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THE PARAMETER DISTRIBUTION SET FOR A
SELF-SIMILAR MEASURE

IN-S00 BAEK

ABSTRACT. The parameter lower (upper) distribution set corresponds to
the cylindrical lower or upper local dimension set for a self-similar measure
on a self-similar set satisfying the open set condition.

1. Introduction

A self-similar set is the attractor of an iterated function system (IFS) [8].
Recently, we investigated the relation between spectral classes of a self-similar
Cantor set in a set theoretical sense [1]. In this paper, using the parameter
distribution, we find the parallel results for the self-similar set (attractor of
the TFS consisting of n(> 2) similitudes satisfying the OSC (open set condi-
tion)) instead of the self-similar Cantor set (attractor of the IFS consisting of 2
similitudes satisfying the SSC (strong separation condition)), which leads to a
generalization of [1]. The self-similar set is completely decomposed into a class
of the cylindrical lower (upper) local dimension sets as a coding space is com-
pletely decomposed into a class of the lower or upper distribution sets. Using
a self-similar measure on the self-similar set, we give a relationship between
the distribution sets generated by the frequencies (induced from a self-similar
measure) of the codes of the coding space and the cylindrical local dimension
sets generated by the cylindrical local dimensions of the self-similar measure.
The self-similar measure determining the frequencies gives the information of
two necessary axes whereas the axes in [1] are already fixed. In particular, we
show that each cylindrical local dimension set is exactly the natural projection
of a distribution set having full measure of another self-similar measure related
to the distribution set using the strong law of large numbers. The natural pro-
jection is a set transformation from a class of the distribution sets of the coding
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space onto a class of the cylindrical local dimension sets of the self-similar set.
This gives essential information of its Hausdorff and packing dimensions. We
also give the relation among cylindrical local dimension sets generated by dif-
ferent self-similar measures. In fact, the spectral class by the cylindrical local
dimensions of every self-similar measure, except for a singular one, is charac-
terized by the natural projection of the spectral class of the distribution sets.
We also compare our results with the recent related ones [4, 5, 8, 10, 11]. We
give some example of the different distribution sets by the differently chosen
axes giving the same cylindrical local dimension set. Finally, we provide an
essential example to which our results can be applied.

2. Preliminaries

Let N and R be the set of positive integers and the set of real numbers
respectively. An attractor K in the d-dimensional Euclidean space R? of the

IFS (f1,..., fn) of contractions where N > 2 makes each point v € K have an
infinite sequence w = (my,ma,...) € L ={1,..., N} where
{U} = ﬂ Kw\n
n=1

for Kyjn = Kmy,...omp = fmy © -+ 0 fin, (K)[8]. w|n denotes the truncation of
w to the nth place. In such case, we sometimes write 7(w) for such v using the
natural projection 7 : ¥ — K and call K, the cylinder of v. We note that
K, may be different for the same v € K since v may have different codes w.
Therefore we write K, for such distinction for the cylinder of v. We call such
K| the cylinders of K and call K a self-similar set if the IFS (fi,..., fx) are
similitudes.

Each infinite sequence w = (mg,ma,...) in the coding space ¥ has the
unique subset A(z, (w)) of its accumulation points in the simplex of probability
vectors in RY of the vector-valued sequence {x,(w)} = {(u1,...,un)n} of
the probability vectors where ug for 1 < k < N in the probability vector
(u1,...,un), for each n € N is defined by

1<l <nmg =k}
- - )

Uk

The uy, for the nth place gives the frequency of the digit k in win=(m1,...,my,).
Sometimes we write ng(w|n) for such wug. It is well-known [12] that a set
A(zp(w)) of the accumulation points of the vector-valued sequence {z,(w)} is
a continuum in RY.

