
The parallel system for integrating impact models and sectors

(pSIMS)q

Joshua Elliott a,b,*, David Kelly a,b, James Chryssanthacopoulos c, Michael Glotter d,
Kanika Jhunjhnuwala e, Neil Best a, Michael Wilde a,b, Ian Foster a,b, f

aUniversity of Chicago Computation Institute, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
bArgonne National Laboratory Math & Comp. Science Division, Argonne, IL 60439, USA
cColumbia University Center for Climate Systems Research, 2880 Broadway, NY, NY 10025, USA
dUniversity of Chicago Department of Geophysical Sciences, 5734 S. Ellis Avenue, Chicago, IL 60637, USA
eNew Zealand Landcare Research, 231 Morrin Road, St Johns, Auckland 1072, New Zealand
fDepartment of Computer Science, University of Chicago, Chicago, IL 60637, USA

a r t i c l e i n f o

Article history:

Received 1 November 2013

Received in revised form

20 March 2014

Accepted 13 April 2014

Available online 22 May 2014

Keywords:

Climate change impacts, adaptation, and

vulnerabilities (VIA)

Parallel computing

Data processing and standardization

Crop modeling

Forestry modeling

Multi-model

Ensemble simulation

a b s t r a c t

We present a framework for massively parallel climate impact simulations: the parallel System for

Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and

converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for

translating this datatype into custom formats for site-based models; c) a scalable parallel framework for

performing large ensemble simulations, using any one of a number of different impacts models, on

clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting

outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these

datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By auto-

mating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS

accelerates computational research, encourages model intercomparison, and enhances reproducibility of

simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-

model, multi-scale, and multi-sector versatility.

� 2014 Elsevier Ltd. All rights reserved.

Software and data availability

The first open release of the source code is planned for 2014.

1. Introduction

Understanding the vulnerability of human society to climate

change is necessary for sound decision-making in climate policy.

However, the researchneeded tobuild thisunderstanding ishindered

by the fact that science and information products must be integrated

across vastly different spatial and temporal scales (Rosenzweig et al.,

2013). Biophysical responses to global change generally depend on

environmental (e.g., soil type), socioeconomic (e.g., farm and forest

management), and climatic factors that vary substantially over re-

gions. Global Gridded Biophysical Models (GGBMs) are designed to

capture spatial heterogeneity and simulate biophysical responses

(e.g., of crops and forests) to climate over large areas (Rosenzweig

et al., 2014; Elliott et al., 2014a). GGBMs derived from site-based

(“field-scale” or “stand-scale”) models (e.g., APSIM, DSSAT, and

CenW) estimate somemeasures of productivity (e.g., crop yield) from

local management, climate, and soil profiles that represent a single

field or stand. By running site-based models many times to simulate

behavior at different sitesdin some studies considered here, at 10s or

even 100s of thousands of sitesdGGBMs can provide information at

an unprecedented detail and scale. However, such studies require

high-resolution data concerning soil types, environmental condi-

tions, and management practices at many individual sites.

The primary obstacle to obtaining the data inputs necessary for

a comprehensive high-resolution assessment of climate impacts is

often not that data does not exist, but that the task of converting

this data into a usable form involves much effort and expertise.

Researchers must typically catalog, assimilate, test, and process

data from multiple sources with vastly different spatial and tem-

poral scales and extents. Each dataset may come in a different
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format and have a unique set of issues and quirks. The labor-

intensive and error-prone process of accessing, understanding,

scaling, and integrating such diverse data involves the creation of

what is, in effect, a custom data processing pipeline for every study.

A comparably complex set of transformations must often be per-

formed on simulation outputs to produce information products for

stakeholdersdincluding farmers, policy-makers, markets, and

agro-business interestsdthat operate at very different scales.

