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Abstract

EMP simulation has been developing steadily for almosr two

decades. In the case of large EMP simulators intended far illu-
mination of complete systems with correct spatial dependence, and
their scmetimes threat-like” characteristics including correct
frequency spectrum, the state of the art is rather mature. Vari-

ous possibilities have been explored consistent with what
Maxwell’s equations allow one to do, leading to a somewhat logi-

cal list of simulator types. Some new thrusts in EMP simulation

are pointed toward small EMP simulators which in some cases could
be thought of as partial Eh!P simulators in that they.illuminate a
part of the system or synthesize part of the relevant sources for

an EMP test. One of the promising concepts for special applica-

tions is the PARTES concept. Relying on integral equation

descriptions of the electromagnetic interaction processes, and on
the field equivalence principle fcr the synthesis of the electro-
magnetic fields, one can define a set of electric and magnetic
dipoles which approximately synthesize proper EMP excitation by
the use of superposition which implles an assumption of linearity.
By varying the amplitude and phase of the sampling dipoles one can
approximate any direction of incidence and polarization for a
free-space plane wave over some limited volume of space.

A very important result concerns the use of vector norms

and associated matrix norms in conjunction with the PARTES con-
cept. In particular, one can obtain an approximate tight bound
of the response of the systems at an internal failure port for all
angles of incidence and polarization through the uses of such con-
cepts. While the PARTES concept is limited by the assumption of

linearity and by the number of samples, it appears to have signi-
ficant potential for EMP hardness maintenance of complex electronic
systems.
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I. Introduction

—

—

EhlP simulation has been reviewed and defined in a previous

paper [3].

“(EMP) simulation is an experiment in which the postulated

(EMP) exposure situation is replaced by a physical situation

in which:

1. the (EMP) sources are replaced by a set of equivalent

sources which to a good approximation produce the same

excitation (including reconstruction by superposition to

the extent feasible) to the total system under test or some

portion thereof as would exist in the postulated nuclear

environment, and

2. the system under test is configured so that it reacts

to sources (has the same Green’s function) in very nearly

the same way and to the sane degree as it would in the

postulated nuclear environment.

A(n) (EMP) simulator is a device which provides the excita-

tion used for (EMP) simulation without significantly alter-

ing the response of the system under test by the simulator

presence.”

An important ass”wption that is often made is that of

linearity. One can design threat-like simulators which avoid

making such an assumption. However, introducing an assumption

of linearity introduces a range of possibilities based on con-

structing a response (say at some “pin” or “failure port” [2,4])
in the system as a linear combination of responses to a set of

excitations. The same linear combination of the excitations is

chosen so that the desired excitation is obtained by superposition.

This principle of superposition has been commonly used with

respect to temporal superposition in EMP applications, i.e. ,
waveforms with different time variation can be linearly combined

to construct some desired waveform, this construction applying to

both excitation and (linear) response. Often one thinks of this

temporal superposition in terms of the response to a delta func-

tion excitation, but this requires the additional assumption of

time–translation invariance, an assumption which is often valid
and very.useful. In this case the superposition takes the form

of a convolution integral. Time-translation invariance also

allows one the convenience of temporal Laplace (Fourier) trans-

forms into the complex frequency domain where convolution is

replaced by simpler multiplication. Of course inverse transfor-
mation is typically subsequently required back to the time variable.
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Let us now generalize our traditional concept of temporal

superposition to the concept of spatial superposition. On: can

decompose the sources into a set of spatial functions such that

a linear combination of these gives (at least to an approximation

for a finite set of functions) the desired source function (in

general a vector function) in space. The same linear combination

of the individual responses then gives the desired response to

the original postulated source distribution in space.

There are many ways to define electromagnetic sources.

Such sources might be constrained current distributions in space.