For the self-similar measure v, on K associated with p = (p1,...,pn) €

(0,1)% satisfying sz\; pi =1 ([4, 8, 12]), we write E(ap)* (F(p) ) for the set of

«
points at which the lower (upper) local dimension of 7, on K is exactly ¢, so
that

* 1 B
E,(lp) = {v € K : liminf 7Og’yp( r(v)) = a},
r—0 logr
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—(p)* 1 B
E((lp) ={v e K : limsup log7p(Br(v) _ al.
r—0 logr
We call {Egp)*(# ¢) : a € R} the spectral class generated by the lower local

B *
dimensions of a self-similar measure v, and {E&p) (# ¢) : a € R} the spectral
class generated by the upper local dimensions of a self-similar measure vp.

We call « satisfying Egp)*(;é ®) (Eg}) (# ¢)) an associated lower (upper) local
dimension of vp. It is well-known [1, 4, 12] that if the IFS (fi, ..., fn) satisfies
the strong separation condition (SSC) then

lOg IYP(KU.)"H)

(P)* _ i — — ()
EP =m{w e % liminf log [ K] af(= E5),
—(p)* lo Ko —
E;p) =7m{w € ¥ : limsup 1087 (Kujn) =a}(= E((lp)).

n—o00 1Og |Kw|n|
| K| | denotes the diameter of the cylinder K,|,,. In this paper, we assume that
the IF'S satisfies the open set condition (OSC) [4, 8, 12] which is a more general
condition of the SSC. We mainly discuss the cylindrical local dimension sets

Eg’),ES’) instead of Eg’)*,ES’)* for studying the self-similar set K of the IFS
satisfying the OSC since the cylindrical local dimension sets are quite closely
related to the distribution sets. In this paper, we assume that 0log0 = 0 for
convenience.

Now, we give this cylindrical density theorem for the family of the cylinders
of a self-similar set satisfying the OSC which gives the measure separation
condition (MSC) in the self-similar set ([7, 13]). From now on, dim(E) denotes
the Hausdorfl dimension of E and Dim(E) denotes the packing dimension of
E ([8]). We note that dim(FE) < Dim(F) for every set E ([8]).

Proposition 2.1. Let K, be the cylinders of a self-similar set K satisfying
the OSC and 7 be a finite Borel measure on K satisfying v({v € K : v =
m(w) =7(W'),w #w'}) =0, in particular the self-similar measure on K. Let

o lOg’Y(Kw n)
E_,Ccr{iweX: lznigfm < af,

. log y(Kypn)
EZ& C 7T{w IS hnrggf m Z CY},

= log’Y(Kw\n)
Feo Cm{we X limsup ———= < a},
< { msup Tog | Koy }

Enl IOgV(Kw\n)
Es, C € ¥ limsup ————=
> m{w 1713:01(1)1) log [ Kol =

a}.

Then we have
(1) dim(E.,) < a, and if y(E>,) >0 for a Borel set E,, then dim(E>,) >
O{7
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(2) Dim(FE<,) < a, and if y(E>a) > 0 for a Borel set E'sy, then Dim(E>q)
> a.
Further for a Borel set

and for a Borel set
— log V(K ,n —
Ecrn{weX: 1imsupM =a} = E,,

n—00 IOg |Kw|n|

we have
(3) if v(E) > 0, then dim(E) = o = dim(E,),
(4) if v(E) > 0, then Dim(E) = o = Dim(E,,).

Proof. We note that Upenufoy Useqr,... . Nin UigjKoi N Koj = {v € K 1 v =
m(w) = 7(w'),w # w'} and this gives y(Uiz; Ky N Kyj) = 0 for all o €
{1,...,N}"™ where n € NU {0}. oi denotes the concatenation of the finite
sequence ¢ and i. Therefore we can define 4 to be the Borel measure on the
coding space ¥ equipped with the usual ultra-metric topology ([6, 9]) satisfying
Y(C(wln))) = v(Kyn),

where the cylinder C(w|n) = {7 € ¥ : 7|n = w|n} for each w € ¥ and each
n € N since y(Z) = 0 where Z = {v € K : v = 7(w) = 7(w'),w # w'}.
Moreover for the Borel set £ C K, we note that 4(m~}(E)) = ~v(E) since
v(Z) = 0. For E C 7n(G) where G C X, we easily see that if v(E) > 0, then
there exists F C 7~ 1(E) N G such that 4(F) > 0 since v(Z) = 0. Hence it
follows from [9, Proposition 1.2].