To address these challenges and facilitate access to high-

resolution climate impact modeling we have developed a suite of

tools, data, and models called the parallel System for Integrating

Impacts Models and Sectors (pSIMS). This system largely automates

the labor-intensive processes of creating and running data ingest

and transformation pipelines and allows researchers to use high-

performance computing to run simulations that extend over large

spatial extents, run for many growing seasons, or evaluate many

alternative management practices or other input configurations. In

so doing, pSIMS dramatically reduces the time and technical skills

required to investigate global change vulnerability, impacts and

potential adaptations. pSIMS is designed to support integration and

high-resolution application of any site-based climate impact model

that can be compiled in a Unix environment (with a focus on pri-

mary production: agriculture, livestock, and forestry). A variety of

existing and ongoing efforts have developed software frameworks

for parallel spatial simulations of a specific impact model on a

specific compute cluster (e.g., Bryan, 2013; Nichols et al., 2011; Vital

et al., 2013; Zhao et al., 2013, 2012). The open-source pSIMS

framework attempts to improve on these by adding features such

as multi-model versatility, system portability, and robust fault

tolerance.

In this paper we detail the pSIMS structure and methodology

(Sections 2e4); describe two example applications (Sections 5 and

6); and summarize features of the high-performance software and

computational architecture (Section 7). The pSIMS methodology

partitions the simulation process into four major stages: data ingest

and standardization (Section 2), campaign specification (Section 3),

campaign implementation (Section 4), and aggregation to arbitrary

decision-relevant scales (Fig. 1). pSIMS currently supports GGBMs

constructed from several site-based models: versions 4.0 and 4.5 of

the Decision Support System for Agrotechnology Transfer (DSSAT;

Jones et al., 2003; Hoogenboom et al., 2010), versions 7.4 and 7.5 of

the Agricultural Production Systems Simulator (APSIM; Keating

et al., 2003), and version 4.0 of the CenW forest growth simula-

tion model (Kirschbaum, 1999). We denote the pSIMS imple-

mentations of these models as parallel DSSAT (pDSSAT), parallel

APSIM (pAPSIM), and parallel CenW (pCenW), respectively.

To date, pSIMS has been used to conduct continental to global

scale simulation experiments ranging in resolution from 3 to 30

arcminutes on six crops (maize, wheat, soy, rice, sorghum, and

millet) and one tree species (pinus radiata) (e.g., Elliott et al. 2014a,b,

Elliott et al., 2013, Rosenzweig et al., 2014). We have used pSIMS to

conduct simulationswith dailyweather inputs fromover 40 distinct

data products including historical station observations, model

reanalysis-based data, global and regional climate model outputs,

and seasonal forecast model outputs, and for global and continental

scale simulations over both historical and future periods under

dozens of socio-economic scenarios including fixed present day

management and various potential climate adaptation pathways.

2. The pSIMS climate data input pipeline

The minimum weather data requirements for site-based crop

and climate impact models such as DSSAT, APSIM, and CenW are

typically:

� Daily maximum temperature (degrees C at 2 m above the

ground surface)

� Dailyminimum temperature (degrees C at 2m above the ground

surface)

� Daily average downward shortwave radiation flux (W/m2

measured at the ground surface)

� Total daily Precipitation (mm/day at the ground surface)

Some applications also require daily average wind speeds and a

measure of humidity (typically expressed as daily average dew-

point temperature or vapor pressure or the relative humidity

measured at the time of daily max temperature).

Thousands of observational datasets, model-based reanalyses,

and multi-decadal climate model simulation outputs at regional or

global scales are available to drive impact simulations (see for

example catalog and archive services such as Williams et al., 2009;

Rutledge et al., 2006). These datasets are typically stored in stan-

dard formats, with substantial standard metadata (Eaton et al.,

2010), and are frequently identified by a unique Digital Object

Identifier (DOI; Paskin, 2005), making provenance and tracking

feasible. Nevertheless, data must often be remapped before use due

to varying spatial scales (from a few kilometers to several degrees),

temporal resolutions (from an hour to a month), and map pro-

jections. For some use cases, one or another data product may be

demonstrably superior to all others, but often simulations are re-

run with multiple different inputs to obtain a clear understanding

of the range of outcomes and uncertainty. For these reasons, input

data sizes for high-resolution climate impact experiments can be

large and data processing and management can be challenging.

