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The paraventricular nucleus of the hypothalamus (PVH), located in the ventral diencephalon ad-
jacent to the third ventricle, is a highly conserved brain region present in species from zebrafish to
humans. The PVH is composed of three main types of neurons, magnocellular, parvocellular, and
long-projecting neurons, which play imperative roles in the regulation of energy balance and
various endocrinological activities. In this review, we focus mainly on recent findings about the
early development of the hypothalamus and the PVH, the functions of the PVH in the modulation
of energy homeostasis and in the hypothalamus-pituitary system, and human diseases associated
with the PVH, such as obesity, short stature, hypertension, and diabetes insipidus. Thus, the in-
vestigations of the PVH will benefit not only understanding of the development of the central
nervous system but also the etiology of and therapy for human diseases. (Endocrinology 159:
3458–3472, 2018)

The hypothalamus, which is located in the ventral
forebrain, plays important roles in regulating energy

homeostasis, fluid balance, stress, growth, reproductive
behavior, emotion, and circadian rhythms (1). The hy-
pothalamus is composed of several small essential nuclei,
including the arcuate nucleus (ARC), paraventricular
nucleus of the hypothalamus (PVH), supraoptic nucleus
(SON), suprachiasmatic nucleus (SCN), dorsomedial
nucleus of the hypothalamus (DMH), ventromedial
nucleus of the hypothalamus (VMH), and lateral hy-
pothalamus area. Among these nuclei, there are various
subtypes of neurons. Recent studies based on a single-cell
RNA-sequencing technique identified at least 34 neu-
ronal and 11 nonneuronal cellular groups with distinct
transcriptional signatures in the adult mouse hypothalamus,

and even arcuate pro-opiomelanocortin (POMC)‒positive
neurons are highly heterogeneous populations (2, 3). Ab-
normal development or function of the hypothalamus leads
tomany diseases in humans, such as growth defects, obesity,
diabetes mellitus and insipidus, hypertension, and amen-
orrhea (4–9). Moreover, recent studies suggest that changes
in the hypothalamus are associated with not only neural
degenerative diseases, such as amyotrophic lateral sclerosis,
Huntington disease, and Alzheimer’s disease (10), but also
neurodevelopmental diseases, such as autism and Prader-
Willi syndrome (11).

The PVH, which is located in the ventral diencephalon
adjacent to the third ventricle, is a brain region highly
conserved from zebrafish to humans (12). It is composed
of heterogeneous parvocellular neurons, magnocellular
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Abbreviations: AgRP, agouti-related protein; ARC, arcuate nucleus; Arnt2, aryl hydro-
carbon receptor nuclear translocator 2; AVP, arginine vasopressin; BAT, brown adipose
tissue; BDNF, brain-derived neurotrophic factor; BNST, bed nucleus of the stria terminalis;
Brn2, brain-2; CART, cocaine- and amphetamine-regulated transcript; CDI, central di-
abetes insipidus; COUP-TFII, chicken ovalbumin upstream promoter transcription factor II;
DMH, dorsomedial nucleus of the hypothalamus; DMV, dorsal motor nucleus of the vagus
nerve; GABA, g-aminobutyric acid; GLP-1, glucagon-like peptide 1; HNS, hypothalamic-
neurohypophysial system; HPA, hypothalamic-pituitary-adrenal; HPT, hypothalamic-
pituitary-thyroid; IML, intermediolateral column; MC4R, melanocortin receptor 4; Nos1,
nitric oxide synthase-1; NPY, neuropeptide Y; Nrp1, neuropilin 1; NTS, nucleus of the
solitary tract; Otp, orthopedia; OXT, oxytocin; PBN, parabrachial nucleus; POMC, pro-
opiomelanocortin; PVH, paraventricular nucleus of the hypothalamus; SCN, supra-
chiasmatic nucleus; Sim1, single-minded 1; Sim2, single-minded 2; SON, supraoptic
nucleus; SST, somatostatin; VMH, ventromedial nucleus of the hypothalamus.
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neurons, and long-projecting neurons (Fig. 1). The
parvocellular neurons send axons to the median emi-
nence and secrete mainly TRH and CRH into the
portal vasculature to initiate the hypothalamic-pituitary-
thyroid (HPT) axis and the hypothalamic-pituitary-
adrenal (HPA) axis, respectively (13). Interestingly,
CRH neurons in the PVH are associated with dietary
preference for carbohydrate over fat through the acti-
vation of AMP-activated protein kinase (14). The PVH
also contains some somatostatin (SST)-positive neurons
that project to the median eminence and inhibit the se-
cretion of GH and TSH in the anterior pituitary (15).
Magnocellular neurons project mainly to the pituitary
gland posterior lobe, where they secrete arginine
vasopressin (AVP) and oxytocin (OXT) into the
hypothalamic-neurohypophysial system (HNS), which
regulates fluid balance, breast milk release and uterine
contraction, and ejaculation (13). In addition, AVP
neurons in the PVH participate in the regulation of
feeding behaviors (16). Long-projecting neurons express
mainly melanocortin receptor 4 (MC4R) and OXT,
which project primarily to the hindbrain to regulate
energy balance (17, 18). Most likely, OXT neurons are
the main mediator for the hyperphagic obesity of the

single-minded 1 (Sim1) heterozygous mutant mouse and
also are postsynaptic targets of agouti-related protein
(AgRP)‒positive neurons in the ARC (19, 20). In this
review, we focusmainly on the development and function
of the PVH in mice and on human diseases associated
with abnormalities of this nucleus.

