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Abstract

Given a graph G and a parameter k, the k-Biclique
problem asks whether G contains a complete bipartite
subgraph Kk,k. This is one of the most easily stated
problems on graphs whose parameterized complexity
has been long unknown. We prove that k-Biclique is
W[1]-hard by giving an fpt-reduction from k-Clique
to k-Biclique, thus solving this longstanding open
problem.

Our reduction uses a class of bipartite graphs with
a certain threshold property, which might be of some
independent interest. More precisely, for positive in-
tegers n, s and t, we consider a bipartite graph G =
(A ∪̇ B,E) such that A can be partitioned into A =
V1 ∪̇ V2 ∪̇, · · · , ∪̇ Vn and for every s distinct indices
i1, · · · , is, there exist vi1 ∈ Vi1 , · · · , vis ∈ Vis such that
vi1 , · · · , vis have at least t+ 1 common neighbors in B;
on the other hand, every s+1 distinct vertices in A have
at most t common neighbors in B.

We prove that given such threshold bipartite
graphs, we can construct an fpt-reduction from
k-Clique to k-Biclique. Using the Paley-type graphs
and Weil’s character sum theorem, we show that for
t = (s+1)! and n large enough, such threshold bipartite
graphs can be computed in polynomial time. One corol-
lary of our reduction is that there is no f(k) ·no(k) time
algorithm to decide whether a graph contains a sub-
graph isomorphic to Kk!,k! unless the Exponential Time
Hypothesis (ETH) fails. We also provide a probabilistic
construction with better parameters t = Θ(s2), which

indicates that k-Biclique has no f(k) · no(
√
k)-time al-

gorithm unless 3-SAT with m clauses can be solved
in 2o(m)-time with high probability. Besides the lower
bound for exact computation of k-Biclique, our result
also implies a dichotomy classification of the parame-
terized complexity of cardinality constraint satisfaction
problems and the inapproximability of the maximum
k-intersection problem.

∗Department of Computer Science, The University of Tokyo.

ERATO Kawarabayashi Large Graph Project.

1 Introduction

The Subgraph Isomorphism is a basic problem in al-
gorithms and graph theory. Due to its generality, we
do not expect it to have a polynomial time algorithm.
However, this does not rule out the possibility that
there exist efficient algorithms to solve this problem
on some special class of graphs. For example, it is
well known that whether G is a subgraph of H can
be decided in f(|G|) · |H |O(tw(G)) time using the color-
coding technique in [2], where tw(G) denotes the tree-
width of G and f is a computable function. Hence,
if C is a class of graphs with tree-width bounded by
some constant, the subgraph isomorphism problem with
G ∈ C is fixed parameter tractable, and this is be-
lieved to be optimal. In [16], Martin Grohe conjectured
that the subgraph embedding problem with G ∈ C

is W[1]-hard if and only if C has unbounded tree-
width. Under the assumption of FPT 6= W[1], this
would imply that there is no f(k) · |H |O(1)-time algo-
rithm to decide whether H contains a subgraph isomor-
phic to Kk,k, because the class of balanced complete
bipartite graphs {Kk,k | k ∈ N} has unbounded tree-
width. In other words, we can not prove Grohe’s con-
jecture without answering the parameterized complex-
ity of k-Biclique. Although k-Biclique is believed
to be W[1]-hard, despite many attempts[6, 10, 15, 21],
no FPT-reduction from k-Clique to k-Biclique has
previously been found. Let us not fail to mention that
a polynomial reduction is given in [19], however, since
such reduction requires the size of the clique instance to
be |V (G)|/2, it is not an fpt-reduction.

A possible line of attack is to consider the Parti-
tioned Subgraph Isomorphism problem, in which each
vertex of the smaller graph G has a distinct color and
the vertices of H are partitioned into |V (G)| subsets,
each set is corresponding to one color. The problem is
to find an injective mapping φ from V (G) to V (H) such
that: (1) for all u ∈ V (G), u and φ(u) have the same
color; (2) if u and v are adjacent in G, then φ(u) and
φ(v) are adjacent in H . It is not hard to see that Par-
titioned Subgraph Isomorphism problem on the graph
classC isW[1]-hard ifC has unbounded tree-width[16].
An interesting fact is that if the graph G has no homo-
morphism to any of its proper induced subgraphs, then
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the colored and uncolored version of Subgraph Isomor-
phism of G are equivalent[22]. Unfortunately, this ap-
proach does not work for k-Biclique because any bi-
partite graph has a homomorphism to any of its edges.

Therefore, resolving the complexity of k-Biclique
would significantly improve our understanding of
the Subgraph Isomorphism problem. In addition,
k-Biclique also has connections with the cardinality
constraints satisfaction problem. Bulatov and Marx
obtained a trichotomy classification of the parameter-
ized complexity of the constraint satisfaction prob-
lem with cardinality constraints(CCSP) in [8]. They
showed that for any set of relations closed under sub-
stitution of constants, CCSP with the relations re-
stricted in Γ(denoted as CCSP(Γ)) is fixed parameter-
ized tractable, Biclique-hard or W[1]-hard. By the
well known dichotomy conjecture of Feder and Vardi, it
is reasonable to believe that CCSP(Γ) is either FPT or
W[1]-hard. Thus giving further incentive for the study
of k-Biclique.

We remark that the parameterized complexity of k-
biclique has received heavy attention from the parame-
terized complexity community[4, 8, 14, 16, 17]. It is the
first problem on the “most infamous” list(page 677) in
a new text book[11] by Downey and Fellows. “Almost
everyone considers that this problem should obviously
be W[1]-hard, and... it is rather an embarrassment to
the field that the question remains open after all these
years!”

In the rest of this section, we state our main results
with some further applications and corollaries.

1.1 Our Results

Theorem 1.1. For any n-vertex graph G and positive

integer k with n
6

k+6 > (k+6)!, we can compute a graph
G′ in O(n18)-time such that G′ contains a Kk′,k′ if and
only if G contains a Kk, where k

′ = Θ(k!).

Corollary 1.1. k-Biclique is W[1]-hard.

Theorem 1.2. For any n-vertex graph G and positive

integer k with k ≥ 3 and n
1

(k+1)k4 > 2k4k
2+k+3, we can

compute a random graph G′ in O(n6)-time such that,
with probability at least 9

10 , G
′ contains a Kk2,k2 if and

only if G contains a Kk.

