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The parameterised complexity of counting even and odd

induced subgraphs ∗

Mark Jerrum and Kitty Meeks†

School of Mathematical Sciences, Queen Mary, University of London

{m.jerrum,k.meeks}@qmul.ac.uk

October 5, 2015

Abstract

We consider the problem of counting, in a given graph, the number of induced
k-vertex subgraphs which have an even number of edges, and also the complementary
problem of counting the k-vertex induced subgraphs having an odd number of edges.
We demonstrate that both problems are #W[1]-hard when parameterised by k, in fact
proving a somewhat stronger result about counting subgraphs with a property that
only holds for some subset of k-vertex subgraphs which have an even (respectively
odd) number of edges. On the other hand, we show that each of the problems admits
an FPTRAS. These approximation schemes are based on a surprising structural result,
which exploits ideas from Ramsey theory.

1 Introduction

In this paper we consider, from the point of view of parameterised complexity, the problems
of counting the number of induced k-vertex subgraphs having an even (respectively odd)
number of edges; while these two are clearly equivalent in terms of the complexity of exact
counting, the existence of an approximation algorithm for one of these problems does not
automatically imply that the other is approximable. Formally, the problems we consider are
defined as follows.

p-#Even Subgraph

Input: A graph G = (V,E), and an integer k.
Parameter: k.

∗Research supported by EPSRC grant EP/I011935/1 (“Computational Counting”)
†Current address: School of Mathematics and Statistics, University of Glasgow;
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Question: How many induced k-vertex subgraphs of G have an even number of edges?

p-#Odd Subgraph

Input: A graph G = (V,E), and an integer k.
Parameter: k.
Question: How many induced k-vertex subgraphs of G have an odd number of edges?

We shall refer to an induced subgraph having an even (respectively odd) number of edges
as an even subgraph (respectively odd subgraph).

It has previously been observed by Goldberg et al. [12] that the related problem of
counting all induced even subgraphs of a graph G (that is, the sum over all k of the number
of induced k-vertex subgraphs having an even number of edges) is polynomial-time solvable.
It was noted in [12] that counting even subgraphs may be viewed as the evaluation of the
partition function of a 2-spin system defined by a certain 2× 2 matrix H2. It transpires that
the matrix H2 corresponds to a computationally tractable partition function (Theorem 1.2
of [12], together with the comment immediately following).

To understand how this tractable case might arise, consider the following encoding of
n-vertex graphs by quadratic polynomials over F2. Identifying the vertices of G with
the set {1, 2, . . . n}, introduce indeterminates X1, . . . , Xn and encode each edge ij of G
by the monomial XiXj. The polynomial pG corresponding to graph G is simply the sum
pG(X1, . . . , Xn) =

∑
ij∈E(G) XiXj of monomials over all edges of G. The number of even sub-

graphs of G is then equal to the number of solutions to the equation pG(X1, . . . , Xn) = 0. For-
tunately there is an efficient algorithm for computing the number of solutions to a quadratic
polynomial over F2: see Ehrenfeucht and Karpinski [7], or Theorems 6.30 and 6.32 of Lidl
and Niederreiter [16].

The techniques used to derive this result do not translate to the situation in which we
specify the number of vertices in the desired subgraphs, and indeed we prove in this paper
that, up to standard assumptions of parameterised complexity, p-#Even Subgraph and
p-#Odd Subgraph cannot even be solved on an n-vertex graph in time f(k)nO(1), where
f is allowed to be an arbitrary computable function (note, however, that these problems can
clearly be solved in time f(k)nk by exhaustive search, and so are polynomial-time solvable
for any fixed k). On the other hand, we show that both problems are efficiently approximable
from the point of view of parameterised complexity.

Given the correspondence between graphs and quadratic polynomials, we can alterna-
tively express our result as follows: although the problem of counting all solutions to a
quadratic equation over F2 is tractable, the variant in which we restrict the count to so-
lutions of a certain weight k is intractable in the sense of parameterised complexity. Here
“weight” is taken to be the number of variables set to 1.

The problems p-#Even Subgraph and p-#Odd Subgraph fall within the wider
category of subgraph counting problems, which have received significant attention from the
parameterised complexity community in recent years (see, for example [1, 3, 4, 5, 10, 14, 15,
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17]). In particular, our hardness results complement a number of recent results [6, 15] which
prove large families of such subgraph counting problems to be intractable from the point of
view of parameterised complexity, making further progress towards a complete complexity
classification of this type of parameterised counting problem. The connections to previous
work on subgraph counting will be discussed in more detail in Section 1.3 below.

In Section 2, we prove hardness not only for the specific problems p-#Even Subgraph

and p-#Odd Subgraph, but also for a much larger collection of problems in which the
goal is to count even or odd subgraphs that also satisfy some arbitrary additional condition.
The proof of this result exploits the theory of combinatorial lattices to demonstrate the
invertability of a relevant matrix. These ideas were previously used in a similar way in [14],
but here we use a different method to construct the matrix, a strategy which is potentially
applicable to other subgraph counting problems whose complexity is currently open.

The approximability results in Section 3 are based on a somewhat surprising structural
result. We demonstrate that any graph G on n vertices which contains at least one even
(respectively odd) k-vertex subgraph, where n is sufficiently large compared with k, must in
fact contain a large number of such subgraphs; in particular, there will be sufficiently many
of the desired subgraphs that a standard random sampling technique will provide a good
estimate of the total number without requiring too many trials. Moreover, we show that any
(sufficiently large) G that contains no even (respectively odd) k-vertex subgraph must belong
to one of a small number of easily recognisable classes. The proof of this structural result,
which builds on Ramsey theoretic ideas, is very much specific to properties which depend
only on a parity condition on the number of edges; however, it is nevertheless possible that
similar results might hold for other subgraph counting problems, particularly those in which
the desired property depends only on the number of edges present in the subgraph.

Before proving any of the results, we complete this section with a summary of the main
notation used in the paper in Section 1.1, a brief review of some of the key concepts from
parameterised counting complexity in Section 1.2, and finally in Section 1.3 a discussion of
the relationship of this paper to previous work.

1.1 Notation and definitions

Throughout this paper, all graphs are assumed to be simple, that is, they do not have loops
or multiple edges. Given a graph G = (V,E), and a subset U ⊆ V , we write G[U ] for the
subgraph of G induced by the vertices of U . We denote by e(G) the number of edges in G,
and for any vertex v ∈ V we write N(v) for the set of neighbours of v in G. For any k ∈ N,
we write [k] as shorthand for {1, . . . , k}, and denote by Sk the set of all permutations on [k],
that is, injective functions from [k] to [k]. We write V (k) for the set of all subsets of V of
size exactly k, and V k for the set of k-tuples (v1, . . . , vk) ∈ V k such that v1, . . . , vk are all
distinct. We denote by G the complement of G, that is G = (V,E ′) where E ′ = V (2) \ E.