Development

Development of the hypothalamus
The hypothalamus is derived from the anterior-most

ventral part of the neural tube during early development.
Graded responses to levels and timing of WNT signaling
may program the subdivision of the anterior neural plate
into the telencephalon, eye field, and diencephalon (21).
The preoptic area originates from the telencephalon, and
other parts of the hypothalamus are generated from
the diencephalon (1). According to the gene-expressing
profiles along the dorsal-ventral axis, the early primor-
dium of the hypothalamus can be divided into three
subregions and one cell band. They are known as the alar
plate, basal plate, floor plate, and the intrahypothalamic
diagonal (Fig. 2A) (22). The intrahypothalamic diag-
onal, a parallel band of cells between the alar and

basal plates, expresses Arx andGad67
(23). The alar plate is marked by the
expression of Sim1 and Pax6 (23, 24).
The floor plate is characterized with
the expression of Nkx2.1, Tbx2, and
Tbx3 (15, 25, 26). Nkx2.1 is also
expressed in the basal plate (15). The
alar plate gives rise to the SON and
PVH, and the basal plate generates the
ARC, DMH, and VMH (Fig. 2B and
2C) (22). In contrast with the inside-
out layer pattern in the cerebral cortex,
the development of distinct nuclei in
the hypothalamus has an outside-in
formation, as evidenced by the for-
mation of lateral neurons before the
medial neurons (27, 28). However, the
detailed processes involved in the de-
velopment of the hypothalamus and
PVH have not been fully elucidated.

Several secreted proteins, such as
WNTs, SHH, FGFs, and BMPs, par-
ticipate in the early formation of dis-
tinct nuclei in the hypothalamus. Low
WNT signaling in the anterior forebrain
induces the expression of Six3 (29),
activates the expression of Shh, a basal/
floor-plate marker, and promotes the
development of the vertebrate forebrain,

Figure 1. The development of PVH neurons and their projections. COUP-TFII controls the
survival and migration of PVH progenitor cells through Bdnf and Nrp1 genes. OTP regulates
the differentiation of OXT+, AVP+, CRH+, TRH+, and SST+ neurons in the PVH, most likely
through direct or indirect activation of Brn2 and Sim2. The PVH, which is surrounded by
a shell of GABA+ neurons, is composed of three main cell types. Parvocellular neurons,
including SST+, TRH+, and CRH+ neurons, project to the medial eminence, where axon
terminals connect with the HPS. The magnocellular neurons, including OXT+ and AVP+
neurons, project to the posterior pituitary. The long-projecting neurons, including MC4R+
neurons and one group of OXT+ neurons, project to the brainstem and thoracic spinal cord,
where they regulate energy balance. Black arrows represent the positive regulation of gene
expression during the development of the PVH neurons. Blue, yellow, and green lines
represent the projections from the parvocellular, magnocellular, and long-projecting neurons,
respectively. AP, anterior pituitary; Arnt2, aryl hydrocarbon receptor nuclear translocator 2;
AVP, arginine vasopressin; BDNF, brain-derived neurotrophic factor; Brn2, brain-2; COUP-TFII,
chicken ovalbumin upstream promoter transcription factor II; GABA, g-aminobutyric acid;
HPS, hypophyseal portal system; MC4R, melanocortin receptor 4; ME, median eminence;
Nrp1, neuropilin 1; Otp, orthopedia; OXT, oxytocin; PP, posterior pituitary; Sim1, single-
minded 1; Sim2, single-minded 2; SST, somatostatin.
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including the hypothalamic primordium (30, 31). Later,
the expression of Shh is repressed by Tbx2 andTbx3 genes
in the ventral floor plate of the posterior hypothalamus,
whereas Shh is still expressed in the ventral floor plate in
other regions of the hypothalamus (25, 26, 32). At the
same stage, the expression of BMP4 and FGFs is detected in
the ventral floor plate of the posterior hypothalamus, in-
cluding the infundibulum (26, 33, 34). Therefore, an ex-
pression boundary along the ventral midline is established
with SHH in the anterior hypothalamus and with BMP4/
FGFs in the posterior hypothalamus, which is essential for
the appropriate morphogenesis of the pituitary by pro-
gramming the development of the infundibulum and oral
ectoderm (35).

The PVH and SON are located in the anterior hy-
pothalamus. Evidence from rodents supports origina-
tion of magnocellular neurons in these two nuclei from a
small patch of neural progenitor cells at embryonic day
10.5 to embryonic day 12.5 in mice (36, 37), which is
positive for spot 35, a member of the calbindin family
(38). During development, one group of cells remains
near the third ventricle to give rise to the PVH and the
other group migrates ventrolaterally to form the SON
(36, 38, 39).

Key regulatory genes in the development of the PVH
Several transcription factor genes, such as Sim1 and

single-minded 2 (Sim2), aryl hydrocarbon receptor

nuclear translocator 2 (Arnt2), brain-2
(Brn2), orthopedia (Otp), and chicken
ovalbumin upstream promoter tran-
scription factor II (COUP-TFII), have
been identified as key regulatory genes
that program the development of the
PVH (Fig. 1). In addition to the wide
effects of the regulators mentioned
previously, there are factors that regu-
late the development of single neuronal
lineages. For example, brain-derived
neurotrophic factor (BDNF) promotes
the expression of prepro-TRH in the
PVH, regulating the development of
TRH+ neurons (40).

