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Abstract

Background: The Random Forest (RF) algorithm for supervised machine learning is an ensemble learning method

widely used in science and many other fields. Its popularity has been increasing, but relatively few studies address

the parameter selection process: a critical step in model fitting. Due to numerous assertions regarding the

performance reliability of the default parameters, many RF models are fit using these values. However there

has not yet been a thorough examination of the parameter-sensitivity of RFs in computational genomic studies.

We address this gap here.

Results: We examined the effects of parameter selection on classification performance using the RF machine

learning algorithm on two biological datasets with distinct p/n ratios: sequencing summary statistics (low p/n)

and microarray-derived data (high p/n). Here, p, refers to the number of variables and, n, the number of samples.

Our findings demonstrate that parameterization is highly correlated with prediction accuracy and variable

importance measures (VIMs). Further, we demonstrate that different parameters are critical in tuning different

datasets, and that parameter-optimization significantly enhances upon the default parameters.

Conclusions: Parameter performance demonstrated wide variability on both low and high p/n data. Therefore,

there is significant benefit to be gained by model tuning RFs away from their default parameter settings.

Keywords: Machine-learning, Random forest, Parameterization, Computational biology, Ensemble methods,

Optimization, Microarray, SeqControl
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Background

Machine learning (ML) techniques are widely used in

the analysis of high-throughput data to answer a broad

range of biological questions. Applications in the field of

medicine have transformed our understanding of

complex genomic interactions and measurements [1].

ML has been successfully applied to biological disci-

plines including proteomics [2, 3], drug development [4,

5], DNA sequence analysis [6–8], cancer classification

[9–13], clinical decision making [14, 15], and biomarker

discovery [16, 17]. The versatility of ML algorithms to

broad ranges of data and applications offers powerful,

yet generalizable solutions to biological questions.

Recently, the random forest (RF) algorithm [18] for

ML has achieved broad popularity. RF is a form of

ensemble learning and possesses several characteristics

that impart versatility. It can be applied to two-class or

multi-class prediction problems, model interactions

among variables, can take on a mixture of categorical

and continuous variables, provides variable importance

measures (VIMs), and has good predictive performance

even for data with more variables (p) than samples (n;

i.e. p > > n); potentially involving highly noisy and signifi-

cantly correlated variables [19, 20]. Due to their non-

parametric nature, RFs are fairly robust with relatively

straightforward applications for inexperienced users [21,

22]. Consequently, this algorithm has expanded to a

framework of models [23].
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To train a random forest model, a bootstrap [24] sam-

ple is drawn, with the number of samples specified by

the parameter sampsize [25]. By default, the bootstrap

sample has the same number of samples as the original

data: some samples are represented multiple times,

whereas others are absent, leading to approximately

37 % of samples being absent in any given tree. These

are referred to as the out-of-bag (OOB) samples [26].

Independent of the sampsize setting, after each sample is

drawn, a decision tree is created. In the most

commonly-used implementation, fully-grown or un-

pruned decision trees are created [18]. The number of

trees is denoted by the parameter ntree [21]. This collec-

tion of models is known as bootstrap aggregation or

bagging [27] and is commonly applied to high-variance

and low-bias learners such as trees [28, 29]. Since indi-

vidual trees are more prone to over-fitting than a collec-

tion of trees, an ensemble method has a significant

advantage [27, 29]; however, this is limited by the correl-

ation between the trees and can be mitigated by choos-

ing a number of randomly selected input variables at

each split of the tree. The number of random variables

used at each split is denoted by the parameter mtry. Of

this subset of randomly selected variables, the one that

forms the best split is selected [25, 30]. The best split is

selected on the basis of a specific objective function,

most typically maximization of the Gini coefficient or

total gain in purity. This produces the most homoge-

neous groups and lowest OOB error [21]. Several empir-

ical studies have shown the benefit of aggregating

multiple trees to create a strong learner whereas, inde-

pendently they would be considered unstable with lower

classification accuracy [27, 31–34].

Machine learning algorithms frequently require esti-

mation of model parameters and hyper-parameters,

commonly through grid-searching [35]. Surprisingly,

though, this is not common practice in the literature for

RFs, where default values are often used as it is widely

believed that this method is parameter-insensitive, or at

least robust to changes from default parameter settings

[36–38]. To test this assumption, we performed an

exhaustive analysis of the parameter-sensitivity of RFs in

two large, representative bioinformatics datasets. We

show that our top performing tuned models were able to

achieve greater prediction accuracies than the default

models for both datasets and that the performance of

the default parameterization is inconsistent. This empha-

sizes the value of per-dataset tuning of RF models.

Results

Experimental design

To evaluate the sensitivity of RF models to

parameterization, we selected two datasets representative

of those commonly used in computational biology. The

first studies quality-control metrics in next-generation

sequencing [6] and comprises 15 features (sequencing

quality metrics) with 720 training samples and 576

validation samples, and thus reflects low p/n ratio studies.

Each sample was classified as “good library” or “bad library”

based on information external to the 15 features, and our

models aimed to predict this binary response variable.

The second dataset reflected high p/n studies and

comprises three categorical clinical variables and 12,135

continuous mRNA abundances for Non-Small Cell Lung

Cancer (NSCLC) patients [13]. We trained models to

predict patient outcome, “no death” or “death”. There

were 255 samples in the training cohort.