They can be associated with the electromagnetic fields incident

on a scatterer. They may be short-circuit surface current and

charge densities on shorted apertures. In general, any quantities
which are forcing functions for any set of equations which provide

an exact or approximate description of the electromagnetic response

of all or part of a scatterer (system) of interest can be thought

of as sources. A general approach to EMP simulation then views
all of these sources as potentially reproducible (approximately,
including use of superposition) by an EMP simulator [3,9].

Of the many kinds of spatial source construction one might

consider, let us restrict our attention to the reconstruction of

the incident electromagnetic fields. Specifically let us consider
the approximate reconstruction of appropriate incident” electromag-

netic quantities on some closed surface S surrounding a volume V
which contains the system to be tested’. This reconstruction of

incident-field quantities on (or near) such boundary surfaces by

a set of sources (at some set of locations on or near S) is

referrqd to as PARTES (~iecewise Application of.~adiation Through

an ~MP ~imulator) [3,9]. Present considerations are restr~cted

to cases that have no sources’in V and no currents passing through
s. While the present development considers the incident field to

be in free space, cases of more general types of linear media in
which the incident field propagates can be considered.

For the present development of the PARTES theory the inci-

dent ~ields are reconstructed using the field equivalence prin–

ciple. The equivalent electric and magnetic surface current

densities on S are then approximated by a set of electric and

magnetic dipoles on S. The relative contributions of these two

types of equivalent sources are interesting, and some interpreta-

tion of their roles can be made in the case that the system outer

boundary surface Ss is (approximately) perfectly conducting and

approaches S from the inside (i.e., within V).

Another approach to developing the equivalent sources is

based on some integral-equation representation of the scattering

process in which the incident field assumes the role of a source.
If the scatterer is (approximately) perfectly conducting, its

outer boundary Ss is the domain of integration. Elementary sources
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(equivalent magnetic dipoles) on S~ can approximate the incident

field within certain limitations. This approach is compared to

the field-equivalence form and interpreted.

Considering the response of the system as a linear combina-

tion of the PARTES sources, or as a linear operator on the inci-

dent field, and considering the incident field as a plane wave,

some interesting bounds on the system response can be found. In

particular these bounds can give approximate worst case results

for all angles of incidence and polarization of an incident plane

wave.

...
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11. Field Equivalence Principle

Beginning with the Maxwell equations in free space

‘i7Xg= -llo&L3h

these can be put into the convenient

(2.1)

combined-field form [7]

3~ =3 + qjZofi (combined field]

3qE3+#~

(2.2)

oh
(combined current density)

q=fl (separation index)

j .+~ (unit imaginary)

J
IJ

2.=$ (wave impedance of free space)

o

c
1= (speed of light in free space)

~

There is also the combined charge density

% =
~++ph

o

with the combined continuity equation .

v*3q=-&3q

v“ i=+
q

Oq

(2.3)

(2.4)



—

—

—

—

Referring to figure 2.1, if there is some (infinitesimally

thin) sheet on surfac’e Z with tangential surface current densities

(electric and/or magnetic), there is a boundary condition

[ 1Ix x ii(+) Y(-) =qjZ3
~-~ 0s

~ (2.5)

3 .3s+#3 (combined surface current density)

‘~ o ‘h

This combined boundary condition relates the tangential fields on

the two sides of X, indicated by + and - superscripts, to the

combined surface cur ent density. (units A/m) on X.

f
Note that the

unit surface normal ~P oints to the + side from Z.

