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Abstract 

The parallel projection operators 
of a nonlinear feedback system’ 

John C‘. Doyle2, TI-yphon T. Georgiou3, Mulcolm C. Smith4 

property regarding the tolerance of plant and controller 
uncertainty. 

This paper defines and st<udies a pair of nonlinear parallel 
projection operators associated with a nonlinear feedback 
system. These operators have been seen to play an impor- 
tant role in the robustness and design of linear systems es- 
pecially i n  the theory of the gap metric, the use of weighted 
gaps in control system design and Glover-McFarlane loop- 
shaping. We report tlie following results which are estab- 
lished in the full version of the paper [4]. The input-output 
L?-stability of a feedback system is equivalent, to a “coor- 
dinatizatioii” of the input and output spaces, which is also 
equivalent. to the existence of a pair of nonlinear parallel 
projection operators onto tlie graph of the plant. and the 
inverse graph of the controller respect ivcly. These pro- 
jections have equal norms whrnever OIIC of tlie feetllmck 
elements is linear. A bound on this iiortii is giveii in tlie 
case of passive syst,ems wit 11 unity negat.ive feedhack. 

1 Introduction 

This paper is basecl on [4] ancl studies a pair of nonlinear 
parallel projection operators associated w i t h  a nonlinear 
feedhack system. The existence of these operators is guar- 
anteed by the input-output L? stability of tlic. fecdlmck 
system (Propositions 3, 4).  The niain result reported in 
the paper is that tlie projections have equal iiornis wlien- 
ever one of the feedback elcinents is linear (Proposition 
6). Tlris result was estal>lishcil for linear systems in [g] 
using coprime fraction techniques, ancl i n  [7] using opera- 
tor tlieoretic techniques, and shown to imply a symmetry 
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In t8he case of a stable linear feedback system in the form 
of Fig. 1 the relevant parallel projections are 

n1 = ( ; ) ( I - C P ) - l (  I -c ), (1) 

The quantity IIIIIII-~ (= 1111~11-1) is the stability margin 
for uncertainty of P measured either by the gap metric 
or by perturbat ions of the normalized coprime factors of 
P ([9], [12], [2R]). In addition, the elements of and 
II? consist of important closed-loop transfer functions, 
such as the sensitivity, complementary sensitivity, control 
weiglit,ing etc. w1io.se norms must be kept within reason- 
able bounds for good performance. The minimization (of 
a weight,ed version) of this measure has been exploited for 
controller design with various interpretations in [15], [13], 
[GI, 111. In [15] the weightsing procedure is related to the 
open-loop loop shape, while in [GI and [l] the emphasis is 
on closecl-loop trade-offs and uncert,ainty in the weighted 

gap. 

It is evidentJy int.erest,ing to study possible generalizations 
of (1) and (2), and associat,ed properties, to the nonlinear 
case. The approach taken here will make extensive use 
of Ihe graphs of the plant and controller. In the context 
of linear control systems the “graph viewpoint” became 
especially prevalent after the introduction of the gap met- 
ric [27] and the subsequent progress on issues of robust 
stabilization against graph perturbations (e.g. [24], [22], 
151, [23], [8], [12], and [O]), though the idea of studying 
systems via graph representations can be traced back as 
far as [21]. The graph viewpoint has been advanced in 
the cont.ext of noillinear systems for obtaining abstract 
representations of such systems for stability analysis and 
rohustness studies i n  [18] and [20]. An earlier relevant ref- 
erence where a functional tlieoretic framework for studying 
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Figure 1: St.andard feedback configuration. Figure 2: Standard feedback configuration-external in- 
puts in  plant graph. 

ity, coprime factorizations ant1 tlie gap metric include [21, 
[7], [ l l ] ,  [lG], [17], [19]. [25], [%I. 

32 + Q o b  Y 
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nonlinear operators satisfying PO = O antl CO = 0. Let 
the feedback confierirat.ion be stable. namelv. let arbitraw 

Figure 3: Standard feedback configuration-external in- 

Before we forinally tlcfine a noillinear parallel projt,ction 
we will show, using block diagrains, how t liese operators 

" puts in cont,roller graph. 
L? signals d l  and d:, give rise to unique L? signals 111, U ? ,  

y1 and y?. Now define the operat,ors 

arise, and highlight some of their propertics. Considw the 
lJ2 

tliroughout t.liat 0 E Vp and also that PO = 0. The class 

( :: ) = ( ) 1 

n, ( d l  (1, ) = ( 711 " ) . of all such systems will  be denot,ed by P u , ~ .  

c 

(3)  The graph of a given system P E PLPL(,Y is the nonlinear 
i n  ani fol d We first, note from the fcetllxicl; equations {lint 

n1+ n, = I. 