For both datasets, we performed two model-fitting

steps (Fig. 1). First, we selected a broad and comprehen-

sive range of parameters (Additional file 1), and trained

a RF classification model for each combination, includ-

ing the default parameters. Models were trained on the

training dataset and validated on a fully independent

dataset. Performance was scored using the Area Under

the Receiver Operating Characteristic Curve (AUC) [38].

Second, we fit an RF regression model using the data

from the previous step: parameters were set as the co-

variates and AUC as the response. This allows us to

characterize the association between prediction accuracy

and parameterization. We randomly sampled 2/3 of

parameter sets for training and reserved the remainder

for validation. We aimed to predict the withheld AUC

scores and assessed performance using Spearman's Rank

Correlation Coefficient (ρ) and Lin's Concordance

Correlation Coefficient (ρc).

Prediction accuracy is a strong function of parameterization

in low p/n studies

We first evaluated the parameter sensitivity of RF pre-

diction accuracy in the low p/n dataset. We created

1,500 different sets of parameters and evaluated the per-

formance of each. Most models succeeded at this task

(Fig. 2), with a median AUC of 0.893 and 96 % of models

exceeding 0.80 AUC. However, the performance varied

dramatically, with a range of 0.6113–0.9996, suggesting

that some parameterizations greatly improve or hinder

prediction accuracy. The default parameterization (ntree
= 500, mtry = 3, sampsize = 720 with replacement) per-

formed well, with an AUC of 0.9726 and ranked in the

top 12 % of all models (174/1,500; Additional file 2).

This clearly demonstrates that the default settings are

reasonable, but not optimal.

We asked if models were consistently struggling with

the same samples. We looked for samples in the

validation dataset where at least 50 % of models trained

with different parameter sets made incorrect predictions.

In total 73/576 (12.7 %) of validation samples were diffi-

cult to classify. These were strongly asymmetrically
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distributed between the classes with 72/432 (17 %) “good

library” validation samples difficult to classify relative to

only 1/144 (1 %) “bad library” validation samples (p= 1.27 ×

10−6; proportion-test). Interestingly though, the global error

rate was not dramatically different between these two

groups (20 % for “good library” vs. 14 % for “bad library”

samples).

Parameterization was strongly correlated to AUC score

(Fig. 2) in this dataset, but tightly focused on specific

parameters. The number of variables sampled per node

(mtry) was strongly negatively correlated with AUC

(ρmtry = -0.895) and mtry ≤ 3 resulted in higher classifica-

tion accuracy (mean AUC for mtry ≤ 3 = 0.97; mean AUC

for mtry > 3 = 0.88; Welch Two Sample t-test). In

contrast, models were relatively robust to changes in the

ntree and sampsize parameters (ρntree = 0.053 and ρsamp-

size = 0.096; Spearman's ρ).

To further explore the relationship between

parameterization and performance, we univariately

compared performance within each parameter (Additional

file 1), with Benjamini-Hochberg adjustment for multiple-

testing [39]. While sampsize values did not differ

significantly from each other, however, ntree of 10 had

significantly lower AUCs (q < 0.05) than other setting

(Additional files 3, 4 and 5). Similarly, as noted above

there was a near-linear relationship between increasing

mtry and decreasing AUC in the validation cohort

(Additional file 6). These findings illustrated the strong in-

fluence of parameter selection on classification accuracy,

and that both linear and threshold effects can be observed.

Fig. 1 Experimental Design. Classification-based model fitting began with a unique combination of ntree, mtry, and sampsize parameters in

conjunction with training data, illustrated by the gray boxes. Each learned random forest model was used to predict the class of the validation

data. Subsequently, AUC scores were calculated using the true class labels and these values were randomly subsetted into training and validation

groups using 2/3 and 1/3 of the samples, respectively. In the second model fitting step, we evaluated whether AUC could be predicted from

parameter sets alone. A RF regression model was fit using the parameters ntree, mtry, and sampsize as variables and AUC as the response, illustrated

by the blue boxes. Default settings were selected to train the RF regression models and AUC scores were predicted for the validation data. We

evaluated the results using Spearman's and Lin’s correlation and determined the relative importance of each variable
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While the results to this point demonstrate both

that parameterization powerfully influences prediction

accuracy and that the default parameter settings are

sub-optimal. However they do not demonstrate if it is

possible to improve upon the defaults via parameter-

optimization studies. We therefore implemented 10-fold

and stratified 10-fold cross-validation using the parame-

ters in Additional file 1. The data was randomly divided

into 10 even folds, using 9/10 folds for training and the

last fold for validation. This step was repeated so that each

fold was used for validation once, so that the number of

samples in validation was equal to the number of samples

in the original training set (n = 720). All validation folds

were pooled to evaluate AUC and cross-validated models

were compared to non-cross-validated models using

Spearman's ρ and Lin's ρc (Additional file 2).

Predicted classes for both 10-fold cross-validation and

stratified 10-fold cross-validation were weakly, but

statistically-significantly correlated to the predicted classes

for non-cross-validated results (Additional file 7a-b), and

strongly correlated to one another (Additional file 7c).

