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Abstract

Background—The parametric g-formula can be used to estimate the effect of a policy, 

intervention, or treatment. Unlike standard regression approaches, the parametric g-formula can be 

used to adjust for time-varying confounders that are affected by prior exposures. To date, there are 

few published examples in which the method has been applied.

Methods—We provide a simple introduction to the parametric g-formula and illustrate its 

application in analysis of a small cohort study of bone marrow transplant patients in which the 

effect of treatment on mortality is subject to time-varying confounding.

Results—Standard regression adjustment yields a biased estimate of the effect of treatment on 

mortality relative to the estimate obtained by the g-formula.

Conclusions—The g-formula allows estimation of a relevant parameter for public health 

officials: the change in the hazard of mortality under a hypothetical intervention, such as reduction 

of exposure to a harmful agent or introduction of a beneficial new treatment. We present a simple 

approach to implement the parametric g-formula that is sufficiently general to allow easy 

adaptation to many settings of public health relevance.

Imagine an oncologist knocks on your door with the following problem: she wants to know 

how much she could reduce mortality among her bone marrow transplant patients by 

prescribing a new drug that prevents graft-versus-host disease, a side effect of allogeneic 

marrow transplantation.1 While graft-versus-host disease is associated in observational 

studies with an increased risk of mortality, it also reduces the risk of leukemia relapse – 

thus, any drug that prevents graft-versus-host disease may have the very undesirable side 

effect of increasing the rate of relapse.2 She wants to compare the mortality in her cohort 

with what mortality would be in that same cohort if they had taken this new drug. We cannot 

answer this question with a regression model because leukemia relapse is a risk factor for 

mortality and subsequent graft-versus-host disease and it will also decrease the incidence of 
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subsequent relapse (i.e. relapse is a confounder affected by exposure).3, 4 However, we can 

answer this question using the g-formula.

The g-formula is an analytic tool for estimating standardized outcome distributions using 

covariate (exposure and confounders) specific estimates of the outcome distribution.5The g-

formula can be used to estimate familiar measures of association, such as the hazard ratio. In 

the current paper, we address the oncologist’s question: we compare observed mortality in 

our cohort with the expected mortality in that cohort under the new treatment.

Epidemiologists often use regression models (for example, the Cox proportional hazards 

model) to adjust for confounding; this is equivalent to estimating stratum-specific hazard 

ratios and then averaging the information-weighted hazard ratios. When some of those 

confounders are also causal intermediates, this amounts to adjusting away some of the effect 

of exposure.6, 7 The g-formula works differently: first, one finds weighted averages of the 

stratum-specific hazards, and then those averaged (standardized) hazards are combined in a 

summary hazard ratio. Thus, bias resulting from time-varying covariates that can be both 

confounders and causal intermediates is a shortcoming of using regression models to control 

for confounding, rather than a general principle of observational data analysis.8, 9 The g-

formula is a tool that overcomes this shortcoming, but its use in the literature has been 

sparse – we could find only 9 examples using observational data.8, 10-17 We hypothesize that 

the dearth of software packages and lack of useful, yet simple, examples of the g-formula 

have been the main barriers to broader use.

We show how the g-formula can be used with standard software tools that many 

epidemiologists already employ, and we illustrate it using publicly-available data from a 

small cohort study with accompanying SAS code in an eAppendix. We illustrate how we 

can estimate the net (total) effect of a hypothetical treatment to prevent graft-versus-host 

disease on mortality and compare the g-formula approach with a regression approach. The 

g-formula (as with any statistical method) relies on making assumptions in order to make 

sense of the complex processes underlying the data. We discuss possible ways to assess how 

well we meet the assumptions as well as the robustness of the g-formula to violations of 

these assumptions.