In particular, the self-similar measure 7, on the self-similar set satisfies the
MSC that is Vp(Uz#]Kz n KJ> =0 ([7, 13]) Noting ")/p(Uwg]K]ﬂ N Kkj) =
PrYp(Uiz; K N K;) = 0 for all 1 < k < N and continuing these processes, we
have v,(Z) = 0. O

3. Relation between frequency and density

From now on, we assume that the similarity ratios of the similarities (fi, ...,
fn) are ay,...,any and K is the self-similar set for the IFS (fy,..., fn) sat-
isfying the OSC and vp on K is the self-similar measure associated with

p=(p1,...,pn) € (0,1)V satisfying Zszlpk = 1. To avoid the degeneration

case, we also assume that p = (p1,...,pn) # (aj,...,a%) with Zszl aj =1
and igg—g’; is not the same for all k =1,..., N. We call the set of the elements

y = (p1,...,pn) satisfying y € [0,1]¥ and Zivzl yr = 1 the simplex in this
paper.

Lemma 3.1. Let p = (p1,...,pn) € (0, 1) with Zgzl pr = 1 and consider a
self-similar measure v on K and letr = (r1,...,rn) € [0, 1]V with chvzl rp =
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1 and
P ri;log pi
g(r,p)==F———
Zk:l ry log ap
Then
I lo
Qmin = min 08Pk <g(r,p) < max 08Pk max-
1<k<N log ak 1<k<N logay,
Proof. Tt follows from [8]. O

We define ¢g(y,r) for y and r as the same manner in the above lemma. The
following Lemma 3.2(2) is the key idea to explain our multifractal results.

Lemma 3.2. Let p = (p1,...,pn) € (0,1) with Zgﬂ pr =1 and consider a

function B(q) satisfying Z,]cvzl pZag(q) =1. Gwen amin < @ < Qmax,

(1) when a € (Qmin, Omax), there exists go € R such that g(r,p) = « for

r = (r1,...,rn) where i, = pla, Bla0) guch that B'(q0) = —a, and when « €
Olmin, Omax }, there exists a real sequence {q,} such that g(r,p) = o forr =
th St [ h that
(r1,...,rn) where r, = lim, pinaf(q") and lim, o ' (qn) = —a,

(2) when o € (Qumin, max), if g(y,p) = « with y in the simplex, then
g9(y,r) = g(r,x), conversely if g(y,r) = g(r,r) with qo # 0, then g(y,p) =
a, and when @ € {Qmin, Omax}, if 9(y,p) = a with y in the simplex and
{logp’“ Y| are all different, then g(y,r) = 0.

log ay,
Proof. When a € (Qmin, @max), (1) follows from (11.35) of [8]. When & = aimax,
if we put ¢, = —n, then it easily follows. In this case, 7 = lim, o D" a ﬁ(q")

for each k since —amin and —amax are the slopes of the asymptotes of the
function 8 ([8]). Similarly, when o = @min, if we put ¢, = n, then it follows.
For (2), assume that g(y,p) = a with y in the simplex.

When « € (Omin, Omax)s

g(y,r) = gly, (pPal ™. .. pLali®)))
Zk L Yk logp% B(qo0)

Zk:l yi log ay
= qo9(y, p) + B(q)
= aqy + B(qo)-

Further from (1),

Zk 1 onag ) log px,

g(r,p) = = .
Zk:1 pzoaf(qo) log ay,
This gives
g(r,r) = g((pPa} ﬂ(qo) B 7p?\?a]BV(q0)>’ (ptlloaf(qo), o ,p?\?azﬁv(qo)))
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N
_ Zk:l pzo ag(qo) log pZo ag(%)

ZkN:1 pzoaf(qo) log ay,

For the converse, assume that g(y,r) = g(r,r). Since g(r,r) = ago + 5(qo)
with go # 0,

= aqo + B(qo)-

g(y,r) = aqo + B(q0) = qog(y, p) + 5(q0)

gives g(y,p) = .
When « € {amin, @max }, since lim, o @, = o where a,, = —'(qn)