If G is coloured by some colouring f : V → [k] (not necessarily a proper colouring), we
say that a subset U ⊆ V is colourful (under f) if, for every i ∈ [k], there exists exactly one
vertex u ∈ U such that f(u) = i; note that this can only be achieved if U ∈ V (k).

We will be considering labelled graphs, where a labelled graph is a pair (H, π) such that
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H is a graph and π : [|V (H)|] → V (H) is a bijection. We write L(k) for the set of all labelled
graphs on k vertices. Given a graph G = (V,E) and a k-tuple of vertices (v1, . . . , vk) ∈ V k,
G[v1, . . . , vk] denotes the labelled graph (H, π) where H = G[{v1, . . . , vk}] and π(i) = vi for
each i ∈ [k].

Given two graphs G and H, a strong embedding of H in G is an injective mapping
θ : V (H) → V (G) such that, for any u, v ∈ V (H), θ(u)θ(v) ∈ E(G) if and only if uv ∈ E(H).
We denote by #StrEmb(H,G) the number of strong embeddings of H in G. If H is a class
of labelled graphs on k vertices, we set

#StrEmb(H, G) =

|{θ : [k] → V (G) : θ is injective and ∃(H, π) ∈ H such that

θ(i)θ(j) ∈ E(G) ⇐⇒ π(i)π(j) ∈ E(H)}|.

If G is also equipped with a k-colouring f , where |V (H)| = k, we write #ColStrEmb(H,G, f)
for the number of strong embeddings of H in G such that the image of V (H) is colourful
under f . Similarly, we set

#ColStrEmb(H, G, f) =

|{θ : [k] → V (G) : θ is injective, ∃(H, π) ∈ H such that

θ(i)θ(j) ∈ E(G) ⇐⇒ π(i)π(j) ∈ E(H),

and θ([k]) is colourful under f}|.

1.2 Parameterised counting complexity

In this section, we recall some key notions from parameterised counting complexity which
will be used in the rest of the paper. Let Σ be a finite alphabet. A parameterised counting
problem is a pair (Π, κ), where Π : Σ∗ → N0 is a function and κ : Σ∗ → N is a parame-
terisation (a polynomial-time computable mapping). An algorithm A for a parameterised
counting problem (Π, κ) is said to be an fpt-algorithm if there exists a computable function
f and a constant c such that the running time of A on input I is bounded by f(κ(I))|I|c.
Problems admitting an fpt-algorithm are said to belong to the class FPT.

To understand the complexity of parameterised counting problems, Flum and Grohe [10]
introduce two kinds of reductions between such problems; we shall make use of so-called fpt
Turing reductions.

Definition. An fpt Turing reduction from (Π, κ) to (Π′, κ′) is an algorithm A with an oracle
to Π′ such that

1. A computes Π,

2. A is an fpt-algorithm with respect to κ, and

3. there is a computable function g : N → N such that for all oracle queries “Π′(y) = ?”
posed by A on input x we have κ′(I ′) ≤ g(κ(I)).
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In this case we write (Π, κ) ≤fpt
T (Π′, κ′).

Using these notions, Flum and Grohe introduce a hierarchy of parameterised counting
complexity classes, #W[t], for t ≥ 1 (see [10, 11] for the formal definition of these classes).
Just as it is considered to be very unlikely that W[1] = FPT, it is unlikely that there exists
an algorithm running in time f(k)nO(1) for any problem that is hard for the class #W[1]
under fpt Turing reductions. One useful #W[1]-complete problem, which we will use in our
reductions, is the following:

p-#Multicolour Clique

Input: A graph G = (V,E), and a k-colouring f of G.
Parameter: k.
Question: How many k-vertex cliques in G are colourful under f?

This problem can easily be shown to be #W[1]-hard (along the same lines as the proof
of the W[1]-hardness of p-Multicolour Clique in [9]) by means of a reduction from
p-#Clique, shown to be #W[1]-hard in [10].

When considering approximation algorithms for parameterised counting problems, an
“efficient” approximation scheme is an FPTRAS, as introduced by Arvind and Raman [1];
this is the parameterised analogue of an FPRAS (fully polynomial randomised approximation
scheme).

Definition. An FPTRAS for a parameterised counting problem (Π, κ) is a randomised ap-
proximation scheme that takes an instance I of Π (with |I| = n), and real numbers ǫ > 0
and 0 < δ < 1, and in time f(κ(I)) · g(n, 1/ǫ, log(1/δ)) (where f is any function, and g is a
polynomial in n, 1/ǫ and log(1/δ)) outputs a rational number z such that

P[(1− ǫ)Π(I) ≤ z ≤ (1 + ǫ)Π(I)] ≥ 1− δ.

1.3 Relationship to previous work

The problems p-#Even Subgraph and p-#Odd Subgraph defined above belong to the
family of subgraph counting problems, p-#Induced Subgraph With Property(Φ), in-
troduced in [14] and studied further in [15, 17]. This general problem is defined as follows,
where Φ is a family (φ1, φ2, . . .) of functions φk : L(k) → {0, 1} such that the function map-
ping k 7→ φk is computable.

p-#Induced Subgraph With Property(Φ) (p-#ISWP(Φ))
Input: A graph G = (V,E) and an integer k.
Parameter: k.
Question: What is the cardinality of the set {(v1, . . . , vk) ∈ V k : φk(G[v1, . . . , vk]) = 1}?

For any k, we write Hφk
for the set {(H, π) ∈ L(k) : φk(H, π) = 1}, and set HΦ =⋃

k∈N Hφk
. We can equivalently regard the problem as that of counting induced labelled

k-vertex subgraphs that belong to HΦ.
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For the problems considered in this paper, we define φk so that φk(H, π) = 1 if and only
if the number of edges in H is even (for the case of p-#Even Subgraph) or odd (for the
case of p-#Odd Subgraph). It is clear that these problems are symmetric, that is they do
not depend on the labelling of the vertices, and so it would be possible to consider unlabelled
rather than labelled graphs. Nevertheless, we choose to use the framework of this general
model which encompasses problems such as p-#Path and p-#Matching (considered in
[10] and [5] respectively) rather than just symmetric properties; see [15] for a more detailed
discussion of how such problems can be defined in this model). All problems of this form
were shown to belong to the class #W[1] in [14].

Proposition 1.1 ([14]). For any Φ, the problem p-#ISWP(Φ) belongs to #W[1].

It is sometimes useful to consider the multicolour version of this general problem (and
specific examples falling within it, such as p-#Multicolour Clique defined above), in
which we only wish to count colourful tuples having our property; this version of the problem
is defined as follows.

p-#Multicolour Induced Subgraph with Property(Φ) (p-#MISWP(Φ))
Input: A graph G = (V,E), an integer k and colouring f : V → [k].
Parameter: k.
Question: What is the cardinality of the set {(v1, . . . , vk) ∈ V k : φk(G[v1, . . . , vk]) = 1
and {v1, . . . , vk} is colourful with respect to f }?