Consider now in figure 2.2 the volume V bounded by the

closed surface S (VflS = O). V need,not be simply connected for
the following considerations. Note that V is free space (contains

no scatterer) initially for this discussion.
.. ----~—’---- - .-—-. - .—

Suppose that some incident field is defined over all,space

as

fi:inc)(;jt) = E(inc)(;,t) + qjZoi!(inc)(~,t)

(2.6)

~(inc)(;,t) = j(inc)(;,t) +&3~inc)(Y,t)
q

u

where ~(inc)

3

accounts for the sources of the incident field as
require . Constraining such sources to be zero inside V, let us

construct a field in the form

{

fi(i.nc)(r,t) ,

q
;ev

iq(;,t) =

o Y 3#[v(Js]

(2.7)

~S(;s) s outward pointing normal to S at ~~

-7
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“Fig. 2.1. Combined Boundary Condition at a Sheet
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Fig. 2.2. Field Equivalence Principle for Constructing

Incident Fields Inside a Volume
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The use of the combined boundary condition (2.5) with + for

outside S and - for inside S thus gives us a formula for sources

on S such that the desired incident field is reproduced inside ●
8. Note that source currents as in (2.6) can be included inside

V and hence in (2.7) if desired. However the present develop-
ment is not for such a case. Separating these out we have two
equivalent sources on S

(2.8)

In this form (2 .7) gives .a very compact statement of Love’s

[10] field equivalence principle (for fields interior to a
volume ).
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Fig. 3.1. Surface Patch with Local Coordinates
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t

Bq(t) = pq(;,t) ; dV = ~J ~q(;,t’)dV dt’

v’ –- v’

(3.5)

;q(s) =
\

~q(;,S) ; dV = ~ J ~q(;,S) dV

v’ v’

where - indicates the Laplace transform (two-sided) and s is the

complex frequency. Here as t + -CO the combined charge density

etc. is ~ssumed zero (zero initial conditions). One can also

have an r x ~q term in the integrand, but the contribution of

this is made negligible in the present application by the choice

~f the location of the coordinate center for the computation of

pq in the approximate center of V’.

So consider the dipole moments associated with the surface

current densities on a particular Sn. The volume integrals reduce

to surface integrals as

t

;n (t) =j H ~(inc)(;s,t’) dV dt’P(inc)(;s,t) dV = _@ S sq

q Sn ‘q
n

(3.6)

I 1
~(inc)(;s,S) dvp(inc)(;s,t) dv ‘+ ~ S’q

$n (s) =

q Sn ‘q
n

with the combined dipole located at ;Sn. Note that the above

integrals over Sn must include the edge (in the case of Psq)

because of the current discontinuity there and resulting llne

charge density (singularity in the surface charge density) when

considering only the contribution of the Sn patch.

If we assume Sn sufficiently small and aP~roximatelY flat

we can use the value of the current density at rsn giving

‘n ~(inc)(ls ,s)
$n (s) = ~

q ‘~ n

(3.7)

thereby relating our elementary dipole sources

incident field.

Sepax:>.ting out the electric and magnetic

we have

to the desired

dipole moments

13



;n(s) =

=

in(s) =

=

These electric and

(3.8)

>yw{: s)
S)lo Sh s’

n

magnetic dipole moments are parallel to Sn

and located at ;Sn as-indicated in figure 3.1. ‘Noting ~hat the

Ism for m = 1,2 are the unit vectors parallel to Sn as r~n we

have the components

[

~ ~~inc)(;

s
s) for m = 1

s’
n

‘n j(inc)(ls ,s) =
5n,m(s) = ~ s

m n A
n fi(inc)(;.—
s 1

s) for m = 2
Sn ‘

(3.9)

‘[-

-+~:inc)% ‘s) ‘or m ‘ 1

n,m(s) = > ~$-~nc)(;s ‘s) = *

n

5

0
m

n
n jj(inc)(;

Silo 1 Sn’
s) for m = 2

Given some specified incident field and some subdivision

of S into a set of Sn with “centers” at a set of i!sn, one can

then specify the two components (m = 1,2) of the two kinds of

dipoles (electric and magnetic) which will approximately repro-

duce the incident field inside V. Of course Ns must be chosen
sufficiently large that the dipoles approximate the continuous

ideal distributions of surface current densities. The spacing

should be small compared to radian wavelength and small compared

to the distance of the observer away from (and to the inside of)

S, at least for an accurate approximation.