We found that cross-validation and stratified cross-

validation resulted in 97 % of models having an AUC of

1, including the defaults. We used an additional metric,

root mean squared error (RMSE) to break ties. The opti-

mal model in 10-fold cross-validation (rank = 1, ntree =

500000, mtry = 10, sampsize = 720) had a RMSE of

0.00203, whereas the default model (rank = 579) had a

Fig. 2 Prediction accuracy is a strong function of parameterization in low p/n studies. Summary of low p/n predicted votes for each fitted

random forest model (n = 1500). An AUC plot is provided at the top indicating the relative performance of each model, represented by each

column. Each model was fitted from a unique combination of ntree (n = 10), mtry (n = 15) and sampsize parameters (n = 10) and their respectively

outcomes (votes) for each sample or row (n = 576). Votes are provided in values from 0–1 with 0 representing a “bad library” and 1 representing

a “good library”. All columns are ordered in descending order of AUC scores and rows are ordered in descending order of the fraction of correct

votes for a given sample (total votes for the true sample class/all votes). All samples were subsetted according to the true class labels “good

library” and “bad library”, though the votes may not be reflective of this. Barplots for vote fractions are provided on the right of the main

heatmaps and the values for each parameter are provided at the bottom of the figure. The ntree parameter is illustrated in blue, mtry in magenta

and sampsize in orange. Lighter hues represent lower values with darker hues indicating higher values. A scatterplot in the bottom right corner

illustrates a strong negative correlation between the mtry parameter with AUC scores (ρ = -0.89, p = 0)
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RMSE of 0.0273. The optimal model in stratified 10-fold

cross-validation (rank = 1, ntree = 50, mtry = 14, sampsize

= 648) had a RMSE of 0.0119, whereas the default model

(rank = 319) had a RMSE of 0.0229. Overall, we found

that 39 % (578/1500) and 21 % (318/1500) of models

outperformed the untuned model (ntree = 500, mtry = 3,

sampsize = 720), respectively. Twenty one percent (310/

1500) of these models shared the same parameter values

and were found to perform better than the default

settings in both cross-validated and non-cross-validated

results. We found the addition of a second metric,

RMSE useful in breaking ties and assessing model

performance for low p/n data.

Prediction accuracy can be a strong function of

parameterization in high p/n studies

To contrast these data, we examined the effects of

parameterization on prediction accuracy for high p/n

data [13] (Additional file 1). We created 1,000 different

sets of parameters and evaluated the performance of

each (Additional file 8). Again, we saw that model per-

formance varied greatly with parameterization with a

median AUC of 0.533 and 2 % of models exceeding an

AUC of 0.60 (Fig. 3). However, the performance varied

dramatically, with a range of 0.4254–0.6337, suggesting

that some parameterizations could greatly improve or

hinder prediction accuracy. The default parameterization

Fig. 3 Prediction accuracy is a strong function of parameterization in high p/n studies. Summary of the predicted votes for the combined validation

data for each fitted random forest model (n = 1000). A barplot for AUC scores is provided at the top indicating the relative performance of each

model, represented by each column. Each model was fitted from a unique combination of ntree (n = 10), mtry (n = 10) and sampsize parameters (n = 10)

and their respectively outcomes (votes) for each sample or row (n = 186). Votes are provided in values from 0–1 with 0 representing a “no death”

event and 1 representing a “death” event. All columns are ordered in descending order of AUC scores and rows are ordered in descending order of

the fraction of correct votes for a given sample (total votes for the true sample class/all votes). All samples were subsetted according to the true class

labels “death” and “no death”, though the votes may not be reflective of this. On the right of the main heatmaps are respective barplots for vote

fractions and a heatmap of parameter values is present at the bottom of the figure. The ntree parameter is illustrated in blue, mtry in magenta and

sampsize in orange. Lighter hues represent lower values with darker hues indicating higher values. To the right of this is a scatterplot illustrating

Spearman's correlations of each parameter with the AUC scores; positive correlations were observed for the parameters ntree, mtry, and sampsize

(ρ = 0.222, p < 10−10; ρ = 0.238, p < 10−12; ρ = 0.207, p < 10−9, respectively)
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(ntree = 500, mtry = 110, sampsize = 255) performed well

relative to other models, with an AUC of 0.6098 and

ranked 10th. This demonstrates the near optimal per-

formance of the default settings.

We asked if models were consistently struggling with

the same samples. We looked for samples in the valid-

ation dataset where at least 50 % of models trained with

different parameter sets made incorrect predictions. In

total 89/186 (48 %) of validation samples were difficult

to classify. These were symmetrically distributed be-

tween the classes with 37/74 (50 %) “death” events diffi-

cult to classify compared to 52/112 (46 %) “no death”

samples (p = 0.74; proportion-test). The error rate was

significantly different between these two groups (for “no

death” samples; p = 0; proportion-test).

Parameterization was strongly correlated to AUC in

this dataset, with contribution from all parameters. We

observed that mtry (ρ = 0.238, p = 2.12 × 10−14; Spear-

man’s correlation) was the most correlated, followed by

ntree (ρ = 0.222, p = 1.39 × 10−12; Spearman’s correlation)

and sampsize (ρ = 0.207, p = 3.73 × 10−11; Spearman’s

correlation).