The complexities of the multicolour and uncoloured versions of the problem, for any given
Φ, are related in the following way.

Lemma 1.2 ([15]). For any family Φ, we have p-#MISWP(Φ) ≤fpt
T p-#ISWP(Φ).

In Section 2, we prove that p-#ISWP(Φ) is #W[1]-complete in the case that, for each
k, φk(H, π) = 1 only when the number of edges in H has a specified parity; this clearly
imples the hardness of p-#Even Subgraph and p-#Odd Subgraph, but does not rely
on the additional assumption that the property depends only on the parity of the number
of edges in H.

This hardness result adds to the growing list of situations in which p-#ISWP(Φ) is
known to be #W[1]-complete. It is known that any of the following conditions on Φ is
sufficient to imply #W[1]-completeness:

• the number of distinct edge-densities of graphs (H, π) with φk(H, π) = 1 is o(k2) [15];

• φk(H, π) is true if and only if the number of edges in H belongs to an interval from
some collection Ik, with |Ik| = o(k2) [15];

• there is no constant t such that, for any k, every minimal graph H (with respect to
inclusion) such that φk(H, π) = 1 for some labelling π, H has treewidth at most t [17];

• φk(H, π) = 1 for exactly one fixed (H, π) [4].
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Recently, Curticapean and Marx [6] proved a dichotomy result for the sub-family of these
problems in which φk(H, π) = 1 if and only if (H, π) contains a fixed labelled graph (Hk, πk)
as a labelled subgraph, showing that this problem is in FPT whenever the vertex cover
number of Hk is bounded by some constant for all k, and otherwise is #W[1]-complete.
Indeed, to the best of our knowledge, there is not known to be any property Φ such that
p-#ISWP(Φ) belongs to FPT other than the “trivial” properties for which there exists
a fixed integer t so that, for every k, it is possible to determine whether φk(H, π) = 1 by
examining only edges incident with some subset of at most t vertices.

2 Exact counting

In this section we will prove the #W[1]-completeness of both p-#Even Subgraph and
p-#Odd Subgraph; both will follow from a more general result concerning the family of
problems described in Section 1.3 above. The theory of lattices is crucial to the reduction
we give in Section 2.2, and we begin in Section 2.1 by recalling the key facts we will need.

2.1 The subset lattice

In the proof of Theorem 2.4 below, we will need to consider the lattice formed by subsets
of a finite set, with a partial order given by subset inclusion. Here we recall some existing
results about lattices on posets.

A lattice is a partially ordered set (P,≤) satisfying the condition that, for any two
elements x, y ∈ P , both the meet and join of x and y also belong to P , where the meet of x
and y, written x ∧ y, is defined to be the unique element z such that

1. z ≤ x and z ≤ y, and

2. for any w such that w ≤ x and w ≤ y, we have w ≤ z,

and the join of x and y, x ∨ y, is correspondingly defined to be the unique element z′ such
that

1. x ≤ z′ and y ≤ z′, and

2. for any w such that x ≤ w and y ≤ w, we have z′ ≤ w.

Note therefore that, if x and y are two elements of the subset lattice formed by all subsets
of a finite set, ordered by inclusion, then x ∧ y = x ∩ y and x ∨ y = x ∪ y.

In the proof of Theorem 2.4, we will consider a so-called meet-matrix on a subset lattice:
if S = {x1, . . . , xn} ⊆ P , and f : P → C is a function, then the meet-matrix on S with
respect to f is the matrix A = (aij)1≤i,j≤n where aij = f(xi∧xj). Explicit formulae are known
for the determinant of the meet-matrix of the entire lattice (or a meet-closed subset of it)
[13, Corollary 2], and such results were exploited to prove the hardness of p-#Connected

Induced Subgraph [14]. However, for the problems considered here, we are not able to
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apply this approach directly, since the determinant of the meet-matrix of the entire lattice
may well be zero. Instead, we restrict attention to a sub-matrix corresponding to a suitable
subset of the lattice (that is not meet-closed); the remainder of this section is concerned with
computing the determinant of this sub-matrix.

A decomposition result for such matrices is given in [2], where Ψf denotes the generalised
Euler totient function, defined inductively by

Ψf (xi) = f(xi)−
∑

xj≤xi

xj∈P\{xi}

Ψf (xj).

Theorem 2.1 ([2], special case of Theorem 12). Let S = {x1, . . . , xn} be a subset of the
finite lattice (P,≤), where P = {x1, . . . , xn, xn+1, . . . , xm}, let f : P → R be a function, and
let A = (aij)1≤i,j≤n be the matrix given by aij = f(xi ∧ xj). Then

A = EΛET ,

where E = (eij) 1≤i≤n
1≤j≤m

is the matrix given by

eij =

{
1 if xj ≤ xi

0 otherwise,

and Λ is the m×m diagonal matrix whose rth diagonal entry is equal to Ψf (xr).

It will be convenient to express the function Ψf in terms of the Möbius function µ on a
poset, which is defined by

µ(x, y) =





1 if x = y

−
∑

z∈P,x≤z<y µ(x, z) for x < y

0 otherwise.

It is well-known (and easily verified from the definition above) that, for two elements x and
y of a subset lattice with x ≤ y, we have µ(x, y) = (−1)|y\x| = (−1)|y|−|x|. To express
the totient function in terms of the Möbius function, we use the following observation of
Haukkanen:

Proposition 2.2 ([13], Example 2).

Ψf (xi) =
∑

xj∈P
xj≤xi

f(xj)µ(xj, xi).

We now derive an expression for the determinant of a meet-matrix when certain additional
conditions are also satisfied.
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Corollary 2.3. Let (P,≤) be a finite lattice and f : P → R a function. Set S to be the
upward closure of the support of f , that is,

S = {x ∈ P : ∃y ∈ P with y ≤ x and f(y) 6= 0},

and suppose that S = {x1, . . . , xn}. Let A = (aij)1≤i,j≤n be the matrix given by aij =
f(xi ∧ xj). Then

det(A) =
n∏

i=1

∑

xj∈S
xj≤xi

f(xj)µ(xj, xi).

Proof. Note that we may assume, without loss of generality, that the elements of S are
ordered so that, whenever xi < xj, we have i < j.

We know from Theorem 2.1 that, if P = {x1, . . . , xm}, then

det(A) = det(EΛET ),

where E = (eij) 1≤i≤n
1≤j≤m

, with

eij =

{
1 if xj ≤ xi

0 otherwise,

and Λ is the m×m diagonal matrix with its rth diagonal entry equal to

Ψf (xr) =
∑

xj∈P
xj≤xr

f(xj)µ(xj, xr).

