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The German Aerospace Center (DLR) is investigating aircraft noise prediction and
noise reduction capabilities. The Parametric Aircraft Noise Analysis Module (PANAM)
is a fast prediction tool by the DLR Institute of Aerodynamics and Flow Technology to
address overall aircraft noise. It was initially developed to (1) enable comparative design
studies with respect to overall aircraft ground noise and to (2) indentify promising low-noise
technologies at early aircraft design stages. A brief survey of available and established fast
noise prediction codes is provided in order to rank and classify PANAM among existing
tools. PANAM predicts aircraft noise generated during arbitrary 3D approach and take-off
flight procedures. Noise generation of an operating aircraft is determined by its design, the
relative observer position, configuration settings, and operating condition along the flight
path. Feasible noise analysis requires a detailed simulation of all these dominating effects.
Major aircraft noise components are simulated with individual models and interactions are
neglected. Each component is simulated with a separate semi-empirical and parametric
noise source model. These models capture major physical effects and correlations yet allow
for fast and accurate noise prediction. Sound propagation and convection effects are applied
to the emitting noise source in order to transfer static emission into aircraft ground noise
impact with respect to the actual flight operating conditions. Recent developments and
process interfaces are presented and prediction results are compared with experimental
data recorded during DLR flyover noise campaigns with an Airbus A319 (2006), a VFW-
614 (2009), and a Boeing B737-700 (2010). Overall, dominating airframe and engine noise
sources are adequately modeled and overall aircraft ground noise levels can sufficiently be
predicted. The paper concludes with a brief overview on current code applications towards
selected noise reduction technologies.

Nomenclature

Tools & methods
MisSim Flight simulation tool, DLR
ModelCenter Software integration framework, Phoenix Systems
PANAM Overall aircraft noise prediction, DLR
PrADO Aircraft design synthesis code, TU Braunschweig
SHADOW Prediction tool for noise shielding effects, DLR
SIMMOD Airspace simulation tool, FAA
VarCycle Engine design & performance code, DLR

Flight procedures
HeNAP Helical Noise Abatement Procedure
LCDA Continuous Descent Approach

with Late Gear Extension
LDLP Low-Drag-Low-Power Approach
MATA-FX Modified ATA departure

with flexible thrust
MATA-TO Modified ATA departure,

take-off go-around thrust

Noise metrics
EPNL Effective Perceived Noise Level, [EPNdB]
Leq(4) Aequivalenter Dauerschallpegel nach dem

Gesetz zum Schutz gegen Fluglaerm (6 months), [dB]
LDN Day-Night Average Sound Level (1 year), [dB]
LDEN Day-Evening-Night Sound Level (av. day), [dB]
NEF Noise Exposure Forecast (1 year), [dB]
SEL Sound Exposure Level, [dB]
SPL Sound pressure level, [dB]
SPL(A) A-weighted SPL, [dBA]

∗Institute of Aerodynamics and Flow Technology, Lilienthalplatz 7, 38108 Braunschweig, Germany
†Institute of Propulsion Technology, Mueller-Breslau-Strasse 8, 10623 Berlin, Germany
‡Institute of Robotics and Mechatronics, Muenchner Strasse 20, 82234 Wessling, Germany

1 of 24

American Institute of Aeronautics and Astronautics

Page 1 of 24

http://mc.manuscriptcentral.com/aiaa-maa11

17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)



I. Introduction

DLR is investigating overall aircraft noise prediction for application within the design process of new
vehicle concepts. Noise prediction capability is of great importance when it comes to the design of new aircraft
configurations or the evaluation of low-noise design modifications to existing concepts. Early within the
design process of new aircraft concepts, i.e. conceptual phase, major aircraft and engine design parameters
are still subject to change. At this point key parameters, e.g. wing span, are determined which drive the final
aircraft concept. Comprehensive surveys dedicated to airframe noise research activities and methodologies
emphasize the requirement to predict overall aircraft noise in the vehicle design stage, i.e. Farassat1 in 2006
and Dobrzynski2 in 2010. The parameter setting is optimized for best performance according to the overall
aircraft requirements. Identification of an optimal setting completes the conceptual aircraft design phase.
The selected key parameters are kept constant during subsequent detailed design phases. Therefore, it is
inevitable and imperative1 to implement noise as a new constraint already within the conceptual design phase.
The quantity and complexity of required input data for the noise prediction are limited within conceptual
design hence impose further restrictions on a noise prediction tool. Moreover, such noise prediction method
requires a modular setup to allow for direct implementation into existing multidisciplinary, conceptual aircraft
design codes. Obviously, low computational costs are inevitable when noise prediction is embedded within
multidisciplinary processes. For such an application, the use of high fidelity methods is ruled out and fast
prediction methods are required2.
Existing fast overall aircraft noise prediction tools can be separated into two groups, referred to as restricted
and parametric prediction methodologies. The first group works with fully empirical approximations derived
from measurements. Therefore, application is limited to existing technology and configuration and design
settings as coped by the underlying experimental data. These methods evaluate measured ground noise
levels and subtract modeled propagation effects in order to simulate the originating sound source. Usually,
such tools have a commercial or corporate background with the focus on existing technology to maximize the
potential user group (e.g. airports, airlines, legislation) and increase sales/contracts in order to compensate
the development costs. Tools from the second group pursue a some-what empirical approach but are more
physics-based in order to expand prediction capabilities beyond existing aircraft configurations and allow
for parameter variations. These prediction methods start with the theory of modelling the noise source
emission to ultimately propagate the noise onto the ground. Usually, the noise generation is separated into
engine and airframe component contributions. Due to the required dedicated noise measurements and the
increased scientific complexity, these tools are more likely to be found in state-subsidized environments such
as research institutions and universities. Most aircraft manufacturers operate their own confidential noise
prediction tools. Due to the lack of information these tools can not be allocated into one specific group.
Probably these tools are highly empirical based on a huge available data base and furthermore customized for
each specific aircraft and engine type under consideration. It can be expected that these tools are parametric
to some extend in order to account for configurational and operational noise generating effects as well.

A. Existing tools

Restricted prediction methodologies are fully empirical methods based on databases with measured
and standardized noise levels for many aircraft and engine types. As a consequence, only existing aircraft
and engine technology can be evaluated with these toolsa. The tools are developed for best agreement of
predicted absolute levels compared with flyover measurement recordings and at the same time to guarantee
low computational requirements. Some tools use simple methods to account for directivity effects, others inc-
operate noise directivity within their underlying data bases. Effects of observer distance and vehicle velocity
are accounted for by simple modifications to the stored data. The applied approximations and methods are
standardized, e.g. Noise-Power-Distance-Tables, and can be found in corresponding literature3–5. Usually,
the overall noise cannot be separated into individual contributions hence componential noise evaluation is
not possible. Tools out of this group are designed to evaluate medium to long term average noise levels
around airports rather than single flyover events6. Best agreement to experimental data can be achieved
if multiple flyover events and airspace scenarios are evaluated because most details are smeared out due to
time integration and extensive averaging.
In general, the results can be accurate to approximately ± 1 to ± 2 dB5,7 for observers located directly

amaybe new techology could be accounted for by modification of the underlying databases provided as input for these tools
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along the flight ground track with the aircraft operating in lower altitudes hence these tools can qualify for
certification and legislation processes. Although, if predicting long-term average noise contours even these
small variations can result in up to 40% (for ± 1 dB) or 80% (for ± 2 dB) area error according to Smith8.
Result accuracy is significantly reduced for observers located off-side the ground flight track, for low angles
of incidence, and with increasing distance between aircraft and observer7. Due to the amount of data, only
representative operating conditions, are stored and can be accounted for. Therefore, each flight path has to
be separated into a combination of existing constant flight segments, hence the considered flight operations
should be rather similar to existing procedures stored in the database. Obviously, the complex schedule
of configurational changes along realistic approach procedures cannot be accounted for at all. Departure
procedures have to be modeled with constant thrustb setting although most airlines use varying or minimum
safe take-off power to prolong engine life9. In general, high levels of accuracy can only be achieved if simu-
lated flight operation is very similar to the underlying flight procedures corresponding to the measured noise
levels, i.e. compliance of thrust setting and climb profile (take-off procedures) and configurational setting
(approach procedures).