METHODS

The g-formula

Using regression methods to control confounding requires making the assumption that the 

effect measure is constant across levels of confounders included in the model. Alternatively, 

standardization allows us to obtain an unconfounded summary effect measure without 

requiring this assumption. The g-formula is a generalization of standardization and can be 

expressed similarly. For example, the 10-year risk of death for a group of individuals, 

standardized across some dichotomous (1,0) risk factor Z could be expressed as

Keil et al. Page 2

Epidemiology. Author manuscript; available in PMC 2015 January 29.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



where Σz indicates that we are summing over each possible value of Z, and Pr (Z = z) is the 

probability that Z takes on the value z in the reference population. If the 10-year risk of 

death among the group with Z=1 was 0.1 and the risk among the group with Z=0 was 0.05, 

and we were studying a population with a 60 individuals with Z=1 and 40 individuals with 

Z=0, the Z-standardized 10-year risk of death would be 0.1*(60/100)+0.05*(40/100) = 0.08.

The g-formula relies on this same set of calculations. Suppose now that we have a cohort of 

50-year-old men and we wish to estimate the change in 10-year risk of death from some 

exposure, X, that has no effect on mortality among 50-55 year olds but increases mortality 

after age 55. The overall 10-year risk of death, Pr(death10=1), could be calculated using the 

probabilities expressed by the g-formula:

Assume 50% are exposed at the start. As shown in the calculations from Table 1, if the 

probability of death in our cohort after 5 years (at age 55 - death5) is 0.025 for everyone and 

the conditional probability of death between 5 and 10 years of follow-up (i.e. between age 

55 and 60) is 0.06 for exposed and 0.051 for unexposed individuals, the overall standardized 

10-year risk of death (Pr(death10=1)) would be 0.08. We consider the probability of death in 

the second period to be conditional because we condition (restrict) our data to the 

individuals still alive at the beginning of year 6. The overall standardized risk is often 

referred to as the “natural course”, because we are estimating the risk under no 

interventions. In this setting (in which we can observe all covariate specific probabilities), 

the observed 10-year risk will equal the 10-year risk calculated using the “natural course.”

Use of the g-formula for effect estimation proceeds using the standardization formula above 

and substituting new values for probabilities of exposure defined by a hypothetical 

intervention. For example, if we wished to estimate the effect of exposure on the 10-year 

risk of death, we would use the g-formula to calculate the risk of death if we intervened to 

make all individuals “always exposed “ (i.e. set Pr(X = 1∣age) = 1.0 (and Pr(X =0∣age) = 0.0) 

regardless of age) versus the risk if we intervened to make all individuals “never exposed” 

(e.g. set Pr(X =0∣age) = 1.0) (and Pr(X = 1∣age) = 0.0)). As shown in Table 1, we substitute 

1.0s (and 0.0s) into the standardization formula for these conditional exposure probabilities 

and arrive at a 10-year risk for the intervention “always exposed” of 0.084 and for the 

intervention “always unexposed” of 0.075 (g-formula standardized risk difference = 0.009). 

For an intervention in which we expose all participants in the last 5 years only (the treatment 

plan “expose if still alive at 5 years”), we would “intervene” by setting conditional 

probabilities Pr(X∣ age > 50) to 1.0 and Pr(X∣ age ≤ 55 to the conditional proportions 

observed in the original data (risk=0.084).

The parametric g-formula

While standardization using the g-formula is simple enough to do by hand in our 

hypothetical example, epidemiologic studies often have richer covariate sets and longer 
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periods of follow-up. In such studies, stratification by many covariates can quickly lead to 

strata in which there are not enough data to calculate the conditional probabilities, and use of 

continuous covariates does not allow this stratification approach. Instead of directly 

calculating every conditional probability, we can use parametric regression modeling to 

calculate the conditional probabilities used to carry out computations shown above. Further, 

we can simulate data from the conditional probability distributions to approximate 

standardization. Robins referred to this approach of using modeled conditional probabilities 

to estimate standardized effect measures as the parametric g-formula.14, 18 The data from 

our illustrative example and SAS code to carry out our algorithm are provided in 

eAppendices 1 through 4.

Illustrative example

We use the parametric g-formula to estimate the hazard ratio comparing mortality in a 

cohort of bone marrow transplant recipients (described in detail by Copelan etal19 and by 

Klein and Moeschberger) 20 under different treatments by a hypothetical drug that prevents 

graft-versus-host disease. Use of the g-formula for our example was motivated by 

hypothesized time-varying confounding shown in the causal diagram in Figure 1, and by the 

desire to estimate the reduction in mortality from an intervention that could prevent graft-

versus-host disease.