Observe first that, by definition of S, we must have Ψf (xr) = 0 for all xr /∈ S, and
moreover for xr ∈ S we have

Ψf (xr) =
∑

xj∈S
xj≤xr

f(xj)µ(xj, xr).

Thus the only non-zero entries of Λ are in the n× n submatrix containing entries belonging
to the first n rows and first n columns; we denote this submatrix Λ′. It therefore follows that

EΛET = E ′Λ′(E ′)T ,

where E ′ denotes the n × n submatrix of E obtained by taking the first n columns of E.
We further note that, by our choice of ordering of S, we have eij = 0 for 1 ≤ i < j ≤ n,
and moreover, by definition of E, we have eii = 1 for 1 ≤ i ≤ n. Thus it is clear that E ′ is
a triangular matrix, and so its determinant is the product of its diagonal entries, which are
all equal to one. Hence we have det(E ′) = det((E ′)T ) = 1. This implies that

det(A) = det(E ′Λ′(E ′)T ) = det(E ′) det(Λ′) det((E ′)T ) = det(Λ′).
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Since Λ′ is a diagonal matrix, its determinant is simply the product of its diagonal entries.
Hence

det(A) =
n∏

i=1

∑

xj≤xi

f(xj)µ(xj, xi),

as required.

2.2 The reduction

We now prove our general hardness result, demonstrating that it is #W[1]-hard to count
k-vertex induced subgraphs having a property that is only true for subgraphs whose number
of edges has a given parity.

Theorem 2.4. Let Φ = (φ1, φ2, . . .) be a family of functions φk : L(k) → {0, 1}, infinitely
many of which are not identically zero, and such that the mapping k 7→ φk is computable.
For each k, set Dk = {|E(H)| : ∃π ∈ Sk such that (H, π) ∈ Hφk

}, and suppose that, for each
k ∈ N, either Dk ⊆ 2N, or else Dk ∩2N = ∅ (where 2N denotes the set of even, non-negative
integers). Then p-#MISWP(Φ) and p-#ISWP(Φ) are both #W[1]-complete under fpt-
Turing reductions.

Proof. Inclusion in #W[1] is an immediate consequence of Proposition 1.1. To prove hard-
ness, we give an fpt Turing reduction from the #W[1]-complete problem p-#Multicolour

Clique to p-#MISWP(Φ); hardness of p-#ISWP(Φ) then follows from Proposition 1.2.
Suppose that G = (V,E) with colouring f : V → [k] is the input to an instance of p-

#Multicolour Clique. If φk ≡ 0, we can (by the assumption that φk′ is not identically
zero for infinitely many values of k′) choose k′ > k such that φk′ 6≡ 0; it is clear in this
case that the graph G′ = (V ′, E ′) with colouring f ′, where V ′ = V ∪ {wk+1, . . . , wk′},
E ′ = E ∪ {wiv : v ∈ V ′ \ {wi}, k + 1 ≤ i ≤ k′} and

f ′(v) =

{
f(v) if v ∈ V

i if v = wi,

contains a multicolour clique (on k′ vertices) if and only if G with colouring f contains a
multicolour clique on k vertices. Thus we may assume without loss of generality that φk is
not identically zero.

For any subset I ⊆ [k](2), we now define a graph HI = ([k], I). We define a collection of
such subsets, I, by setting

I = {I ⊆ [k](2) : ∃I ′ ⊆ I and π ∈ Sk such that φk(HI′ , π) = 1}.

Note that, by the assumption that φk is not identically zero, I 6= ∅; moreover, we must have
[k](2) ∈ I. Let I1, . . . , Im be a fixed enumeration of I, with subsets in non-decreasing order
of cardinality, and note therefore that Im = [k](2). For each i ∈ [m], we set Gi = (V,Ei)
where Ei = {uv ∈ E : {f(u), f(v)} ∈ Ii}, and set zi = #ColStrEmb(Hφk

, Gi, f).

10



Additionally, we associate with each colourful subset U ⊂ V a subset of [k](2), setting
I(U) = {{f(u), f(w)} : uw ∈ E(G[U ])}. For each i ∈ [m], we denote by Ni the number of
colourful subsets U ⊂ V such that I(U) = Ii; observe that the number of colourful cliques
in G with respect to f is then equal to Nm.

We now define a matrix A = (aij)
m
i,j=1 by setting

aij =
∑

π∈Sk

φk(HIi∩Ij , π).

We claim that, with this definition,
A ·N = z,

where N = (N1, . . . , Nm)
T and z = (z1, . . . , zm)

T , with zi = #ColStrEmb(Hφk
, Gi, f). To

see that this is true, observe that, for each i ∈ [m],

zi = #ColStrEmb(Hφk
, Gi, f)

=
∑

(v1,...,vk)∈V
k

{v1, . . . , vk} colourful

φk(Gi[v1, . . . , vk])

=
∑

{v1,...,vk}∈V
(k)

{v1, . . . , vk} colourful

∑

π∈Sk

φk(Gi[vπ(1), . . . , vπ(k)])

=
m∑

j=1

∑

{v1,...,vk}∈V
(k)

{v1, . . . , vk} colourful
I({v1,...,vk})=Ij

∑

π∈Sk

φk(Gi[vπ(1), . . . , vπ(k)])

=
m∑

j=1

Nj

∑

π∈Sk

φk(HIi∩Ij , π)

=
m∑

j=1

Njaij,

as required.
Moreover, if ∧ denotes the meet operation on the subset lattice ordered by subset inclusion

(so this is in fact set intersection), and g : I → N is defined by g(I) =
∑

π∈Sk
φk(HI , π), we

see that
aij = g(Ii ∧ Ij).

It is therefore clear that A satisfies the premise of Corollary 2.3 (where I and g take the

11



roles of S and f respectively) and so the conclusion tells us that

det(A) =
m∏

i=1

∑

Ij≤Ii

g(Ij)µ(Ij, Ii)

=
m∏

i=1

∑

Ij⊆Ii

(−1)|Ii|−|Ij |g(Ij)

Considering one of these factors,
∑

Ij⊆Ii
(−1)|Ii|−|Ij |g(Ij), observe that, by definition of I,

there exists at least one Ij ⊆ Ii such that g(Ij) 6= 0 (and note that g(Ij) ≥ 0 for all Ij ∈ I).
We know that either Dk ⊆ 2N or Dk∩2N = ∅: in the former case, for every Ij ⊆ Ii such that
g(Ij) 6= 0 we have |Ij| even, and in the latter we have |Ij| odd for every such Ij. Thus, in
either case, (−1)|Ii|−|Ij | takes the same value for every Ij ⊆ Ii with g(Ij) 6= 0, so all non-zero
terms in the sum (of which we have already observed there must be at least one) have the
same sign, guaranteeing that

∑
Ij⊆Ii

(−1)|Ii|−|Ij |g(Ij) 6= 0. Since this holds for every i ∈ [m],
we see that

det(A) =
m∏

i=1

∑

Ij⊆Ii

(−1)|Ii|−|Ij |g(Ij) 6= 0,

implying that A is non-singular.
Observe that we can determine the value of zi = #ColStrEmb(Hφk

, G, f), for each i ∈
[m], with a single call to an oracle for p-#MISWP(Φ) on the input (Gi, f) (where the
parameter value is unchanged); thus, with the use of such an oracle, we can determine in
time O(mn2) (the quadratic time required to construct each graph GI) the precise value of
z. By non-singularity of A, we can then, in polynomial time, compute all values of Ni for
i ∈ [m], and in particular the value of Nm, which is precisely the number of multicolour
cliques in G under the colouring f . This gives the required fpt Turing reduction from p-

#Multicolour Clique to p-#MISWP(Φ).