The most prominent example for this kind of tool is the Integrated Noise Module (INM) by the Federal
Aviation Administration10. INM’s implemented standards and methods are recommended by the Society of
Automotive Engineers (SAE), see Ref.5. The tool is applied by researchers, airport planners, and authorities
world-wide to evaluate the impact of airspace management on community noise impact. INM can output
maximum or time-integrated noise levels and isocontour areas. With INM, the impact of modifications to
flight path, runway/airport layout, and fleet mix on overall ground noise can be accounted for. INM uses
Noise-Power-Distance (NPD) tables derived from dedicated flyover noise measurements for each aircraft type
to predict ground noise. The NPD data has been recorded along specified, straight horizontal flight segments
with constant operational and configurational setting. To predict ground noise impact along a given flight
path, it’s trajectory has to be assembled from stored and measured straight flight segments. To account for
curved flight segments, specific modifications are applied to the noise data. Furthermore, simple approxi-
mations are applied to the recorded noise data to account for the actual altitude, flight velocity, and slant
distance of the simulated flight. If straight horizontal flight trajectories of infinite length are evaluated, INM
will predict precisely the measured ground noise levels for observers located along the flight ground track11.
Segmentation of a flight procedure into few curved and straight elements can be a decent approximation for
common approach trajectories with extensive constant flight operation. Nevertheless, the approximation has
its limitations when it comes to more complex airspace routing and flight operations, e.g. airport specific
departure routing and advanced low-noise approach procedures. Currently FAA is developing INM’s suc-
cessor the Environmental Design Space (EDS). EDS is based on a more physics based approach in order to
study new flight procedures and new vehicle concepts.
At Delft University of Technology INM has been implemented into their trajectory optimization process to
study environmental friendly departure procedures for a selected airport scenario12. Conventional departure
trajectories have been optimized for minimal community noise impact by integrating a geographic informa-
tion system into the process.

The second example for this group of noise prediction tools is FLULA13 by the Swiss Federal Laboratories
for Materials Testing and Research. The noise prediction is based on dedicated aircraft noise measurements
recorded along individual flyover events with an array of microphones. Polynomial functions are derived from
measured spectral noise levels and directivity patterns. Rotational symmetry in noise directivity is assumed
hence the polynomials are functions of the polar angle and the distance between aircraft and observer only.
Corresponding coefficients are identified and derived from the measurements for each individual aircraft type.
To incorporate the influence of aircraft speed, further modifications are applied to the polynomial. Finally,
relevant sound propagation effects are accounted for.

A third example, the DLR tool SIMUL14, pursues a more physics-based approach compared to the be-
fore mentioned tools. In contrast to these tools, SIMUL separates aircraft noise into the contribution of
individual components, namely airframe, jet, and fan. Obviously, the dominance of these noise sources is
varying along any flight path and will be significantly different along approach and departure procedures.
Therefore, separation into these major noise sources seems inevitable for reasonable overall noise prediction

bmost tools use maximum thrust setting
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along arbitrary flight procedures. The indivual noise components are modeled according to knowledge from
componential wind tunnel testing and dedicated flyover events. DLR has conducted several flight tests to
identify and evaluate dominating noise sources and their directivity corresponding to current speed, thrust,
and configurational settings15. This large data base allows to further break-down airframe noise into its
dominating components, i.e. gear, flap, and slat noise. In conclusion, this approach enables simulation and
optimization of realistic approach and departure procedures with complex configurational changes16. Noise
generating mechanisms can be identified, i.e. different effects of flight speed and operating condition on
overall noise emission. For simlicity, rotational symmetry is assumed for the corresponding noise source
directivities. Data of preselected and representative flight conditions are stored as input information for
the overall noise prediction with SIMUL. Obviously, general application of SIMUL is limited by the aircraft
models available in the data base. Currently, the database is limited to one specific aircraft/engine combi-
nation. Recent findings from a dedicated flyover noise campaign in 2008 for another aircraft type are yet to
be incorporated. Furthermore, the definition of flight procedures is limited by the available data (recorded
flight conditions). Again, flight procedures have to be assembled with flight segments corresponding to the
available and stored flight conditions.

In conclusion, these tools are ruled out from application within the design process of new aircraft con-
cepts because of their limitation to today’s existing technology. In contrast, the focus of the presented work
lies on comparative low-noise design studies. To identify design trends and run noise sensitivity studies, it
is inevitable to simulate each major noise component with specific individual noise source models. Further-
more, the noise prediction approach has to be more generic and parametric to reflect the effects of geometry
modification and operating condition on noise emission. To account for the impact of selected design pa-
rameters, e.g. wing sweep and dehidral, on noise emission a more physics-based and complex representation
of each component’s noise directivity becomes inevitable.

Parametric prediction methodologies form the second group of fast prediction tools. These tools
are somewhat empirical but more parametric and physics-based approaches towards overall aircraft noise
prediction. Compared to the first group, they represent a good compromise between result accuracy and
flexibility towards design modification. Major noise sources are modeled individually with parametrical and
semi-emprical noise sources hence effects of geometry and operating condition can be accounted for. The
contribution of each modeled noise source will be computed for each one flight position along a given flight
procedure. Overall aircraft noise is assembled from all individual noise sources and ultimately emitted from
a single point located at the aircraft center of gravity. It is possible to evaluate new aircraft/engine concepts,
simulate arbitrary flyover scenarios, and still reflect the basic underlying physical effects. Noise sensitivity
studies within the aircraft design phase are enabled and promising design trends can quickly be identified.