Study population—The study population arose from a multicenter trial of leukemia 

patients and comprises 137 individuals prepared for bone marrow transplants under a 

radiation-free regimen at four medical centers. Allogeneic bone marrow transplants were 

performed between 1 March 1984 and 30 June 1989, and patients were followed until death 

or administrative censoring at 5 years following transplant. Baseline covariates at time of 

transplant included age, sex, leukemia type (acute lymphocytic or acute myeloid leukemia), 

wait time from leukemia diagnosis to transplantation, and cytomegalovirus immune status 

(yes or no). Patients were followed to assess when, if at all, platelets returned to the normal 

range (as a measure of immune function) and the patient experienced leukemia relapse.

We illustrate how to apply the parametric g-formula to the cohort of bone marrow transplant 

recipients to estimate the effect of a hypothetical intervention that prevents graft-versus-host 

disease from occurring. While the cohort is small, our example can be easily adapted to 

larger observational studies with long-term follow-up.

The parametric g-formula algorithm for the bone marrow transplant data—We 

use a 3-step algorithm for the parametric g-formula to estimate hazard ratios comparing: a 

new drug that prevents graft-versus-host disease from occurring during follow up 

(“prevented”) versus no intervention (“natural course”). We compare “natural course” to 

“prevented” as a measure of how effective a drug that prevents graft-versus-host disease 

would have been at preventing mortality in our cohort (or similar populations). We present 

the algorithm in compact form in Figure 2, and interested readers may find it of use to 

follow our algorithm with the SAS code and data given in eAppendices 1-4 and the more 

formal (and technical) presentation of the g-formula of our data in eAppendix 5.
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Step 1) Probability modeling: We start with a person-period data set in which each record 

corresponds to one person-day and time-varying covariates are represented as (0,1) 

dichotomous variables for each person day. Within this person-period data, we fit a pooled 

logistic model (i.e. a logistic model fit to all person periods) to estimate the log-odds of each 

of the time-varying covariates (graft-versus-host disease, platelet level, relapse, death), for 

each person period (i.e. the conditional log-odds of the covariate taking on the value “1”).21 

We included time (i.e. days since transplant) in the model using a set of polynomial terms. 

Because we modeled the onset of graft-versus-host disease (and other time-varying 

covariates), the models for each covariate on day k were fit using only person-days for 

which the patient had not yet experienced each time-varying covariate on day k − 1. We 

transformed the log-odds of each covariate into probabilities using the transformation Pr(·) = 

exp (·)/(1+exp (·)).

Step 2) Monte Carlo sampling: From our original data of N=137 patients, we re-sampled 

with replacement M=137,000 “pseudo-patients,” retaining only baseline covariates. The 

sample should be as large as practical to minimize simulation error. This simulation is 

carried out as follows.

We simulated time-varying covariate and outcome data for each of the pseudo-patients using 

conditional probabilities generated in Step 1 and baseline covariates (with time-varying 

covariates set to 0 at baseline). Each pseudo-patient received values for these covariates on 

each day based on a draw from a Bernoulli distribution with the conditional mean given by 

the probability modeled in Step 1, above. Essentially, on each day k, we flipped biased coins 

to choose whether or not the pseudo-patient became exposed, experienced relapse, returned 

to normal platelet levels, was censored, or died, and the probability of a coin coming up 

“heads” depended on values of those covariates on prior days and the baseline covariates.

The dataset from this step is known as the “natural course” because there is no intervention. 

To ensure that covariate distributions from the “natural course” closely follow distributions 

in the observed data, we examined the Kaplan-Meier survival curve for death (Figure 4) as 

well as the complement of the Kaplan-Meier curves for time to onset of graft-versus-host 

disease, relapse, and normal platelet count (Figure 3). We fit multiple parametric forms for 

each model in Step 2 and based our final choice of model on how closely these graphs and 

covariate means from the “natural course” matched those in the observed data. For example, 

we compared the fit of models using linear, quadratic, cubic polynomial, quadratic spline, 

unrestricted cubic spline, and restricted cubic splines. Model components and coefficient 

values are given in eAppendix 6.

