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The parallel projection operators

of a nonlinear feedback system!

John C. Doyle?, Tryphon T. Georgiou®, Malcolm C. Smith?

Abstract

This paper defines and studies a pair of nonlinear parallel
projection operators associated with a nonlinear feedback
system. These operators have been seen to play an impor-
tant role in the robustness and design of linear systems es-
pecially in the theory of the gap metric, the use of weighted
gaps in control system design and Glover-McFarlane loop-
shaping. We report the following results which are estab-
lished in the full version of the paper [4]. The input-output
Lo-stability of a feedback system is equivalent to a “coor-
dinatization” of the input and output spaces, which is also
equivalent to the existence of a pair of nonlinear parallel
projection operators onto the graph of the plant and the
inverse graph of the controller respectively. These pro-
jections have equal norms whenever one of the feedback
elements is linear. A bound on this norm is given in the

case of passive systems with unity negative feedback.

1 Introduction

This paper is based on {4] and studies a pair of nonlinear
parallel projection operators associated with a nonlinear
feedback system. The existence of these operators is guar-
anteed by the input-output La stability of the feedback
system (Propositions 3, 4). The main result reported in
the paper is that the projections have equal norms when-
ever one of the feedback elements is linear (Proposition
6). This result was established for linear systems in [9)
using coprime fraction techniques, and in [7] using opera-

tor theoretic techniques, and shown to imply a symmetry
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property regarding the tolerance of plant and controller
uncertainty.

In the case of a stable linear feedback system in the form
of Fig. 1 the relevant parallel projections are

n, = (II))(I—CP)“( 1 -C), 8))
I, = (f)(I—PC)—l( -P 1) (2)

The quantity [|TT;||=! (= |[TI2||~?) is the stability margin
for uncertainty of P measured either by the gap metric
or by perturbations of the normalized coprime factors of
P ([9], [12], [23]). In addition, the elements of II, and
II, consist of important closed-loop transfer functions,
such as the sensitivity, complementary sensitivity, control
weighting etc. whose norms must be kept within reason-
able bounds for good performance. The minimization (of
a weighted version) of this measure has been exploited for
controller design with various interpretations in [15}, [13],
[6], [1]. In [15] the weighting procedure is related to the
open-loop loop shape, while in [6] and [1] the emphasis is
on closed-loop trade-offs and uncertainty in the weighted
gap.

It is evidently interesting to study possible generalizations
of (1) and (2), and associated properties, to the nonlinear
case. The approach taken here will make extensive use
of the graphs of the plant and controller. In the context
of linear control systems the “graph viewpoint” became
especially prevalent after the introduction of the gap met-
ric [27] and the subsequent progress on issues of robust
stabilization against graph perturbations (e.g. [24], [22],
{5}, {23], [8}, [12], and [9]), though the idea of studying
systems via graph representations can be traced back as
far as [21]. The graph viewpoint has been advanced in
the context of nonlinear systems for obtaining abstract
representations of such systems for stability analysis and
robustness studies in (18] and [20]. An earlier relevant ref-
erence where a functional theoretic framework for studying
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Figure 1: Standard feedback configuration.

stability of feedback systems was proposed is [26]. Recent
works on operator theoretic and geometric views of stabil-
ity, coprime factorizations and the gap metric include [2],

(7). [11), (16), [17), [19]. [25), [28].

Before we formally define a nonlinear parallel projection
we will show, using block diagrams, how these operators
arise, and highlight some of their properties. Consider the
feedback configuration of Fig. 1 where P and C are general
nonlinear operators satisfying P0 = 0 and C0 = 0. Let
the feedback configuration be stable, namely, let arbitrary
L4 signals d; and dy give rise to unique L signals uy, ua,

y1 and ya. Now define the operators

o dy _ up . d; — Y2
"\ d w )’ T\ dy s |

(3
We first note from the feedback equations that
m, +- =1
It is also true that
m? =11

for i = 1,2. To see this observe, that if uy, ua, y; and yo
are any La signals satisfying y; = Pu; and y» = Cus then
the feedback equations are uniquely solved with external
d uy di Y2
= and =
dy n da us

the feedback configurations of Fig. 2 and Fig. 3 respec-

inputs as in

tively.