The most prominent example of this group of tools is the Aircraft Noise Prediction Program (ANoPP)
developed at NASA17. Initially, the tool was developed to predict noise for single flyover events. Airframe
noise components within ANoPP are modeled with Fink’s approach18, whereas engine noise is approximated
with the methods of Stone19 for jet noise and Heidmann20 for fan noise. In 2008, two dedicated studies21,22

to access NASA’s current jet and fan noise prediction capabilites have been published. It was demonstrated
that ANoPP’s implemented methods for jet and fan noise prediction result in reasonably good overall agree-
ment with the experimental data. Additional engine noise sources can be accounted for such as turbine
and core noise. The code is continuously updated and new noise source models are implemented. NASA
announced the release of a new version referred to as ANoPP 2.0 beta for the end of 2011c. The focus
of the new release lies on noise prediction outside of the semi-empirical experience base by applying first
principle and multi fidelity approaches. Noise sources are located at their true locations in order to account
for interaction effects. More information is scheduled for presentation at upcoming AIAA conferencesd.
ANoPP was embedded within a low-noise aircraft design framework established at Stanford University. The
main objective has been to evaluate the feasibility of such a process accounting for the overall environmental
impact. Required aircraft design parameters for the noise prediction with ANOPP are provided by the design
modules. Certification noise levels are used as an acoustic constraint within the low-noise design process.

cC.L.Burley, L.V.Lopez: ANOPP2: Progress Update,NASA Spring Acoustics Technical Working Group, presentation, April
21-22 2011, Cleveland, OH

dL.Lopez, C.Burley: Design of the Next Generation Aircraft Noise Prediction Program: ANOPP2, announced for presenta-
tion at the 17th AIAA/CEAS Aeroacoustics Conference, Portland, Oregon, June 2011
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Initial application of their process was presented in 200423.
Furthermore, ANOPP has been applied in a joint effort of NASA and Georgia Tech. The overall goal was
to evaluate the interaction of multiple engineering disciplines at earlier stages in the aircraft design process.
A so-called concurrent approach including ground noise impact has been established in 200624. Again, cer-
tification noise levels have been used as new design constraints within their process. The focus of the work
has been on the overall process and the optimization approach rather than on the noise prediction itself.
An extensive number of aircraft and engine design variations has been studied to generate response surface
equations for quick overall technology assessment.

A second example is the European tool SOPRANO (Silencer Common Platform for Aircraft Noise cal-
culations). The tool has been developed within the European aircraft noise research program called SI-
LENCE(R). ANOTEC consulting developed the tool to provide ”a common software platform to assess
noise reduction techniques within European projects”; cited from Ref.25. The 2007 version models several
airframe and engine noise components. The airframe noise is currently modeled with Fink’s approach18 as
well. Major engine noise components are modeled with the SAE methods, Stone’s method19 (jet noise), and
Heidmann’s modell20 (fan noise). Furthermore, core and turbine noise are accounted for with models found
in the literature. Preprocessed or measured source noise data stored in tables is also accepted. Relevant
propagation and installation effects are modeled with public domain approaches. The framework is set up
to enable future addition of new models. SOPRANO allows the evaluation of individual sources or sum of
several components in order to study noise generating effects. The main focus lies on the noise prediction
for single flyover events at multiple observer locations. Direct implementation of the code within an aero
engine design process was realized 2010 with the TERA2020 (Techno-economic, Environmental and Risk
Assessment for 2020) software, a multidisciplinary optimisation tool developed by a consortium of university
partners, e.g. Cranfield University26.

The third example is ONERA’s IESTA (Infrastructure for Evaluating Air Transport Systems) simulation
framework27,28. Other than the before mentioned tools, IESTA has its focus on multiple flyover events in
order to model and simulate current and future air traffic with respect to the environmental impact. Future
air traffic is comprised of new vehicles and advanced operational procedures hence requires more physics-
based models. The models for engine noise as implemented in IESTA are similar to the before mentioned
methods, i.e. models for jet and fan noise. Predictions by the embedded engine noise models were compared
with dedicated experimental data providing reasonably good agreement. Implemented airframe noise sources
are modeled according to Fink18, except of the slat noise which is simulated with Dobrzynski’s approach29.
For the study of advanced new vehicle designs, airframe noise shielding and interaction effects have to be
considered hence are directly incorporated via an ONERA ray tracing method. Overall, IESTA was mainly
developed for integration into more complex simulation environments in order to evaluate the overall air
transport system.

B. DLR activities

DLR is investigating its own physics-based noise prediction method in order to (1) fully exploit and incorpo-
rate corresponding DLR in-house capabilities, (2) establish DLR-wide accessible noise prediction tool for a
wide range of applications, and to (3) provide comprehensible and well-documented solutions for the selected
assignments based on a scientific and physics-based methodology. Main assignments for the new tool include
investigation of promising low-noise technology, retrofit of existing aircraft, low-noise design of new vehicles,
evaluation of noise abatement flight procedures, and simulation of community noise annoyance for selected
airport scenarios (multiple flyover events).
To interact with existing DLR software, input and output data require specific translation and correlation
among involved disciplines and tools. The tool has to be customized for application at the conceptual aircraft
design stage in order to handle the quantity and complexity of available input parameters. Source code access
is mandatory for quick modifications in order to generate non-standard and case-specific output data, e.g.
level-time-history of a specific noise source frequency spectrum. In general, a flexible and modular tool setup
is required to allow for the implementation of interfaces to additional methods and future tools. Different
run modes are requested to both incorporate noise prediction into large multidisciplinary tool chains and
processes as well as to allow for autarkic and stand-alone application.
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II. Noise prediction tool and methods

The Parametric Aircraft Noise Analysis Module (PANAM) is under development by the DLR Institute
of Aerodynamics and Flow Technology to address overall aircraft noise prediction at the conceptual aircraft
design stage30,31. The tool predicts aircraft noise generated during arbitrary approach and take-off flight
operations under simultaneous consideration of relevant multidisciplinary effects. Noise generation of an
operating aircraft is determined by its design, the relative observer location, configuration setting, and oper-
ating condition along the flight path. Furthermore, sound propagation effects under moving conditions have
to be applied to transfer static noise emission into ground noise impact due to aircraft flight operation.
Individual noise components are modeled with specific semi-empirical and parametrical source models. These
models capture major physical effects and correlations yet allow for fast and accurate noise prediction. Indi-
vidual sources can be monitored and rank-ordered throughout simulated flight operation. If the dominating
noise components are identified and modeled it is possible to sufficiently represent the overall aircraft noise
emission.
The modular setup of PANAM allows for direct implementation into existing multidisciplinary, conceptual
aircraft design codes. If not directly implemented into an aircraft design code, PANAM can be operated
in a self-contained mode. In this case, necessary input data have to be provided by the user or come from
other DLR tools. Interfaces to various expert tools from other institutes and departments allow to set up
case-specific process chains. For example, PANAM can be combined with flight simulation tools to study
noise abatement flight procedures. Process implementation of high fidelity tools, e.g. detailed engine cycle
analysis, can improve result accuracy. Interfaces to process data from component noise measurements en-
able the evaluation of these components as if they were installed and operated onboard of an aircraft. For
example, the effect of a low-noise gear design could be evaluated along a specific approach procedure.

A. Noise source modelling

The implemented noise source models are semi-empirical and parametrical. Individual models for selected
noise components are available. Each model is derived by computational and experimental data from high
fidelity simulations, windtunnel or flyover experiments. The underlying database sets limitations for each
model hence general application is constrained. Obviously, result uncertainty increases if models are applied
far off the restrictions and conditions within the underlying database. Interactions between individual noise
sources are neglected. The noise source models can be separated into two major groups, airframe and engine
noise source models. Noise can be evaluated for individual as well as for arbitrary combinations of noise
components.