The core of our reduction is the construction of a
bipartite graph H = (A ∪̇ B,E) with a (ℓ, h)-threshold
property: every k + 1 distinct vertices in A have at
most ℓ common neighbors in B; while there exist many
sets of k distinct vertices in A having at least h common
neighbors in B, where ℓ < h. An explicit construction of
similar threshold bipartite graphs has been given in [5],

in which they show that a certain fraction of k distinct
vertices in A have this property(see Lemma 3.7 of [5]).
Our contribution is proving that we can partition A into
several sets and guarantee that for any k distinct sets,
it is possible to choose one vertex from each set, the
resulting k vertices satisfying the property.

1.2 Lower Bound for Computing k-Biclique

One corollary of our main results is the lower bound
for exact computation of k-Biclique under the well-
known ETH-conjecture made by Impagliazzo, Paturi
and Zane [18]:

Conjecture 1.2. (Exponential Time Hypothesis)
3-SAT cannot be solved in time 2o(m), where m is the
number of clauses in the input formula.

The result in [9] implies that for any instance C of
3-SAT with m clauses, we can construct an instance
(G, k) of k-Clique in 2o(m)-time such that C is an yes-
instance of 3-SAT if and only if G contains a k-Clique.
If the k-Clique problem has f(k)·no(k)-time algorithm,
we can solve such 3-SAT instance in 2o(m)-time. That
is: Assuming ETH, k-Clique problem has no f(k) ·
no(k)-time algorithm for any computable function f .
With Theorem 1.1, we have the following lower bound:
Assuming ETH, there is no f(k) · no(k)-time algorithm
to decide whether a given graph with order n contains
a subgraph isomorphic to Kk!,k!.

An interesting question is to find a linear fpt-
reduction from k-Clique to k-Biclique, that is given
G and k, computing a new graph G′ in f(k) · nO(1)-
time such that Kk ⊆ G if and only if Kk′,k′ ⊆ G′,
where k′ = ck for some constant c. The existence of
such reduction would imply that k-Biclique has no
f(k) · no(k)-time algorithm under the ETH. However,
since our reduction causes a quadratic blow-up of the
size of solution, k′ =

(

k
2

)

is the best we may achieve. If
we assume a stronger version of ETH, then Theorem 1.2
yields a better lower bound for k-Biclique:

Corollary 1.3. Unless m-clause 3-SAT can be solved
in 2o(m)-time with high probability, there is no f(k) ·
no(

√
k) algorithm for any computable function f to

decide whether a given graph with order n contains a
subgraph isomorphic to Kk,k.

1.3 Maximum k-Intersection Problem In our re-
duction from k-Clique to k-Biclique, we actually
prove that

Theorem 1.3. For an n-vertex graph G and a positive

integer k with ⌈n 6
k+6 ⌉ > (k+6)!, let k′ be the minimum

integer such that 6 | k′ + 1 and k′ ≥ k, let s =
(

k′

2

)

,
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we can compute a bipartite graph H = (A ∪̇ B,E) in
O(n18)-time such that:

1. if Kk ⊆ G, then there are s vertices in A with at

least ⌈n
6

k′+1 ⌉ common neighbors in B;

2. if Kk * G, then every s vertices in A have at most
(k′ + 1)! common neighbors in B.

This gap allows us to deduce an inapproximation result
for the Maximum k-Intersection Problem:

Maximum k-Intersection Problem
Input: A family of sets {S1, S2, · · · , Sn}

with Si ⊆ [n] and a number k .
Parameter: k.

Problem: Find k sets Si1 , · · · , Sik with
maximum |Si1 ∩ · · · ∩ Sik |

It is not hard to see that, our reduction implies

Corollary 1.4. Assuming FPT 6= W[1], there is no
f(k) · nO(1)-time algorithm approximating Maximum k-
Intersection Problem with nǫ-approximation ratio for
ǫ < 6√

k+1
.

The polynomial time inapproximability of Maxinum
k-Intersection has been proved in [25] basing on the
inapproximability of Maxinum Edge Biclique [3].

1.4 Cardinality Constraints Satisfaction Prob-

lem Fix a domain D, an instance of the constraint sat-
isfaction problem(CSP) is a pair I = (V,C), where V
is a set of variables and C is a set of constraints. Each
constraint of C can be written as 〈v, R〉, where R is
an r-ary relation on D for some positive integer r and
v = v1v2 · · · vr, an assignment τ : V → D satisfies a
constraint 〈v, R〉 if (τ(v1), · · · , τ(vr)) ∈ R. The goal
is to find an assignment τ : V → D satisfying all the
constraints in C. In the research of complexity of CSP,
we usually fix a set of relation Γ, and denote CSP(Γ)
the CSP problem in which all the relations of the con-
straints are in Γ.

It is well-known that many hard problems including
satisfiability and graph coloring can be expressed under
the CSP framework, hence solving constraint satisfac-
tion problems is NP-hard. One way to cope with this
NP-hard problem is to introduce a parameter and con-
sider the parameterized version of such problem. In [8],
Andrei A. Bulatov and Dániel Marx introduced two pa-
rameterized versions of CSP. More specifically, they
assume that the domain contain a “free” value, say 0
and other non-zero values, which are “expensive”. The
goal is find an assignment with limited number of vari-
ables assigning expensive values. One way to reflect this
goal is to take the number of nonzero values used in an

assignment as parameter, which leads to the definition
of the CSP with size constraints(OCSP); another more
refined way is to prescribe how many variables have to
be assigned each particular nonzero value, this leads
to the definition of CSP with cardinality constraints.
They provide a complete characterization of the fixed-
parameter tractable cases of OCSP(Γ) and show that
all the remaining problems are W[1]-hard.