The hardness of p-#Even Subgraph and p-#Odd Subgraph now follows immedi-
ately.

Corollary 2.5. p-#Even Subgraph and p-#Odd Subgraph are both #W[1]-complete
under fpt-Turing reductions.

3 Decision and approximate counting

In contrast with the hardness results in Section 2 above, we now demonstrate that p-#Even

Subgraph and p-#Odd Subgraph are efficiently approximable from the point of view
of parameterised complexity, and also that the corresponding decision problems belong to
FPT. We begin in Section 3.1 with some preliminary facts we will use later in the section,
before proving our key structural results in Section 3.2 and finally deriving the algorithmic
implications of these results in Section 3.3.
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3.1 Background

Here we outline some of the background results that will be needed later in the section.
We begin with several facts from Ramsey Theory, which will play an important role in

our structural results below. First, we need the following bound on Ramsey numbers which
follows immediately from a result of Erdős and Szekeres [8]:

Theorem 3.1. Let k ∈ N. Then there exists R(k) < 22k such that any graph on n ≥ R(k)
vertices contains either a clique or an independent set on k vertices.

We will also use the following easy corollary of this result, proved in [15].

Corollary 3.2 ([15], Corollary 1.2). Let G = (V,E) be an n-vertex graph, where n ≥
22k. Then the number of k-vertex subsets U ⊂ V such that U induces either a clique or
independent set in G is at least

(22k − k)!

(22k)!

n!

(n− k)!
.

To simplify calculations in Section 3.2, we will make use of the following well-known
bounds on binomial coefficients:

(n
k

)k

≤

(
n

k

)
≤

(en
k

)k

.

In particular, this tells us that, for k ≥ 3,

(22k − k)!

(22k)!

n!

(n− k)!
=

(22k − k)!k!

(22k)!

(
n

k

)
=

(
n

k

)
(
22k

k

) ≥
kk

ek22k2

(
n

k

)
>

1

22k2

(
n

k

)
(3.1)

Finally, in Section 3.3, we will exploit the fact that, if we can guarantee that the propor-
tion of k-vertex labelled subgraphs of a graph G having the desired property is sufficiently
large, we can make use of standard random sampling techniques to approximate the number
of subgraphs having our property. We will combine the following lemma, proved in [17], with
our structural results in the following section to demonstrate the existence of an FPTRAS
for each of p-#Even Subgraph and p-#Odd Subgraph.

Lemma 3.3 ([17], Lemma 3.4). Let G = (V,E) be a graph on n vertices and φk a mapping
from labelled k-vertex graphs to {0, 1}, and set Nk(G) to be the number of k-tuples of vertices
(v1, . . . , vk) ∈ V k satisfying φk(G[v1, . . . , vk]) = 1. Suppose that there exists a polynomial q(n)
and a computable function g(k) such that either Nk(G) = 0 or Nk(G) ≥ 1

g(k)q(n)
n!

(n−k)!
, for

all k and G. Then, for every ǫ > 0 and δ ∈ (0, 1) there is an explicit randomised algorithm
which outputs an integer α, such that

P[|α−Nk(G)| ≤ ǫ ·Nk(G)] ≥ 1− δ,

and runs in time at most g(k)q̃(n, ǫ−1, log(δ−1)), where g is a computable function and q̃ is
a polynomial.
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3.2 Structural results

In this section we prove the key structural results which give rise to the algorithms described
in Section 3.3 below. The key result from this section is that graphs (on sufficiently many
vertices) containing no even k-vertex subgraph must belong to one of a small number of
easily recognisable families of graphs, and a corresponding result holds for graphs containing
no odd k-vertex subgraphs; moreover, any sufficiently large graph that contains at least one
even k-vertex subgraph (respectively odd k-vertex subgraph) must in fact contain a large
number of such subgraphs.

We begin with an easy condition which guarantees the existence of a k-vertex subgraph
which shares all but one of its vertices with a k-clique but whose number of edges differs in
parity from a k-clique. Recall that N(v) denotes the set of vertices adjacent to v.

Proposition 3.4. Let G be a graph which contains a k-vertex clique H (where k ≥ 3), and
suppose there is a vertex v ∈ V (G) such that ∅ 6= N(v)∩ V (H) 6= V (H). Then G contains a

k-vertex induced subgraph H̃, with |V (H)∩V (H̃)| = k− 1, such that e(H) 6≡ e(H̃) (mod 2).

Proof. We denote by r the number of non-neighbours of v in H, that is r = |V (H) \N(v)|,
and recall that by assumption we have 0 < r < k. Thus there exists some vertex u ∈
V (H) \ N(v), and some vertex w ∈ V (H) ∩ N(v). Set Hu = G[(V (H) \ u) ∪ {v}] and
Hw = G[(V (H) \ w) ∪ {v}], and observe that

e(Hu) =

(
k

2

)
− (r − 1),

while

e(Hw) =

(
k

2

)
− r.

Thus, e(Hu) = e(Hw) + 1, so in particular e(Hu) 6≡ e(Hw) (mod 2), and precisely one of

these subgraphs will be the required subgraph H̃.

Under the additional assumption that k is even, we can strengthen this result further.

Corollary 3.5. Let G be a graph which contains a k-vertex clique H, where k ≥ 4 is
even, and suppose that there is a vertex v ∈ V (G) such that N(v)∩ V (H) 6= V (H). Then G

contains a k-vertex induced subgraph H̃, with |V (H)∩V (H̃)| = k−1, such that e(H) 6≡ e(H̃)
(mod 2).

Proof. If in fact N(v) ∩ V (H) 6= ∅, then we are done by Proposition 3.4. So suppose that v
has no neighbour in H. But then the subgraph induced by v together with any k−1 vertices
of H will have

(
k

2

)
− (k − 1) edges which, as k is even, differs in parity from

(
k

2

)
.