To further explore the relationship between

parameterization and performance, we univariately

compared performance within each parameter (Additional

file 1), with Benjamini-Hochberg adjustment for multiple-

testing [39]. We observed that larger ntree values resulted

in higher prediction accuracy and reduced performance

variability compared to lower values (q < 10−8), with no

significant difference observed between values ntree ≥

10,000 (Additional files 9 and 10). Similar results were ob-

served for sampsize and mtry (Additional files 11 and 12)

where there was a near-linear relationship between in-

creasing parameter values and AUC in the validation

cohort. Additionally, no significant differences were ob-

served in AUC for sampsize ≥ 153 and mtry ≥ 110. The mtry

value here is notable since it was used as the default, pro-

viding some support to previous claims that the default

performs well. These findings illustrated the strong influ-

ence of parameter selection on classification accuracy, and

that both linear and threshold effects can be observed.

Parameters can be used to predict performance

Having shown that model performance is strongly influ-

enced by ntree, mtry, and sampsize, we next asked how

strongly these three parameters could predict AUC

directly. We assessed variable importance using the Gini

VIM, where larger values indicate a variable is more

important for accurate classification. We were able to

predict AUCs using this metric that closely reflects those

of the true data for low p/n data (Additional file 13a;

ρ = 0.92, p = 1.29 × 10−209, ρc = 0.89; Spearman's ρ and

Lin's ρc). We observed that mtry demonstrated the high-

est Gini VIM for low p/n data (Additional file 13b).

Similar results were observed for the high p/n data,

where prediction accuracy was a strong function of par-

ameter selection across all validation sets (Additional file

14a; ρ = 0.48, p = 5.42 × 10−21, ρc = 0.33; Spearman's ρ

and Lin's ρc). Interestingly, the parameters demonstrated

relatively balanced importance measures with sampsize

demonstrating the highest Gini VIM and ntree with the

lowest (Additional file 14b).

Importance ranks can be sensitive to parameter changes

Finally, we asked if parameterization change could alter

the identification of importance variables (which are fre-

quently used in feature-selection approaches, for ex-

ample) [23, 36]. We focused on the low p/n data, and

trained models using the settings in Additional file 1 and

ranked permutation VIM for each quality metric from

1–15, with 1 representing the most important variable.

Permutation VIM is the mean decrease in classification

accuracy after a random variable is removed from model

fitting. Larger values suggest a variable has more dis-

criminative power [40, 41].

Variables differed in their sensitivity to parameter

changes when evaluating variable importance (Fig. 4).

The variable “Average reads/starts” was robust against

parameter changes and was considered the most import-

ant in 94 % of all samples, whereas “Clusters” exempli-

fied strong parameter sensitivity and was positively

correlated to mtry. On the other hand, “% bases ≥ 50 %”

was found to have higher VIMs with lower mtry values.

Our order for variable importance deviated from that

of the original study [6], where “% bases ≥ 8×” was re-

ported as the most discriminative variable. We examined

how variable importance changed with differing ntree
values (n = 10) while holding mtry and sampsize constant

(mtry = 3, sampsize = 720; Additional file 15) and ob-

served that larger ntree values led to more stable VIMs.

Discussion

There are two common assumptions regarding RF

models. The first is that the default parameters lead to

good performance [37, 38] and the second is that the al-

gorithm is robust to parameter changes [19, 21, 42]. To

help quantify the wide-spread nature of these assump-

tions we manually reviewed all papers published in BMC

Bioinformatics between January 1, 2015 and November

21, 2015 (Additional file 16). We looked for papers that

referenced the canonical RF paper [18] during this

~11 month period. Of the 16 papers that implemented

RFs, exactly half performed a parameterization study to

optimize parameters, and only 5/16 papers reported the

final parameter setting used. That is, about half of RF-

studies could benefit from improved parameterization

and another third from improved reporting. This high-

lights clearly the gap between machine learning theory
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and practice, and gaps in methods reporting that are not

being caught by peer-review.

Parameterization is difficult and its absence from the

model fitting process may be due to limited experience,

a lack of readily available heuristics or limited resources

[43]. Consequently, these factors lead to the inappropri-

ate selection of parameters or lack thereof, directly

influencing learning [44]. We sought to determine the

effects of parameterization on classification accuracy and

variable importance measures. Our findings suggested

data-dependent parameter sensitivities ultimately influ-

ence classification accuracy and VIMs for binary classifi-

cation problems. Our findings may not extend to

regression analyses or multi-class problems, where the

relationship between the variables and response is much

more complex.

We observed that the default parameters have the

potential to perform well, however results across all tests

indicated that parameter tuning enabled higher model

performance. The majority of high performing parameter

Fig. 4 Importance ranks can be sensitive to parameter changes in low p/n studies. Summary of the variable importance ranks for each sequencing

metric (n = 15). An AUC plot is provided at the top indicating the relative performance of each model, represented by each column. Each model was

fitted from a unique combination of ntree (n = 10), mtry (n = 15) and sampsize parameters (n = 10) and their respectively outcomes (importance value)

for each metric. Each column of the main heatmap corresponds to a model's importance values, and were ranked from 1–15, where 1 represented

the most important feature and 15 the least. The importance values were ordered according to previously calculated AUC scores using predicted vote

and true class labels. Each row represents a metric and are ordered according to the mean rank of its importance values. The importance values were

simplified in the main heatmap and illustrate four groups only. Blue indicates a rank of 1, green a rank of 2, gold a rank of 3, and beige a rank of 4 and

greater. A summary of overall rank groups for a particular metric are illustrated in a barplot on the right of the main heatmap and a covariate heatmap

with all parameter combinations is illustrated at the bottom of the plot. The ntree parameter is illustrated in blue, mtry in pink and orange for sampsize in

orange. Some parameters demonstrate robust behaviour to parameter changes such as “Uncollapsed coverage” and “% bases≥ 50 quality”, which

were ranked between 11–15 inclusive in 96 % and 95 % of all samples, respectively. These variables possessed VIMs that suggested they were less

influential on classification accuracy. Yet, “Average reads/starts” was insensitive to parameter changes and was considered the most important variable.