Airframe noise is modeled with DLR in-house noise source models15,29. The models are based on data
from recent windtunnel and flyover experiments hence reflect the current state of art in airframe design, e.g.
sweeped, twisted and tappered wings. Compared to source models from the literature, e.g. Fink’s Airframe
Noise Prediction Method18 as implemented in ANoPP or SOPRANO, the models are defined by a broader
parameter set. PANAM now allows for a detailed airframe geometry separation into relevant segments. The
wing is separated into multiple acoustic relevant segments with constant flap, slat, and profile geometry.
Instead of working with averaged geometry parameters for each kind of noise source, e.g. one representative
slat length, multiple noise sources with individual parameter settings are accounted for. This segmented
approach enables the noise prediction for unconventional airframe designs, e.g. multiple wing/tailplane con-
figurations and U- or V-tail concepts. Previous and recent findings indicate the importance and dominance
of high lift devices on overall airframe noise. Whereas some approaches neglect these devices, the DLR model
accounts for both trailing and leading edge devices. Under certain flight conditions flap side edge is assumed
to be a dominating airframe noise source1,2. Therefore, a new flap side edge noise source model is currently
under investigation32,33 at DLR and yet to be embedded into PANAM. Sustained research activities towards
landing gear noise reduction34,35 resulted in a dedicated DLR landing gear noise model. Finally, a simple
fully-empirical but parametric model for spoiler noise can be applied if required. All the source models
implemented in PANAM are published and open to the public15,29.

Engine noise modelling is based on existing models from the literature. The dominating noise sources,
i.e. jet and fan noise, are modeled separately. The two standard models for dual-stream jet exhausting
from the nozzle (Stone19) and fan noise (Heidmann20) have been adapted and implemented by the DLR
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Institute of Propulsion Technology36. In comparison to what was presented earlier, some improvements were
achieved by modifications of the original fan noise model. Fan noise, i.e. especially the buzz-saw compo-
nent, has been overpredicted in the past using Heidmann’s original model20 due to the somewhat antique
underlying database. For a better representation of modern turbofan engines with high by-pass ratios, the
semi-empirical constants in Heidmann’s model have been revisited and updated. Integration of a model to
account for the noise absorption due to acoustic liners further improved result accuracy especially under
take-off conditions. This model was implemented according to the method described by Moreau, Guérin,
and Busse37.

The liner damping model is derived from the ray theory. This makes it fast enough for applications in
design-to-noise. Configurations with liners mounted in the intake and the bypass duct can be treated. The
model works as follows: (1) Applying the method hereafter, the sound field generated by the fan stage is
synthetically decomposed into acoustic modes (m,n). (2) The ray structure of the cut-on modes is deter-
mined applying a ray theory and assuming hard-wall boundary conditions. (3) Finally, based on the polar
and azimuthal angles of propagatione and the number of bounces along each ray path, the sound attenuation
is estimated for each mode; it is assumed that the liners do not significantly modify the propagation angles
nor induce mode scattering. The far-field directivity, which is in real applications slightly changed under the
effect of the liner, is supposed to remain unchanged. The wall impedance can be predicted using a model
based on the geometrical parameters of practical liners and the flow conditions.
For each engine operating point, a modal content has to be synthesized. A specific approach is used for
the three noise components identified by Heidmann20. For broadband noise, all the cut-on modes are con-
tained and supposed to propagate the same acoustic energy (Equal Modal Energy model). Furthermore, in
order to save computing time, the attenuation is calculated only for the centre-frequency of each one-third
octave band. The tones at multiple of the blade passing frequency are all assumed to be generated by the
rotor-stator interaction mechanism. The azimuthal order of those modes is calculated by applying the Tyler
and Sofrin rule (m = hB − kV )38. The same power amplitude is given to all the radial orders. Finally,
the modal content of buzz-saw noise has to be determined in transonic regime of the fan. Since buzz-saw
is a rotor-locked mechanism, the azimuthal order of each engine order tone can be assumed to have the
same value as the engine order itself. Then, within a given one-third octave band all the engine orders are
considered to have the same amplitude. The energy of the radial order components is chosen to be equal
too.
The implementation of a liner model makes it possible to investigate the influence of the liner length. A long
intake and bypass-duct equipped with damping material could offer a feasible solution to reduce the noise
contribution from the fan.

B. Input parameters

Input data requirements for the implemented noise source models include (1) aircraft design, (2) engine de-
sign parameters with a detailed engine performance deck, (3) a simulated flight trajectory with configuration
settings and operating conditions, and (4) the location of the observer. Relevant input data can be provided
through corresponding tools or has to be generated by the user in order to initiate the overall noise prediction
process. Theoretically, the required parameters can be generated with available and standard conceptual
aircraft design systems.

PANAM was developed for direct application within the aircraft design synthesis code PrADO39, an in-
house development of the Technical University Braunschweig, Germany. PrADO can assess the feasibility
of new aircraft concepts at the conceptual aircraft design stage. The PrADO framework is comprised of
individual design modules each dedicated to certain tasks or disciplines. These design modules run interac-
tively until predefined design requirements are meet. PANAM can be operated as one of these self-contained
modules within the framework hence can directly access the automatically generated input parameters.
Furthermore, PANAM can be operated within DLR’s TIVA40 simulation environment. DLR has established
a common system to enable distributed multidisciplinary conceptual aircraft design41. The TIVA system
is based upon a common data exchange format to establish a framework42 for the integration of tools and
methods from multiple disciplines and experts. Currently, various tools from specific disciplines are available

eangles at which the rays impinge on the wall

7 of 24

American Institute of Aeronautics and Astronautics

Page 7 of 24

http://mc.manuscriptcentral.com/aiaa-maa11

17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)



and can be implemented into individual process chains to provide the required input data for the noise
prediction. The generated data of each implemented tool is collected and stored in the standardized data
format. Ultimately, the data can be made accessible for the noise prediction via network connection.

X

Y

Z

Legend:
control surfaces
spoilers
flaps
slats

Figure 1. Automated airframe geometry segmentation
into acoustic relevant elements (here: DLR Low-Noise
Aircraft)

(1) Aircraft design parameters for each rele-
vant and modeled component are required. Op-
tionally, the wing geometry can be separated into
relevant segments with constant shape and high
lift design. If dealing with complex configurations,
the segmentation approach becomes inevitable to
guarantee feasible representation of the geometry.
The noise prediction algorithms have been mod-
ified to optionally account for such a segmented
geometry input. If the user has to provide the
required input parameters, it is still possible to
switch back to the simplified input format, i.e.
each relevant component group is reduced to a cor-
responding, representative, and averaged geome-
try element. PrADO has been updated to auto-
matically provide a detailed geometry segmenta-
tion. A newly implemented algorithm identifies
the acoustical relevant component segments and
automatically generates a detailed input param-
eter set for PANAM, see Fig. 1. Depending on
the selected design tools, the TIVA framework will
provide either averaged component or detailed seg-
mential parameters.

Optionally, possible noise shielding effects due to aircraft geometry and relative engine location can be sim-
ulated within the TIVA framework. Direct coupling of the aircraft design code PrADO and PANAM to
the DLR ray tracing tool SHADOW43 allows for automated processing and evaluation44 of these effects, see
Fig. 1.

(2) Engine design parameters and performance decks have to be generated through dedicated ther-
modynamic engine cycle modelling. Detailed input parameters are crucial for the result accuracy of engine
noise prediction. If PANAM is embedded into a multidisciplinary process with corresponding engine tools,
i.e. DLR’s VarCycle45 toolf, these parameters are automatically generated and provided as input. Embedded
into a conceptual aircraft design tool such as PrADO, certain detailed engine parameters cannot be gener-
ated due to their complexity, e.g. rotor and stator blade count. In this case, the detailed engine parameters
have to be manually evaluated and integrated into the overall process. If the focus is airframe design, i.e.
working with one specific engine type or concept, the detailed engine geometry parameters are pre-evaluated
once and then assumed constant during further engine scaling within predefined limitations.