For CSP with cardinality constraints, the situa-
tion is strange. An simple observation shows that
the k-Biclique problem can be express as a CCSP
instance. Without lose of generality, consider the
k-Biclique on bipartite graph, let D = {0, 1, 2}, for
any bipartite graph G, we construct a CCSP instance
with V = V (G) and C = {〈(v1, v2), R〉 | v1v2 ∈
E(G), R = {(0, 0), (1, 0), (0, 2)}}, then we ask for an as-
signment τ : V → D with k variables assigning 1 and
k variables assigning 2. It is easy to check that for a
bipartite graph G, if the corresponding CCSP instance
has such an assignment, then the bipartite complement
Ḡ of G contains a Kk,k. Therefore, without settling
the parameterized complexity of k-Biclique, they can
only show that CCSP(Γ) is fixed-parameter tractable,
Biclique-hard or W[1]-hard. Combining our result
and Theorem 1.2 in [8], we finally obtain a dichotomy
theorem for the parameterized complexity of CCSP(Γ):

Theorem 1.4. For every finite Γ closed under substi-
tution of constants, CCSP(Γ) is either FPT or W[1]-
hard.

Organization of the Paper. The main idea of the
reduction is presented in Section 3 after introducing
the class of threshold bipartite graphs. To complete
the reduction, we provide efficient constructions of the
bipartite graph with threshold property. A probabilistic
construction is given in Section 4, while the explicit
construction can be found in Section 5. The explicit
construction uses the Paley-type graph defined in [5]
and a generalization of Lemma 3.8 in [5], whose proof
is given in the Appendix. Finally, we discuss some
interesting topics and open questions in Section 6.

2 Preliminaries

We use N, N+ and C to denote the sets of nonnegative
integers, positive integers and complex numbers respec-
tively. For any number n ∈ N+, let [n] := {1, . . . , n}.
For any real numbers a, b, we use the notation a± b to
denote the numbers between a − b and a + b. For any
prime power q = pt, GF (q) is the Galois field with size
q, GF×(q) is the multiplicative group of GF (q). For
every set S we use |S| to denote its size. Moreover, for
any t ∈ N+, we let

(

S
t

)

be the set of all t-element subsets
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of S.

2.1 Parameterized Complexity We denote the al-
phabet {0, 1} by Σ and identify problemsQ with subsets
of Σ∗. A parameterized problem is a pair (Q, κ) consist-
ing of a classical problem Q ⊆ Σ∗ and a polynomial time
computable parameterization κ : Σ∗ → N. For example,
the parameterized clique problem is defined in the form:

p-Clique
Input: A graph G and a positive integer

k.
Parameter: k.

Problem: Does G contains a subgraph iso-
morphic to Kk?

An algorithm A is an fpt-algorithm with respect to a
parameterization κ if for every x ∈ Σ∗ the running time
of A on x is bounded by f(κ(x))·|x|O(1) for a computable
function f : N→ N. A parameterized problem is fixed-
parameter tractable (or FPT for short) if it has an fpt-
algorithm.

Let (Q, κ) and (Q′, κ′) be two parameterized prob-
lems. An fpt-reduction from (Q, κ) to (Q′, κ′) is a map-
ping R : Σ∗ → Σ∗ such that:

1. For every x ∈ Σ∗ we have x ∈ Q if and only if
R(x) ∈ Q′.

2. R is computable by an fpt-algorithm with respect
to k;

3. There is a computable function g : N → N such
that κ′(R(x)) ≤ g(κ(x)) for all x ∈ Σ∗.

A fpt-reduction is linear if k′ = O(k). We write
(Q, κ) ≤fpt (Q′, κ′) if there is an fpt-reduction from
(Q, κ) to (Q′, κ′); (Q, κ) ≡fpt (Q′, κ′) if (Q, κ) ≤fpt

(Q′, κ′) and (Q′, κ′) ≤fpt (Q, κ). Suppose (Q, κ) ≤fpt

(Q′, κ′), it is easy to see that if (Q′, κ′) is FPT, then
so is (Q, κ); in particular, if p-Clique ≤fpt (Q, κ), then
it follows that (Q, κ) is W[1]-hard (for the definition of
W[1]-hardness, see [12, 14]). Obviously, if (Q′, κ′) ≤fpt

(Q, κ) and (Q′, κ′) is W[1]-hard, then so is (Q, κ).

2.2 Graphs Every graph G = (V,E) is determined
by a nonempty vertex setV and an edge set E ⊆
(

V
2

)

. Every nonempty subset S ⊆ V (G) induces a
subgraph G[S] with the vertex set S and the edge set
E(G[S]) :=

(

S
2

)

∩ E(G). And G[S] is a clique in G, if
for every distinct u, v ∈ S we have {u, v} ∈ E(G). A
clique with k vertices is denoted as Kk or k-clique. A
graph G = (V,E) is bipartite if V admits a partition
into two classes such that every edge has its ends in
different classes. A complete bipartite graph or biclique

is a bipartite graph such that every two vertices from
different partition classes are adjacent. We use the
notation Ks,t to denote the complete bipartite graph
with s vertices on one side and t vertices on the other
side. In the bipartite graph G = (A ∪̇ B,E), for v ⊆ A,
let Γ(v) = {u ∈ B | ∀v ∈ v, vu ∈ E}.

3 Reduction

We first define (s, t)-Biclique, an imbalanced version
of Biclique. Then we prove that (s, t)-Biclique and
k-Biclique are equivalent under linear fpt-reductions.
Hence, to prove Theorem 1.1, we only need to prove
Theorem 1.3. To this end, we introduce the threshold
graphs. Theorem 1.3 then follows by the reduction in
Lemma 3.3 and the efficient construction of threshold
graphs given in Lemma 3.4. Also, Theorem 1.2 follows
in analogy with Theorem 1.3, but calling on Lemma 4.4,
a probabilistic analog to Lemma 3.4. Lemma 3.5 and
Lemma 4.4 are proved in Section 4 and 5.

(s, t)-Biclique
Input: A bipartite graph G =

(A ∪̇ B,E) and two positive
integers s, t.

Parameter: s+ t.
Problem: Find a Ks,t in G with the left

s vertices in A and the right t
vertices in B.

Lemma 3.1. k-Biclique ≡fpt (s, t)-Biclique and the
reductions of both directions are linear.