I t  is also true that  
n; = n, 

for i = 1 . 2 .  To sec this olmrvc ,  t h a t  if  ( 1 1 ,  U , ,  yl and 
are any L z  signals satisfying y1 = P u l  and yr, = Cu, then 
the feedhack equations are uniciridy solved with external 

2 Notation 

Gp := ( ; ) Dp cz, x y =: c. 

A system P E P ~ p y  is said to be stable if Vp = U ,  and 
f in i te -gain  ('g) stable if P is stable and 

is finite. 

Consider the feedback configuration of Fig. 1 where the 
p l a n /  P E P L { , ~  and the confroller C E P y & .  This config- 
uration, hereby dcnoted by [P, C], gives a pictorial repre- 
sentat.ion to t,lir following set of equations: 

111 = dl  - Cug 

We consider a general nonlinear systeiii t,o be a (possibly U ?  = - P u ~  +dz .  

unbounded) operat.or P : D p  c 24 - y wlicre the dotnain 
D p  c Z.4 := Lg1[0,00) antl y := Cg[O,m). Throughout, 

Define the (nonlinear) mapping 

t,he underlying spaces will be assumed to Be real. For any 
11 E T+ we dmote by P u  thr action of P 011 1 1 .  if'<> assuiiie 

F p , c  : D p x D c  - L : 
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The interconnection [PI C] is said to be stable if F p , c  
has a stable inverse, i.e., FptC E P C J .  Similarly, [PI C] 
is said to he fg-stable if tlie corresponding propery is true 
for Fi,!C. 

3 Nonlinear parallel projections 

In t.llis sectmion we will present t,he main results of the pa- 
per. We first introduce the notion of coordiirafirafion of a 
space. This is a generalization of the idea of a direct sun1 
decomposition to the case of nonlinear manifolds. Propo- 
sition 4 states that a feedback syst,em is stable if and only 
if the graph of the plant and the inverse graph of tlie con- 
troller define a coordinatization of tlie product space of in- 
puts and outputs. We present a general notion of (nonlin- 
ear) parallel projection (Definit.ion 2) which formalizes the 
propert,ies of the operat80rs and n? giveii in section 1 
equat,ion (3). Proposition 3 stat.cs t.lia.t, in general, t.lie es- 
istence of a coorclina.t,izat.ion is equivalent, t,o tlie esist,encc 
of cert,ain canonical parallcl projections. For a. st,ablc feetl- 
back system these projections are the operators and 
II? of equation (3). These projections have equal norins 
whenever one of tlie feedback elements is linear (Propo- 
sition G). A bound on this norm is presented for passive 
systems with unit,y negative fccdI)ack i n  Proposition 7. 

Let. M , J ~  he two (nonlinear) submanifolcls of a given lin- 
ear space L which include the origin. Typically, C = 
c ~ + ~ [ o , o o )  = ZI x y .  fIowevcr, for inucli of t8he discus- 
sion in t<liis section C can he talicii to he any (real) Hilbert 
space. 

Definition 1. The pair ( M , N )  is said to induce a coor- 
diiicitiratioii of L if 

(a) C = M + N .  

The following proposition gives alternate expressions for 
the second of the above conditions. 

Proposition 1. Given M , N  C C, with M n N  3 {0}, 
the following statements are equivalent to Dcfinit,ion I & ) :  

~ 
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Proof. See [4]. 0 

I t  is immediate to see that in case M , N  are linear mani- 
folds, then condition (b) is equivalent to M n N = (0). 

Defiiiition 2. A stable operator II : L + L (with XI0 = 
0) is said to be a parallel projection if for any x1,xZ E 
C, n(nti + (IC - n)xz) = IIE~, where It denotes the 
identity on IC. 

The condition given above requires a "distributivity" of 
ll with respect to the additive decomposition 1: = + 
( I C  - n)c. 
Proposition 2. If n is a parallel projection then 

(a) nII = n. 

(c) n(If - n) = 0 .  

(d) IC - is a parallel projection. 

Proof. Condit.ions (a) and (c) follow from the definition 
of a parallel projection when we set 22 = 0 and x1 = 0 
respectively. Clearly (b) is equivalent to (a). The following 
computation establishes (d). 