Another variable “Clusters” was parameter sensitive, illustrating that variables vary in their sensitivity to parameter changes which can ultimately

influence classification accuracy
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combinations did not coincide with general patterns

observed in the pattern selection process i.e., in most

samples higher parameter values led to greater classifica-

tion accuracy and the top performing parameters had

lower values. Such models may have performed well due

to random chance or were over-fit. These results

emphasize the importance of parameter tuning and how

one cannot rely on any arbitrary parameter set to perform

well. This also suggests that existing publications imple-

menting untuned models may improve classification ac-

curacy through model tuning. To reduce computation

time and work for parameter selection, we applied a RF

regression model, which predicted model performance

more accurately than the more expensive 10-fold cross-

validation and stratified 10-fold cross-validation. The RF

regression model was also better at discriminating poor

performing parameter sets from high performing param-

eter sets.

To our knowledge, this is the first computational

genomic study that addresses parameter sensitivities

using a comprehensive range of values for two unique

biological data types. In particular, we observed that the

low p/n data was sensitive to changes in mtry and the

high p/n data demonstrated a synergism between all

three parameters. Additionally, not all variables exhibited

robust behaviour towards parameter changes when

determining VIMs (e.g., “Clusters” and “% bases ≥ 50×”).

These findings challenge the assumption that RFs are

relatively robust. Parameters that did not a play key role

independently had an observable and significant syner-

gism when constructing RF regression models with

interaction terms (from section Parameters can be used

to predict performance).

We also noted that our variable importance ranks did

not coincide with [6]. This was largely explained by the

bias in feature importance for the RF algorithm. Variables

that were highly correlated to truly influential variables or

have more categories will be over-selected by the algo-

rithm and do not reflect the true relative contribution of a

variable in a classification or regression problem [20].

Chong et al. [6] implemented an alternate algorithm,

“cforest”, from the R package “party” to generate unbiased

VIMs. One area for future research is to investigate the

sensitivity of parameter changes in the “cforest” algorithm.

Moreover, characteristics of the data, such as, p > > n

and minor class imbalances were observed. The numer-

ous variables in the high p/n data constrained the selec-

tion range of mtry parameters, potentially confounding

the results. In such samples, mtry ≠ p. This was not the

sample for the low p/n data, where we were able to test

all possible values of mtry. This limitation may also be

viewed as beneficial since the number of randomly se-

lected variables at each split is constrained and therefore,

limits tree correlation within a forest.

An additional data characteristic limiting the classifica-

tion accuracy in RF could be class imbalance [45, 46].

The unequal number of classes in a dataset is technically

considered class imbalance, however, in the scientific

community, class imbalance corresponds to data with

significant to extreme disproportional class numbers,

such as, 100:1 or 10,000:1 [47]. These types of “imbal-

anced data” were not considered here. Furthermore, the

minor classes “bad library” and “death” in the small p/n

data and high p/n data respectively, had a higher classifi-

cation accuracy suggesting, in some instances, the

heterogeneity of a sample is more influential on classifi-

cation accuracy. We also aimed to mitigate class imbal-

ance effects through stratified sampling and by using the

AUC performance metric. Alternate methods such as,

cost sensitive learning [48] and artificially balancing the

data through down sampling the majority class [49], over

sampling the minority class [50], or both [51] have been

shown to deal with class imbalance effectively. Artificial

balancing ensures that class priors are equal in tree clas-

sifiers and that the minority class is included in the

bootstrap sample. On the other hand, cost sensitive

learning incurs a greater cost for misclassified minority

samples over majority samples. Minor class imbalances

were not observed to be an issue in this study, however,

data should be analysed with caution in highly imbal-

anced studies.

Conclusions

We analysed the effects of parameterization using ex-

haustive selection methods and showed that tuning can

be successfully applied to a non-parametric machine

learning algorithm to improve prediction accuracy.

Although we only examined two different genomic data-

sets, we observed that parameter sensitivities are data-

specific, necessitating per-dataset tuning. Our findings

illustrate this through discordant correlations between

parameters and performance scores for low p/n and high

p/n data. The model fitting process is a fundamental

step in machine learning and careless parameter selec-

tion can lead to sub-optimal models and potentially

missed findings.

Methods

Datasets

We explored parameterization of RFs on two datasets.

The first was a sequencing-derived dataset (low p/n

data) [6] and the second was a microarray-derived data-

set (high p/n data) [13], reflecting low and high p/n data,

respectively.