Sim1 and Sim2
The gene Sim1, which encodes a

transcription factor of the bHLH-PAS
family, is expressed in the anterior
periventricular nucleus, posterior hy-
pothalamic nuclei, PVH, SON, and
nucleus of the lateral olfactory tract
from early embryonic stages to adult-
hood (41, 42). Sim1 null mutant

(Sim12/2) mice die soon after birth and exhibit severe
hypoplasia of the PVH and loss of SST+, TRH+, CRH+,
AVP+, and OXT+ neurons (42). Heterozygous mutant
(Sim1+/2) mice survive until adulthood but develop
hyperinsulinemia, hyperleptinemia, hyperphagia, and
obesity with modestly decreased neurons in the PVH
(43). The SIM1 protein binds to ARNT2 to form the
SIM1/ARNT2 dimer, which participates in the final
differentiation of PVN and SON neurons (42, 44). In this
process, the function of the SIM1/ARNT2 heterodimer is
partially mediated by its downstream target gene, Brn2
(45), which is required for the survival and terminal
differentiation of AVP+, OT+, and CRH+ neurons (38,
46). Either the Sim1 or the Arnt2 gene is necessary to
maintain the expression of the Brn2 transcript in the
prospective PVN/SON region (42, 47). Moreover, the
SIM1/ARNT2 dimer directs the extension of hypothal-
amospinal axons (48). The Sim2 gene, a paralog of Sim1, is
also expressed in the PVH (49). As a downstream gene of
the Sim1 andOtp genes (50), the Sim2 gene is vital for the
appropriate development of SST+ and TRH+ neurons in
the anterior hypothalamus (51).

Arnt2
The gene Arnt2, which encodes another basic bHLH-

PAS transcription factor, is enriched in the brain and
kidneys (52). As in Sim12/2 mice, the development of the
PVH also fails in Arnt2 null mutant (Arnt2 2/2) mice,

Figure 2. The structure of the hypothalamus at the early embryonic stage and at the adult
stage in the mouse. (A) Sagittal view of the hypothalamic primordium in the early mouse
embryo. Along the dorsoventral axis, the primordium of the hypothalamus can be divided
into the alar plate, intrahypothalamic diagonal (IHD), basal plate, and floor plate. (B) Sagittal
view of the PVH and other hypothalamic nuclei in the adult mouse brain. The alar plate gives
rise to the SON and PVH, and the basal plate generates the ARC and lateral hypothalamic
area (LHA). (C) Coronary views of the PVH and some other hypothalamic nuclei at two
sections of the adult mouse brain, indicated by two dashed lines in (B). 3V, third ventricle;
A, anterior; C, cerebellum; D, dorsal; NTS, nucleus of the solitary tract; OB, olfactory bulb;
P, posterior; V, ventral.
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whereas the heterozygous (Arnt2+/2) mice do not display
any obvious difference from wild-type mice (47). Clearly,
the formation of SIM1/ARNT2 heterodimers is essential
for the development of the PVH.

Brn2
Brn2 (also known as Pou3f2 or N-Oct3), which

encodes a class III POU-homeodomain transcription
factor, plays an important role in neurogenesis (53).Brn2
is widely expressed in the developing central nervous
system (54). Brn2 null mutant (Brn22/2) mice die within
10 days after birth, accompanied by the loss of AVP+,
OXT+, and CRH+ neurons in the PVH (46). Although
the heterozygous mutants (Brn2+/2) exhibit normal PVH
nuclei, their expression of AVP and OXT is half that of
the wild-type mice (38), suggesting that BRN2 is im-
portant for the expression of AVP and OXT in adult
mice. In addition, BRN2 may bind to theOXT and CRH
genomic loci to promote their expression (55). Thus,
BRN2 plays vital roles in both the development of the
PVH and the differentiation of AVP+, OXT+, and CRH+
neurons.

Otp
The gene Otp, which encodes a homeodomain tran-

scription factor, is highly expressed in the hypothalamus
and is essential for its regionalization (56). In Otp null
mutant (Otp2/2) mice, the development of SST+, AVP+,
OXT+, CRH+, and TRH+ neuroendocrine neurons is
compromised by abnormal cell death after birth. OTP
regulates the terminal differentiation, maturation, and
survival of the PVH neurons (50). There is no difference
in viability and fertility between heterozygous (Otp+/2)
and wild-type mice (43). Otp missense mutation
(OtpR108W/+) heterozygous mice develop obesity, which
may be caused by decreased expression ofOXT andAVP
in the adult PVH (57). Most likely, OtpR108W mutation
causes not only loss of function but also a potential
dominant negative effect, which leads to obesity in
OtpR108W/+ heterozygous mice (57). Early studies sug-
gested that the role of OTP in the development of PVH
neurons may be mediated by BRN2 and SIM2 (50, 51);
interestingly, recent studies in zebrafish have revealed
that Otp regulates the expression of thyroid hormone
(TH), TRH, CRH, OXT, AVP, and SST through co-
operation with Sim1 in the neurosecretory preoptic area
and posterior tuberculum (58).