Proof. We need to check two directions:

1. k-Biclique ≤fpt (s, t)-Biclique: given a
k-Biclique instance (G, k), construct a bipartite
graph B(G) = (A ∪̇ B,E), with A and B are
two copies of V (G) and E = {{u, v} | u ∈ A, v ∈
B, uv ∈ E(G)}. It is routine to check that Kk,k ⊆
G ⇐⇒ Kk,k ⊆ B(G), so B(G) with s := k, t := k
is an instance of k-Bicliques,t;

2. (s, t)-Biclique ≤fpt k-Biclique: suppose (G, s, t)
is an instance of (s, t)-Biclique, where G =
(A ∪̇ B,E) and s ≤ t. Construct a new bipartite
graphG′ by adding t−s vertices into A and connect
all of these new vertices with vertices in B. Then G′

contains a Kt,t iff G contains a Ks,t with s vertices
in A and t vertices in B.

Definition 3.2. ((n, k, ℓ, h)-threshold property)
Suppose h > ℓ, a bipartite graph G = (A ∪̇ B,E)
with a partition A = V1 ∪̇ V2 ∪̇ · · · ∪̇ Vn satisfy the
(n, k, ℓ, h)-threshold property if:
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(T1) Every k + 1 distinct vertices in A have at most ℓ
common neighbors in B, i.e.

∀v ∈
(

A

k + 1

)

, |Γ(v)| ≤ ℓ

(T2) For every k distinct indices {i1, i2, · · · , ik} ∈
(

n
k

)

,
there exist vi1 ∈ Vi1 , · · · , vik ∈ Vik such that
vi1 , · · · , vik have at least h common neighbors in
B, i.e.

∃v ∈ Vi1 × · · · × Vik , |Γ(v)| ≥ h

Lemma 3.3. (reduction) Given an (n, k, ℓ, h)-
threshold bipartite graph F . Let s =

(

k
2

)

. For any
n vertices graph G, we can construct a new graph
H = (A ∪̇ B,E) in nO(1)-time, such that:

(H1) if Kk ⊆ G, then ∃v ∈
(

A
s

)

, |Γ(v)| ≥ h;

(H2) if Kk * G, then ∀v ∈
(

A
s

)

, |Γ(v)| ≤ ℓ.

Proof. Suppose G is a graph with n vertices, our goal
is to construct a bipartite graph H = (A ∪̇ B,E)
satisfying (H1) and (H2).

Let V (G) = {v1, · · · , vn}, F = (A′ ∪̇ B′, E′) =
((V1 ∪̇ V2 ∪̇ · · · ∪̇ Vn) ∪ B′, E′). We associate to each
Vi a vertex vi ∈ V (G) with the same index i. Let
ι : A′ → V (G) be the function that for each u ∈ Vi,
ι(u) = vi.

Then we construct the bipartite graph H =
(A ∪̇ B,E) with:

• A = {{u1, u2} | u1, u2 ∈ A′, {ι(u1), ι(u2)} ∈
E(G)};

• B = B′;

• E = {{e, v} | {u1, u2} = e ∈ A, v ∈ B, u1v ∈
E′, u2v ∈ E′}.

We show that H satisfies (H1) and (H2):

1. If Kk ⊆ G, let us say {va1 , · · · , vak} induces a Kk

in G, then by (T2), there exists uai ∈ Vai(∀i ∈ [k])
such that {ua1 , · · · , uak} has at least h common
neighbors in B′, let X = {ua1 , · · · , uak} and Y =
Γ(X), we have |X | = k and |Y | ≥ h. Let EX =
(

X
2

)

, since {ι(uai), ι(uaj )} = {vai , vaj} ∈ E(G) for
all distinct i, j ∈ [k], we have EX ⊆ A, hence for all
e ∈ EX and v ∈ Y , {e, v} ∈ E. So EX ∪̇ Y induces
a complete bipartite subgraph in H . It follows that
H satisfies (H1) because |EX | =

(|X|
2

)

=
(

k
2

)

= s
and |Y | ≥ h;

2. If Kk * G but ∃v ∈
(

A
s

)

, s.t. |Γ(v)| ≥ ℓ + 1.
Let EX = v ⊆ A, Y = Γ(v) ⊆ B. We have
|EX | = s and |Y | ≥ ℓ + 1. Consider X = {u ∈
A′ | ∃ e ∈ EX u ∈ e}. By the definition of the
edge set E, in the graph F , Y ⊆ Γ(X). Since
|Y | = ℓ + 1 and F contains no Kk+1,ℓ+1, we have
|X | ≤ k; on the other hand, it is not hard to see that
EX ⊆

(

X
2

)

, hence |EX | =
(

k
2

)

implies |X | > k − 1.
Thus |X | = k and for any distinct u1, u2 ∈ X ,
{u1, u2} ∈ A ⇐⇒ {ι(u1), ι(u2)} ∈ E(G). It
follows that {ι(u) | u ∈ X} induces a Kk in G,
this is impossible.

By Lemma 3.3, to prove Theorem 1.3, we only need
to compute the threshold bipartite graphs efficiently.
Our main technical lemma is:

Lemma 3.4. For k, n ∈ N+ with k = 6ℓ − 1 for some

ℓ ∈ N+ and ⌈(n + 1)
6

k+1 ⌉ > (k + 1)!, a bipartite graph

with the (n, k, (k + 1)!, ⌈(n+ 1)
6

k+1 ⌉)-threshold property
can be computed in O(n18)-time.

Proof. [of Theorem 1.3] Given G and k, let k′ be the
minimum integer such that k′ ≥ k and 6 | k′+1, we have
k′ ≤ k+5. Then we add a new clique with k′−k vertices
into G and connect them with every vertex in G. It is
easy to see that the new graph contains a k′-clique if and

only if G contains a k-clique. Since ⌈n 6
k+6 ⌉ > (k + 6)!,

we have ⌈n
6

k′+1 ⌉ > (k′ + 1)!. Apply Lemma 3.4 on

n and k′, we obtain a (n, k′, (k′ + 1)!, ⌈(n + 1)
6

k′+1 ⌉)-
threshold bipartite graph. The result then follows from
Lemma 3.3.

Theorem 1.1 can be easily deduced from Theo-
rem 1.3 and Lemma 3.1. To prove Theorem 1.2, we
show:

Lemma 3.5. For k, h, n ∈ N with k ≥ 3, h = k2 and

n
2

(k+1)k2h > 2kk+1h2h+1, we can compute in O(n6)-time
a bipartite random graph satisfying the (n, k, h − 1, h)
threshold property with probability at least 9

10 .