SO,k log limy, o0 [pI" ag(qn)]

S yklogay
Jim [g,9(y, p) + B(qn)]

= nlggo[aqn + B(qn)]

gly,r) =

= nlggo[an‘h + B(qn)]
=0. 0

From now on, without specific mention, we fix distinct i, j respectively sat-
isfying
logpi . logpx logpr _ logp
e min < max —— —_—

loga; 1<k<Nloga, 1<k<N logay loga;’

It is obvious that there is a unique z € [0,1]Y for y in the simplex such that
g9(y,p) = g(z,p) where z = (z1,...,2n5) with z; =1 —z; and 2z, = 0 if k # 4, 5.
We put zy = z; from now on. More precisely, zy is the projection of y in the
simplex into the unit interval [0, 1] satisfying 2z, = z; where g(y,p) = g(z, p).

Lemma 3.3. Forlogp;/loga; < a <logp;/loga;, we have

w: max ,P) =a} = F(t),
{ yeA(In(w))g(y p) =a}=F()
where
Fit)={w: min  zy =1
F(t) ={ g min 2y }
and

tlogp; + (1 —t)logp;

tloga; + (1 —t)loga;

Proof. Assume that w satisfies maxye a(z,, (w)) 9(¥, P) = @ Assume that g(y,p)

= a for some y € A(z,(w)). Then there is z € [0,1]"V such that a = g(y,p) =

_ tlogp;+(1—t)logp; — ; =1 — .
g(z,p) = TTog ar (1= Tog . where z = (#1,...,2n) with z; = 1 — z and

zr = 0if k # 4,j satisfying 2; = zy = ¢. On the other hand, for every
y € A(z,(w)), g(y,p) < a. Clearly, there is z € [0,1]"V such that g(y,p) =

_ t'logpi+(1—t') logp; o . o o
9(z,p) = & Tog @i T (1I—7) Tog @ where z = (21,...,2n) with z; = 1—2z; and 2z, = 0

log p; log p;
loga; loga;’

if k # 4,7 satisfying z; = z, = t’. Since ¢g(y,p) < a and
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we have z, = t' > t. This gives {w : maxyca(z,(w) 9(y,P) = a} C E(t).
E(t) C {w: maxXye (s, (w) 9(¥,P) = a} holds from the similar arguments. [

The following two theorems generalize Theorem 2 of [1]. Its main idea is
that the frequency of a code determines the density of a point for a self-similar
measure on a self-similar set and vice versa.

Theorem 3.4. Forlogp;/loga; < a <logp;/loga;, we have
(P)

B, =m(E(t)),
where
F(t) ={w: min 2z, =t},
F(t) ={ e imin 2y }
and

tlogp; + (1 —t)logp;

tloga; + (1 —t)loga;

Proof. From the above lemma, we only need to show that

Eﬁf’) =7n1({w:g(y,p) < aforaly € Az, (w)),
9(y,p) = a for some y € A(x,(w))}).

Assume that w satisfies g(y,p) < « for all y € A(z,(w)) and g(y,p) = «
for some y € A(z,(w)).
Assume that y = (y1,...,yn) € A(xn(w)) such that g(y,p) = a. Since

y = limy, 00 T, (W) where 2y, (W) = (N1 (w|ky), ..., nn(w|kn))
m log’yP(lekn) — lim Z;\Ll nl(wlkn) 1ngl
n—oo log |Kyp,| n—00 leil ny(wlky) log a;
_ Yiiylogp
Z;\il Y1 log ag
=g(y.p) =a.

Therefore we argue that

Otherwise, we may assume that there is a probability vector-valued sequence

{zr, (@)} = {(na(@lkn), - nn (wlkn))

log vp (Kw|ky, )
lOg ‘Kw\kn, |

a compact set gives a limit point y = lim,, o0 7, (w) in the simplex satisfying

such that lim, > «a. However, {z, (w)} in the simplex which is

log vp(Kujk,) lim log vp (Ko, )

= =9(y,p) >«
n—00 10g |Kw|kn,| m—00 IOg |Kw|k (

nm |
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since {k,, } is a subsequence of the sequence {k,}. This gives a contradiction
since w satisfies g(y,p) < « for all y € A(x,(w)) and the limit point y =
lim,, 00 T, (w) is also a limit point in A(z,(w)).