Proposition 3. If  Il is a parallel projection and M := 
nC, N := (If - n)C, then M , N  induce a coordina- 
tization of C. Conversely, if the manifolds M , N  c C 
induce a coordinat,ization of C, then the canonical map- 
pings IIMiinl : x - 8~ and ~ N I ~ M  : E + EN, where 
z = Z M  + x : ~ ,  with X M  E M and ZN E n/, define parallel 
projections. 

Proof. (+). Any z E C can be written as x = X M  + EN 
with Z M  = I Ir  E M and E N  = (IC - n)z E N .  If 
x = a$,, + x k  was any other such representation, then 
Z M  = II(zL + .r;%r) = EL.  Hence, XN = xk as well. 
(e=). Since ~ M ~ I N ( Z M  + EN) = Z M  for any E M  E M 
and E N  EN,  IIM~~N is a parallel projection. o 

In the notation of the proposition given above, I I M ~ ~ N  is 
called ih,e parallel projection onto M along N .  Similarly 

for n N l l M .  



Before goirig on to the main result of the section we ret,urn 
to t.he feedhack itit,erconnection of Fig. 1. Let. GP be the 
graph of t.he plant, P and let 

G + (  ; ) D c  

be the inverse grapli of the controller. The following result 
relates stability with the idea of coordinatization. We re- 
mark t,hat, related results for nonlinear st abilit,y have been 
obtained in [20] (cf. [20, Proposition 4.21). 

Propos i t ion  4. The feedback interconnection [P, C] is 
stable if  and only if Gp, G& induce a coordinatization of 
c = U  x y .  

Proof .  See [d]. 

Propositions 3 and 4 togetlter show that a st.able fwclback 
configuration induces a pair of canonical parallrl projec- 
tions in the sense of Definition 2 These are precisely the 
operators I I 1  and II, clefitled i n  the Introduction i n  ( 3 ) .  
However it should be noted that the expressions given i n  
(1)  and  (2) are not valid it1 the tionlinear case. An alter- 
nate espression for IIl  wlticli is valid in the nonlincw case 
is as follows (see [4]): 

where 

A sitiiilar espressioit is availal)le for II?. 'The r<>liltiotl (1) 
shows that propertics of the fc.ctlI)ack system (equivalently, 
of the inpiit-to-error operator F i l C )  directly rclate to 
analogous statements in terms of rither of tlie two re]- 
evant. parallel projcctions. We siiinmarize l~elow such a 
conclusion pertaining to the fg-stability of tlie fe rd lxd  
syst.em. 

Propos i t ion  5.  Let the  fectll)ack int.erconnection [P, C] 
be stable, M := Gp, and Af := &?k. Tlicw, [P, C] is 
fg-stable i f  and only if II,Mll,u is fg-stable. 

Proof .  Follows froin (4)  and t.lrc3 definibiolt of fg-st.ahi1it.y. 
0 

In  the context of linear systems the norm of the parallel 
projections has been related to the robustness of stability 
of the feedback system. In fact, in the linear case, the 
norm of t h e  two parallel projectiotts n,Mll,v and I I N ~ ~ M  

are identical (see [9], [$I). The filial result i n  this paper 

~ 
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reports this fact for the case when at least one of the M ,  
nl is a linear manifold (and the other possibly nonlinear). 
(The application t.o feedback systems takes P E P u , ~ ,  
C E Py,u with [P, C]  stable and M := + , N  := Gk 
as before, witch either P or C a linear system.) 

Proposition 6 .  Let M ,  N be a coordinatization of C and 
suppose that I I M l l ~  is fg-stable. If M is a linear manifold 
then 

IlnMllNll = IInNllMII. 

Proof .  See [4]. 0 

The proof given iu [4] is reminiscent of a proof given in 
[14] to show that the norm of two complementary parallel 
projections are equal in the linear case. However, the pre- 
cise argument i n  [I41 translated to the case above fails in 
case one of the manifolds is nonlinear. At present we do 
not, know whether for arbitrary manifolds M ,  N ,  which 
coordiriat,ize L, the two projections have equal norm, i.e., 
wliet,lier for no~izero Z M  XN 

We conclude with an example discussed in [3]. 

Proposi t ioi i  7. Let, P E Prl,y a stable plant with 
(Pu, U) 2 0 for all U E U (i.e., a passive system), C = -I, 
M = Gp , and N = G&. Then, 

(a) [PI C] is fg-stable, and 

Proof .  With dl , d?,  '111, U?, y1, y? as in  Fig. 1, we calculate 

Therefore, 

and the result follows from Proposition 6 since C is a linear 
system. 0 
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