2 Notation

We consider a general nonlinear system to be a (possibly
unbounded) operator P : Dp CU — Y where the domain
Dp C U := LP[0,00) and Y := L4[0, o). Throughout,
the underlying spaces will be assumed to be real. For any

u € Dp we denote by Pu the action of P on u. We assume

U + uy

C

Figure 2: Standard feedback configuration—external in-
puts in plant graph.

Y2 Ug

C T

Uz

Figure 3: Standard feedback configuration—external in-
puts in controller graph.

throughout that 0 € Dp and also that PO = 0. The class
of all such systems will be denoted by Py y.

The graph of a given system P € Py y is the nonlinear
manifold

gP;:(II”)‘ )'DPCllxyz:C.

A system P € Py y is said to be stable if Dp = U, and
finite-gain (fg) stable if P is stable and

[Pz
(1=l

IP[|:= sup
0£rell

is finite.

Consider the feedback configuration of Fig. 1 where the
plant P € Py y and the controller C € Py y. This config-
uration, hereby denoted by [P, C], gives a pictorial repre-
sentation to the following set of equations:

d1 - CUQ

—Puy + ds.

U =

Un =

Define the (nonlinear) mapping

Uy d I C u
FP,C :'DP XDC — E N (Uq) — (di) :( 1;" I )(u;)
= = P
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The interconnection [P, C] is said to be stable if Fp ¢
has a stable inverse, i.e., Fi;lc € Pz c. Similarly, [P, C]
is said to be fg-stable if the corresponding propery is true

-1
for FP.C'

3 Nonlinear parallel projections

In this section we will present the main results of the pa-
per. We first introduce the notion of coordinatization of a
space. This is a generalization of the idea of a direct sum
decomposition to the case of nonlinear manifolds. Propo-
sition 4 states that a fecdback system is stable if and only
if the graph of the plant and the inverse graph of the con-
troller define a coordinatization of the product space of in-
puts and outputs. We present a general notion of (nonlin-
ear) parallel projection (Definition 2) which formalizes the
properties of the operators IT; and II» given in section 1
equation (3). Proposition 3 states that, in general, the ex-
istence of a coordinatization is equivalent to the existence
of certain canonical parallel projections. For a stable feed-
back system these projections are the operators IT, and
II, of equation (3). These projections have equal norms
whenever one of the feedback elements is linear (Propo-
sition 6). A bound on this norm is presented for passive
systems with unity negative feedback in Proposition 7.

Let M, A be two (nonlinear) submanifolds of a given lin-
ear space £ which include the origin. Typically, £ =
C;_,"ﬂ’ [0,00) = U x Y. However, for much of the discus-
sion in this section £ can be taken to be any (real) Hilbert
space.

Definition 1. The pair (M, N) is said to induce a coor-
dinatization of L if
(a) L=M+N.
(b) zam + znr = 2y + 2y, with 2p, 2% € M and
Ty, €N, implies that za = 2 and zxr = 2y,
The following proposition gives alternate expressions for
the second of the above conditions.
Proposition 1. Given M, N C £, with M NN D {0},
the following statements are equivalent to Definition 1(b):
(by) For any z;,25 € M, with 2; # 24, {21 + N} N {zs +
N}=0.

(b2) For any z1,22 € N, with &y # wa, {z1 + M} {xa+
M} = 0.

Proof. See [4]. D

It is immediate to see that in case M, N are linear mani-
folds, then condition (b) is equivalent to M NN = {0}.

Definition 2. A stable operator II : £ — £ (with IT0 =
0) is said to be a parallel projection if for any zy,z3 €
L, I{(T1zy + (I — M)z2) = Ilx;, where I denotes the
identity on C.

The condition given above requires a “distributivity” of
IT with respect to the additive decomposition £ = IIL +
(I; —INL.

Proposition 2. If IT is a parallel projection then

(a) T = II.

(b) nlrange(l‘[) = Lange(Iy where rangell(= I1£) de-
notes the range of II.

(¢) (I, -I)=0.

(d) Iz — II is a parallel projection.

Proof. Conditions (a) and (c¢) follow from the definition
of a parallel projection when we set £, = 0 and z; = 0
respectively. Clearly (b) is equivalent to (a). The following
computation establishes (d).