Daily time series of high-resolution climate data from observa-

tion, reanalysis, or model simulations provide natural inputs to crop

Fig. 1. Schematic of pSIMS workflow. 1) Data ingest from arbitrary file formats and datatypes. 2) Standardization reconstitutes each such dataset into one or more files in the

portable site-based .psims.nc format. 3) Specification of a set of weather, soil, and management files and one or more climate impact models from the code library (Section 3). 4)

Translation converts the selected .psims.nc file(s) into the custom file format(s) required by models (Section 4). 5) Simulation runs a separate simulation process per site, with Swift

used to manage execution on selected computer(s). 6) Output reformatting extracts model outputs (dozens or even hundreds of time-series variables from each run) from model-

specific custom output formats and translates them into a standard output format and then into compressed spatial NetCDF4 files (Section 4). 7) Aggregation masks and aggregates

output variables to specified decision-relevant regions and spatial or temporal scales (Section 4).
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and climate impact models. One common obstacle to the conve-

nient use of such data relates to file organization and structure.

Climate data is typically stored one or more variables at a time in

large spatial raster files that are segmented into annual, monthly, or

sometimes even daily or sub-daily time-slices, so that reading the

data for all grid points and a single time slice is straightforward.

Site-based impact models, on the other hand, typically require

custom datatypes that encode long time series of daily data for all

required variables at a single point. To create such a data file from

gridded weather data can require accessing hundreds or thousands

of spatial raster files, each of which must be read many times to

extract the time series for each point (Malik et al., 2011). To

ameliorate this challenge, we have defined a NetCDF-based data-

type for the pSIMS frameworkdidentified by a psims.nc exten-

siondand tools for translating existing archives to this format

(Fig. 2).

Each .psims.nc file represents a single grid cell or simulation site

within the study area. Its contents are one or more 1 �1 � T arrays,

one per variable, where T is the number of time stepsdan orga-

nization comparable to that often used for site-based weather

station data. The time coordinates of each array are explicit in the

definition of its dimensions, a strategy that facilitates near-real-

time updates from upstream sources (since new data can be

appended as it becomes available and the record of what has

already been ingested is self-contained within the file metadata).

The spatial coordinates of each array are also explicit in its di-

mensions, a strategy that facilitates downstream spatial merging.

Because a given file contains information about a single point

location, the longitude and latitude vectors used as array di-

mensions are of length one. In contrast, arrays containing forecast

variables have not one but two time dimensions: one for the time

when the forecast was made and the other for the time for which

the values are predicted. This use of two time dimensions makes it

possible to follow the evolution of a series of forecasts made over a

period of time for a particular future date, as for example when

forecasts of crop yields at a particular location are refined over time

as more information becomes available.

We adopt a standardized naming scheme and organization for

pSIMS input files that incorporates metadata about the (row, col)

tuple that denotes a file’s location in the global grid in both the file

name and directory structure. Thus, for example, a file named

/agcfsr.15min/0456/0859/0456_0859.psims.nc contains data about

the site at row 456 and column 859 in a global 15 arcminute grid

(which is in Southern Mozambique at latitude �23.875 and longi-

tude 34.625). A consequence of this organization is that each ter-

minal directory holds data for a single site. This organization can

improve parallel input/output performance on shared filesystems

and minimizes clutter while browsing directory trees.

3. Specifying and running a simulation campaign

We refer in general to a set of simulations run with pSIMS as a

“simulation campaign.” A campaign typically involves one model

(pDSSAT, pAPSIM, or pCenW), one species (maize, soy, pine, etc.),

and one region run for dozens or hundreds of seasons and 10e100

different management or parameter configurations. A simulation

campaign requires climate and soils data for the target region,

along with management and technology inputs (e.g., genetic pa-

rameters for different crop cultivars) that may vary widely by

model and experiment. A given simulation experiment, such as the

one described in Section 5, typically includes many simulation

campaigns to consider many crops or to explore uncertainty from

different climate forcings. A campaign is specified by the contents

of three files that encode experiment details and other options for

the requested simulations: the parameter control file, scenario

template file, and master campaign file.