For the converse, assume that 7(w) € E&p). Then we see that w satisfies
9(y,p) < aforally € A(x,(w)). Otherwise, we may assume that g(y,p) > «
for some y € A(x,(w)). Therefore y = limy_, o &p, (w) for some subsequence

{nk}. Hence
log’}/p(Kw\n;)
= P Wk >
A o K| 9(y,p) > a,

which gives a contradiction since our assumption argues that

log1p (Kujk) _
k—o0 IOg |Kw|k|
Now it remains to show that g(y,p) = a for some y € A(x,(w)).

IOg’Yp(Kw\k)

Since limsupy,_, ., Tog | Ko 1]

quence

= q, there is a probability vector-valued se-

{or, (W)} = {(na(wlkn), ..., nn (w]kn))}
IOng(Kw\kn)
log [ K|k, |
find a limit point y = lim,;, e 2, (w) in the simplex satisfying

such that lim,,_, = «. Using the similar arguments above, we

T JUPT VT ) (U T N S
n—00 1Og |Kw|kn| m—oo lOg |Kw|knm| ’
since {k,,, } is a subsequence of the sequence {k,}. O

The following is the dual result of the above theorem. We omit its proof.
Theorem 3.5. Forlogp;/loga; < a <logp;/loga;, we have
EP = r(F(t),

where

Fl(t w: max
( ) { YEA(zn(w))

Zy = t}a

and
tlogp; + (1 —t)logp;

tloga; + (1 —t)loga;

Remark 3.6. We note that A(z,(w)) # ¢ for every w and
m({w: g(y,p) > aforally € A(z,(w)),
4(y.p) = a for some y € A(a(@)}) = 7(F(1)) = EP.
Theorem 3.7. Forlogp;/loga; < a <logp,/loga;, we have
EP = n(F(t)),
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where

F(t)={w:

: min  zy, = max 2y =t},
yeAtn ¥ = yedtiioy > =1

and
tlogp; + (1 —t)logp;
tloga; + (1 —t)loga;

Proof. By the above theorems, we see that 7(F(t)) = m(E(t)NF(t)) C n(E(t))N
7(F(t)) = B NEP = E®P . EP c w(F(t)) follows similarly from the proof

[e3

of Theorem 3.4 and its dual proof of Theorem 3.5. O

Remark 3.8. We call the above F(t)(F(t)) the lower (upper) distribution set
(induced from (p, 7, j,t)) and F(t) the distribution set (induced from (p, i, j, t)).
We call such (i, j) axes the parameter axzes and call such distribution sets the
parameter distribution sets for the self-similar measure yp with respect to the
parameter axes.

Remark 3.9. If minj<p<n log py

1
= 98Pk then we have
og ay g A

= MaX1<k<N To

E&p) _ E((Xp) _ Eép) - K

for
_ logpr log pi
= 1min = max .
1<k<N logajr  1<k<N logay

Remark 3.10. We have

k= | EY= ~Ew).

logp; - <10gpj 0<t<1

Toga; ~“STogay

Similarly we have

K= |J EP= ] «cFw).

}ogpi<a<1°gpj 0<t<1
oga; — 7logaj

4. Subset relation and multifractal spectrum

The following theorems are byproducts of our main results Theorems 3.4
and 3.5. They generalize the multifractal results for the self-similar set of
[8] and give the relation between our results and those of [8]. They are also
generalizations of Corollaries 5 and 7 with Theorem 6 of [1]. In the following
theorems, let ¢y be the real number satisfying

tologp; + (1 —to) log p;

=g(r
tologa; + (1 —to)loga, 9(ro, p)
for ro = (a$,...,a%) with Zgil a; = 1. We note that when o € (@min, Mmax),
there exists g9 € R such that g(r,p) = a for r = (rq,...,ry) where r, =

pZOag(q”) such that 5'(qo) = —a by Lemma 3.2(1). Therefore in the following
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theorems, given 0 < ¢ < 1, we put r = r(t) = (r1,...,ry) satisfying r, =
pz“af(qo) for 8'(qo) = —a where

a = aft)