(I¢ = IO)(IIzy + (I — M)za)

= Iley + (Ic — Mz — I(I1z; + (Ic — M)z2)
Mz, + (I¢ — Mzy — Nz,
(I; — I)z,.0

I

Proposition 3. If IT is a parallel projection and M :=
nc, N := (I — M)L, then M, N induce a coordina-
tization of £. Conversely, if the manifolds M\N C £
induce a coordinatization of £, then the canonical map-
pings Mapya : 2 — zam and My
z=zpm+2y, withzp € M and zx € N, define parallel
projections.

: ¢ — Tp, where

Proof. (=>). Any x € £ can be written as z = zpq + zx
with e2pq = MMr e Mandzy = Ic-Mz e V. If
r = zy, + =), was any other such representation, then
zam = M(2hy + 2%y) = 2y, Hence, zp = 2y, as well.
(«=). Since Hyga({zm + 2x) = za for any 2y € M
and zx € N, I pq v is a parallel projection. O

In the notation of the proposition given above, IT M|V s
called the parallel projection onto M elong A'. Similarly
for I yrjpm-
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Before going on to the main result of the section we return

to the feedback interconnection of Fig. 1. Let Gp be the
graph of the plant P and let

C
L .= D

he the inverse graph of the controller. The following result

[¢

<

relates stability with the idea of coordinatization. We re-
mark that related results for nonlinear stability have been
obtained in [20] (cf. [20, Proposition 4.2]).

Proposition 4. The feedback interconnection [P, C] is
stable if and only if Q’P,Gé induce a coordinatization of
L=UxD).

Proof. See {4]. O

Propositions 3 and 4 together show that a stable feedback
configuration induces a pair of canonical parallel projec-
tions in the sense of Definition 2. These are precisely the
operators II; and II. defined in the Introduction in (3).
However it should be noted that the expressions given in
(1) and (2) are not valid in the nonlinear case. An alter-
nate expression for ITy which is valid in the nonlinear case
is as follows (see [4]):

() 2)
dy v
where
(IUI> - Iﬂl 0] F_1 _ O 0 (d1>
¥ o -1, PC o1 dy)’
(4)
A similar expression is available for IT.. The relation (4)
shows that properties of the feedback system (equivalently,
of the input-to-error operator Ff,lc) directly relate to
analogous statements in terms of either of the two rel-
evant parallel projections. We summmarize below such a

conclusion pertaining to the fg-stability of the feedback

system.

Proposition 5. Let the feedback interconnection [P, C]
be stable, M := Gp, and N := (]6. Then, [P, C] is
fg-stable if and only if IT vy is fg-stable.

Proof. Follows from (4) and the definition of {g-stability.
a

In the context of linear systems the norm of the parallel
projections has been related to the robustness of stability
of the feedback system. In fact, in the linear case, the
norm of the two parallel projections Il s and I pm

are identical (see [9], [7]). The final result in this paper

reports this fact for the case when at least one of the M,
N is a linear manifold (and the other possibly nonlinear).
(The application to feedback systems takes P € Py y,
C € Pyy with [P, C] stable and M := Gp, N := G

as before, with either P or C a linear system.)

Proposition 6. Let M, A be a coordinatization of £ and
suppose that IT vy is fg-stable. If M is a linear manifold
then

M aqyarll = 1T arppaall-

Proof. See [4]. O

The proof given in [4] is reminiscent of a proof given in
[14] to show that the norm of two complementary parallel
projections are equal in the linear case. However, the pre-
cise argument in [14] translated to the case above fails in
case one of the manifolds is nonlinear. At present we do
not know whether for arbitrary manifolds M, N, which
coordinatize £, the two projections have equal norm, i.e.,

whether for nonzero z g, 25

wp el lzl

= p —_—
TMEM INEN [£pe + zall TMEMTNEN flzre + "'“‘JV“

We conclude with an example discussed in [3].

Proposition 7. Let P € Py y a stable plant with

(Pu,u) >0 for all u € U (i.e., a passive system), C = —I,
M=Gp,and N = (j&. Then,

(a) [P, C] is fg-stable, and

() IITLaqgarl] = Iy aall € V2.

Proof. With d;, d2, u1, u2,31,y2 as in Fig. 1, we calculate

|| +11dal?) > |ldy + dafi?
= lw +ull?
= luall® + s ll® + 2w, 1)
> el + sl
Therefore,
ol +

lldy 11 + llda]I?
and the result follows from Proposition 6 since C is a linear
system. O
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