(3) Flight trajectories are discretized into individual flight positions. For each flight position the air-
craft configurational setting, operating condition, and the location of the aircraft are held constant for the
duration between two successive flight positions. The required flight trajectory data for PANAM includes
aircraft and engine operating conditions, configurational setting, and aircraft orientation and location.
The trajectory data can automatically be generated within the PrADO framework or with any available
flight simulation tool in the TIVA environment, e.g. MisSim46,47. Furthermore, actually recorded flight data
and radar data can be transformed into the required input format for further analysis if required.

(4) Arbitrary observer locations can be selected for the noise prediction. Depending on the selected
task, e.g. evaluation of level-time-histories or isocontour areas, both individual and arrays of observers can

fVarCycle is an one-dimensional, off-design performance calculation program developed by the Institute of Propulsion Tech-
nology (AT)
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be processed. Individual observer property settings can be defined for each location, i.e. ground resistivity to
air, observer height, and population density if required. This allows to define and simulate arbitrary airport
surroundings with a realistic population distribution only limited by the data availabilityg.

C. Noise prediction

Each flight operation is simulated by quasi-stationary flight segments. During each flight segment the air-
craft location/orientation, operating condition, and configuration of the aircraft are kept constant hence
noise emission is assumed to stay constant as well. Obviously, the separation into these constant flight
segments determines result accuracy. For noise prediction with PANAM a maximum segment flight time of
0.5 seconds has been identified, i.e. a minimum of two quasy-stationary flight positions per second of flight
time are required. The spacial distance between two quasi-stationary flight situations depends on the flight
speed and is obviously not constant.
For each combination of quasi-stationary flight position and observer location, the farfield sound pressure
level frequency spectrum is computedh, audible range: 20 - 20 kHz. Frequency dependent sound propa-
gation effects are applied to transfer static noise emission into ground noise impact due to aircraft flight
operation. Sound propagation effects include geometrical spreading, ground attenuation, convection effects,
and atmospheric absorption. Sofar, wind and temperature effects have not been in the scope of the presented
research activities hence are not accounted for. Common psycho-acoustic weighting functions can be ap-
plied to the spectral data for better simulation of human sound perception. Finally, the predicted frequency
spectra is translated into corresponding single-event-levels, e.g. A-weighted Sound Pressure Level (SPLA)
or Tone-corrected Perceived Noise Level (PNLT). The predicted time-history of the single-event-levels can
be integrated to obtain common flyover noise metrics such as the Effective Perceived Noise Level (EPNL).

D. Standard output data

Individual flyover events are the default application for PANAM. The data output includes noise lev-
els for each individually modeled aircraft component as well as levels for the overall aircraft. Noise level
frequency spectra for individual components can be provided for any specified operating condition along
a simulated flight path. Furthermore, level-time-histories, weighted or time-integrated noise metrices can
be predicted for each flyover event. The time-integrated and weighted output data includes the standard
flyover noise measures, e.g. (A-weighted) Sound Pressure Level and Effective Perceived Noise Level (EPNL).
For a grid of observer locations the distribution of noise levels as received on the ground can be generated.
Animated noise footprints for each one time step as well as visualizations of time-integrated noise footprints
can be generated. This allows for real-time evaluation of the influence of aircraft operating conditions and
configuratinal settings on the overall noise radiation. Noise related effects can be identified, visualized, and
ultimately analyzed48.
Isocontour areas of the max. Sound Pressure Level (SPL) can be translated into a probability distribution
of aircraft noise induced awakenings49. Multiplied with a given population density, one can evaluate the
number of affected people, i.e. awake people due to a single aircraft flyover noise event. This scalar value is
well suited as a design objective within an optimization process. Obviously, the population density around
a typical airport is very inhomogeneous. But due to the complexity of modelling the communities around a
real airport and the lack of available data, usually an average and constant population density is assumedi.

Multiple flyover events can be simulated with the code as well. Arbitrary combinations of individual
flyover events are arranged into a multiple flyover scenario. Equivalent Sound Pressure Levels (aequivalenter
Dauerschallpegel, Leq) are computed for arbitrary combinations of aircraft, fleet mix, flight operation, and
runway layout. The computations are performed according to Ref.50.

Leq = k · log10

(

tref

T
·

N
∑

i=1

gi · 10
LE,i/k

)

+ C (1)

The flyover events (N) within a predefined time span (T ) are summed up for an arbitrary observer location.
LE,i is the noise level for one individual flyover event (i), tref is the specific time span defined for LE , gi is

gthe influence of realistic terrain or cultivation on ground noise impact is not accounted for
h1/3-octave bands
icurrent population density of Germany: 231 people per square kilometer
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the time dependent weighting factor. Parameter k depends on the summation of the individual noise levels,
e.g. k = 10 for energetic summation. Finally, the resulting levels are scaled/normalized by factor C. The
most common noise metrices can be evaluated according to the parameter setting in Table 3.
To speed up computational time, the ground noise distribution for each combination of (1) aircraft, (2) flight
procedure, and (3) selected runway is pre-computed and stored within a database. Simulating a selected
flight plan, comprised of arbitrary combinations of available settings (1) to (3), is then predicted based on
the pre-computed database within seconds.

The most commonly used Leq is the Day-Evening-Night Sound Level (LDEN ). A noise response relationship
by the European Commission translates the LDEN into aircraft noise induced annoyance51. Ultimately,
LDEN isocontour areas for multiple flyover events/scenarios can be reduced to one scalar value applicable
as a design objective within an optimization process.

E. Optional output data

Geographical noise impact visualisation enables a better understanding on how aviation impacts local
communities and their annoyance towards noise pollution. Overlapping noise isocontour plots with maps of
local communities will indentify noise affected areas and population. Hereby, noise impact on sensitive areas
such as highly populated residential areas can directly be evaluated. For a predefined airport scenario with
given runway layout and airspace routing, PANAM transforms the flight trajectories and resulting noise
isocontour areas into WGS84 coordinates to load them into a geographical visualisation tool, e.g. Google
Earth52. Various noise metrics for individual or multiple flyover events can be visualized.

Gaseous engine emissions are summed up along simulated flight procedures. Obviously, this optional
output depends on the availability of emission data for the selected engine. If emission data is available,
flight procedures can be modified for best environmental performance, i.e. evaluation of noise vs. gaseous
emissions vs. required fuel. Results of an initial trade study for individual flyover events have been published
in 200948.

III. Comparison with experimental data

Each implemented noise source model has separately been validated by comparison with componential
windtunnel and other experimental data15,29,36, i.e. data recorded under steady laboratory conditions. To
evaluate the interaction of these individual noise sources under consideration of source movement and sound
propagation effects, predicted overall aircraft ground noise is compared with existing ground noise measure-
ments. If working with measured flyover noise levels one has to keep in mind that aircraft noise measurements
in a realistic environment are subject to inherent imprecision and limited replicability7, e.g. due to varying
atmospheric conditions. Therefore, good overall agreement of predicted noise levels with actual measure-
ments becomes very difficult and can only be achieved to a certain extend, especially if only simplified sound
propagation effects are accounted for. Nevertheless, only a dedicated comparison of simulated versus mea-
sured aircraft ground noise levels can indicate feasibility and quality of any applied prediction methodology.