We repeated Step 2 using an intervention “prevented,” set graft-versus-host disease to 0 and 

generate all other covariates, forcing graft-versus-host disease to remain 0. By setting the 

values of graft-versus-host disease in the dataset, the proportion of deaths in the simulated 

dataset in which we set graft-versus-host disease=0 approximates the solution to the explicit 

formulas shown in our hypothetical example (in which the conditional probabilities of graft-

versus-host disease onset are all set to 0).
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Step 3) Effect estimation: We concatenated the datasets from Step 2, estimating the hazard 

ratio by comparing the hazards in the “natural course” dataset with those in the “prevented” 

dataset. This was done by using an indicator variable for the dataset (1=“natural course,” 

0=“prevented”) and using that indicator as the exposure variable in a Cox model.

To estimate confidence intervals for the hazard ratio, we repeated Steps 1-3 on 4000 samples 

of size 137 taken at random with replacement from the original data. The standard deviation 

(SD) of the 4000 log-hazard ratios approximates the standard error of the log-hazard ratio, 

and was used to calculate 95% confidence intervals (CIs) using the normal approximation: 

log-hazard ratio ±1.96*SD(log-hazard ratio).

Statistical methods for comparison

To compare the g-formula with standard methods, we estimated crude and covariate 

conditional hazard ratios (and 95% confidence intervals) for the effect of graft-versus-host 

disease on mortality using a Cox proportional hazards model for time-varying data (with 

observed data).22 We controlled for possible confounding by baseline and time-varying 

covariates by including indicator terms in the Cox model. A test of proportional hazards in 

crude and regression-adjusted models indicated that a summary hazard ratio over the five-

year course of the study was adequate.

RESULTS

Patients had a median age of 28 years (interquartile range=21-35), and 60% were male 

(Table 2). Half of the patients tested positive for cytomegalovirus at baseline (n=68; 50%). 

In the first 5 years of the study, 72 patients developed graft-versus-host disease and 43 

patients relapsed. Platelet levels returned to normal for 88% of patients (n=120). Five years 

after receiving a transplant, 58% of the patients had died (n=80).

Regression adjustment

The crude hazard ratio comparing the hazard of all-cause mortality among patients with and 

without graft-versus-host disease was 1.2 (95% CI=0.77-2.0; Table 3). The hazard ratio was 

unchanged after regression adjustment for baseline covariates, but was notably larger after 

regression adjustment for baseline and time-varying covariates (hazard ratio=2.3 [95% 

CI=1.4-3.9]).

G-formula

In the simulated data under the natural course, the cumulative distribution functions for 

platelet count, relapse, death, and graft-versus-host disease closely followed those in the 

observed data (Figures 3 and 4). The 5-year cumulative risk of death using the g-formula 

under the natural course was 61%. The hazard ratio comparing the “natural course” to 

“prevented” (referent) was 1.1 (95% CI=0.91, 1.3).

DISCUSSION

In our analysis of survival data using a simple and yet easily adaptable application of the g-

formula, we estimated the effects on mortality of an intervention to prevent graft-versus-host 
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disease immediately after bone marrow transplant. Almost 60% of the bone marrow 

transplant patients in this cohort experienced graft-versus-host disease under the natural 

course; however, compared with a hypothetical intervention to prevent graft-versus-host 

disease, under the natural course we observed an increase in the relative mortality hazard of 

only 10%. Preventing graft-versus-host disease does not appear to markedly reduce 

mortality risk because other factors that influence the risk of subsequent mortality, such as 

leukemia relapse, are not decreased by the hypothetical intervention to prevent graft-versus-

host disease. Rather, preventing graft-versus-host disease may increase the rate of relapse: 

42% of “pseudo-individuals” experienced relapse under the “prevented” intervention, 

whereas 33% experienced relapse under the “natural course.” These observations agree with 

the typically coincident occurrences of graft-versus-host disease and graft-versus-leukemia, 

in which donor cells attack residual leukemia cells in the transplant recipient and may help 

to prevent relapse. Graft-versus-host disease has been observed to correlate with a lower rate 

of leukemia relapse and is hypothesized to reduce the probability of relapse through immune 

mediation processes, of which normal platelet count is an indicator.1

Cox regression analysis with adjustment for time-varying covariates suggested a 

substantially higher mortality hazard for persons who have graft-versus-host disease when 

compared with those who do not have this disease. Because the Cox model cannot 

appropriately control time-varying confounding when the confounders are causal 

intermediates, we hypothesize that the Cox model overestimates the total effect of graft-

versus host disease on mortality. Therefore, the difference between the g-formula estimate 

and the regression adjustment method may be due, in part, to over-adjustment, which 

introduces bias into our estimate of the total effect of graft-versus-host disease.23 In 

addition, another reason for the difference between the g-formula estimate and the adjusted 