4 Probabilistic Construction

The Erdős-Rényi random graph ER(n, p) is constructed
on n vertices by joining every distinct pair of vertices
independently with an edge with probability p. An
interesting property of these random graphs is that
there is a parameter thres(H) = |V (H)|/|E(H)| such
that if a graph H is balanced (i.e. every subgraph
H ′ of H has thres(H ′) ≥ thres(H).), then for p ≫
n−thres(H), ER(n, p) contains a subgraph isomorphic
to H with high probability; and for p ≪ n−thres(H),
ER(n, p) contains no subgraph isomorphic to H with
high probability (See [1] Chapter 4.4).
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This suggests that we may construct the threshold
bipartite graph defined in Section 3 using random graph.
For n ∈ N and p ∈ [0, 1], define a bipartite random graph
G(n, p) = (A ∪̇ B,E) with |A| = |B| = n and every
pair of vertices u ∈ A and v ∈ B is joined by an edge
with probability p, randomly and independently. We
will show that with high probability G(n, p) satisfies the
(nγ , k, h−1, h)-threshold property for some constant γ ∈
(0, 1). To bound the probability of G(n, p) containing a
subgraph Kk+1,h, we need the following lemma, which
is a simple consequence of Markov’s Inequality.:

Lemma 4.1. Let X be a nonnegative integral valued
random variable, then Pr[X > 0] ≤ E[X ].

Let pǫ = n− (k+1+h+ǫ)
(k+1)h , the value of ǫ will be determined

later. It follows that:

Lemma 4.2. Pr[Kk+1,h ⊆ G(n, pǫ)] ≤ n−ǫ.

Proof. Let X be the number of Kk+1,h in G(n, p), then

E[X ] =

(

n

k + 1

)

·
(

n

h

)

· p(k+1)h
ǫ

≤ n(k+1+h) · n−(k+1+h+ǫ)

= n−ǫ

We have Pr[X > 0] ≤ E[X ] ≤ n−ǫ.

Hence, when ǫ > 0, n→∞, G(n, pǫ) contains noKk+1,h

with high probability.
Suppose V1, V2, · · · , Vk are k disjoint subsets of A

and for each i ∈ [k], |Vi| = nα, where α ∈ (0, 1) is
a constant. Let Xα be the number of Kk,h in G(n, pǫ)
with the restriction that each Vi(i ∈ [s]) contains exactly
one vertex from the left side of such Kk,h. It is easy to
see that:

E[Xα] = nαk
(

n

h

)

· pkhǫ

≥ nαk · n
h

hh
· pkhǫ

=
1

hh
· n[αk+h− k(k+1+h+ǫ)

(k+1)
]

=
1

hh
· n[h−(1−α)k(1+k)−kǫ

k+1 ]

Let ǫ = 1
k and h = (1 − α)k(1 + k) + 2, then E[Xα] =

Θ(n
1

1+k ). As n goes large, E[Xα] → ∞. Of course,
E[Xα] → ∞ does not mean that Pr[Xα > 0] → 1.
By the Chebyshev’s Inequality, Pr[X = 0] is upper
bounded by:

Theorem 4.1. (Theorem 4.3.1 in [1]) Pr[X = 0] ≤
V ar[X]
E[X]2 .

To show that Pr[Xα = 0] is very close to zero, we
need to prove that V ar[Xα] is o(E[Xα]

2). This can be
easily deduced from the fact that Kk,h is balanced(See
[1] Chapter 4.4), however, since we want to upper bound
the probability ofG(n, pǫ) does not satisfy (T2), we need
to show a slightly stronger result saying that V ar[Xα]
is O(E[Xα]

2) · n−Ω(1).
Let V1 × V2 × · · · × Vk = {S1, · · · , Sℓ},

(

B
h

)

=

{T1, · · · , Tr}, where ℓ = nαk and r =
(

n
h

)

. We can
rewrite Xα as Xα =

∑

i∈[ℓ],j∈[r]XSi,Tj
, where XSi,Tj

is

the indicator random variable for event Ai,j = [Tj ⊆
Γ(Si)]. Denote (i, j) ∼ (i′, j′) for i, i′ ∈ [ℓ], j, j′ ∈ [r] if
(i, j) 6= (i′, j′) and Aij , Ai′j′ are not independent. Let
∆∗ =

∑

(i,j)∼(i′,j′) Pr[Aij |Ai′j′ ], then V ar[Xα] ≤ (1 +

∆∗)E[Xα] and it is not hard to see that (i, j) ∼ (i′, j′) if
and only if |Si∩Si′ | > 0, |Tj∩Tj′ | > 0 and (i, j) 6= (i′, j′)
(See the discussion in Chapter 4.3 of [1]). Then

∆∗ =
∑

(i,j)∼(i′,j′)

Pr[Aij |Ai′j′ ]

=
∑

i∈[k],j∈[h]
i+j<k+h

(

k

i

)(

h

j

)

nα(k−i)
(

n

h− j

)

p(kh−ij)ǫ

≤ kkhh
∑

i∈[k],j∈[h]
i+j<k+h

nα(k−i)n(h−j)p(kh−ij)ǫ

≤ kkh2h
∑

i∈[k],j∈[h]
i+j<k+h

E[Xα]n
−iα−jp−ijǫ

= kkh2h
∑

i∈[k],j∈[h]
i+j<k+h

E[Xα]n
−iα−j+ij (k+1+h+ǫ)

(k+1)h

= kkh2h
∑

i∈[k],j∈[h]
i+j<k+h

E[Xα]n
ij

(k+1)h
[−α(k+1)h

j
− (k+1)h

i
+(k+1+h+ǫ)]

≤ kkh2h
∑

i∈[k],j∈[h]
i+j<k+h

E[Xα]n
ij

(k+1)h
[−α(k+1)−(1+ 1

k
)h+(k+1+h+ǫ)]

≤ kk+1h2h+1E[Xα]n
− 1

k(k+1)h

We have

Lemma 4.3. For n
1

(k+1)k2h > 2kk+1h2h+1, Pr[Xα =

0] ≤ n− 1
k2h .
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Proof.