Theorem 4.1. We have the following:
(1) if 0 <ty <t<1, then

_ tlogpi+ (1 —t)logp;
~ tloga; + (1 —t)loga;’

) —(x(8)
Ey =m(E®) = Eyrir)>

(2) if 0 <t <ty <1, then

() ,
Ba = n(E(1) = B ey

(3) if 0 <to <t <1, then

T — )
EP =n(F(1) = E0) r(n):

(4) if 0 <t <ty <1, then

_ —(x(t))
E® = z(F(t)) = E e (t).r(t))-

Proof. If 0 < t < 1, then there exists ¢p € R satisfying ’'(¢o) = —« since
_ tlogpi+ (1 —t)logp;
~ tloga; + (1 —t)loga;
Forr =r(t) = (ry,...,rn) such that ry = pzoa’g(%) satisfying 8'(qo) = —a, we
have

Qpin < @ max-

g(y.x) = gly, (0P, pLali®))

N
_ Zk:1 Ui logpzoai(%)

Z]]cvzl Yk IOg (2%

= qo9(y, P) + B(q);

where y = (y1,...,yn) in the simplex. Therefore g(y,r) < ago +
9(y,p) < a with go > 0. Similarly ¢g(y,r) > aqgo + B(q0) for g(y, p)

qo < 0.
We note that

B(qo) for
< « with

0<tg<t<l < ¢ >0
and
0<t<ty<l < ¢ <0.
We also note that
t=1ty < qo=0.
For ¢o > 0,

—(x(8))
m(E(t) C Eg(t)r(t)-
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Precisely, if v € w(E(t)), then v = 7(w) with g(y,p) < a for all y € A(z,(w)),
and g(y,p) = « for some y € A(x,(w)) since

{w: 9(y,p) =a} =E(t)

yGA(In(w))

by Lemma 3.3. Since ¢o > 0, we have g(y,r) < ago+8(q) = g(r(t),r(t)) for all
y € A(z,(w)), and g(y,r) = ago+ B(q0) = g(r(t),r(t)) for some y € Az, (w)).
Let

G={w: max g(y,r) = g(r(t),x(1)}.

YEA(zn(w))

Then n(G) = E;?St()t)) r(+)) Dy the similar arguments of the proof of Theorem

3.4. Therefore w € G. This gives v = w(w) € E;?it()t)) r(8))-

For (1), since E(p) = 7(F(t)) from Theorem 3.4, we only need to show
= (r(®)) +=(P) w=(r(?)) .

that Eg(r(t) vy C Eo o v € m(G) = Eypi)rpy. then v = m(w) with
9y.1) < ago + Ala) = gx(t)x(®) for all'y € Alw,(w)), and g(y.r) =
aqgo + B(qo) = g(r(t),r(t)) for some y € A(z,(w)). Since go > 0 and g(y,r) =
909(¥,P) + B(q0), we have g(y,p) < a for all y € A(z,(w)) and g(y,p) = @
for some y € A(zy,(w)). This gives v = 7(w) € w(F(t)) = E&p). We have (2),
(3) and (4) from the similar arguments above. O

Theorem 4.2. We have the following:
(1) if 0 <ty <t <1, then
dim(7(£(t))) = Dim(x(E(¢))) = g(r(t), r(t)) = ago + 5(qo),
hence
dim(E)) = Dim(Eg)) = g(x(t),x(8)) = ago + Blao),
(2) if 0 <t <tg<1, then

dim(7(F(t))) = Dim(n(F(t))) = g(r(t),x(t)) = ago + B(qo),
hence

dim(EP)) = Dim(E®))) = g(x(t), x(t)) = ago + Blg0)-
Proof. Since {w : Az, (w)) = {r(t)}} € E(t) N F(t) = F(t), we have
Yoy (T(F (1)) =1

from the strong law of large numbers. Noting that 7 is a self-similar measure
on the self-similar set, we have (1) and (2) from Proposition 2.1 with the
following arguments. For the arguments, we also note that the cylindrical local
dimension sets correspond with the natural projection of the distribution sets
from Theorems 3.4 and 3.5.