14



Iv. Perfectly Conducting Scatterer with S~ Inside and Near S

So far the nature of the scatterer in V can be quite

general. An interesting case, however, is that of a perfectly

conducting scatterer with outer surface Ss in V as in figure

4.1. With Ss as the outer surface bounding Vs the fields now

become

[

[
fi(inc)(~,t) + fi(sc)(~,t) for J - V - [Vs u SJ]

=vn[tglssl
iiq(;, t) = ii(sc)(;, t) for ; @“[VUS]

(4.1)

with the boundary condition on S~

+ +
r’ :
s

rfor~cS
s

~ coordinates on Ss

(4.2)

i’-- , (;;) =Y- 1s (;:) Is (3:) = transverse identity on Ss
s s

Is (:J) ~ unit outward normal on Ss

s

Note that the scattered fields are continuous through S since

the discontinuity associated with the equivalent-source surface

current densities is satisfied by the incident-field-term

discontinuity.

Figure 4.2 indicates what happens when S and Ss are close,

separated by a spacing h. The local unit vectors Is and ~ss

become parallel as h + O and ~s + +.$. First a local portion of

the diagram in figure 4.1 is given In figure 4.2A. Second the

r spo se to the source electric-surface-current-density sheet

~finc~ is indicated in figure 4.2B. For small h there is an

a~proximate solution for the response to such an excitation for

the magnetic field as

1.5



o

Fig. 4.1. Inclusion of Perfectly Conducting Scatterer

Inside Incident-Tield Volume
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A. Combined Fields
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SS.J’

B. Response to Electric Current Sheet
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4
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C. Response to Magnetic Current Sheet

Fig. 4.2. Ss Close to S
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(4.3)

p for a < 0 or a > 1 (inside S~ or outside S)

where the superscript e denotes this part of the response. The
result for the magnetic field is rather simple based on a locally

quasi-static calculation which gives no field outside S. Noting

that ~&inc) is given by (2.8) we have

(4.4)

+(e)
Note that H b tween Ss

7
and S is then just the tangential com-

ponents of X(inc . Observe that the normal magnetic field must

8

e zero on Ss and as S + Ss the s

,f??$:t::;%e% %K:ng

.,

(e) + b outside S as S +-Ss.

must ti(e) by (2.1). We may compute fi(e) between Ss and S via

the surface charge density giving

18



Moving on to figure 4.2C we can find the solution to the

source surface-magnetic-current-density sheet by subtracting the

situation in figure 4.2B from that in 4.2A (i.e., apply super-

position). From this we observe that the scattered field outside

S is due only to the source surface-magnetic-current density.

Summarizing we have

3@)(;:,t) = 3&t)3@)(;&t) = 3Jl:,t) - s
s

[

E(sc)(:,t)
q

for a > 1 (outside S)

~(e)(;,t) e fi:%,t) + i:i%,t) - 3:%X)
q

6 for a < 0 (inside Ss)

for O<a<l

(4.6)

19



v. Approach Via Impedance Integral Equation for Perfectly

:Conducting Scatterer

Another way to view the results as S + Ss in section 4 is

to consider the E-field or impedance integral equation for a

perfectly conducting scatterer in the form

(5.1)

where the integration {denoted by ~,>] i.swith respect to the

common spatial coordinates (~~ in this case) over the domain Ss.

The dyadic impedance kernel is [5]

..-
A+ z+++
Z(r:,;;;s) = suoGo(r&,r;;s)

S2V0
=—

4?Tc ~[ 1-2<-3 - 2c-2 e-; lRIR

+
[ 1[C-3 + & + & e-~ y. 13]}

RR

with appropriate care taken for ~~ near ~’ .
s

(5.2)

This impedance integral equation is developed from the

representation of the scattered (or radiated) electric field in

terms of the surface current density as

20



C5.3)

.