Cox regression model estimate is that these analyses estimate different quantities. The g-

formula yielded an estimate of the hazard ratio comparing the observed mortality in our 

cohort (the natural course) with the expected mortality in that cohort under the new 

treatment. The Cox model yielded an estimate of the mortality hazard for those with graft-

versus-host disease compared with those without graft-versus-host disease.24

The g-formula can be used to estimate risk ratios or differences, which are easier to interpret 

and less subject to some biases than are hazard ratios.25 Like Westreich et al, 14 we have 

estimated hazard ratios as effect measures to ease the comparison with results from 

conventional methods. However, when a confounder is a strong predictor of the outcome, 

marginal hazard ratios from the g-formula and conditional hazard ratios from regression 

approaches may differ even if there is no time-varying confounding, a condition known as 

“non-collapsibility.”26 Because the set of time-varying covariates includes relapse, a strong 

predictor of mortality, this is not a trivial concern for our example, but adjustment via 

regression modeling simply replaces confounding bias with bias due to conditioning on an 

effect of the exposure. However, the g-formula estimates a hazard ratio we could observe in 

a population intervention (marginal, or standardized to the population), and is arguably more 

useful than a conditional hazard ratio when estimating the public health impact of 

interventions.
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There is little knowledge about how potential time-varying confounding by relapse and 

platelet levels affects estimates of excess mortality due to graft-versus-host disease. G-

methods (the body of methods that derive from the g-formula, including structural nested 

models and marginal structural models) may provide an avenue toward a clearer 

understanding. G-methods have previously been shown to yield results congruent with 

clinical trial data (where time-varying confounding may be minimized) in situations where 

conventional analyses of observational data yield incongruous estimates.14, 27, 28 There are 

few examples in the literature in which the parametric g-formula has been used to estimate 

the effects of policies or interventions. Robins8, 10 estimated the effect of interventions 

capping arsenic exposure on the risk of lung cancer in a cohort 8,047 copper smelter 

workers in Montana. Ahern et al. 11 used the parametric g-formula to estimate the effect of 

interventions to change neighborhood smoking norms on the prevalence of smoking using 

data collected from 4000 New York City residents. Using data from the Nurses’ Health 

Study, Taubman et al. 12 estimated the 20-year risk (cumulative incidence) of coronary heart 

disease under interventions on dietary factors, exercise, smoking, alcohol consumption, and 

body mass index; using data from the same study, Danaie et al. 16 estimated the effects of 

similar interventions on the 24-year risk of type-2 diabetes and Garcia-Aymerich et al. 17 

estimated the effect of joint interventions on physical activity and weight loss on adult onset 

asthma incidence. In a cohort of 8392 HIV-infected participants in the HIV-CAUSAL 

collaboration, Young et al. 13 applied the parametric g-formula to estimate 5-year mortality 

risks under seven dynamic treatment regimes to determine the optimal CD4 count at which 

to begin antiretroviral therapy. Westreich et al. 14 used the parametric g-formula to estimate 

hazard ratios comparing the hazard of AIDS or death among 1498 HIV-infected patients 

enrolled in the Multicenter AIDS Cohort Study and the Women’s Interagency HIV Study 

had all study participants received antiretroviral therapy with the hazard had none of the 

study participants received therapy. Finally, using data from a cohort of 3,002 textile 

workers, Cole et al. 15 estimated effect on lung cancer mortality if recent occupational limits 

on annual exposures to chrysotile asbestos fibers had been in place during the workers’ 

tenure.