The parameter control file includes all parameters that are passed

to pSIMS for a given campaign: pointers to data, command line

executables, command line options for translator apps, specifica-

tion of the space-time grid and scenarios, and variables to extract

from the output. See Listing 1 for an example parameter file for a

pDSSAT campaign that simulates maize in Eastern/Southern Africa

at 15 arcminute resolution, the results of which are included in

Section 5.

The scenario template is a standardized JSON file in the AgMIP

crop experiment (ACE) format (Porter et al., 2014) that records

only one of the many experiments (sometimes called scenarios or

“treatments” in DSSAT parlance) for a given campaign. The tem-

plate includes all required data sections for a model run, such as

management events, and uses user-specified default values for all

inputs.

The NetCDF4-format master campaign file specifies all inputs

that vary over the set of experiments that define a given campaign,

whether these elements vary in space or not. The file has di-

mensions of latitude, longitude, and scenario, where “scenario” is a

general concept that users can exploit in various ways to simulate

different management settings, environmental conditions, or input

datasets (scenarios translate directly to “treatments” in pDSSAT

campaigns). This file is used by the campaign translator to substi-

tute parameters into the experiment template file (see Section 4)

and can be used to adjust parameters in any combination of the

dimensions. For example, variables with spatial dimensions but no

Fig. 2. Expanded schematic of datatypes and processing pipeline from Fig. 1. Steps in the pipeline are: 1) Data ingest from arbitrary sources in various formats and datatypes. 2) If

necessary, data is transformed to the standard pSIMS geographic projection. 3) For each land grid-cell in the input data, the full time series of data is extracted (in parallel) and

converted to the .psims.nc format. 4) The resulting set of .psims.nc files are organized into an archive for long-term storage. 5) If the input dataset is still being updated, we ingest

and process updates at regular intervals and 6) append the updates to the .psims.nc archive.
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scenario dimension are applied to all scenarios at the appropriate

(latitude, longitude) pair, while variables with a scenario dimension

but no spatial dependence are applied uniformly at all locations.

4. The pSIMS codebase

pSIMS runs in a UNIX environment and requires common de-

pendencies such as Python and NetCDF operators (NCO; http://nco.

sourceforge.net/) alongwith some less common dependencies such

as the Swift parallel scripting language (Section 7). Additional

software packages may be needed to compile or run a particular

model, such as the Free Pascal Compiler (http://www.freepascal.

org/) for CenW and the Boost Cþþ libraries (http://www.boost.

org/) and Mono (http://www.mono-project.com) for APSIM.

The pSIMS code base also includes a set of translator apps,

software utilities that are used to accomplish a wide variety of

tasks within the framework, ranging from simple data reformat-

ting to statistical data processing (e.g., applying statistical pertur-

bations or bias-corrections to a given input climate dataset). Some

translator apps are used for offline processing, such as converting

climate data into psims.nc format, while others are used while

processing a campaign. Users can easily incorporate custom

translator apps into the framework using any number of software

packages, use multi-model translator utilities developed in the

AgMIP framework (Porter et al., 2014), or use existing utilities

distributed with pSIMS. Here we describe some key translator

types and give examples of apps that are distributed with pSIMS

v0.9 (Fig. 3). We do not attempt an exhaustive accounting of offline

utilities, but rather focus on the translator apps that are key to

simulation campaign execution and to incorporating new models

into the framework.

Campaign translator apps extract parameters from the master

campaign file and populate the necessary fields in the scenario

template file to produce a JSON file (in the standard AgMIP ACE

format) that contains all management and scenario info needed for

the simulation. pSIMS v0.9 is distributed with a single model-

agnostic campaign translator utility (camp2json.py).