The low p/n data (15 variables with 1,296 samples) con-

tained 15 quality metrics describing overall coverage,

coverage distribution, basewise coverage and basewise

quality of 53 whole genomes. The data was derived for the
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International Cancer Genome Consortium (ICGC) project

to predict the amount of sequencing that is required to

reach a given coverage depth for 1/8 lane samples [6]. The

outcome column was a list of binary values (0 for “bad li-

brary” or 1 for “good library”) indicating whether the tar-

get coverage depth was reached (30× for normal, 50× for

tumour). The data was split into training and validation

sets, as described by the low p/n paper [6] and contained

720 and 576 samples, respectively.

The high p/n data contained gene expression data for

442 lung adenocarcinomas and basic clinical covariates

(stage, age and sex) to predict lung cancer patient out-

come (0 for “no death” or 1 for “death”). The data were

collected from six contributing institutions and grouped

into four subsets based on the laboratory where processed

(University of Michigan Cancer Center (UM), Moffitt

Cancer Center (HLM), Memorial Sloan-Kettering Cancer

Center (MSKCC), and Dana-Farber Cancer Institute

(DFCI)). All facilities processed the data using the same

robust and reproducible protocol.

The first two datasets, UM and HLM, were grouped

together to form the training set (12,138 variables with

255 samples), while the MSKCC data (104 samples) and

DFCI data (82 samples) formed the validation set (186

samples).

Parameter selection

The mtry parameter values were selected using factor

levels of the default value. Since the nature of this super-

vised learning problem is that of classification and not

regression, the default value of mtry is the square root of

the number of variables or features in the data 18 √p,

whereas, in regression the default is p/3. The study by

[21] reported mtry as the most sensitive parameter with

values of mtry factor = 1/2 (1/2• 18 √p), mtry factor = 1

(18 √p) and mtry factor = 2 (2•18√p) showing good

performance. Given this information and the number of

variables in the data, one to all variables were selected as

mtry values for the SeqControl dataset (p = 1-15), the

mtry values 1, 5, 11, 22, 55, 110, 220, 550, 1100, 2200

were selected for the NSCLC data (p = 12,138). The

NSCLC values were obtained by selecting factor levels

(1/100, 1/20, 1/10, 1/2, 1, 2, 5, 10, 20), multiplying them

with p and taking the largest integer preceding a speci-

fied number i.e., for a value of 3.4, 3 was used.

The values for ntree were selected similarly to those for

mtry. We imposed factor levels to the default value and

took the product to create the ntree values. The factor

levels were 1/50, 1/10, 1/5, 4/10, 1, 2, 20, 100, 200 and

1000. The final ntree values were 10, 50, 100, 200, 500,

1000, 1e4, 5e4, 1e5, 5e5. The selected ntree values were

the same for both datasets.

The final parameter sampsize, had the same factor

levels for both datasets and was a sequence of values

from 0.1–1, increasing by increments of 0.1. To obtain

the final sampsize values, we multiplied the total number

of samples in training by the sampsize factor levels and

took the smallest integer proceeding a number i.e., for a

value of 3.4, 4 was used.

Selected parameters were used to train models with

the function “randomForest” using sampling with re-

placement. The data was partitioned according to the

original papers, as described above. In the SeqControl

data experiment, we aimed to predict whether the target

of sequencing depth coverage was achieved using 1/8

lane (1 for “good library”, 0 for “bad library”). In the

NSCLC data experiment, we aimed to predict patient

outcome (1 for “death”, 0 for “no death”). A table of

complete parameter settings for the SeqControl data and

NSCLC data can be found in Additional file 1.

Model training

The data were trained using the function “randomFor-

est” from the R package “randomForest” (v4.6-10) [21,

52]. A series of RFs were trained on each dataset using a

unique combination of the three parameters: ntree, mtry

and sampsize. For the SeqControl data, we used 15 mtry

values, 10 ntree values, and 10 sampsize values. These

values and numbers differed slightly in the NSCLC

training: 10 mtry values, 10 ntree values, and 10 sampsize

values. A resulting total of 1500 and 1000 unique com-

bination were obtained for model fitting on the SeqCon-

trol data and NSCLC data, respectively.

After training, each model was then validated on inde-

pendent validation data to obtain class probabilities

(votes). The votes and true class labels were then used

to estimate model performance by calculating the AUC

score.

Performance prediction using parameters as variables

In order to determine whether model performance could

be predicted, we performed regression using RF, on a sub-

set of parameters and their respective AUC scores. AUC

scores were calculated by comparing the predicted votes

from each model to the true classifications. We initially

attempted this from a linear model approach, however,

classification accuracy was low due to overfitting. After

subsetting 2/3 of the data into training and 1/3 for valid-

ation, we performed model tuning and selected the model

with the lowest mean squared error. Tuning was con-

ducted using a grid of parameters (Additional file 17) and

5-fold cross validation. We then applied the optimal set-

tings (ntree = 200, mtry = 2, sampsize = 200) to train a RF

model. The response for our model was AUC score and

the variables were ntree, mtry and sampsize. The expression

for the model formula included the terms in an additive

and interaction format i.e., sampsize +mtry + ntree + samp-

size*mtry + sampsize*ntree + ntree* mtry + sampsize*ntree*mtry.
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After training and validating the models, we were able to

assess performance using the following metrics, Spear-

man's ρ, Spearman's p-value (P) and Lin's ρc. Lastly,

importance values were found for each variable (ntree, mtry

or sampsize) in the form of Gini VIM.