Three recent DLR flyover noise campaigns are selected for the comparison: (1) Parchim 2006 campaign,
A319 with CFM56-5A5 engines, October 2006, (2) Braunschweig 2009 campaign, VFW-614 ATTAS with
Rolls-Royce/SNECMA M 45 H Mk. 501 engines, June 2009, and (3) Braunschweig 2010 campaign, B737-700
NG with CFM56-7B26 engines, September 2010. The aircraft geometries are re-designed with PrADO39 and
relevant engine design parameters and performance data come from DLR’s VarCycle45 tool. Flight operation
of these aircraft is simulated according to recorded flight test data in order to predict ground noise impact
at the selected observer locations.

(1) An A319 was operated along 9 approach and 9 departure procedures. Ground noise measurements
have been recorded at 12 departure and 13 approach observer locations with both ground and 1.2 m micro-
phones. Initial comparison for this campaign has been presented earlier30. Recent modifications to airframe
and engine noise source models and the implementation of an acoustic lining model further improved the
overall agreement of prediction and experiment. Figs. 4 to 6 show results for selected approach and depar-
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ture trajectories of the campaign. The procedures have been selected according to the applications within
this paper. Absolute SPL values as well as SPL variation in time is reasonably well predicted along all
three procedures. SEL noise levels are presented to compare measured and predicted noise energy impact.
Most predicted SEL levels are in good agreement to the measurements, i.e. within a ± 2 dB margin to
measured SEL levels. Along the LDLP procedures, ground noise is significantly overpredicted at locations 1
and 5, i.e. the most distant locations. In general, PANAM slightly overpredicts ground noise levels for the
A319 especially for distant observer locations. This can be adressed to a combination of still existing (but
reduced) engine noise overprediction and the fact that weather effects are not taken into account. Take-off
noise prediction has been significantly improved due to the modifications compared to results presented in
Ref.30.

(2) In 2009, DLR’s flying testbed ATTAS was operated along different approach trajectories. New radi-
cal and unconventional approach procedures have been evaluated during this test campaign. Inspired by
initial concepts and flight tests by NASA58 a new procedure was developed and flight tested, the Helical
Noise Abatement Procedure (HeNAP). Furthermore, a steep approach and a conventional approach proce-
dure have been integrated into the flight test schedule. Initial comparison of experimental and computational
noise levels have been presented in Ref.48.
Fig. 7 shows the ground flight tracks for all 7 test flights along with the observer ground locations. In the
past, absolute levels indicated significant discrepancies between experiment and prediction, especially if noise
shielding effects have been accounted for within the simulation. This effect was mainly adressed to adverse
weather conditions corrupting the measurement of complex noise shielding effects. Futhermore, simulation
of the unique aircraft and engine design of the ATTAS is complex and error-prone. Nevertheless, noise
dislocation effects and comparative level differences were in good aggreement.
Modifications to the engine noise source models and the application of noise shielding effects to only the
forward fan noise improved the overall agreement to the measurements. Yet, discrepancies in absolute
ground noise levels are still existent. Figs. 9(a) and 9(b) show the time-level-histories along three differ-
ent approach procedures at two selected observer locations. Fig. 8 shows componential noise evaluation at
observer location 4 subject to engine idle noise along steep approach procedures. Former strong underesti-
mation of the engine idle noise is reduced. Fig. 9(c) shows prediction results along the curved flight segments.

(3) In 2010, DLR operated a Boeing 737-700 along different approach procedures to investigate advanced
airspace re-routing schemes for Frankfurt International Airport. To assess the prediction capabilities for this
type of aircraft, recorded noise level-time-histories are compared to initial predictions with PANAM. The
presented results are preliminary and still under investigation. The general noise generating mechanisms,
i.e. the high lift system and the landing gear for airframe noise, are assumed to be consistent with the
PANAM noise source models. A detailed engine design for this aircraft is still under investigation hence a
simplified engine model had to be applied. Fig. 10 shows the predicted and measured SPL(A) time-histories
and the SEL at two selected observers directly located under the common approach path. Two direct flyover
events have been selected for this initial comparison. Both flights pass the observer locations on similar
flight altitudes but with different configurational setting. Along flight 1, the landing gear is extracted right
after flyover of observer 1. The aircraft continues with extracted landing gear and passes observer location 2,
hence the level differences between the observers can be adressed to landing gear noise contribution. Along
flight 2, landing gear is extracted prior to reaching the observers causing increased noise levels. Overall,
the predicted levels and time-histories of both flights are in satisfying agreement with the measurements. A
more detailed analysis of these preliminary results is required in order to verify the initial assumptions.

IV. Application

A. Flight trajectory optimization

PANAM is coupled with the DLR Mission Simulation (MisSim) tool46,47 to enable the environmental anal-
ysis and optimization of flight procedures. A dedicated and automated process is established within DLR’s
TIVA40 simulation environment. MisSim automatically generates a flight dynamics model for the given
aircraft configuration and then simulates a prescribed mission, flight manoeuver, or prepares the model for
other forms of analysis, e.g. linearization for handling quality evaluations. Missions may be simulated in
two ways: (1) quasi-statically by using an automatically generated inverse point mass model (inputs are the
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flight path and speed profiles, outputs are engine and controls settings, etc.) or (2) by means of a point mass
or full 6 DOF model in combination with a generic autopilot. The latter variant has become the preferred
option being considerably more flexible, especially when thrust limits are reached.
A parameter study for take-off and climb-out profiles is simulated and evaluated for noise and gaseous emis-
sion. The reference aircraft (A319 type) takes off, reduces power to 90% and accelerates to a calibrated
airspeed of 210 kts. This profile is varied in order to investigate the environmental impact:
(1) modified thrust setting with constant airspeed (CAS): thrust reduction to 80% (resulting in a lower climb
rate but less engine noise) or increase to 100% (resulting in a higher climb rate but more engine noise)
(2) modified airspeed with constant thrust setting: thrust remains 90% but airspeed is increased to 220 kts
(resulting in a lower climb rate) or decreased to 200 kts (resulting in a higher climb rate)

Noise prediction results are depicted in Fig. 11 and gaseous engine emissions are listed in Tab. 1. En-
gine emissions are summed up over a 20 km segment along each simulated departure procedure.
The Effective Perceived Noise Level is evaluated in order to account for both absolute noise level and time
duration of each flyover event. Fig. 11 shows the EPNL values along the ground flight tracks. Furthermore,
altitude, airspeed (TAS), and thrust setting profiles are presented for each flight. Noise relevant effects
with respect to these profiles can directly be identified in the EPNL data. Reduction of thrust along with
constant TAS requirements directly results in reduced flight altitudes as depicted in Fig. 11(a). Obviously,
reduced ground distance counteracts reduced engine noise emission due to lower thrust setting, hence ground
noise levels are increased. With respect to ground noise impact, further thrust increase to 100% would be
benefitial. But as can be expected, thrust increase results in higher emissions compared to the flight with
lower thrust settings, see Table 1. Therefore, a thrust setting of 90% is the predicted optimum.
Fig. 11(b) shows the results for the airspeed variation with constant thrust setting. It might seem surprising
that the higher airspeeds are not correlated with increased gaseous emissions according to the data. This
can be traced back to the reduction in flight time along the selected flight segment compared to flights with
lower airspeeds. Higher airspeeds with constant thrust setting result in lower flight altitudes hence increased
ground noise levels. Limiting the airspeed (CAS) to 200 m/s provides more engine thrust to build up flight
altitude hence reducing ground noise. A 2 EPNdB noise reduction is predicted early along the flight path
but decreases downwards the flight trajectory. With only small increase in gaseous emissions, a velocity
reduction down to 200 m/s along with constant thrust setting is the predicted optimum.