COUP-TFII
COUP-TFII, also known as NR2F2, is conserved

from early metazoans to humans and belongs to the
steroid hormone receptor superfamily genes (59). COUP-
TFII is highly expressed in the early hypothalamic

primordium, PVH neural progenitor cells, and early dif-
ferentiating PVH neurons but not in late-differentiating
and mature PVH neurons. The PVH barely forms in
RXCre/+;COUP-TFIIF/F mutant mice, which results in
growth retardation. Nonetheless, the reduction of growth
hormone‒releasing hormone neurons in the mutant ARC
could also be a likely cause of the growth retardation.
COUP-TFII may support the survival and migration of
neurons during early development of the PVH by
promoting the expression of Bdnf and neuropilin 1
(Nrp1) (8).

Functions

Food intake
Food intake circuits, which are based mainly on the

leptin-melanocortin system, can be divided into three
main components: pre-PVH, PVH, and post-PVH
(Fig. 3).

Pre-PVH components
The ARC, which has strong projections to the PVH,

serves as an essential node for PVH input. Leptin, which
is secreted from white adipose tissue and is positively
related to total body fat volume, is an important molecule
in initiation of the melanocortin signal (60). Leptin re-
ceptors are highly expressed in the hypothalamus, es-
pecially in the ARC (61). POMC+ and AgRP+ neurons
are two primary neuronal types with leptin receptors in
the ARC (62). Leptin plays distinct roles in POMC+ and
AgRP+ neurons in regulating food intake. After the
stimulation of leptin, POMC+ neurons secret a-mela-
nocyte‒stimulating hormone, which activates MC4R+
neurons in the PVH to inhibit food intake. In contrast,
AgRP+ neurons secrete AgRP, which antagonizes the
activity of MC4R+ neurons in the PVH to promote food
intake (63). In addition, POMC+ neurons secrete
cocaine- and amphetamine-regulated transcript (CART)
to reduce food intake (64), and AGRP+ neurons release
neuropeptide Y (NPY) and g-aminobutyric acid (GABA) to
rapidly promote food intake (65, 66) (Fig. 3). Both POMC+
and AgRP+ neurons respond to the leptin signal, but only
POMC+ neurons express c-Fos, a marker for neural acti-
vation (67). Interestingly, one recent report revealed that in
either POMC+ or AgRP+ neurons the same signaling
pathways are activated by leptin to generate phosphorylated
STAT3 and inactivated FoxO1, which promote the expres-
sion of Pomc but inhibit the expression ofAgrp (62). AgRP+
neurons also project to adjacent POMC+ neurons to inhibit
their activity (65, 68, 69), suggesting that the regulation of
the leptin-melanocortin system is not that simple. In addition
to leptin, neurons in the ARC express other receptors that
respond to different molecular signals, such as insulin,
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glucagon-like peptide 1 (GLP-1), oxyntomodulin, ghre-
lin, melanocortin, and serotonin. Insulin acts on POMC+
and AgRP+ neurons to mediate glucose homeostasis (70).
Insulin modulates food intake by sharing the FoxO1
pathway with leptin signaling (62). Specifically, insulin
may also regulate STAT3 signaling (71). GLP-1 and
oxyntomodulin, both of which are secreted from the
gastrointestinal tract after feeding, inhibit food intake
through GLP-1 receptors in the ARC (72). Ghrelin,
which is produced by the stomach, activates AgRP+
neurons to increase appetite (73). Both POMC+ and
AgRP+ neurons express MC3R, an isoform of MC4R
that interacts with melanocortin and prevents obesity
(74). Serotonin binds to distinct receptors on POMC+
and AgRP+ neurons, which inhibits AgRP+ neurons and
stimulates POMC+ neurons to reduce food intake (75).

PVH components
The ARC has wide reciprocal projections with various

regions within and outside the hypothalamus, such as the
PVH, lateral hypothalamus area, posterior hypothala-
mus, DMH, nucleus of the solitary tract (NTS) of the
brainstem, and the bed nucleus of the stria terminalis
(BNST) in the forebrain (76). Among them, the PVH

seems to be the center of the melanocortin system. In the
PVH,MC4R is expressed onmost glutamatergic neurons
that project to the parabrachial nucleus (PBN) and dorsal
motor nucleus of the vagus nerve (DMV) in the brainstem
(77, 78). In general, activated MC4R+ neurons carry
feeding-inhibiting signals, whereas the inhibition of
MC4R+ neurons results in feeding-promoting signals to
the hindbrain. MC4R+ neurons are activated by a-me-
lanocyte‒stimulating hormone and inhibited by AgRP
(63). In addition, MC4R+ neurons express NPY re-
ceptors to transfer feeding-promoting information (79).
In addition to MC4R+ neurons, OXT+ neurons in the
PVH also sense leptin signaling and project to the NTS
(80), elevating the response of the NTS to satiety sig-
naling such as cholecystokinin, which is secreted from
the gut after feeding (81). In addition, OXT+ neurons
are inhibited by AgRP (20). Interestingly, a recent
study suggested that OXT+ neuron projections just pass
through the NTS and target the intermediolateral column
(IML) in the thoracic spinal cord (17), which plays an
important role in energy expenditure (82). Nitric oxide
synthase-1 (Nos1)‒positive neurons are located in the
PVH; OXT+ neurons are a subset of Nos1+ neurons in
the PVH. OXT2/Nos1+ neurons, which project to the