In all of these studes except the one by Ahern et al., the potential for time-varying 

confounding precluded the use of conventional regression approaches. In all cases, the g-

formula naturally lent itself to estimating the effects of potential interventions. Rather than 

estimating the more familiar contrast in measures of disease occurrence for a unit change in 

the exposure, the g-formula provides an estimate of outcome occurrence under a specific 

treatment regime under study. While regression adjustment and the g-formula allow for 

estimation of “etiologic” hazard ratios, only the g-formula easily allows estimation of the 

effect of preventing graft-versus-host disease in the population, which may be more useful 

for informing population-level interventions.

We must make several assumptions when using of the g-formula to estimate the effects of 

exposure on an outcome in observational data.8 We provide a brief discussion of these 

assumptions for our analysis, which are reviewed in depth elsewhere.29, 30 These 

assumptions are not unique to the g-formula, but estimating effect measures in the g-formula 

requires explicitly confronting these assumptions, which may be valuable in informing the 

interpretation of observational studies.
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Conditional exchangeability

As epidemiologists, we may strive to measure and control for strong confounders of the 

exposure-outcome relationship to avoid making inference based on spurious relationships, 

and we often assume we have been successful – this is the assumption of conditional 

exchangeability. In our g-formula example, we impute the potential outcomes for each 

person based on an evolving covariate history generated by predictive models for the 

exposure, covariates and the outcome. If there were a strong, unmeasured, baseline 

confounder, we would have omitted an important variable from both the exposure model 

and the outcome model. However, as Robins et al18 note, the exposure model does not need 

to be correct in order to make inference from the g-formula. To see this, recall our original 

hypothetical example in which, to make interventions, the probability of exposure is set to 0 

in the “prevent” intervention. Thus, because we “set” exposure, the hazard under some 

intervention will be subject to bias only through the model for the outcome. The practical 

consequence of this is that unmeasured confounder bias should be (approximately) the same 

under the g-formula and a standard regression model, when we are comparing two 

interventions. However, unmeasured confounding bias may be greater in the g-formula 

when comparing an intervention versus the “natural course,” since this analysis requires a 

model for the exposure.

In more complex settings, such as if the omitted confounder were also a cause of another 

time-varying covariate, the g-formula may be subject to more bias than conventional models 

due to unmeasured confounding. Intuitively, this is because we could be accumulating bias 

over multiple models, rather than a single outcome model (as in the standard Cox model). 

However, we should note that, in complex time-varying settings, conventional models 

require stratification over time-varying confounders, which may be problematic for reasons 

discussed above, and conventional models may not be able to estimate useful effect 

measures, such as the impact of an intervention on a population. The g-formula is not 

subject to either of these shortcomings. Ultimately, the impact of unmeasured confounding 

in the g-formula (versus conventional models) is an open question; future work will provide 

guidance to epidemiologists working in settings where unmeasured confounding is expected 

to be problematic.

While sensitivity analyses exist for examining robustness to the assumption of no 

unmeasured confounding,31 they are most informative when one can hypothesize both a 

source of confounding and the plausible levels of the strength of the confounder associations 

in the study.32 We know of no factors that could strongly influence the estimated effect of 

graft-versus-host disease on mortality, and so in the case of our g-formula example, the 

sensitivity of the hazard ratio to unmeasured confounding would either be purely speculative 

or be focused on finding the level of confounding that could explain the observed 

association.

Treatment version irrelevance

We assume the effect of exposure is the same whether we set it, as in the case of Step 5 of 

our algorithm or a clinical trial, or if it occurs naturally.33, 34 When we “intervene” to set 

graft-versus-host disease to 0 for all pseudo-patients in our Monte Carlo sample, treatment 
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version irrelevance means we assume that this emulates a process in which a researcher 

could prevent graft-versus-host disease. We hypothesize this assumption may be violated in 

our example, because acute and chronic forms of graft-versus-host disease may not affect 

mortality with the same magnitude.2 In this case, we could improve on how well we meet 

this assumption by including models for both chronic and acute graft-versus-host disease, as 

well as estimating effects for both on mortality. However, because we are estimating the 

population-averaged effect of graft-versus-host disease on mortality, such an analysis would 

not likely give substantially different results. Our analysis applies to graft-versus-host 

disease, as it occurs in populations similar to our cohort in which graft-versus-host disease 

can be either acute or chronic. Consistency requires that we specify interventions which are 

unambiguous.35 Thus, the sensitivity of the g-formula results to violations of treatment 

version irrelevance depends, in some respect, on how well one can emulate one’s analysis 

with a clinical trial.