We now use these facts to characterise the situations in which a graph G which contains
a k-clique does not contain any k-vertex induced subgraph whose number of edges differs in
parity from

(
k

2

)
.
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Lemma 3.6. Let G be a graph which contains a clique on k ≥ 2 vertices. Then G also
contains a k-vertex subgraph H such that

(
k

2

)
6≡ e(H) (mod 2), unless either

1. G is a clique, or

2. k is odd and G is the disjoint union of two cliques.

If either of these conditions holds, then every k-vertex subgraph H of G satisfies e(H) ≡
(
k

2

)

(mod 2).

Proof. Note that the result is trivially true for k = 2, so we shall assume that k ≥ 3. Suppose
thatG contains no k-vertex subgraphH such that

(
k

2

)
6≡ e(H) (mod 2). LetH ′ be a maximal

clique in G, so certainly |V (H ′)| ≥ k. If in fact H ′ = G then we are done, so assume that
this is not the case. Thus, by maximality of H ′, for every vertex v ∈ V (G) \ V (H ′) there
exists some uv ∈ V (H ′) with vuv /∈ E(G). Note that, if k is even, it follows from Corollary
3.5 (applied to v together with any k-vertex induced subgraph of H ′ which contains uv) that
G contains a k-vertex subgraph H with

(
k

2

)
6≡ e(H) (mod 2). Thus from now on we may

assume that k is odd.
If in fact there exists v ∈ V (G) \ V (H ′) and w ∈ V (H ′) such that vw ∈ E(G) then,

considering v together with any k-vertex induced subgraph of H ′ containing both uv and
w, it follows from Proposition 3.4 that G contains a k-vertex subgraph H with

(
k

2

)
6≡ e(H)

(mod 2). Thus we may assume from now on that for all v ∈ V (G)\V (H ′), v has no neighbour
in H ′.

We will show that in this case the second condition must hold, arguing in this case that for
every v1, v2 ∈ V (G)\V (H ′) with v1 6= v2 we have v1v2 ∈ E(G). Suppose, for a contradiction,
that there exist non-adjacent v1 and v2 in V (G) \ V (H ′). But then the subgraph induced
by v1 and v2 together with any k − 2 vertices of H ′ will have

(
k

2

)
− (2k − 3) 6≡

(
k

2

)
(mod 2)

edges. This completes the proof that if G contains no even k-vertex subgraph then one of
the properties 1 and 2 must hold.

Conversely, suppose that one of these two conditions holds. If G is a clique, it is trivial
that every k-vertex induced subgraph of G has precisely

(
k

2

)
edges. So suppose that k is odd

and that G is the disjoint union of two cliques, G1 and G2. Let H be a k-vertex subgraph of
G, with |V (H)∩V (G1)| = i. Then the number of edges in H is precisely

(
k

2

)
− i(k− i). Note

that, as k is odd, exactly one of i and k − i must be even, and so i(k − i) is even, implying
that e(H) ≡

(
k

2

)
(mod 2), as required.

This implies a characterisation of those sufficiently large graphs which contain no even
k-vertex subgraph.

Corollary 3.7. Let G be a graph on n ≥ 22k vertices, where k ≥ 2. Then G contains no
even k-vertex subgraph if and only if

(
k

2

)
is odd and either

1. G is a clique, or

2. k ≡ 3 (mod 4) and G is the disjoint union of two cliques.
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Proof. Observe first that, by Theorem 3.1, G must contain either a clique or independent
set on k vertices. If

(
k

2

)
is even this is enough to guarantee the existence of a k-vertex

even subgraph and hence to prove the result; if
(
k

2

)
is odd (so k ≡ 2 (mod 4) or k ≡ 3

(mod 4)) then G contains an even k-vertex subgraph if and only if the graph contains a
k-vertex subgraph H such that e(H) 6≡

(
k

2

)
(mod 2). The result then follows immediately

from Lemma 3.6.

Similarly, we can completely characterise those sufficiently large graphs which contain no
odd k-vertex subgraph.

Corollary 3.8. Let G be a graph on n ≥ 22k vertices, where k ≥ 2. Then G contains no
odd k-vertex subgraph if and only if one of the following conditions holds.

1. G is an independent set.

2. k is odd and G is a complete bipartite graph.

3.
(
k

2

)
is even and G is a clique.

4. k ≡ 1 (mod 4) and G is the disjoint union of two cliques.

Proof. It is straightforward to verify that any of the four conditions is sufficient to guarantee
that G contains no odd k-vertex subgraph. To prove the reverse implication, suppose that
G contains no odd k-vertex subgraph.

Once again, we begin with the observation that, by Theorem 3.1, G must contain either
a clique or independent set on k vertices. We consider two cases, depending on whether

(
k

2

)

is even or odd.
Suppose first that

(
k

2

)
is odd (so k ≡ 2 (mod 4) or k ≡ 3 (mod 4)). In this case, if G

contains a k-clique then we have a k-vertex odd subgraph, so we may assume that G contains
an independent set on k vertices. Thus G, the complement of G, contains a k-vertex clique.
Moreover, since

(
k

2

)
is odd, we see that G contains an even k-vertex subgraph if and only if G

contains an odd k-vertex subgraph. It therefore follows from Lemma 3.6 that if G contains
no odd k-vertex subgraph then either G is a clique, implying that G is an independent set, or
else k ≡ 3 (mod 4) and G is the disjoint union of two cliques, in which case G is a complete
bipartite subgraph.

Now suppose that
(
k

2

)
is even (so k ≡ 0 (mod 4) or k ≡ 1 (mod 4)). In this case, G

contains an odd k-vertex subgraph if and only if there is an odd k-vertex subgraph in G. We
know from Theorem 3.1 that at least one of G and G must contain a k-clique, and so we can
apply Lemma 3.6 to the appropriate graph. If G contains a clique, then Lemma 3.6 tells us
that if G contains no odd k-vertex subgraph then either G is a clique, or else k ≡ 1 (mod 4)
and G is the disjoint union of two cliques. If, on the other hand, G contains a clique, Lemma
3.6 tells us in this case that if G contains no odd k-vertex subgraph then either G is a clique,
in which case G is an independent set, or else k ≡ 1 (mod 4) and G is the disjoint union of
two cliques, in which case k is odd and G is a complete bipartite graph.

16



We now prove the key lemma of this section, which demonstrates that any graph contain-
ing a large number of k-cliques and at least one k-vertex induced subgraph with a number of
edges that differs in parity from

(
k

2

)
must in fact contain a large number of such subgraphs.

Lemma 3.9. Let k ≥ 3, and let G be a graph on n vertices that contains at least 1

22k2+1

(
n

k

)

k-vertex cliques. Then either G contains no k-vertex subgraph H̃ with e(H̃) 6≡
(
k

2

)
(mod 2),

or else G contains at least 1

22k2+1k2n2

(
n

k

)
such subgraphs.