Experiment translator apps convert from the JSON-based model-

agnostic AgMIP experiment format into the model-specific file(s)

that are needed for a simulation. Besides this “experiment” file

generated by the campaign translator, it also pulls in the relevant

soil data (in generic ACE soil data format) from the pre-computed

archive. pSIMS v0.9 is distributed with customized python apps

for DSSAT and APSIM formats (jsons2dssat.py and jsons2apsim.py)

which are closely related to the AgMIP QUADUI data translators (it

was convenient in early work to create our own versions, but in

future releases we expect to support the native AgMIP family of

experiment translators as well).

Weather translator apps convert .psims.nc climate files to the

model-specific format needed for a particular simulation, con-

verting units, deriving combined variables, and (if requested) per-

turbing or bias-correcting the data series in the psims.nc file.

Output translator apps convert data from the custom ASCII

output formats that the models produce into standard site-based

NetCDF files that use the psims.nc standards. Each file contains all

the user-requested variables (as defined in the parameter file, see

Listing 1 for example) for a given point in a compact self-describing

file that can be conveniently merged into spatial NetCDF files.

5. A multi-model multi-scale example assessment study with

pDSSAT and pAPSIM

To demonstrate how pSIMS facilitates multi-model multi-scale

assessments of crop growth and climate impacts, we describe

four pSIMS campaigns that we conducted for maize in Africa from

1980 to 2010 (Fig. 4) using climate forcings from AgCFSR. The four

campaigns involve two models (pDSSAT and pAPSIM), each

simulating a) the full continent at 0.5� spatial resolution (10,301

grid cells for 30 years) and b) the Southern/Eastern African

countries of Zimbabwe, Malawi, Zambia, Tanzania, Mozambique,

Ethiopia, Burundi, Rwanda, Uganda, Kenya, and Somalia at 0.25�

spatial resolution (7778 grid cells, again for 30 years). These

campaigns are small compared to long-duration 0.5� global

climate impact runs that we have performed (56,537 land grid

cells, 150 years), but convey the versatility of the framework. All

runs were conducted with the same fertilizer inputs, generated

by combining organic and chemical fertilizer data from three

sources (Mueller et al., 2012; Potter et al., 2010; Foley et al., 2011)

and similar sowing dates (pAPSIM uses a fixed sowing date each

year while pDSSAT has a variable planting rule confined to a

period around the observed value) based on the SAGE (Sacks

et al., 2010) and MIRCA2000 (Portmann et al., 2010) crop calen-

dar datasets (extrapolated globally using environmental

considerations).

We match cultivar coefficients as closely as possible between

the twomodels andmap them to the same spatial grid to reproduce

observed maturity dates from crop calendars. For this purpose, we

defined 10 generic hybrid and 10 generic open-pollinated cultivars

in consultation with crop model experts, using open pollinated

variants for grid cells dominated by subsistence maize farming,

according to You and Wood (2006). We distribute these cultivar

definitions with the pSIMS software.

Fig. 3. A sketch of the simulation campaign framework (labeled 4e6 in Fig. 1)

including the basic translator apps released with pSIMS v0.9 and input/output fil-

enames for DSSAT v4.5 and APSIM v7.5. camp2json.py takes user-specified input files

(Campaign.nc4 and exp_template.json) to generate generic experiment files (con-

taining all necessary management inputs) in the model-agnostic AgMIP JSON format.

jsons2[model].py combines these with pre-computed soil profiles in AgMIP format and

converts to model specific input files. psims2[met,WTH].py generates model-specific

weather files. Once the impact model is executed, all the raw input and output files

are collected into a compressed archive to ensure future reproducibility, and a user

specified output processing routine (e.g., out2psims.py) is called to extract the desired

variable subset and convert it to standard psims output format. Finally, once all sim-

ulations for a given campaign have completed, the append utility collects each variable

in highly-compressed and portable NetCDF v4 files.
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A single simulation with APSIM v7.5 (six management config-

urations for 31 years each) on a Dual 8-core Intel 2.6 GHz “Sandy

Bridge” Xeon E5-2670 processor took 118 s, increasing to 184 s

when 16 such simulations are run simultaneously on a single node.