Model selection using 10-fold cross-validation and

stratified 10-fold cross-validation

Ten-fold cross-validation was used to estimate the

generalization error of each unique RF model (n = 1500)

for the SeqControl data. This method of cross-validation

has been suggested to perform better than the more ex-

pensive leave-one-out cross-validation [53]. The data

was subsetted into 10 even folds, with nine groups se-

lected for training and the last reserved for validation.

This process was iterated until each fold was used in the

validation stage once, so that the number of samples in

validation was equal to the number of samples in the

original training set (n = 720).

The above was repeated for stratified 10-fold cross-

validation with an even distribution of the minority class

among each fold. A total of 72 samples appeared in each

fold with approximately 14 samples of the minority class

and 58 of the majority class. AUC scores were used to

estimate accuracy and correlations were calculated be-

tween non-cross-validation, 10-fold cross-validation and

stratified 10-fold cross-validation results. A table com-

paring the above three methods is in Additional file 2.

Ranking variable importance

Additional information pertaining to variable importance

was collected from training and validating the SeqCon-

trol models using permutation VIM [54]. Permutation

VIM can be interpreted as the mean decrease in accur-

acy of a RF due to the removal of a variable. The magni-

tude of the value is directly proportional to the relative

contribution of a particular variable in classifying

samples, that is, the greater the decrease or drop in ac-

curacy, the more a feature is correlated to the response.

The model for the SeqControl data had additional set-

tings that were implemented, such as “importance”,

“localImp”, “proximity” and “keep.inbag”. These argu-

ments were all set to “TRUE” to keep results relatively

consistent with the original paper [6].

Due to the exhaustive parameter selection method of

grid searching, we parallelized jobs using Perl High Per-

formance Computing Interface (HPCI) [55] and paralle-

lized jobs further by using the R package, “foreach”

(v1.4.2) [56].

Statistical model evaluation

We evaluated the performance of models using several

statistical measures in the R statistical environment

(v3.1.3) [57]. For classification accuracy, we calculated

the AUC using the predicted votes and the true class

labels with the function “auc” from the package pROC

(v1.8) [58]. For non-parametric tests comparing the

parameter performance in classification, we used the

function “cor” from the base “stats” package (v3.2.0) [57]

to calculate Spearman's ρ and to find the correlation

coefficient between the AUC scores and the parameter

of interest. Spearman's ρ, Spearman's p-value and the

equation for Lin's ρc from the paper [59] were used to

determine the correlation between true and predicted

AUC values in performance prediction. All p-values

were adjusted using the function “p.adjust” from the

base “stats” package (v3.2.0), using the Benjamini-

Hochberg procedure.

Data visualization

Figures were generated in the programming language

LaTeX and in the R statistical environment (v3.1.3) using

custom R scripts for the “lattice” (v0.2-31) [60] and

“latticeExtra” (v0.6-26) [61] packages.

Additional files

Additional file 1: RF parameter settings. RF parameter settings for low

p/n data (SeqControl; p = 15) and high p/n data (NSCLC; p = 12,138).

(CSV 515 bytes)

Additional file 2: AUC results for low p/n data. Low p/n results for

prediction accuracy using AUC as the performance metric for non-cross-

validation results, 10-fold cross-validation and stratified 10-fold cross-

validation. Ranks indicate the relative performance of different models

with lower ranks representing higher performing models i.e., a rank of 1

is the best model. The default settings (ntree= 500, mtry = 3, sampsize = 720)

are found on row 1502 of the table. (CSV 116 kb)

Additional file 3: Pairwise t-test results for sampsize intra-parameter

groups for the low p/n data. All p-values were adjusted using a

Benjamini-Hochberg procedure. There were no groups that differed

significantly from each other. (TXT 333 bytes)

Additional file 4: Pairwise t-test results for ntree intra-parameter groups

for the low p/n data. All p-values were adjusted using a Benjamini-

Hochberg procedure. The only ntree value found to differ from every other

ntree group was 10. (TXT 456 bytes)

Additional file 5: Intra-parameter values display variation in low p/n

studies. We evaluated the parameters sampsize, ntree and mtry by

performing pairwise t-tests with a Benjamini-Hochberg adjustment. AUC

scores were grouped by parameter values as indicated by a unique

colour (orange for sampsize, blue for ntree and pink for mtry), resulting in

10 groups for sampsize (n = 150), 10 groups for ntree (n = 150) and 15

groups for mtry (n = 100). A horizontal line is present in each plot,

indicating the median of the lowest parameter value. Parameter values

for sampsize were not found to differ significantly from each other,

whereas, ntree = 10 differed significantly from every other group and all

mtry values demonstrated a difference with at least one other group.

