for state of the art UQ algorithms.
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Fig. 2. An application software stack. QUESO requires the input of a likelihood routine
πlike : R

n → R+ for IPs and of a QoI routine q : Rn → R
m for FPs. These application

level routines provide the bridge between the statistical algorithms in QUESO, physics
knowledge in the model library, and relevant calibration and validation data.

QUESO currently supports three modes of parallel execution: an applica-
tion user may simultaneously run (a) multiple instances of a problem where the
physical model requires a single processor, or (b) multiple instances of a prob-
lem where the physical model requires multiple processors, or (c) independent
sets of types (a) and (b). For example, suppose an user wants to use the MH
algorithm to solve a statistical IP, and that 1,024 processors are available. If the
physical model is simple enough to be handled efficiently by a single processor,
then the user can run 1,024 chains simultaneously, as in case (a). If the model is
more complex and requires, say, 16 processors, then the user can run 64 chains
simultaneously, as in case (b), with 16 processors per chain. QUESO treats this
situation by using only 1 of the 16 processors to handle the chain. When a
likelihood evaluation is required, all 16 processors call the likelihood routine si-
multaneously. Once the likelihood returns its value, QUESO puts 15 processors
into idle state until the routine is called again or the chain completes. Case (c)
is useful, for instance, in the case of a computational procedure involving two
models, where a group of processors can be split into two groups, each handling
one model. Once the two model analysis end, the combined model can use the
full set of processors. The parallel capabilities of QUESO have been exercised
on the Ranger system of the TACC [18] with up to 1,024 processors [5].

Classes in QUESO can be divided in four main groups:

– core: environment (and options), vector, matrix;
– templated basic: vector sets (and subsets, vector spaces), scalar function,

vector function, scalar sequence, vector sequence;
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– templated statistical: vector realizer, vector RV, statistical IP (and options),
MH solver (and options), statistical FP (and options), MC solver (and op-
tions), sequence statistical options; and

– miscellaneous: C and FORTRAN interfaces.

The templated basic classes are necessary for the definition and description of
other entities, such as RVs, Bayesian solutions of IPs, sampling algorithms and
chains. In the following we briefly explain 10 QUESO classes.

Environment Class: This class sets up the environment underlying the use of
the QUESO library by an executable. The constructor of the environment class
requires a communicator, the name of an options input file, and the eventual
prefix of the environment in order for the proper options to be read (multiple
environments can coexist, as explained further below). The environment class
(a) assigns rank numbers, other than the world rank, to nodes participating in
a parallel job, (b) provides MPI communicators for generating a sequence of
vectors in a distributed way, (c) provides functionality to read options from the
options input file (whose name is passed in the constructor of this environment
class), (d) opens output files for messages that would otherwise be written to
the screen (one output file per allowed rank is opened and allowed ranks can be
specified through the options input file).

Let S � 1 be the number of problems a QUESO environment will be han-
dling at the same time, in parallel. S has default value of 1 and is an op-
tion read by QUESO from the input file provided by the user. The QUESO
environment class manages five types of communicators, referred to as world
(MPI WORLD COMM); full (communicator passed to the environment con-
structor, of size F and usually equal to the world communicator); sub (commu-
nicator of size F/S that contains the number of MPI nodes necessary to solve a
statistical IP or a statistical FP); self (MPI SELF COMM, of size 1); and inter0
(communicator of size S formed by all MPI nodes that have subrank 0 in their
respective subcommunicators).

A subenvironment in QUESO is the smallest collection of processors necessary
for the proper run of the model code. An environment in QUESO is the collec-
tion of all subenvironments, if there is more than one subenvironment. So, for
instance, if the model code requires 16 processors to run and the user decides to
run 64 Markov chains in parallel, then the environment will consist of a total of
F = 1024 processors and S = 64 subenvironments, each subenvironment with
F/S = 16 processors. Any given computing node in a QUESO run has poten-
tially five different ranks. Each subenvironment is assigned a subid varying from
0 (zero) to S − 1, and is able to handle a statistical IP and/or a statistical FP.
That is, each subenvironment is able to handle a sub Markov chain (a sequence)
of vectors and/or a sub MC sequence of output vectors. The sub sequences form
an unified sequence in a distributed way. QUESO takes care of the unification
of results for the application programming and for output files.
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Vector Set Class: The vector set class is fundamental for the proper handling
of many mathematical entities. Indeed, the definition of a scalar function like
π : B ⊂ R

n → R requires the specification of the domain B, which is a subset of
the vector space R

n, which is itself a set. The relationship among the classes set,
subset and vector space is sketched in Figure 3. An attribute of the subset class
is the vector space which it belongs to, and in fact a reference to a vector space is
required by the constructor of the subset class. The power of an object-oriented
design is clearly featured here. The intersection subset derived class is useful for
handling a posterior PDF (1), since its domain is the intersection of the domain
of the prior PDF with the domain of the likelihood function.