As an anonymous referee pointed out, our analysis can be used to guide future clinical trials 

by informing on the effects of a drug that completely prevents graft-versus-host disease – 

our estimate of a 10% reduction in 5-year mortality could used to plan such a study. If one 

were to study the effect of, say, a population intervention that dictated an instantaneous shift 

in body-mass-index (BMI) category, then g-formula results would not estimate the effect we 

could observe in any clinical trial.35

Correct model specification

The parametric g-formula is especially vulnerable to the assumption of correct model 

specification, due to the use of multiple models. As an example from our study, if the true 

effect of wait time to transplant had a quadratic association with exposure and a cubic 

association with mortality, then we would have misspecified two models and would likely 

have introduced bias into the hazard ratio. Our g-formula algorithm allows informal 

checking of this assumption by comparing the observed data to the data simulated under the 

natural course (e.g. Figures 3 and 4). Nonetheless, similarity to the natural course cannot 

completely rule out model misspecification.18 The g-formula may not be ideal for 

hypothesisgenerating studies, in which causal relationships are more uncertain and model 

misspecification is potentially severe.

Summary, recommendations and conclusions

The g-formula does not require more information than standard methods to estimate effects 

of exposures or interventions, and its is not subject to bias due to stratifying on variables 

affected by exposure. The g-formula does not assume that the hazard ratio is homogenous 

over the levels of the confounders – that is, we are not restricted to estimating a summary 

hazard ratio that conditions on the covariates. Unlike methods that use stratification of the 

data by covariates, and then obtain a summary hazard ratio under the assumption of a 

constant hazard ratio over levels of the confounder, the g-formula permits us to obtain a 

summary hazard ratio without stratifying the effect measure over covariates. This relaxed 

assumption comes at the cost of wider confidence intervals, so there is a bias-variance trade-

off to consider when deciding if the g-formula is an appropriate statistical tool for an 

epidemiologic analysis. If one knows that time-varying confounding is not present, or that 
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exposure could not affect subsequent confounders, then standard regression methods may be 

more appropriate, due mainly to concerns about model misspecification in the g-formula. 

However, if time-varying confounding is possible, use of the g-formula provides some 

assurance that one is not introducing bias by inappropriately stratifying on effects of 

exposure, and it is useful to check results from standard regression models against those 

from the g-formula, as we have shown.

We could have estimated the hazard ratio for the marginal effect of graft-versus-host disease 

on mortality using inverse-probability weighted marginal structural models or adaptations of 

structural nested models.36-38 In principle, these models would yield similar effect estimates 

as our method, although our small data set would likely result in practical violations of 

additional assumptions necessary for inverse-probability-weighting methods,39 and, without 

knowledge about the baseline hazard of potential outcomes, structural nested models may 

yield larger confidence intervals.40 These methods may be more desirable when model 

misspecification is a primary concern, because they require fewer models than the g-

formula.18

Though the g-formula was first described in 1986 by Robins,8 the availability of rich data 

from large cohort studies and the acceleration of computing speeds have only recently made 

the method feasible for widespread use. While the g-formula may be more sensitive to 

model misspecification than standard regression models, we show how inappropriate control 

of time-varying confounding could lead to incorrect conclusions about the strength of the 

effect of graft-versus-host disease on mortality. Moreover, we illustrate how the g-formula 

allows estimation of the effects of realistic interventions and give concrete examples of 

situations in which the g-formula should be used by epidemiologists. We have provided both 

publicly available data and the SAS code as appendices to this paper. The current analysis 

represents the first published use of the g-formula for a time-varying exposure that can be 

easily replicated by other investigators using a real-world example. Future implementations 

of the g-formula can extend our example easily to an array of epidemiologic problems and 

further explore the impacts on inference from unmeasured confounding and model 

misspecification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Directed acyclic graph showing hypothesized causal relationships among study variables for 

days k − 1 and k. This graph demonstrates bias in regression stratification methods in 

estimating the effect of exposure over time (GνHDk−1, GνHDk) on subsequent death when 

time-varying factors on confounding pathways (Relapsek) may be affected by prior 

exposure.
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Figure 2. 
Parametric g-formula algorithm for bone marrow transplant data.
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Figure 3. 
Incidence curves for (A.) death. (B.) return to normal platelet levels, (C.) relapse and (D.) 