For (1), go > 0 gives

- —(r(t)
By =7(E®) C Egw(),et))
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and
E®) = x(F(0) € By v
Since w(F(t)) C n(£(t)) C E;]Ef()t))ﬁr(t)) and vy (7(F(t))) = 1, we have
g(r(t),x(t)) < dim(r(F(2))) < dim(r(£(t))) < Dim(w(E(¢))) < g(r(t),r(t))
from Proposition 2.1.
For (2), g0 < 0 gives
EP) = n(F(1)) € By e
and
B = 7(E() € B -
Since m(F(t)) C m(F(t)) C E(]El(:()t)) r(t)) and () (7(F(t))) = 1, we have
g(x(t),x(t)) < dim((F())) < dim(a(F(t))) < Dim(n(F(t))) < g(x(t),x(t))
from Proposition 2.1. (I

Theorem 4.3. We have the following:
(1) if 0 <t <ty <1, then

dim(m(E(t))) = g(x(t), (1)) = ago + B(qo),

and
Dim(r(E(t))) = s,
hence
dim(EX)) = g(x(t),x(t)) = ago + Al0),
and

Dim(EX),) =
(2) if 0 <to <t <1, then
dim(m(F(t))) = g(r(t), (t)) = ago + B(qo),

and _
Dim(r(F(1))) = s,
hence
dim(ER))) = g(x(t),x(t)) = ago + Blqo),
and

(p)
Dim(E a(t) = 5
Proof. We use the arguments in the above proof. For (1), go < 0 gives

=) (x(t))
B, =7m(E(t) CE ) r(r))

Since w(F(t)) C n(£(t)) C E_E;El(r()t)) vty 204 ) (T(F(t))) = 1, we have

g(r(t), (1)) < dim(m(F(¢))) < dim(m(£(1))) < g(r(t),r(t))

from Proposition 2.1.
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For (2), qo > 0 gives
E® = n(F(t)) c EXY)

Since 7(F(t)) C w(F(t)) € ES0 1sy) and 2o (n(F(£))) = 1, we have

g(x(t),x(1)) < dim(n(F(t))) < dim(z(F(t))) < g(r(t),x(1))
from Proposition 2.1. For the arguments of the packing dimension of (1) and

(2), we note that the distribution set of (1) or (2) contains {w : A(z,(w)) = C}
where rg € C and C is a continuum. It follows from that the packing dimension

of 7({w : A(zn(w)) = C}) is s ([4]) where Y0 a3 = 1. O
Theorem 4.4. We have the following if{logpk MY are all different:

log ay,

(1) dim(r(E(1))) = Dim(x(E(1))) = dim(Ew))) = Dim(E))) = 0,
(2) d m(w@(o»)fdlm(E(%)):o,Dim< (E(0))) = un(E“’ ) =s,
(3) dim(n(F(1))) = dim(E)) = 0, Dim(n(F(1))) = <E<P>>:
(4) dim(x(F(0))) = Dim(x(F(0))) = dim(EF), ) = Dlm@g;g)):o.

Proof. Tt easily follows from Lemma 3.2(2) for the case & € {min, ¥max} and
Theorems 3.4 and 3.5 and the similar arguments of the packing dimension of
(1) and (2) of the above proof. O

Remark 4.5. Every number ¢ € [0,1] defines a point z in the edge lying on
the two dimensional (i, j)-plane in RY of the simplex S and z also defines
a hyper-plane {y € S : g(y,p) = a} of the simplex S for some « where
the intersection of the edge and the hyper-plane is z. In the proofs of the
above theorems, in particular, if ¢t = ty, then go = 0 and it gives r(t) = ro =
(a3,...,a%) with S0 a3 = 1, so E) = K. We also note that the above
cylindncal multifractal results pr0v1de us with a new definition (Example 2)
of the generalized Riesz-Ndgy -Takécs function and a generalization [3] of the
results [2] of the derivative of the Riesz-Négy-Takécs function.