Proof. For any A ⊆ [k], we say that a k-vertex clique H in G is A-replaceable if there
exist sets of vertices X ⊆ V (G) \ V (H) and Y ⊆ V (H) such that |X| = |Y | ∈ A and

(V (H) \ Y ) ∪ X induces a subgraph H̃ with e(H̃) 6≡
(
k

2

)
(mod 2); we refer to this new

subgraph H̃ as a A-replacement of H.
Suppose that every k-vertex clique in G is {1, 2}-replaceable. Note that any even k-

vertex subgraph can be a {1, 2}-replacement of at most k(n− k) +
(
k

2

)(
n−k

2

)
< k2n2 distinct

k-cliques. Thus the total number of subgraphs H̃ in G with e(H̃) 6≡
(
k

2

)
(mod 2) must be

at least 1

22k2+1k2n2

(
n

k

)
, and so we are done. Hence we may assume from now on that there is

at least one k-vertex clique H in G that is not {1, 2}-replaceable. There are two cases to
consider, depending on whether k is even or odd.

Suppose first that k is even; we know from Corollary 3.5 that in this case H would be
{1}-replaceable if there exists any vertex v ∈ V (G) \V (H) such that N(v)∩V (H) ( V (H),
so we may assume that every vertex v ∈ V (G) \ V (H) is adjacent to every vertex in H. If
there exist two vertices u, w ∈ V (G) \V (H) such that uw /∈ E(G), the subgraph induced by
u and w together with any k−2 vertices of H would then have exactly

(
k

2

)
−1 edges, implying

that H is {2}-replaceable. Hence, as we are assuming that H is not {1, 2}-replaceable, we

see that G must in fact be a clique; so G contains no k-vertex subgraph H̃ with e(H̃) 6≡
(
k

2

)

(mod 2), and we are done.
Now suppose that k is odd. In this case we know from Lemma 3.4 that every vertex

v ∈ V (G) \V (H) must either be adjacent to every vertex in H, or else have no neighbour in
H, otherwise H would be {1}-replaceable. Let U be the set of vertices in V (G) \ V (H) that
are adjacent to every vertex in H, and W the set of vertices in V (G) \ V (H) that have no
neighbour in H (so U and W partition V (G)\V (H)). We claim that each of U and W must
induce a clique. First suppose that there is a pair of nonadjacent vertices u1, u2 ∈ U . Then
the subgraph induced by u1 and u2 together with any k−2 vertices of H would have precisely(
k

2

)
− 1 6≡

(
k

2

)
(mod 2) edges, implying that H is {2}-replaceable. Similarly, if there is a pair

of nonadjacent vertices w1, w2 ∈ W then the subgraph induced by w1 and w2 together with
any k − 2 vertices of H would have

(
k

2

)
− 2k + 3 6≡

(
k

2

)
(mod 2) edges, again implying that

H is {2}-replaceable. Thus we may indeed assume that U and W each induce a clique. Set
U ′ = U ∪ V (H), and observe that U ′ also induces a clique in G.

Suppose that G does contain a k-vertex subgraph H̃ such that e(H̃) 6≡
(
k

2

)
(mod 2); we

will argue that in this case we must actually have at least 1

22k2+1k2n2

(
n

k

)
such subgraphs. We

know from Lemma 3.6 that, as k is odd, this assumption implies that G can be neither a
clique nor the disjoint union of two cliques. This implies that there exists at least one edge ab
with a ∈ U ′ and b ∈ W , and at least one non-edge xy with x ∈ U ′ and y ∈ W . This situation
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is illustrated in Figure 1. The remainder of the argument treats U ′ and W symmetrically
so, as U ′ and W partition V (G), we may assume without loss of generality that |W | ≥ n/2.
Set Wa = N(a) ∩W , Wx = N(x) ∩W , Wa = W \Wa and Wx = W \Wx.

a

x y

b

U' W

Figure 1: There must be at least one edge and at least one non-edge between U ′ and W .

Consider first the case that |Wx| ≥ n/6. In this case the subgraph induced by x and y
together with any k − 2 vertices from Wx contains all possible edges apart from xy, and so
has exactly

(
k

2

)
− 1 edges. Thus G contains at least

(
n
6

k − 2

)
=

( n
6

k−2

)
(
n

k

)
(
n

k

)

≥

(
n

6(k−2)

)k−2

(
en
k

)k
(
n

k

)

=
kk

ek6k−2(k − 2)k−2n2

(
n

k

)

>
1

(6e)kn2

(
n

k

)

>
1

22k2+1k2n2

(
n

k

)

k-vertex subgraphs whose number of edges differs in parity from
(
k

2

)
.

Now suppose instead that |Wa| ≥ n/6. Then the subgraph induced by a and b together
with any k− 2 vertices from Wa contains all possible edges incident with vertices other than
a, and is missing precisely k− 2 possible edges incident with a. Thus any such subgraph has
exactly

(
k

2

)
− (k − 2) edges which, as k is odd, must differ in parity from

(
k

2

)
. Once again,

therefore, we see that G contains at least

(
n
6

k − 2

)
>

1

22k2+1k2n2

(
n

k

)

k-vertex subgraphs whose number of edges differs in parity from
(
k

2

)
.
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It must therefore be that |Wx ∩ Wa| ≥ n/6; observe that this implies that a 6= x, as
otherwise Wx∩Wa = ∅. But in this case the subgraph induced by a and x together with any
k − 2 vertices from Wx ∩Wa contains all possible edges not incident with x, and is missing
precisely k − 2 possible edges incident with x (as the only neighbour of x is a), so contains
exactly

(
k

2

)
− (k − 2) 6≡

(
k

2

)
(mod 2) edges. Thus in this case G must still contain at least

(
n
6

k − 2

)
>

1

22k2+1k2n2

(
k

2

)

k-vertex subgraphs whose number of edges differs in parity from
(
k

2

)
.

Hence we see that, if G contains at least one k-vertex subgraph whose number of edges
differs in parity from

(
k

2

)
, it must in fact contain at least 1

22k2+1k2n2

(
n

k

)
such subgraphs,

completing the proof.

We can apply the previous result to demonstrate that any sufficiently large graph either
contains no even k-vertex subgraph or else must contain a large number of even k-vertex
subgraphs.

Theorem 3.10. Let k ≥ 3 and let G be a graph on n ≥ 22k vertices. Then either G contains
no even k-vertex subgraph or else G contains at least

1

22k2+1k2n2

(
n

k

)

even k-vertex subgraphs.