Enforcing the boundary condition that the tangential components

of the total electric field be zero on Ss gives (5.1). This

condition is enforced on S in the limit as S + Ss because of the

problem in evaluating the integral at i!; = *A. Note that this

procedure is closely related to the development in section 4.

In section 4 it is shown that as S + S~ the scattered

field is produced only by the source magnetic surface-current

density on S. This is equivalent to the tangential incident

electric field by (2.8). So the scattered field computed by

(5.3) is the total field computed outside S; this is then asso-

ciated with only the equivalent magnetic surface current density

on S. The impedance integral equation and the magnetic surface

current density on S from the field equivalence theorem are then

closely related.

From (4.6) we note that the surface current density on Ss

$

associated wi h only the surface-magnetic-current-density source

differs from . However the scattered fi ld outside S is the
same as that o;tained by integrating over 3s in (5.3). This
indicates that the external field (outside S) is correctly pro-

duced by only the magnetic current sources in the presence of

the scatterer, but between Ss and S the situation is more

complicated.

Now one can try to view the PARTES concept of EMP simulat-

ion directly from (5.1) via the moment method (MoM) [11]. One
way to do this is to divide Ss into patches as was done to S in

section 3, and convert (5.1) into a matrix equation relating the

surface current density in each patch (in terms of the “expansion”
functions) to the incident electric field in each patch (in terms

of the “testing” functions). The incident electric field in a
patch can be thought of as a surface magnetic current density

(via (2.8)) which can be approximated by a magnetic dipole (via
(3.8)).

However, an elementary magnetic dipole on Ss (and parallel
to it) gives a very singular field distribution near the dipole

(at ~&n) corresponding to an equivalent magnetic dipole with
twice the strength of i%n as computed by (3.8). This intense
nonuniform field near ~& n can give excessive excitation to any-
thing responding to such fields (such as small apertures, etc.).

Furthermore t e resulting surface current density on Ss does not
?include the ~se) term.