Remark 4.6. We note that for every o, unless mini<x<n % maxi<k<nN loé&

dim(E®) = dim(EP)) = Dim(E®)) = dim(EP),

even though there exists a such that Dim(E®)) # Dim(EP’) or Dim(EP)) #
()
Dim(E.").

Remark 4.7. In the above cases for the OSC, we use the cylindrical density
theorem (Proposition 2.1) for the family of the cylinders of the self-similar
set K instead of the Frostman’s density theorem [8]. In the above cases for
the SSC, our cylindrical local dimension set is exactly the local dimension
set[8], so we may use the Frostman’s density theorem instead of the cylindrical
density theorem (Proposition 2.1). Further, our results of [1] are also direct
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consequences of Theorem 4.2 for the self-similar set K with N = 2 satisfying
the SSC.

Example 1. Let K = [0,1] be the self-similar set for the IFS (f1, fa, f3)
satisfying the OSC whose similarity ratios are (ai,as2,a3) = (1/9,5/9,1/3)
and vp on K be the self-similar measure associated with p = (p1,p2,p3) =
(1/4,1/4,1/2). We can consider two different distribution structures fixing
distinct 4, j respectively

loga; 1<k<slogap log3 log9 ~log9/5 12hes logar loga;’

log p; . logpr log2 log4 log4 logpr  logp;
= min = = X =

For (i,j) = (1,2), in Theorem 4.1, ¢y is the solution of the equation

tolog1/4+ (1 —to)logl/4
tolog1/9+ (1 —t9)log5/9

for rg = (al,ag,ag) = (1/9,5/9, 1/3)
Similarly, for (¢, j) = (3,2), in Theorem 4.1, Ty is the solution of the equation

Tolog1/2+ (1 —Tp)logl/4
Tolog1/3+ (1 —Tp)log5/9

for ro = (a1, az2,a3) = (1/9,5/9,1/3). We note that the solutions tg and T of
the two different equations are different, which gives the different distribution
sets. More precisely, given 122 3 <a< 152394/15, we find different ¢ and T for
(4,7) = (1,2) and (i,5) = (3,2) cases respectively such that o = «(t) and
a = «(T) in Theorem 4.1. However we note that the different distribution sets
give the same cylindrical local dimension set in Theorem 4.1. For example, in

Theorem 4.1(1),

g(ro,p)

g(ro, p)

E® — n(F(t) = 7(Q(T)) = EE;())

[e3%

where r = (11, 7r2,73) satisfying ry = pzoaf(qo) for 8'(qo) = —a where

_ tlogpi+ (1 —t)logps  Tlogps + (1 —T)logps

4= tloga; + (1 —t)logas  Tlogas + (1 —T)logas

for 0 <tgp<t<land 0 < Ty <T < 1. We note that F(t) is the lower
distribution set induced from (p, 1,2,t) and G(T) is the lower distribution set
induced from (p, 3,2, T). This example shows that the choice of the parameter
axes(=(i,7) axes) is not unique.

Example 2 ([3]). For the probability vectors (ay,...,ax) € (0,1)Y and p =
(p1,---,pn) € (0,1)N where N > 2 is a positive integer,

N
[07 1] = U fk([oal])a
k=1
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where fr(z) = apz + Zi.:ll a;, and ~yp is the unique probability measure on
[0, 1] such that

N
Tp = Zpi'Yp © fi_l-
=1

1=

We define
S(x) = 7p([0,2]),

where 7p is the self-similar measure on the self-similar set [0,1]. We call the
function S the generalized Riesz-Nagy-Takdcs function (GRNT function). We
assume that p = (p1,...,pn) # (a1,...,an). Let t; be the real number
satisfying

tilogp; + (1 —t1)logp;

t1loga; + (1 —t1)loga; o

Then there is g satisfying 5'(¢) = —1. Thenr; = (p'faf(Q), . ,p‘}vafv(q)) satisfies

g(r1,p) = 1. For the non-differentiability points M of the GRNT function S,
using a variation of Theorem 4.3, we have

0 < g(ry,r1) <dim(M) < Dim(M) = 1.
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