Figure 3. Overview of the melanocortin system in the regulation of food intake and energy expenditure. The two primary cells in the ARC,
AgRP+ and POMC+ neurons, sense diverse satiety and adiposity hormonal signals and project to the PVH, which is essential for the regulation of
food intake and energy expenditure. AgRP+ neurons also regulate locomotor activity, and POMC+ neurons also modulate thermogenesis. AgRP+
and POMC+ neurons project to the PVH to antagonize or promote the activities of MC4R+ neurons, respectively. In addition, the orexigenic
actions of AgRP are partially achieved by releasing GABA to inhibit anorexigenic POMC neurons in the ARC. Long-projecting OXT+ neurons
receive projections from AgRP+ neurons. OXT+ neurons are a subset of Nos1+ neurons. BDNF colocalizes with OXT in a few neurons. The
anterior BDNF+ neurons regulate food intake and locomotor activity, whereas the medial and posterior BDNF+ neurons project to the IML.
MC4R+ neurons project to the PBN, and OXT+ neurons project to the NTS in the brainstem or the IML in the thoracic spinal cord. The brainstem
does not simply relay information from the PVH; it also receives diverse hormonal signals through the AP. The AP projects to the NTS and PBN
nuclei. The NTS not only relays information from the PVH to regulate food intake but also receives afferents from the gastrointestinal tract and
sends efferents through the DMV to regulate gastrointestinal tract motor function. Moreover, it receives projections from POMC+ neurons in the
ARC. In addition, the NTS plays a key role in energy expenditure. It indirectly projects to the IML through the RP. Double blue symbols by LepR
indicate dimer of Leptin receptor. The lines in red are related to the modulation of energy expenditure. The lines in black are associated primarily
with the regulation of food intake. Arrows mean positive regulations. Blunt ends represent inhibitory regulations. AP, area postrema; BAT, brown
adipose tissue; CART, cocaine- and amphetamine-regulated transcript; DMV, dorsal motor nucleus of the vagus nerve; GABA, g-aminobutyric
acid; GI, gastrointestinal; IML, intermediolateral column; LepR, leptin receptor; Nos1, nitric oxide synthase-1; NPY, neuropeptide Y; NTS, nucleus
tractus solitarius; PBN, parabrachial nucleus; RP, raphe pallidus; WAT, white adipose tissue.
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NTS, are also involved in feeding regulation (17).
However, so far the correlation between MC4R+ and
Nos1+ neurons remains unclear. The expression of Bdnf
has also been detected in the PVH, especially in some
previously undefined neurons (83). Among them, BDNF+
neurons in the anterior PVH regulate both locomotor
activity and food intake (83) (Fig. 3). In addition, AVP+
neurons in the PVH respond to melanocortin agonists and
acutely reduce food intake (16). One recent study showed
that IL-6 plays a vital role in inhibiting food intake and
controlling obesity by acting on the PVH neurons (84).
Nevertheless, how the distinct PVH neurons participate in
the regulation of food intake has not been fully elucidated.

Post-PVH components
The hindbrain, especially the NTS, PBN, and DMV, is

an essential region where feeding information from the
PVH, other brain regions, and peripheral tissue is in-
tegrated (85). The area postrema, which projects to the
NTS and PBN nuclei, serves as a receiver in the brain-
stem. Because it is outside the blood-brain barrier, many
peripheral signals, such as leptin, amylin, insulin, cho-
lecystokinin, GLP-1, and ghrelin, are detected there (86,
87). Thus, the NTS can receive area postrema‒derived
gut signals. Vagal afferents from the upper gastrointes-
tinal tract also project to the NTS to deliver satiety-
associated signals (88). Furthermore, leptin receptors
are located in the NTS and PBN (89, 90), suggesting that
the brainstem is not only a simple downstream target of
the PVH but also a vital center for feeding regulation.
Being downstream of vagovagal neurocircuits, the NTS
projects to the DMV, which sends efferent fibers to the
gastrointestinal tract to regulate gastric motility (91). The
NTS also projects to the PBN (92). The PBN is a central
processor that integrates hindbrain information to induce
feeding behavior. Furthermore, the PBN is the primary
target of MC4R+ neurons in the PVH and plays an in-
dispensable role in the melanocortin system (77). Finally,
PBN neurons project widely to other parts of the brain,
including the PVH, central nucleus of the amygdala, and
BNST (93–95), to regulate feeding behavior. In addition,
the ARC projects directly to the brainstem; for example,
POMC+ neurons project to the NTS to regulate food
intake (96) (Fig. 3). The DMV also contains MC4R+
neurons (97), modulating gastric activity (98). The NTS
contains POMC+ neurons as well (99), which receive
wide inputs within the brain and regulate energy balance
(76). Therefore, the melanocortin system is more com-
plicated than what we currently know.