Pr[Xα = 0] ≤ V ar[Xα]

E[Xα]2

≤ (1 + ∆∗)

E[Xα]

≤ 2kk+1h2h+1n− 1
k(k+1)h

≤ n− 1
k(k+1)h

+ 1
(k+1)k2h

= n− 1
k2h

Now suppose U1, · · · , Uk are k disjoint subsets of A with
|Ui| = nβ(i ∈ [k]), where α < β < 1. We know that each
Ui can be further partitioned into Ui = Vi1 ∪̇ · · · ∪̇ Vim
with m = nβ−α and for all j ∈ [m], |Vij | = nα. Let
Xβ be the number of Kk,h in G(n, pǫ) such that each
Ui contains exactly one vertex from the left side of such
Kk,h and for j ∈ [m], Xβ,j be the number of Kk,h in
G(n, pǫ) such that for each i ∈ [k], Vi,j contains exactly
one vertex from the left side of such Kk,h. It is not hard
to see that Pr[Xβ,j = 0] = Pr[Xα = 0], and for any
distinct j, j′ ∈ [m], Xβ,j and Xβ,j′ are independent. It
follows that:

Pr[Xβ = 0] ≤ Pr[Xβ,1 = 0, · · · , Xβ,m = 0]

= Pr[Xα = 0]m

≤ n−(nβ−α

k2h
)

Given a bipartite random graph G(n, pǫ) = (A ∪̇ B,E),
we partition A into n′ = n1−β sets A = U1 ∪̇ · · · ∪̇ Un′

with |Ui| = nβ. Then the probability that G(n, pǫ)
with such partition does not satisfy (T2) for parameter
(n′, k, h− 1, h) is bounded by

Pr[G(n, pǫ) does not satisfy (T 2)] ≤ n(1−β)kn−(nβ−α

k2h
)

It follows that

Pr[G(n, pǫ) does not satisfy T1 or T2]

≤ n−ǫ + n(1−β)k−(nβ−α

k2h
)

So when n → ∞, G(n, pǫ) is an (n′, k, h − 1, h)
threshold bipartite graph with high probability. We
have

Lemma 4.4. For any 0 < α < β < 1, ǫ = 1
k , and

n
1

(k+1)k2h > 2kk+1hh+1, G(n, n− (k+1+h+ǫ)
(k+1)h ) satisfies the

(n1−β , k, h− 1, h) threshold property with probability at

least 1− n−ǫ − n(1−β)k−(nβ−α

k2h
).

Proof. [of Lemma 3.5] Let α = k+2
k(k+1) , we have h =

k2 = (1− α)k(1 + k) + 2. When k ≥ 3, we have α < 1
2 ,

let β = 1
2 , θ =

1
1−β = 2, for n

2
(k+1)k2h > 2kk+1h2h+1, the

random graphG(nθ, n−θ (k+1+h+ǫ)
(k+1)h ) satisfies the (n, k, h−

1, h) threshold property with probability at least 1 −
n− 2

k − nk−2( nβ−α

k4 ) ≥ 1 − 2n− 2
k > 9

10 . It is not hard to
see that such random graph can be generated in O(n6)-
time by a probabilistic Turing machine, hence proving
Lemma 3.5.

5 Explicit Construction

Definition 5.1. (Paley-type Graph) For any
prime power q = pt and d | q− 1, G(q, d) := (A ∪̇ B,E)
is a Paley-type bipartite graph with

1 A = B = GF (q)×;

2 ∀x ∈ A, y ∈ B, xy ∈ E ⇐⇒ (x+ y)
q−1
d = 1.

It is a well-known fact that for any prime power q = pt,
there exists a finite field Fq with q elements and Fq =
Fp[X ]/(f), where f is an irreducible polynomial over Fp
with degree t. Such irreducible polynomial can be found
by brute-force search. It is not hard to see that:

Lemma 5.2. G(q, d) can be computed in O(q3) time.

The Paley-type graphs have many nice properties,
the following one is proved in [20, 5]:

Theorem 5.1. (Theorem 5.1 in [5]) The graph
G(pt, p−1) contains no subgraph isomorphic to Kt,t!+1.

Therefore, the graph G(pt, p − 1) satisfies (T1) for
k ← t − 1 and ℓ ← t!, our next step is to show that
it also satisfies (T2) for a proper choice of parameter
values. To this end, we prove:

Lemma 5.3. (Intersection) For any d, k, r, s ∈ N+

and prime power q with q − 1 = rs, d | q − 1 and√
q ≥ sk

d + 1. Let a1, · · · , ak be distinct elements
in GF×(q), g be the generator of GF×(q), for each
i ∈ [s], denote Vi := {gi+s, gi+2s, · · · , gi+sr}, then for
any j ∈ [s], the number of solutions x ∈ Vj to the system

of equations (ai + x)
q−1
d = 1(∀i ∈ [k]) is in q

sdk ± k
√
q.

Lemma 5.3 generalizes Lemma 3.8 in [5] by re-
stricting the solutions to any subset Vj(j ∈ [s]). If
we set s = 1, then we obtain Lemma 3.8 in [5]. The
intuition behind Lemma 5.3 is that the solutions of
(ai + x)

q−1
d = 1 distribute “randomly”: the equation

(ai + x)
q−1
d = 1 has q−1

d solutions, we may say that
a random generated element x ∈ GF×(q) satisfies this
equation with probability 1

d , hence x satisfies the system

of equations (ai + x)
q−1
d = 1(∀i ∈ [k]) with probability

1
dk
. Since Vj contains

1
s elements of GF×(q), we expect
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the number of solutions x ∈ Vj to the system of equa-

tions (ai + x)
q−1
d = 1(∀i ∈ [k]) is dominated by q

sdk
,

and k
√
q is the error term. We postpone the proof of

Lemma 5.3.

Lemma 5.4. For any p, r, s, t ∈ N+ with p is prime,
s

p−1 + 1 ≤
√

pt+1 and pt+1 − 1 = rs. Let g be

the generator of GF×(pt+1), for each i ∈ [s], denote
Vi := {gi+s, gi+2s, · · · , gi+sr}. Then in the Paley-
type bipartite graph G(pt+1, p − 1) = (A ∪̇ B,E), for
any t distinct indices a1, a2, · · · , at ∈ [s], there exist
v ∈ Va1 × · · · × Vat , such that |Γ(v)| ≥ p.