The 10.3K tasks of the full Africa run would thus take about 14.1

days on a single core, but when run in parallel on 96 compute nodes

(1536 total cores) take only about 21 min, for a speedup of about

1000 times. Run-time for a single DSSAT v4.5 simulation (with the

same dimensions and on the same node-type) is about 19 s, while

run-time for 16 DSSAT simulations on a single node is typically

about 20e25 s (2.3 days in serial or 2.2e2.8 min in parallel on 96

nodes; a speedup of about 1300 times).

6. An example assessment with pCenW

pSIMS has been applied to study climate change impacts on

plantation forestry in New Zealand using the CenW forest growth

simulation model (Kirschbaum, 1999). Site-specific parameters

include a fertility index based on a national nitrogen surface, water-

holding capacity, and percent fine soil (silt and clay). The CenW

model can be configured for many tree species; the pSIMS-

parallelized CenW used here, pCenW, is set up for pinus radiata

(the most common commercial timber species in New Zealand, and

indeed worldwide). pCenW runs each site individually with a daily

time step. It can run any simulation period but has only been

calibrated for managed forests with rotation ages between 15 and

50 years. Output can be generated at any time scale down to daily

records, allowing for complex calculations and a better under-

standing for how trees in a particular location are likely to grow.

Fig. 5 shows estimates of merchantable timber (m3/ha) for New

Zealand pinus radiata stands 30 years after planting in 1972, 2012,

and 2052, estimated from pCenW simulations. The simulations

were run at the 0.05� (approx. 5 km) grid cell level using climate

data from the HadleyCM3 model under the.SRES A1B scenario.

These simulations indicate that timber volume on current planta-

tion area in NZ is expected to increase over time, driven entirely by

changes in climate (i.e., excluding CO2 fertilization effects). This

increase in stand volume is likely to result in greater levels of forest

Fig. 4. Example outputs of a multi-model multi-scale pSIMS simulation for A) pDSSAT and B) pAPSIM. Plots show 1980e2010 mean simulated yields for Africa maize at 0.5�

resolution, alongside the same simulations run at 0.25� resolution for Southern/Eastern Africa (Zimbabwe, Malawi, Zambia, Tanzania, Mozambique, Ethiopia, Burundi, Rwanda,

Uganda, Kenya, Somalia). Grid cells with zero harvested maize area (according to the MIRCA2000 dataset) are not shown.
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carbon sequestration for the country overall, though economic

adaptations to faster tree growth (such as a reduction in the

optimal harvest age) may affect these trends.

7. Use of Swift parallel scripting

Each pSIMS simulation campaign typically requires the execu-

tion of O(104e105) small serial jobs, one per grid cell, each of which

uses one CPU core for anywhere from 30 s to many minutes. The

Swift parallel scripting language (Wilde et al., 2009) makes it

straightforward to write and execute pSIMS runs, using highly

portable and system-independent scripts such as the example in

Listing 2. Space does not permit a detailed description of Listing 2,

but in brief, it 1) defines a machine-independent interface to the

model executable, 2) loads a list of geographic locations on which

that executable is to be run, and 3) defines a set of simulations at

these locations.

The Swift language is implicitly parallel, high-level, and func-

tional. It automates the difficult and science-distracting tasks of

distributing tasks and data across multiple remote systems, and of

retrying failing tasks and restarting failing workflow runs. Its run-

time can manage efficiently the execution of many small single-

core or multi-core jobs, dynamically packing those jobs tightly

onto multiple computing nodes to maximize system utilization.

Swift automates node acquisition; inter-job data dependencies;

throttling; scheduling and dispatch of work to cores; and retry of

failing jobs.