Energy expenditure
Themelanocortin system is also highly associated with

the regulation of energy expenditure (Fig. 3). Leptin and

insulin act on POMC+ neurons in the ARC to increase
energy expenditure by browning white adipose tissue
(100). CARTpromotes energy expenditure through brown
adipose tissue (BAT) activation and by stimulating the
release of CRH and TRH (101). The activation of STAT3
in AgRP+ neurons by leptin improves locomotor activity
and increases energy expenditure (102). In contrast, NPY
plays an inhibitory role in energy expenditure (103). In
addition, a group of AgRP2/POMC2 neurons in the
ARC, which exhibit rat insulin-2 promoter activity and
respond to leptin, increase thermogenesis by releasing
GABA into the PVH (104). In the PVH, OXT+ neurons
project to the IML and stimulate sympathetic efferent
activity to BAT to increase energy expenditure (17).
BDNF+ long-projection neurons in the posterior and
medial PVH release BDNF in the IML, which indirectly
promotes thermogenesis in BAT (83). Moreover, dis-
inhibition of PVH neurons by stereotactic microinjec-
tion of a GABAA antagonist can repress thermogenesis
through activation of GABAergic input to the nucleus
raphe pallidus (105); in contrast, microinjection of
glutamate stimulates thermogenesis in BAT (106).
In addition, observations in some transgenic animal
models reveal a correlation between PVH and BAT
thermogenesis. In Sim1+/2 mice, the expression ofUcp1
is decreased, which promotes thermogenesis in BAT
and leads to obesity (107). In LXR null mice, the ex-
pression of Ucp1 in BAT is increased, accompanied by
the activation of TRH+ neurons in the PVH, which
increases energy expenditure through the HPT axis
(108). In the brainstem, the NTS inhibits BAT ther-
mogenesis by repressing sympathetic premotor activity
in the nucleus raphe pallidus (109). However, whether
the NTS relays the information from the PVH in this
process is unclear. Finally, the sympathetic premotor
neurons in the raphe regions directly control sympa-
thetic preganglionic neurons in the IML, which in-
nervate BAT and regulate thermogenesis and energy
expenditure (110).

The HPT axis
In the HPT axis, TRH derived from the PVH stimu-

lates the secretion of TSH in the anterior pituitary, which
then promotes the secretion of T4 in the thyroid gland. In
addition, lactotropes in the anterior pituitary are acti-
vated by TRH (111). As the primary product of the HPT
axis, T3 regulates body growth by enhancing the func-
tion of GH (112). Simultaneously, it promotes energy
metabolism through both the central nervous system and
the peripheral tissue (113). In addition to the negative
feedback regulation of thyroid hormone (114), the HPT
axis is modulated by other diverse hormonal signals
related to different neuronal inputs. TRH+ neurons in the
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PVH receive projections mainly from the ARC andDMH
nuclei in the hypothalamus and catecholaminergic neu-
rons in the brainstem (115). Both POMC+ and AgRP+
neurons in the ARC innervate TRH+ neurons in the
PVH (116, 117). The DMH may not only relay in-
formation from the ARC to TRH+ neurons but may
also integrate inputs from the SCN, which mediates the
circadian regulation of the HPT axis (115). In the
brainstem, both adrenergic and noradrenergic neurons
innervate TRH+ neurons in the PVH to induce ther-
mogenesis in cold environments (118). In addition,
adrenergic neurons release other neural transmitters,
such as CART, NPY, and pituitary adenylate cyclase-
activating polypeptide, to TRH+ neurons, indicating
that adrenergic neurons can respond to different
conditions and thus send various signals to TRH+
neurons (119).

The HPA axis
In the HPA axis, CRH derived from the PVH stim-

ulates the secretion of ACTH in the anterior pituitary,
promoting the secretion of glucocorticoids in the adrenal
gland. As the primary product of the HPA axis, gluco-
corticoids act primarily as a response to physiological
stress (120). They also inhibit the immune response be-
cause they are intense anti-inflammatory regulators,
modulating energy stores, proteolysis, and lipolysis (121,
122). Interestingly, CRH+ neurons also release AVP and
OXT (123), both of which can sufficiently activate
ACTH secretion without the presence of CRH (124,
125). In addition to the essential negative feedback of
glucocorticoids (126), the HPA axis is also regulated by
various hormonal signals and distinct neuronal inputs. In
contrast to their roles in the anterior pituitary, AVP
and OXT inhibit the HPA axis through dendritic release
within the PVH (127). The diurnal rhythm of gluco-
corticoid secretion depends on the regulation of the SCN
(128). CRH+ neurons in the PVH receive the projections
of catecholaminergic neurons at the locus coeruleus,
NTS, and ventrolateral medulla to activate the HPA axis
in the response to stress (129). GLP-1+ neurons in the
NTS project to CRH+ neurons in the PVH, which may be
associated with the regulation of food intake and stress
response (130, 131). Serotonin, derived from the dorsal
and median raphe nuclei of the brainstem, activates
CRH+ neurons (132, 133). Moreover, to mediate stress
regulation, CRH+ neurons are innervated by many limbic
areas, such as the indirect innervation of the prefrontal
cortex, hippocampus, lateral septum, and medial amyg-
dala, and the direct innervation of the BNST (129). In-
terestingly, disorders related to the HPA axis exhibit
obvious sex differences, as the HPA axis is regulated by sex
hormones including androgens and estrogens (129).

The HNS
In the HNS, magnocellular neurons in the PVH and

SON nuclei project to the posterior pituitary and release
AVP and OXT into the circulatory system (134). In the
periphery, OXT promotes milk ejection and uterine
contraction, and AVP functions in vasoconstriction and
antidiuresis (134). Recent studies suggest that AVP and
OXT also participate in the regulation of social behaviors
and gastrointestinal motor function (135, 136). Con-
centrations of AVP and OXT in plasma are affected by
various hormonal signals and neuronal inputs. Purinergic
and adrenergic agonists, prolactin, carbachol, hypertonic
saline, angiotensin II, histamine, and prostaglandin E2
can promote AVP and OXT release; in contrast, se-
rotonin decreases their concentrations in plasma
(137–140). The secretion of AVP is affected mainly by
changes in plasma osmotic pressure. The subfornical
organ and organum vasculosum of the lamina terminalis
are two circumventricular organs monitoring osmor-
eceptor stimulation, and they cooperate with the median
preoptic nucleus to regulate AVP secretion in the PVH
and SON (141–143). In addition, as another cir-
cumventricular organ, the area postrema also senses
osmoreceptor information and relays it to the PVH (86).
However, neurons in the caudal medulla and NTS in the
brainstem, which receive afferents from the barorecep-
tors in the heart, aortic arch, and carotid sinuses, toni-
cally inhibit AVP secretion and thirst (144–147). AVP
functions at the kidney and arterioles to regulate water
balance (148, 149) (Fig. 4). The secretion of OXT is reg-
ulated by reflex circuits during childbirth and breastfeeding
(150). In addition, the release of AVP and OXT has been
associated with emotional regulation (135, 151). How-
ever, the neural circuits related to emotional regulation
that regulate the secretion of AVP and OXT have not
been fully clarified.