These findings suggest that lower ntree values were associated with lower

classification accuracy, with an opposite trend observed in the mtry

parameter, where higher values were negatively correlated with classification

accuracy. (TIFF 1373 kb)

Additional file 6: Pairwise t-test results for mtry intra-parameter groups

for the low p/n data. All p-values were adjusted using a Benjamini-

Hochberg procedure. Each sampsize group was found to differ from at

least 12 other groups. (TXT 2 kb)
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Additional file 7: Performance results are correlated between non-cross-

validation results, 10-fold cross-validation and stratified 10-fold cross-

validation. Correlations between non-cross-validation and cross-validation

results of fitted random forest models to perform feature selection. (a) Non-

cross-validation results were correlated to 10-fold cross-validation results

(ρ = 0.084, p < 0.01, ρc = 3.9 × 10−4). (b) Non-cross-validation results were

also correlated to stratified 10-fold cross-validation results (ρ = 0.1, p < 10−4,

ρc = 2.9 × 10−4). (c) A very strong correlation was observed between strati-

fied 10-fold cross-validation and 10-fold cross-validation (ρ = 0.65, p < 10−179,

ρc = 0.63) with minimum AUCs of 0.9967 and 0.9952, respectively and 97 %

of models overlapping at an AUC of 1. (TIFF 5780 kb)

Additional file 8: AUC results for high p/n data. Validation results for all

high p/n models (n = 1000) using the MSKCC data, DFCI data, and

combined MSKCC and DFCI data. The AUC results and ranks are provided

for each combination of ntree, mtry and sampsize parameters. Lower ranks

represent higher model performance with 1 representing the most

accurate model and 1000 representing the worst performing model.

Logical columns are present to indicate whether a parameter set

performed better than the default or well across all validation sets. Model

performance was defined as good if the parameter set resulted in an

AUC of > 0.6 across all validation sets. The default settings (ntree = 500,

mtry = 110, sampsize = 255) are found on row 596 of the table. (CSV 28 kb)

Additional file 9: Intra-parameter values display variation for high p/n

studies (combined validation data). The parameters sampsize, ntree and

mtry were analysed by performing pairwise t-tests with a Benjamini-

Hochberg adjustment. AUC scores were grouped by parameter values as

indicated by colour (orange for sampsize, blue for ntree and pink for mtry).

In general, lower intra-parameter values for sampsize, ntree, and mtry were

found to differ significantly from higher intra-parameter values, with

higher parameter values exhibiting a positive correlation with AUC.

(TIFF 1207 kb)

Additional file 10: Pairwise t-test results for ntree intra-parameter groups

for the combined NSCLC validation data. All p-values were adjusted using

a Benjamini-Hochberg procedure. Lower ntree groups were found to differ

from higher ntree parameter groups for example, ntree 10 from ntree 10,000

− 500,000. (TXT 1019 bytes)

Additional file 11: Pairwise t-test results for mtry intra-parameter groups

for the combined NSCLC validation data. All p-values were adjusted using

a Benjamini-Hochberg procedure. In general lower mtry values were

found to differ significantly from higher mtry values for example, mtry 1

from mtry 110 − 2200. (TXT 1009 bytes)

Additional file 12: Pairwise t-test results for sampsize intra-parameter

groups for the combined NSCLC validation data. All p-values were

adjusted using a Benjamini-Hochberg procedure. Significant differences

were observed between large and small sampsize values, in particular,

sampsize 26 from sampsize 102 − 255; sampsize 51 from sampsize 128 − 255;

sampsize 77 from sampsize 128 − 255, etc. (TXT 1 kb)

Additional file 13: AUC performance can be predicted for low p/n data

using parameters as variables. Prediction accuracy (AUC) using the

random forest classifier for low p/n data with Gini importance measures.

(a) The model for the SeqControl data shows a strong correlation

between predicted and observed AUC scores (ρ = 0.92, p < 10−208) and a

Lin’s concordance correlation coefficient (ρc) value of 0.89. (b) The Gini

importance measures for the low p/n AUC values show that mtry is the

most informative variable followed by ntree and sampsize. (TIFF 80 kb)

Additional file 14: AUC performance can be predicted for high p/n

data using parameters as variables. Prediction accuracy using the random

forest classifier for high p/n validation data with Gini importance measures.

(a) The combined validation data demonstrated a strong correlation

between the predicted and observed AUC values (ρ = 0.48, p < 10−20) and a

ρc value of 0.33. (b) The relative order of Gini importance for the combined

data was sampsize followed by mtry and lastly, ntree. (TIFF 68 kb)

Additional file 15: Variable importance ranks according to ntree value.

The ranks for the default parameters with unique ntree values as column

heads and sequencing quality metrics as row heads. The ranks stabilize at

ntree = 10,000. Using this criteria, the variable identified as the most

important was “Average reads/starts” in 40 % of samples, whereas, [6]

identified “% bases ≥ 8×” as the most important variable using the cforest

algorithm. Below ntree 1,000, “% bases ≥ 8×” was ranked as the most

important variable in 40 % of samples. Although greater ntree values may

lead to more consistent rankings for variable importance, these values

may become more biased through sampling with replacement methods

[20]. (CSV 667 bytes)

Additional file 16: Random forest usage in papers. A summary table of

papers referencing random forest over a seven month period (January 1

to November 4) from BMC Bioinformatics. Information was recorded

whether the paper uses a RF algorithm, and if so, whether they

parameterized and report the tuned parameters. Eleven of sixteen papers

use the RF algorithm and less than half of samples performed model

tuning. An even fewer number of papers reported the optimized values

[62–87]. (CSV 434 bytes)

Additional file 17: Parameter grid for predicting performance. A

summary table of parameters that were used to perform model tuning

for predicting AUC using a subset of parameters, ntree, mtry and sampsize.

A total of 162 parameters were used in model tuning and the optimal

parameters (ntree = 200, mtry = 2, sampsize = 200) were selected to fit the

final model. (CSV 124 bytes)
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