Proof. Fix t distinct indices a1, a2, · · · , at ∈ [s]. Con-
sider the sets S = Va1 × · · · × Vat and Γ〈S〉 = {{v, u} |
v ∈ S, u ∈ B, u ∈ Γ(v)}. Since s

p−1 +1 ≤
√

pt+1, apply

Lemma 5.3 with q ← pt+1 d ← p − 1 k ← 1, each
elements in GF×(pt+1) has at least

pt+1

s(p− 1)
−p t+1

2 ≥ pt

s
+
pt−1

s
−p t+1

2 ≥ pt

s
+p

t+1
2 −p t+1

2 =
pt

s

neighbors in each Vai . Thus |Γ〈S〉| ≥ (p
t

s )
t(pt+1 − 1);

on the other hand, |S| = (p
t+1−1
s )t, by the pigeonhole

principle, there exists v ∈ S such that

|Γ(v)| ≥ |Γ〈S〉||S| ≥
(p

t

s )
t(pt+1 − 1)

(p
t+1−1
s )t

=
pt

2

(pt+1 − 1)t−1
≥ pt

2

pt2−1
≥ p

In the construction of the threshold bipartite graphs, we
also use the famous Bertrand’s Postulate from number
theory, whose proof can be found in [23, 13].

Proof. [of Lemma 3.4] For any positive integer n and
k = 6ℓ− 1, by Bertrands’s Postulate, we can choose an
arbitrary prime p between ⌈(n+ 1)

1
ℓ ⌉ and 2⌈(n+ 1)

1
ℓ ⌉,

then we construct the Paley-type graphG(pk+1, p−1) =
(A ∪̇ B,E). Let s = pℓ − 1, we have s ≥ n and
pk+1−1 = p6ℓ−1 = sr, where r = (p2ℓ+pℓ+1)(p3ℓ+1).
For each i ∈ [s], denote Vi := {gi+s, gi+2s, · · · , gi+rs},
where g is the generator of GF×(pk+1). It is easy to see
that the graph G(pk+1, p − 1) including the partition
of its vertices set can be computed in O(p3(k+1)) =
O(n18). We only need to check G(pk+1, p− 1) satisfies
(T1) and (T2) for parameter n, k, ℓ ← (k + 1)! and
h← ⌈(n+ 1)6/(k+1)⌉.

By Theorem 5.1, G(pk+1, p − 1) contains no sub-
graph isomorphic to Kk+1,(k+1)!+1, i.e. every k + 1
distinct vertices in A have at most (k + 1)! common
neighbors in B. Thus G(pk+1, p− 1) satisfies (T1).

Since s
p−1 + 1 = pℓ−1

p−1 + 1 ≤ p3ℓ = p
k+1
2 , apply

Lemma 5.4 with t← k, we have for any k distinct indices
a1, a2, · · · , ak ∈ [s], there exist vai ∈ Vai (∀i ∈ [k]) such

that va1 , · · · , vak have at least p ≥ ⌈(n+1)
1
ℓ ⌉ > (k+1)!

common neighbors in B.
Finally, since s ≥ n, G(pk+1, p − 1) is a (n, k, (k +

1)!, ⌈(n+ 1)
1
ℓ ⌉) threshold bipartite graph.

6 Conclusions

In Section 4, we have seen that with high probability the

bipartite random graph G(n, n− (s+t+ǫ)
st ) for s ≤ t con-

tains no subgraph isomorphic to Ks,t. Notice that such

graph also has nearly n(2− 1
s
− 1

t
−O( 1

st
)) number of edges.

In extremal graph theory, the famous Zarankiewicz
problem asks for Ks,t-free graphs with Ω(n(2− 1

s
)) edges.

As far as we know, the explicit construction for s > 3 is
rare[7]. It seems that h ≥ Ω(k2) is required in the prob-
abilistic construction of (n, k, h− 1, h)-threshold bipar-
tite graph. Does any (n, k, h− 1, h)-threshold bipartite
graph G exists for h = Θ(k) and |G| = nO(1)?

It is still open whether there exists any f(k) ·no(k)-
time algorithm solving k-Biclique. Our reduction
causes a quadratic blow-up of the parameter. Even
if the (n, k, k2, k2 + 1)-threshold bipartite graph can
be computed in deterministic fpt time, we could only

show that k-Biclique has no f(k) · no(
√
k) algorithm

under ETH. A possible way to avoid such quadratic
blow-up of the parameter is to do reduction from the
Partition Subgraph Isomorphism, in which the number
of edge is treated as parameter[22]. However, we can
only reduce the Partition Subgraph Isomorphism of
a smaller graph G with v-vertex to the k-Biclique
problem with k =

(

v
2

)

. The hardness result in [22] states
that if Partitioned Subgraph Isomorphism can be solved
in f(G) · no(|E(G)|/ log |E(G)|), then ETH fails. In this
statement, |E(G)| = Θ(|V (G)|), we still can not avoid
the quadratic blow-up of parameter.

Notice that the class of bipartite graphs with
threshold property allows us to distinguish every s ver-
tices from s + 1 vertices in some way. Can we exploit
this property to prove the hardness of the subgraph iso-
morphic problem on other graph classes?
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Appendix: Proof of the Intersection Lemma

Some definitions:

Definition 7.1. (Character) A character of a finite
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field GF (q) is a function χ : GF (q) → C satisfying the
following conditions:

1 χ(0) = 0;

2 χ(1) = 1;

3 ∀a, b ∈ GF (q), χ(ab) = χ(a)χ(b)

Remark 7.2. Since for all x ∈ GF×(q), xq−1 = 1, we
have χ(x)q−1 = χ(xq−1) = 1. That is χ maps all the
elements in GF×(q) to the roots of zq−1 = 1 in C.

Definition 7.3. (Order) A character χ of a finite
field GF (q) has order d if d is the minimal positive
integer such that ∀a ∈ GF (q)×, χ(a)d = 1.

Theorem 7.1. (A. Weil) Let GF (q) be a finite field,
χ a character of GF (q) and f(x) a polynomial over
GF (q) if:

1 The order of χ is d;

2 f(x) 6= c · (g(x))d for any polynomial g over GF (q)
and c ∈ GF (q);

3 The number of distinct roots of f in the algebraic
closure of GF (q) is s.

then
|

∑

x∈GF (q)

χ(f(x))| ≤ (s− 1)
√
q

(See [24], page 43, Theorem 2C’)

Remark 7.4. It is well known that the expected trans-
lation distance after n-step random walk in 2-dimension
space is about

√
n. By the character sum theorem, we

can see that the values of f(x) for x ∈ GF (q) distribute
randomly to some extent.