Proof. Observe first that, by Corollary 3.2 and equation (3.1), G must contain at least 1
22k

(
n

k

)

k-vertex subsets that induce either cliques or independent sets. If
(
k

2

)
is even, any such set

will induce a k-vertex even subgraph, and so we are done; thus we may assume from now
on that

(
k

2

)
is odd (so k ≡ 2 (mod 4) or k ≡ 3 (mod 4)). Any k-vertex independent set still

has an even number of edges, so if there are at least 1

22k2+1

(
n

k

)
k-vertex independent sets in

G then we are done. We may assume, therefore, that G contains at least 1

22k
2+1

(
n

k

)
k-cliques.

The result now follows immediately from Lemma 3.9.

We now prove a corresponding result for the case of odd k-vertex subgraphs.

Theorem 3.11. Let k ≥ 3 and let G be a graph on n ≥ 22k vertices. Then either G contains
no odd k-vertex subgraph or else G contains at least

1

22k2+1k2n2

(
n

k

)

odd k-vertex subgraphs.
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Proof. Once again, we begin with the observation that, by Corollary 3.2 and equation (3.1),
Gmust contain at least 1

22k

(
n

k

)
k-vertex subsets that induce either cliques or independent sets;

in particular this implies that at least one of G and G contains at least 1

22k2+1

(
n

k

)
k-cliques.

There are two cases to consider, depending on whether
(
k

2

)
is even or odd.

Suppose first that
(
k

2

)
is even. In this case, it is clear that any subset U ∈ V (k) induces

an odd subgraph in G if and only if U also induces an odd subgraph in G, so the number
of odd subgraphs in G and G is equal. We know that one of these graphs contains at least
> 1

22k
2+1

(
n

k

)
k-cliques; without loss of generality we may assume that this is G. The result

now follows immediately from Lemma 3.9.
Now suppose that

(
k

2

)
is odd. Thus, if G contains at least 1

22k2+1

(
n

k

)
k-cliques we are done

immediately, so we may assume instead that G contains at least this many k-cliques. Lemma
3.9 therefore tells us that G either contains no even k-vertex subgraph or else contains at
least 1

22k2+1k2n2

(
n

k

)
even k-vertex subgraphs. Observe that, when

(
k

2

)
is odd, there is a one-

to-one correspondence between even k-vertex subgraphs in G and odd k-vertex subgraphs in
G, so this implies that G either contains no odd k-vertex subgraph or else contains at least

1

22k
2+1k2n2

(
n

k

)
odd k-vertex subgraphs, as required.

3.3 Algorithmic implications

In this section, we make use of the structural results of Section 3.2 above to derive algorithms
to decide the existence of k-vertex even or odd subgraphs, and to approximate the number
of such subgraphs.

We begin by showing that p-Even Subgraph is in FPT.

Theorem 3.12. p-Even Subgraph can be solved in time O(
(
22k

k

)(
k

2

)
+ n2).

Proof. Consider the following algorithm to determine whether a graph G on n vertices con-
tains a k-vertex even subgraph.

1. If k = 1, return “YES”.

2. If n < 22k, perform an exhaustive search to determine whether G contains a k-vertex
even subgraph, and return the answer.

3. If k ≡ 0 (mod 4) or k ≡ 1 (mod 4), return “YES”.

4. If G is a clique, return “NO”.

5. If k ≡ 2 (mod 4), return “YES”.

6. If G is a disjoint union of two cliques, return “NO”.

7. Return “YES”.
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The correctness of this algorithm follows immediately from Corollary 3.7. Moreover, it is

clear that step 2 can be performed in time O(
(
22k

k

)(
k

2

)
), and that steps 4 and 6 can each be

performed in time O(n2), while steps 1, 3, 5 and 7 each take time at most O(k). Thus this

algorithm runs in time O(
(
22k

k

)(
k

2

)
+ n2), as required.

We now prove a corresponding result for p-Odd Subgraph.

Theorem 3.13. p-Odd Subgraph can be solved in time O(
(
22k

k

)(
k

2

)
+ n2).

Proof. The proof proceeds along very much the same lines as that of Theorem 3.12 above.
Consider the following algorithm:

1. If k = 1, return “NO”.

2. If n < 22k, perform an exhaustive search to determine whether G contains a k-vertex
odd subgraph, and return the answer.

3. If G is an independent set, return “NO”.

4. If k is odd and G is a complete bipartite graph, return “NO”.

5. If k ≡ 0 (mod 4) or k ≡ 1 (mod 4) and G is a clique, return “NO”.

6. If k ≡ 1 (mod 4) and G is a disjoint union of two cliques, return “NO”.

7. Return “YES”.

In this case correctness follows from Corollary 3.8, while it is straightforward to verify that
each of the steps may be performed within the permitted time.

Finally, we show that both p-#Even Subgraph and p-#Odd Subgraph are effi-
ciently approximable.

Theorem 3.14. There exists an FPTRAS for p-#Even Subgraph, and also for p-#Odd

Subgraph.

Proof. We know by Theorem 3.10 that, if G contains at least one even k-vertex subgraph,
then G contains at least 1

22k
2+1k2n2

(
n

k

)
even k-vertex subgraphs. It therefore follows from

Lemma 3.3 that there is a randomised algorithm which, for every ǫ > 0 and δ ∈ (0, 1),
outputs an integer α, such that, if N denotes the number of even k-vertex subgraphs in G,

P[|α−N | ≤ ǫ ·N ] ≥ 1− δ,

taking time at most g(k)q(n, ǫ−1, log(δ−1)), where g is a computable function and q is a
polynomial. The existence of an FPTRAS for p-#Even Subgraph follows immediately.

The argument for p-#Odd Subgraph proceeds in exactly the same way, using Theorem
3.11.
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4 Conclusions and open problems

We have shown that the parameterised subgraph counting problems p-#Even Subgraph

and p-#Odd Subgraph are both #W[1]-complete when parameterised by the size of the
desired subgraph; in fact we prove hardness for a more general family of parameterised
subgraph counting problems which generalises both of these specific problems. This in-
tractability result complements several recent hardness results for parameterised subgraph
counting problems, making further progress towards a complete complexity classification of
this type of parameterised counting problem.

On the other hand, we show that both p-Even Subgraph and p-Odd Subgraph

are in FPT, and moreover that the counting problems p-#Even Subgraph and p-#Odd

Subgraph each admit a FPTRAS, and so are efficiently approximable from the point of view
of parameterised complexity. The approximability proofs rely on some surprising structural
results which show that a sufficiently large graph G either contains no even (respectively
odd) induced k-vertex subgraph, or else must contain a large number of such subgraphs
(specifically, at least a 1

f(k)n2 proportion of k-vertex induced subgraphs must have the desired

edge parity, where f is an explicit computable function).
A natural question arising from this work is whether the same results (either hardness of

exact counting, or the existence of a FPTRAS) hold for other subgraph counting problems
in which the desired property depends only on the number of edges in the subgraph. As
a first step, it would be interesting to consider the problem of counting induced k-vertex
subgraphs having a specified number of edges modulo p, for any fixed natural number p > 2.
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