graft-versus-host-disease (GvHD) from both observed (gray line) and g-formula natural 

course Monte Carlo (black line) data.
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Figure 4. 
Survival functions: observed from the bone marrow transplant data; from the natural-course 

intervention in the g-formula; and from the hypothetical intervention “prevented” graft-

versus-host disease (top line) after bone marrow transplants using the g-formula. The gray 

line indicates the observed survival curve, while the solid black lines indicate the survival 

curves from the Monte Carlo data for the g-formula interventions.
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Table 1

Estimating risk under interventions using the g-formula with the hypothetical example given in methods 

section of the main text.

G-formula component Value

Conditional probabilities

First 5 years PR(exposed): 0.5

Risk among exposed: 0.025

Risk among unexposed: 0.025

Last 5 years Pr(exposed): 0.5

Risk among exposed: 0.060

Risk among unexposed: 0.051

Risk under interventions

Observed/Natural course 0.051*(1/2)*(1-0.025*(1/2)) + 0.025*(1/2) +

0.060*(1/2)*(1-0.025*(1/2)) + 0.025*(1/2) = 0.080

Always exposed 0.051*(0)*(1-0.025*(0)) + 0.025*(0) +

0.060*(1)*(1-0.025*(1)) + 0.025*(1) = 0.084

Never exposed 0.051*(1)*(1-0.025*(1)) + 0.025*(1) +

0.060*(0)*(1-0.025*(0)) + 0.025*(0) = 0.075

Expose if survive to year 5 0.051*(0)*(1-0.025*(0)) + 0.025*(1/2) +

0.060*(1)*(1-0.025*(1)) + 0.025*(1/2) = 0.084
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Table 2

Characteristicsa of 137 patients receiving bone marrow transplants during treatment for leukemia at 4 study 

sites between 1985 and 1989.

Sex Male 80 (58)

Female 57 (42)

GvHD onset within 5 years No 65 (47)

Yes 72 (53)

Relapse within 5 years No 94 (69)

Yes 43 (31)

Return to normal platelet count within 5 years No 17 (12)

Yes 120 (88)

Leukemia type ALL 38 (28)

Low-risk AML 54 (39)

High-risk AML 45 (33)

CMV status at baseline Negative 69 (50)

Positive 68 (50)

Vital status 5 years after transplant Alive or censored 57 (42)

Dead 80 (58)

Age (years); median (IQR) 28 (21-35)

Days to transplant; median (IQR) 6 (4-8)

Follow up; median (IQR) 547 (183-1377)

Days to relapse; median (IQR) 467 (122-1363)

Days to normal platelets; median (IQR) 18 (14-27)

a
No. (%), unless otherwise specified

ALL indicates acute lymphocyte leukemia; AML, acute myeloid leukemia; IQR, interquartile range
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Table 3

Hazard ratios comparing the hazard of all-cause mortality between patients with and without graft-versus-host 

disease (regression) or comparing cohorts with and without hypothetical intervention to prevent graft-versus-

host disease (g-formula)

Method HR (95% CI)

Regression

Crude 1.2 (0.77-2.0)

Baseline adjusted a 1.2 (0.71-1.9)

Fully adjusted b 2.3 (1.4-3.9)

G-formula

Natural course vs. Prevent c 1.1 (0.91-1.3)

a
Baseline covariates include age at date of bone marrow transplant, wait time until transplant, sex, and cytomegalovirus status at baseline.

b
Adjusted for baseline covariates above and time-varying covariates, including days during which platelets had not returned to normal, cumulative 

days the patient had not experienced relapse, and indicators for relapse and platelets returning to normal on a given day.

c
Comparing the hazard of all-cause mortality between the entire cohort simulated under no intervention and the entire cohort of simulated to be 

unexposed (referent) at all time points.
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