Fig. 3. The class diagram for vector set, vector subset and vector space classes

Scalar Function and Vector Function Classes: PDFs are examples of scalar
functions. QUESO currently supports basic PDFs such as uniform and Gaussian.
See Diagram 4. The definition of a vector function q : B ⊂ R

n → R
m requires

only the extra specification of the image vector space Rm.

Scalar Sequence and Vector Sequence Classes: The scalar sequence class
contemplates scalar samples generated by an algorithm, as well as operations
that can be done over them, e.g., calculation of means, variances, and conver-
gence indices. Similarly, the vector sequence class contemplates vector samples
and operations such as means, correlation matrices and covariance matrices.
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Fig. 4. The class diagram for the scalar function class

Vector Realizer Class: A realizer is an object that, simply put, contains a
realization() operation that returns a sample of a vector RV. QUESO currently
supports basic realizers such as uniform and Gaussian. It also contains a sequence
realizer class for storing samples of a MH algorithm, for instance.

Vector Random Variable Class: Vector RVs are expected to have two basic
functionalities: compute the value of its PDF at a point, and generate realizations
following such PDF. The joint PDF and vector realizer classes allow a straight-
forward definition and manipulation of vector RVs. QUESO currently supports
basic vector RVs such as uniform and Gaussian. A derived class called generic
vector RV allows QUESO to store the solution of an statistical IP: a Bayesian
joint PDF becomes the PDF of the posterior RV, while a sequence vector realizer
becomes the realizer of the same posterior RV. QUESO also allows users to form
new RVs through the concatenation of existing RVs.

Statistical Inverse and Forward Problem Classes: For QUESO, a statis-
tical IP has two input entities, a prior RV and a likelihood routine, and one
output entity, the posterior RV. Similarly, a statistical FP has two input en-
tities, an input RV and a QoI routine, and one output entity, the output RV.
QUESO differentiates the entities that allow us to define a problem from the en-
tities that allow us to solve it. Indeed, QUESO defines the MH and MC sequence
generator classes. The former expects the specification of a target distribution, a
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proposal covariance matrix, and the initial position in the chain, while the latter
expects the specification of an input RV, a QoI function, and an output RV. The
proper definition, by QUESO, of more basic entities allows an easy specification
of more complex entities such as statistical problems and solvers.

Software Engineering: We utilize various community tools to manage the
QUESO development cycle. Source code traceability is provided via subversion
and the GNU autotools suite is used to provide a portable, flexible build system,
with the standard configure; make; make check; make install steps. We
employ an active regression testing and utilize the BuildBot system in order to
have a continuous integration analysis of source code commits. We also utilize the
Redmine project management system, which provides a web-based mechanism
to manage milestone developments, issues, bugs, and source code changes.

4 Conclusions and Future Directions

High quality software is essential for developing, analyzing and scaling up new
UQ algorithmic ideas involving complex simulation codes running on HPC plat-
forms. QUESO helps researchers to quickly prototype new algorithms in a sophis-
ticated computational environment, rather than first coding and testing them
with a scripting language and only then recoding in a C++/MPI environment. It
also allows them to more naturally translate the mathematical language present
in algorithms to a concrete program in the library, and to concentrate their
efforts on algorithmic, load balancing and parallel scalability issues.

Planned features for QUESO include (a) convergence diagnostics and statisti-
cal accuracy assessments on the fly, for the optimization of computational effort,
(b) more basic distributions (e.g. log-normal), (c) Gaussian random fields, (d)
stochastic collocation algorithms [1], (e) parallel vectors for parameters and/or
QoIs, (f) graphical user interface, (g) real time interaction capabilities, and (h)
robustness (resiliency) w.r.t. node crashing, via the interaction with fault tol-
erant versions of MPI. Fault tolerance is critical for UQ methods due to their
greater computational requirements compared to single deterministic simula-
tions. Sampling algorithms, the current focus of QUESO, need themselves to
be fault tolerant, since they are the drivers, not any of the model simulations.
Also, they have the nice property of allowing statistical explorations to continue
even if a group of nodes fails. The more nodes are used, the smaller the potential
impact of a node failure in the overall sampling mechanism. Also, because check-
points deal with parameter vectors and QoIs, as opposed to full state vectors, it
becomes easier to handle a potential statistical bias due to a node failure.
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