mod. flight time [%] fuel [%] H2O [%] CO2 [%] NOx [%] CO [%] HC [%] soot [%]

CAS + 10 m/s -2.79 -1.93 -1.93 -1.93 -1.75 -1.93 -1.91 -0.78

CAS - 10 m/s +3.29 +2.29 +2.29 +2.29 +2.09 +2.29 + 2.26 +1.10

thrust + 10% -0.51 +6.27 +6.27 +6.27 +5.98 +6.27 +6.27 +4.19

thrust - 10% +0.25 -6.29 -6.29 -6.29 -4.06 -6.29 -6.27 -3.03

Table 1. Gaseous emissions along departure procedures up to a distance of 20 km to the airport: delta with
respect to reference (CAS = 210 m/s, thrust = 90%)

B. Low-noise aircraft design

Significant contribution to overall ground noise for approaching aircraft can be traced back to the leading edge
devices (LEDs). Rank-ordering the airframe noise sources during approach operation identifies conventional
LEDs as one predominating noise source until extraction of the landing gear2. DLR is investigating new
advanced high-lift LEDs in order to reduce componential noise emission without any decrease in vehicle
flight performance. To evaluate the theoretically achievable noise reduction potential of such advanced
LED concepts, a simple trade study has been performed. Low-noise LED have been installed on-board of
a conventional, medium-range transportation aircraftj in order to predict the influence on overall ground
noise impact compared to the reference design. It is assumed that an optimal low-noise LED design can
be identified and is installed, i.e. LED noise emission can be significantly reduced but overall aircraft flight
performance remains constant. Such an optimal design allows to simulate both reference and low-noise
vehicle along identical flight paths since overall aircraft flight performance is not modified or affected by the
new LEDs. The dominating noise contribution of standard LEDs along simulated approach flight operation

j150 PAX, design mission: 4800 km, cruise mach 0.78, cruise alt 8500 - 12500 m
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is simply assumed to be eliminated for the new design, i.e. the LED noise emission is reduced significantly
with respect to remaining airframe noise components.
The area subject to potential noise reduction due to advanced LEDs can be determined according to the
configurational setting along the flight path, e.g. an approach procedure with late gear extraction seems
to be most advantageous. Such a procedure is the Continous Descent Approach with Late Gear Extension
(LCDA) under investigation by DLR16. According to Ref.53 there is no intermediate flight segment but a
continous descending flight path. Moderate descent angles will allow for simultaneous altitude and speed
reduction along the descent. This results in a higher flight path along with reduced flight speed which is both
benefitial to overall aircraft noise reduction. Early configurational changes become necessary to guarantee
required deceleration of the aircraft along the continuous descent. Engines can be operated on low thrust
settings along most of the procedure resulting in significantly reduced engine emission. Therefore, airframe
noise contribution is of high importance and dominance along such a flight procedure. Late gear extension
within prescribed safety margins allows for additional reduction of overall aircraft ground noise impact but
usually results in wide-spread dominance of LED noise. Noise source dominance along a LCDA is depicted in
Fig. 12(a). The area of dominating LED noise contribution along this procedure is highlighted. If LED noise
could be significantly reduced, overall ground noise levels in this area are minimized. Additional landing gear
noise reduction would furthermore reduce ground noise pollution. Predicted max. SPL along the ground
flight track for the reference aircraft are compared to noise levels for an vehicle with low-noise LED, low-noise
gear, and low-noise LED & gear, see Fig. 12(b) indicating a significant overall ground noise reduction.

C. Community noise annoyance

A quick way to identify possible impact of aircraft noise on local communities is to correlate predicted noise
isocontour areas with geographical information. An example application with Google Earth52 is presented.
A conventional medium-range transportation aircraft is simulated along a LDLP approach towards runway
28 L of Portland International Airport. For comparison, an aircraft with low-noise LED is operated along a
LCDA procedure. The predicted results can directly be mapped onto the airport surroundings as depicted
in Figs. 13(a) and 13(b) respectively. The max. SPL isocontours clearly indicate the difference in noise
distribution and ground noise impact on local communities along both procedures. The dominating influ-
ence of conventional LED on overall aircraft ground noise is eliminated and ground noise levels along the
LCDA are furthermore reduced, as depicted in Fig. 13(b). Max. SPL and EPNL noise level are predicted at
the permanent noise measurement sitesk installed around the airport. Compared with the LDLP approach,
community noise levels around ”Lake” are significantly reduced along the LCDA. Application of the low-
noise leading edge device further reduces noise pollution along the approach path, i.e. at measurement site
”McGill”.

modification metric P04 ”Argay” P05 ”Lake” P06 ”McGill”

LCDA procedure EPNL [EPNdB] -2.3 -5.8 -0.1

max. SPL(A) [dBA] +0.2 -3.3 +0.0

SLED & LCDA procedure EPNL [EPNdB] -2.5 -6.6 -4.1

max. SPL(A) [dBA] +0.2 -3.3 -5.8

Table 2. Max. SPL and EPNL level differences wrt reference a/c along LDLP (permanent noise measurement
sites)

A large variety of noise metrics is available to further quantify community noise annoyance. Most of these
noise metrics are highly empirical and require population data as an input. The Aircraft Noise Induced
Awakenings49 directly correlate simulated flight operation with the number of awakened people around an
airport. This scalar number can then be used as an objective within an automated optimization process.
Not having access to any population data in a feasible resolution or format, an interface to read and modify
CORINE land cover data54 has been implemented. The CORINE data does only indicate the land usage
but does not provide any number of people. In a first step towards more realistic simulation of selected
airports and their surrounding, residential areas are identified in the CORINE data in order to only account
for populated areas. Fig. 14 shows the populated areas around Frankfurt airport.

kaccording to http://www.portofportland.com
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The probability of aircraft noise induced awakenings is evaluated within a selected subsection of the Frankfurt
area. The selected area is 15 by 20 km large and located north-east of the airport. The community noise is
simulated for a generic and a some-what more realistic population distributionl. It is assumed that approx-
imately 280 000 people live in this selected area, i.e. an average of 760 people per square kilometer for the
homogeneous population density. Two scenarios are evaluated and compared: reference aircraft along LDLP
approach and low-noise vehicle (LED) along SCDA procedure. In both cases the max. SPL(A) isocontour
areas are translated into the probability of aircraft noise induced awakenings49, see Fig. 15(a). Multiply-
ing this probability with the corresponding population density provides the actual number of aircraft noise
induced awakenings. Consideration of a homogeneous population density results in a significantly different
distribution of local awakenings compared to a more realistic population scenario as depicted in Figs. 15(b)
and 15(c). Not only the location but also the total numbers of awakenings are significantly different. Both
population distributions result in approximately 15 % less aircraft noise induced awakenings due to operation
of the low-noise aircraftm. Further and more detailed distribution of the people would significantly influence
and change predicted percentages of awakenings. Accounting for a some-what more realistic population
density can dominate the outcome of the simulation hence feasible evaluation of community noise impact
should allways incorporate realistic population densities.