Suppose g is the generator of GF (q), where q is
a prime power and q − 1 = rs(s, r ∈ N), let Vi :=
{gi+s, gi+2s, · · · , gi+rs} l(i ∈ [s]). It is obvious that
GF×(q) = V1 ∪ V1 · · · ∪ Vs and ∀i ∈ [s], |Vi| = r. With
these notations, we have:

Lemma 7.5. Suppose f is a function from GF (q) to C,
then ∀i ∈ [s],

∑

z∈Vi

f(z) =
1

s

∑

x∈GF×(q)

f(gixs)

Proof. For any element z = gi+js ∈ Vi(j ∈ [r]), consider
the set

Xj := {x ∈ GF×(q) | gixs = gi+js}.

It is easy to check that Xj = {gj+r, · · · , gj+sr},
i.e. there are exactly s element x in GF×(q)
such that gixs = z for each z ∈ Vi. Thus
∑

z∈Vi
f(z) = 1

s

∑

x∈GF×(q) f(g
ixs).

Proof. [of Lemma 5.3] Let ω ∈ C be the primitive dth

root of unity and g be a generator of the multiplicative
group GF×(q), define a function χ : GF (q)→ C as:

1 χ(0) = 0;

2 for gℓ ∈ GF×(q) set χ(gℓ) = ωℓ.

Then:

i χ is a character of GF (q). Because χ(ga · gb) =
ωa+b = χ(ga)χ(gb) and χ(1) = χ(gq−1) = wq−1 =
1 since d | q − 1;

ii The order of χ is d. Observed that χ(g)n = χ(gn) =
1 ⇐⇒ ωn = 1 ⇐⇒ d | n, the order of χ is
≥ d; on the other hand, for all z = giz ∈ GF (q)×,
χ(z)d = χ(gizd) = ωdiz = 1, so the order of χ is
≤ d;

iii χ(x) = 1 ⇐⇒ x
q−1
d = 1. Suppose x = gi and

notice that gℓ = 1 ⇐⇒ q − 1 | ℓ, it follows that

1 = x
q−1
d = g

i(q−1)
d ⇐⇒ q − 1 | i(q−1)

d ⇐⇒ d |
i ⇐⇒ ωi = 1 ⇐⇒ χ(x) = χ(gi) = 1.

By iii, (ai + x)
q−1
d = 1 ⇐⇒ χ(ai + x) = 1, let

X := {x ∈ Vj | ∀i ∈ [k], χ(x+ ai) = 1}

Recall that a±b denotes the set of real number between
a−b and a+b, our goal is to show that |X | ∈ q

sdk ±k
√
q.

Consider a polynomial h : C → C with h(z) =
zd−1
z−1 = 1 + z + · · ·+ zd−1, then:

• h(1) = d;

• h(ωi) = 0, for i = 1, 2, · · · , d− 1;

• h(0) = 1.

Let H(x) =
∏k
i=1 h(χ(ai + x)), then:

• if x ∈ X , then H(x) = dk;

• if x = −ai for some i ∈ [k] and χ(x+ai′ ) = 1(∀i′ ∈
[k], i′ 6= i), then H(x) = dk−1;

• otherwise H(x) = 0

Now consider the sum S :=
∑

x∈Vj
H(x), we have:

|X |dk ≤ S ≤ |X |dk + kdk−1
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We only need to estimate S. Using Lemma 7.5, we can
rewrite S as

S =
∑

x∈Vj

H(x)

=
1

s

∑

x∈GF×(q)

H(gjxs)

=
1

s
[

∑

x∈GF (q)

H(gjxs)−H(0)]

Expand the product in H(gjxs):
∑

x∈GF (q)

H(gjxs)

=
∑

x∈GF (q)

k
∏

i=1

h(χ(ai + xsgj))

=
∑

x∈GF (q)

k
∏

i=1

[1 + χ(ai + xsgj) + · · ·+ χ(ai + xsgj)d−1]

=
∑

x∈GF (q)

∑

ψ∈{0,··· ,d−1}k

χ(fψ(x))

=q +
∑

ψ∈{0,··· ,d−1}k\{0}k

∑

x∈GF (q)

χ(fψ(x))

Where ψ ∈ {0, 1, · · · , d − 1}k is a function from [k] to

{0, · · · , d− 1} and fψ(x) :=
∏k
i=1(ai + xsgj)ψ(i).

To invoke Weil’s theorem on the character sum
∑

χ(fψ(x)) for any ψ ∈ {0, · · · , d− 1}k \ {0}k, we need
to check:

1. The order of χ is d, this is done in the previous
discussion;

2. fψ(x) 6= c ·(g(x))d for any polynomial g over GF (q)
and c ∈ GF (q). It suffices to show that any solution
of fψ(x) in the algebraic closure of GF (q) has
multiplicity ≤ d− 1. Let fij(x) = ai + xsgj, notice
that the derivative of fij(x) is f

′
ij(x) = sgjxs−1, we

claim that all the roots of fij(x) have multiplicity
1, otherwise fij(x) and f

′
ij(x) have a common root,

then sai = 0. This is impossible because q−1 = sr
implies rsai = −ai 6= 0; on the other hand, for
distinct i, i′ ∈ [k], fij(x) and fi′j(x) do not share a
common root because ai 6= ai′ . It follows that each
root of fψ has multiplicity ≤ d− 1.

3. fψ has at most ks distinct roots in the algebraic
closure field of GF (q).

By Weil’s theorem

|
∑

x∈GF (q)

χ(fψ(x))| ≤ (ks− 1)
√
q,

So

|S +
H(0)

s
− q

s
| = 1

s

∑

ψ∈{0,··· ,d−1}k\{0}k

∑

x∈GF (q)

χ(fψ(x))

≤ dk

s
(ks− 1)

√
q

Finally, notice that H(0) ≤ dk and
√
q > sk

d + 1, we
have

|X | ∈ S

dk
± k

d

⊆ q −H(0)± (ks− 1)dk
√
q

sdk
± k

d

⊆ q

sdk
± (k
√
q +

k

d
+

1

s
−
√
q

s
)

⊆ q

sdk
± k√q
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