Diseases

Obesity
Obesity is a medical condition in which excess body

fat accumulates to the extent that it can have a negative
effect on health (152). The morbidity of obesity has in-
creased significantly in the past several decades. There are
two billion overweight people worldwide, and one-third
of them are obese, which is an enormous burden for
public health (153). Moreover, obesity has a strong
correlation with the pathogeneses of type 2 diabetes,
cardiovascular diseases, and cancer (154, 155). Therefore,
understanding of the etiology of obesity is one of the most
prominent topics in both life science and clinical research.

Many clinical observations support the strong associ-
ation of obesity with an abnormal PVH and melanocortin
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system. Monogenetic deficiency of the leptin, leptin re-
ceptor, insulin receptor, MC4R, or POMC genes leads to
severe human obesity (155–160). Bardet-Biedl syndrome,
in which obesity is the primary feature, is caused by a
mutation in a single gene, such as BBS1 or BBS10, which
leads to leptin resistance (161). Mutations in chromo-
some 15q11-q13 lead to Prader-Willi syndrome, which
is characterized by hyperphagia because of a severe re-
duction of OXT+ neurons in the PVH (162, 163). The
mutation, translocation, or deletion of SIM1 leads to hy-
perphagia and obesity in humans (164–166). Mutation of
ARNT2 has also been identified in human obesity (167). In
addition, mutations in the fat mass and obesity-associated,
BDNF, SH2B adaptor protein 2 isoform 1, or tubby genes
also affect normal development or function of the hypo-
thalamus, especially the PVH, which leads to obesity (83,
168–174) (Table 1).

Some neurodegenerative disorders cause obesity aswell.
For example, frontotemporal dementia leads to atrophy of
the right orbitofrontal-insular-striatal circuit, which may
affect reward circuits and contribute to abnormal feeding
behavior (175). Interestingly, lesions in the right frontal
lobe, such as trauma, tumor, or stroke, cause Gourmand
syndrome, which is characterized by an obsessive focus on
fine eating with an unaffected appetite (176). Thus, a better
understanding of energy homeostasis regulation in the
brain, especially the hypothalamus, will shed new light on
the etiology and therapies of obesity.

Short stature
Short stature, also known as growth defect, indicates a

height that is .2 SDs below the mean for age and sex.

The clinical manifestation of short stature can be the
result of complicated genetic conditions with apparently
normal hormonal levels, defined as primordial dwarfism
(177, 178). However, a compromised GH/insulinlike
growth factor axis, hypothyroidism, and achondroplasia
are possible causes of many short stature cases (179–181).
The PVH plays an essential role in the formation of the
HPT axis, and GH-releasing hormone-positive neurons in
the PVH can regulate the secretion of GH in rats (182).
Therefore, its aberration could cause short stature.
Mutations of OTX2, HESX1, SOX2, SOX3, LHX3,
LHX4, PROP1, and POU1F1 genes result in abnormal
hypothalamus-pituitary development and then lead to
combined hormone deficits, including those of GH and
TSH (180). Some recent studies revealed that deficiency
of theCOUP-TFII gene, which is located at chromosome
15q26, is highly associated with growth defects in humans
(183). Our study further demonstrated that the COUP-
TFII gene participates in regulating the development and
function of the PVH and hypothalamic-pituitary axis
through modulation of the expression of Bdnf and Nrp1
genes (8).Hormone replacements, such as levothyroxine or
recombinant human GH, are current and effective thera-
pies. However, there are still no treatments for primordial
dwarfism (178).

Hypertension
Hypertension is a common disease that affects approx-

imately 65 million people in the United States and plays a
key role in the progress of irreversible life-threatening car-
diovascular diseases (184). There are two types of hyper-
tension: primary hypertension with unknown pathogenesis