D. Airspace and airport simulation

An automated process chain for airspace and airport simulation with integrated noise prediction capabilities55

is under development at DLR using FAA’s SIMMOD56 tool. Different air traffic scenarios can be defined and
evaluated for their impact on capacity and delays. The scenarios are made up of the airport/runway layout,
the airspace segmentation, and the corresponding flight path alignment. Individual aircraft movements are
simulated along airspace routes, runways, taxiways, and gates according to a predefined schedule. Ulti-
mately, the combination of all scenario parameters will determine the overall airport and airspace capacity.

Figure 2. SIMMOD airspace simulation
with integrated noise prediction capabilities

PANAM can read and translate the data format of SIMMOD to
evaluate overall ground noise impact. Obviously, the predicted
scenario noise levels depend on (1) the individual aircraft type,
(2) the runway layout, (3) the airspace routing/flight procedure,
and (4) the flight schedule. With respect to noise prediction, one
major simplification is applied to reduce computational costs to
a minimum. The ground noise levels are assumed constant for
each specific combination of (1) - (3). In other words, each
flight of one specific aircraft type along one specific flight path
towards one specific runway is assumed to result in identical
ground noise levels. Consequently, corresponding noise data is
only predicted once in order to generate an extensive data base
for further access. For any given and consistent scenario, the
stored noise data can be assembled according to the underly-
ing flight schedule and by applying time dependent weighting
factors as listed in Table 3. Ultimately, an airport and airspace
scenario can simultaneously be evaluated for community noise
and air traffic delays in a very short time, see Fig. 2. A second
runmode has been implemented into PANAM to quickly iden-

tify noise related trends without simulating the entire airspace and airport. For a given SIMMOD scenario,
i.e. fixed combination of (1)-(4), selected and individual flight movements are manually replaced by new
aircraft and flight procedures under the assumption that capacity issues remain constant. This enables to
quickly evaluate new technology with respect to an overall airport community noise impact, e.g. by replacing
a specific aircraft type with a modified, low-noise replacement with similar flight performance.
A generic two runway airport layout with 719 flight operations of one representative medium sized trans-
portation aircraft is simulated. Fig. 16 shows the predicted Day-Evening-Night Sound Level (LDEN) for
an average day. To study the impact of low-noise leading edge technology on longterm noise pollution of
the airport surrounding, fifty percent of all reference flights are replaced by the silent LED vehicle assuming

l280 000 people are equally distributed only within the CORINE residential areas
mpredicted percentages are identical because of the assumption that selected residential areas have a constant population

density as well
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identical flight performance and airspace routing. Furthermore, all approaching aircraft are simulated along
LCDA procedures. These modifications show significant community noise reduction in the vicinity of the
scenario airport, i.e. due to the new approach and due to the low-noise LED technology. Along the common
approach path, LDEN levels are reduced by 2-3 dB if the low-noise LED design is realized on-board of
approximately 50% of the simulated vehicles and if all aircraft operate along LCDAs.

V. Conclusion & summary

The overall aircraft noise prediction tool PANAM is presented. Prediction results are compared to existing
ground noise measurements for three aircraft along multiple flight procedures, i.e. departure and approach.
Dedicated comparison of simulated and measured noise levels and noise dislocation effects indicates feasible
overall aircraft noise prediction capabilites. Overall, the quality of the presented noise prediction methodol-
ogy can be ranked as well suitable to support decision making in the context of aviation noise and emission
pollution. Result reliability is reduced if existing noise source models are applied towards vehicle concepts far
off the design space specified by the underlying empirical data. Yet, if general noise generating mechanisms
are kept consistent with the empirical data base, i.e. fixed design principles for individual noise sources,
reasonable and reliable results can be achieved. Comprehensive results can be provided in order to enable
comparative low-noise vehicle design analysis.
PANAM can be operated within the aircraft design synthesis framework PrADO or the DLR framework
TIVA to enable fully automated aircraft design trade studies. Promising low-noise technologies can be eval-
uated at early design stages in order to influence the overall vehicle design. PANAM can be applied to
investigate the environmental evaluation of flight operations. Individual flights as well as multiple flyover
scenarios can be evaluated. An interface to a fast time airspace simulation environment allows to investi-
gate case-specific airport scenarios and study the environmental impact. Geographical noise mapping and
processing of CORINE land cover data is implemented in order to evaluate community noise impact. It is
demonstrated that feasible evaluation of community noise metrics should incorporate realistic population
densities.

Future work will include implementation of new noise source models and further data comparison with
existing flyover noise measurements. In the near future, airframe noise prediction capabilities will be en-
hanced by a flap side edge noise model32,33. Recent development of an open-rotor noise prediction program
belongs to ongoing engine noise activities at DLR. The selected acoustic model is based on the analytical
solution proposed by Hanson59. This separate program can be linked to PANAM via the TIVA simulation
environment40,41 in order to enable overall aircraft noise prediction for open-rotor vehicles.
Finally, detailed evaluation of PANAM’s existing real-time noise prediction capabilities in the context of
real-time simulation environments is planed for the future. For example, noise prediction capabilities could
be integrated into air traffic management software or into ground-based flight simulators to increase the
pilot’s community noise awareness.

Acknowledgments

The assistance of Dr. Wolfgang Heinzen towards a low-noise aircraft design process and his continous
support is greatly appreciated. The authors thank Dr. Werner Dobrzynskio for his support and expertise
in the area of noise source modelling. The authors would like to thank Mr. Manfred Keilp for his support
towards applying the CORINE data. Furthermore, the authors thank Mr. Oliver Schneiderq for his support
towards a noise prediction interface to SIMMOD. The authors thank Mr. Helmut Toebbenq and Mr. Vilmar
Mollwitzq for the B737 flight data. Furthermore, the authors thank Mr. Tom Ottenr for his assistance in
modelling the thermodynamic engine cycle hence providing high quality engine performance decks.

nInstitute of Aircraft Design and Lightweight Structures, Technical University of Braunschweig, Germany
oDLR, Institute of Aerodynamics and Flow Technology
pDLR, Earth Observation Center (EOC)
qDLR, Institute of Flight Guidance
rDLR, Institute of Propulsion

15 of 24

American Institute of Aeronautics and Astronautics

Page 15 of 24

http://mc.manuscriptcentral.com/aiaa-maa11

17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)



Leq,gew LE,i k C Time dependent weighting gi

0600-0700 0700-1900 1900-2200 2200-0600

Leq(4) −A LAZ 13.3 0 1.5 1.5 1.5 0

Leq(4) −B LAZ 13.3 0 1 1 1 5

LDN LAX 10 0 10 1 1 10

LDEN LAX 10 0 10 1 3.162 10

NEF EPNL 10 -48.63 16.67 1 1 16.67

Table 3. Equivalent sound pressure level Leq
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Figure 11. Speed and thrust variation along departure: EPNL along flight ground track
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Figure 15. Aircraft noise induced awakenings: aircraft with low-noise LED along LCDA
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