The key to Swift’s ability to execute large numbers of small tasks

efficiently on large parallel computers is its use of a two-level

scheduling strategy. Internally, Swift launches a pilot job called a

“coaster” on each nodewithin a resource pool (Hategan et al., 2011).

The Swift runtime then manages the dispatch of application in-

vocations, plus any data that these tasks require, to those coasters,

which manage their execution on compute nodes. As tasks finish,

Swift schedules more work to those nodes, achieving high CPU

utilization even for fine-grained workloads. Individual tasks can be

serial, OpenMP, MPI, or other parallel applications. Swift makes

computing location independent, allowing us to run pSIMS on a

variety of grids, supercomputers, clouds, and clusters, with the

same scripts used on multiple distributed sites and diverse re-

sources. Fig. 6 shows a typical execution scenario, inwhich pSIMS is

run across two University of Chicago campus resources: the UChi-

cago Campus Computing Cooperative (UC3) (Bryant, 2012) and the

UChicago Research Computing Center (UCRCC).

We have run pSIMS on UC3, Open Science Grid (Pordes et al.,

2007), and UCRCC; the XSEDE clusters Ranger and its successor

Stampede; the Amazon Elastic Compute Cloud (EC2) and several

other clusters and supercomputers. In production mode (i.e.,

excluding testing and prototype stages) pSIMS has been used for

more than 100 large-scale simulation campaigns of DSSAT, CenW,

and APSIM. These campaigns have already totaled over 5.6 million

individual DSSAT runs, each of 30e150 years and including 10e100

independent scenarios, and a growing number of runs with other

models such as CenW and APSIM (Table 1).

8. Discussion

The parallel System for Integrating Impacts Models and Sectors

(pSIMS) is a new framework for efficient implementation of large-

Fig. 5. pCenW estimate of merchantable timber volume (m3/ha) for New Zealand pinus radiata stands 30 years after planting in 1972, 2012, and 2052, under climate model HadCM3

and scenario SRES A1B.

Fig. 6. Typical Swift configuration for pSIMS execution.
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scale assessments of climate vulnerabilities, impacts, and adapta-

tions across multiple sectors and at unprecedented scales. pSIMS

includes an extensible, high-performance data ingest and pro-

cessing pipeline that generates a standardized collection of man-

agement, environmental, and climate datasets based on portable

and efficient datatypes, as well as a code base to enable large-scale,

high-resolution simulations of the impacts of changing climate on

primary production (agriculture, livestock, and forestry) using

many site-based climate impact models.

These new capabilities are enabled by the use of high-

performance computing, which in turn is harnessed by the Swift

parallel scripting language. The pSIMS framework also contains

data translation tools that can handle the input and output formats

used in various models; specifications for integrating translators

developed in AgMIP; and tools for aggregation and scaling of

simulation outputs to arbitrary spatial and temporal scales relevant

for decision support, validation, and downstream model coupling.

This framework has been used for high-resolution crop yield and

Listing 1. Annotated example parameter file for a pDSSAT campaign for maize in Southern/Eastern Africa.

Listing 2. Annotated pSIMS Swift script.
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climate impact assessments at the US and global levels (Elliott et al.

2014a,b, Elliott et al., 2013; Rosenzweig et al., 2014; Glotter et al.,

2014).
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Table 1

Summary of campaign execution by project, including the total number of jobs in

each campaign, the total number of simulation units (jobs � scenarios � years), the

total model CPU time, and the total size of the generated outputs.

Project Campaigns Sim Units

(Billion)

CPU

hours

(K)

Jobs

(M)

Output

data

(TBytes)

NARCCAP USA (pDSSAT) 16 1.3 13 1.9 0.47

ISI-MIP Global (pDSSAT) 80 11.8 216 4.38 4.14

Prediction 2012 (pDSSAT) 2 0.2 2 0.24 0.5

NZ climate impacts (pCenW) 2 0.4 3 0.1 0.6

GGCMI Phase 1 (pDSSAT

and pAPSIM; ongoing)

w96 w12 w200 w25 w1
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