Figure 4. The brief neural network that regulates water balance through AVP secretion. The subfornical organ (SFO), oganum vasculosum of
the lamina terminalis (OVLT), and AP are three circumventricular organs monitoring osmoreceptor stimulation. The SFO and OVLT cooperate with
the MnPO to regulate thirst and AVP secretion in the PVH and SON. The AP projects to the PVH to control the release of AVP. In addition, the
brainstem receives afferents from the baroreceptors to modulate AVP secretion and thirst. AVP functions at the kidney and arterioles, monitoring
stimuli on the osmoreceptor and baroreceptor, respectively, to achieve maintenance of water balance. The black solid arrows represent positive
regulations. The gray solid arrow indicates positive output from the circumventricular organs. The gray lines with blunt ends represent inhibitory
regulation from the brain stem, and the dashed arrow means that water balance is maintained through AVP secretion. AP, area postrema;
MnPO, median preoptic nuclei.
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and secondary hypertension with relatively clear causes.
Primary hypertension accounts for the major proportion of
hypertension cases. As an important neuronal pathogenic
factor, the sympathetic nervous system has been widely
studied (185). Abnormal AVP secretion contributes to some
types of salt-sensitive hypertension (186). Salt and water
homeostasis is necessary for maintaining normal blood
pressure level, and disruption of their balance causes hy-
pertension (187). The subfornical organ, median preoptic
nucleus, and organum vasculosum of the lamina terminalis
are three nuclei that integrate diverse signals, including salt
and water homeostasis, to regulate thirst, central sympa-
thetic neuronal circuits, and AVP secretion (141) (Fig. 4).
The PVH receives projections from these nuclei to regulate
AVP secretion and sympathetic neuronal circuits (188, 189).
Many animal studies have demonstrated that an abnormal
PVH is highly related to the pathogenesis of hypertension
(190, 191). However, no clinical reports have demonstrated
isolated PVH disruption in human hypertension. Therefore,
PVH defects may be some of the neural factors that con-
tribute to the development of primary hypertension.

Diabetes insipidus
Diabetes insipidus has two main symptoms, polyuria

and polydipsia. There are four types of diabetes insipidus:
pregnancy-related, nephrogenic, dipsogenic, and central
diabetes insipidus (CDI). Among them, CDI is the most
common type. CDI is characterized by AVP deficiency,
causing dehydration and disturbance of water and

electrolyte balances in the body (9). CDI can be caused
by a variety of diseases, such as hypothalamic-pituitary
Langerhans cell histiocytosis, posttraumatic stress dis-
order, brain malformations, and germinoma autoimmune
hypophysitis (192–195). It can also be a side effect of some
drugs, such as temozolomide (196). Some types of familial
CDI have been studied, such as AVP mutations, Wolfram
syndrome, mutations in genes related to the develop-
ment of HNS, and a LXR null mutation mouse model
(197–200). AVP+ cell antibodies, found in some patients
with CDI, lead to the destruction of AVP+ neurons in the
PVH (201). So far, many CDI cases are still classified as
idiopathic in clinical medicine, and even their etiological
diagnosis is difficult to determine (202). Desmopressin,
clofibrate, chlorpropamide, and carbamazepine are the
traditional treatments for CDI (9). Recently, orally dis-
integrating desmopressin tablets have provided better
management, improving the quality of life of patients
(203, 204).

Conclusions

The hypothalamus, composed of several imperative small
nuclei, controls body temperature, hunger, thirst, stress,
sleep, and circadian rhythms. Among these hypothalamic
nuclei, the PVHplays essential roles in the regulation of food
intake and energy expenditure and other activities of the
autonomic nervous system, including the function of the
hypothalamic-pituitary axis. Accumulating evidence from

Table 1. Human Genes and Obesity Associated With Abnormalities in the Hypothalamus or PVH

Mutant
Gene/Region Main Symptoms Etiology References

LEP Obesity Abnormal melanocortin system Farooqi and O’Rahilly (157)
LEPR Obesity Abnormal melanocortin system Farooqi and O’Rahilly (157)
IR Diabetes, obesity Insulin resistance Nikolopoulou and Kadoglou (155) and

Taylor et al. (158)
MC4R Obesity Abnormal melanocortin system Yeo et al. (156)
POMC Obesity Abnormal melanocortin system Krude et al. (159) and Mencarelli et al. (160)
BBS1 Bardet-Biedl syndrome, obesity Leptin resistance Feuillan et al. (161)
BBS10 Bardet-Biedl syndrome, obesity Leptin resistance Feuillan et al. (161)
15q11-q13 Prader-Willi syndrome, obesity Abnormal development of the PVH,

including impaired OXT+ neurons
in the PVH

Swaab et al. (162) and Angulo et al. (163)

SIM1 Obesity Abnormal development of the PVH Bonnefond et al. (164), Holder et al. (165),
and Wang et al. (166)

ARNT2 Obesity Abnormal development of the PVH Swarbrick et al. (167)
FTO Diabetes, obesity Not very clear (related to an

abnormal hypothalamus and
many other metabolic events)

Frayling et al. (168), Poritsanos et al. (169),
and Taneera et al. (170)

BDNF Obesity Impaired BDNF+ neurons in
the hypothalamus

An et al. (83), Friedel et al. (171), and
Unger et al. (172)

SH2B1 Diabetes, obesity Leptin and insulin resistance Doche et al. (173)
TUB Retinal dystrophy, obesity Unknown (related to abnormal

insulin and leptin signal in
the hypothalamus)

Borman et al. (174)
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clinical and animal studies reveals that an abnormal PVH
contributes to growth defects, obesity, diabetes, and hy-
pertension. Thus, a better understanding of the development
and function of the PVHwill benefit the understanding of
the etiology and therapy of human diseases.
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116. Fekete C, Légrádi G, Mihály E, Huang QH, Tatro JB, RandWM,
Emerson CH, Lechan RM. a-Melanocyte-stimulating hormone is
contained in nerve terminals innervating thyrotropin-releasing
hormone-synthesizing neurons in the hypothalamic para-
ventricular nucleus and prevents fasting-induced suppression of
prothyrotropin-releasing hormone gene expression. J Neurosci.
2000;20(4):1550–1558.
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