21



It is interesting to note that since the ~~e) term is

directly proportional to the incident field with no additional

function of the complex frequency s, then this term does not

contain the scatterer resonances (natural frequencies) used in
the singularity expansion method (SEM) representation of the

~~~~~~r~~ ~~~p~~g? ~~~~” as
The natural frequencies then must

sociated with the response to the

equivalent magnetic-current sources. Remember that the

scatterer is perfectly conducting for these results.

22
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VI. Incident Plane Wave

The development of the PARTES simulation technique is

quite general in that any incident field (with no sources in V)

can be approximately reproduced by electric and magnetic sources

on S, Often , however, one is interested in a specific type of

incident field described

i(inc)($,t) =

i(inc)(;,t) =

;(inc)(;,s) =

-.

fi(lnc)(;js) =

Iexlh=q

IhxIl=z
e“

ilxie=l
h

as a plane wave in the- form ‘-

(direction of incidence)

(electric polarization, or just
polarization)

(magnetic polarization)

(6.1)

..

Y = ~ (comple”~pr;p”;~;tion constant of free space)

The waveform function f is typically chosen in some canonical

form, such as for the high-altitude E@ below the source region

[6]. Such a plane wave is appropriate for an in-flight system

such as a missile or an aircraft. For systems on or near the

ground two such plane waves (because of the ground reflection)

would be appropriate.

As indicated in figure 6.1 we can define a set of reference

polarization vectors 1P for p = 1,2 with

(6.2)

—

23



Fig. 6.1. Coordinates for Incident Plane Wave
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H
in ar combinations of ~1 and ?2 can be used to give any desired

e, h combination. One can take two canonical cases as

(6.3)

as well as appropriate linear combinations of these two. Note

that the direction of incidence ~1 takes on all possible real

directions (varies over 47T steradians).

In terms of the combined field our incident plane wave is

The equivalent combined surface current density on S is

jj(inc)(;s,t)

q

(6.4)

The combined dipole for patch Sn, centered on is , is then

n

(6.6)

25



This is split into electric and magnetic dipole moments as

●

(6.7)

Further deco po~ition into components depends on S and the out-

ward normal ?S(r~) associated with it.

Noting that -~n+and in are both parallel to S, and hence

perpendicular to ~S(rsn), consider the expressions

in terms of the tangential components of ~e and ~h on S. This

allows one to view the source elements as proportional to the

projections of the incident fields on S at the ~~ .

11
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VII. Bounds with Respect to Incident-Field Parameters

Now we are in a position to discuss a remarkable aspect of

PARTES, its use to bound the signals at various places in the

system. Consider a set of positions in-the system where one

wishes to know the signal, say V(t) or V(s), here taken as a

voltage, but it could be a current, field, etc. Give these

positions or “failure ports” [2] an index u = 1,2, ....Nf where

Nf is the total number of signals Vu(t) in which one is inter-

ested. Note that a particular “failure port” may have more than

one value of u assigned to it if there is more than one signal

‘of interest to be measured (or calculated) there.

Under an assumption of a linear, time-invariant system one

can write a transfer function from one of the equivalent dipoles

(index v) on S to the failure port (index u) as Tu ~ with
9

Nv

vu(s) = ~ Tuv(s) iilv(s)

V=l ‘

(7.1)

Here iv is a quantity related to a particular component

(m = 1,2) of an electric or magnetic dipol~ at a particular

~sn on S. For convenience let us define dv as

[

(~s(:s ) x :n(s)) for electric dipoles

av(s) s
n m

(
:~(:’

s Sn)
x AJS)

)

for magnetic dipoles

m

(7.2)

Here the mth component of the cross-product form in (6.8) is

used because of the simpler form it takes. The I/c with the

magnetic moment puts it into the same units as the electric

moment so that the ~u v all have the same dimensions (F-lm-l in

this case). Various bther convenient normalizations (such as

one that makes the Tu v dimensionless) may also be chosen.
)

An indexing scheme is needed to generate the v values for

v = 1,2 ,...,Nv where

N = Ns {2 values of m}{2 kinds of dipoles}
v

= 4Ns (7.3)

Four v values are associated with each ;sn and a table can be

constructed from

27



v=4(~_l)+vl (7.4)

where

m

value

[

1 for 1
2 for 2

v’ =
3 for 1

4 for 2

dipole

type

) electric

) electric

magnetic
(7.5)

?

9 mangetic

The transfer function may now be accumulated to form a

matrix equation (with now dummy indices) as

(vJs))=(Tn,m(s)) ●(an(s)) (7.6)

The transfer-function matrix is now

(Nf x Nv) matrix.

Consider-one of the responses

become if the dv are not sDecified.

a complex rectangular

?U ancJ ask how large it might

The Tu,v can be measured.

in general. However, the & are dependent bn a particular inci-

dent wave (with S and the S; and ~=n specified).-

There are various bounds one can obtain for ~u from (7.1)

based on the concept of vector and matrix norms. In the general

case for a norm we can write with say u fixed as U.

(7.7)

where (TIIO,V) is regarded as a single-row matrix or, equivalently,

as a vector (with Nv components). There are many possible vector

and matrix norms one may define [8]. A common example is the

vector magnitude (or 2 norm) applied to (7.7) giving

(7.8)

where the left side is the special case of the magnitude of a

scalar. Another interesting norm is the infinity norm or maximum

norm

28



Ii (s)1 = I liu (410 ~ ll(~u ,V(d)llm I ldvw )ll=
U. o 0

Il(av(s))ll = maxw
!2”(s)1

V=1,2 ?*.OYNv
Nv

I1(?U ,V(s))l]m= “11 I?u ,V(s)l

o = o

(7.9)

Thus the question of a bound on I?ul can be asked in terms of

the maximum Idvl.
%.

These results are generalizable to the case of the vector

of responses (Vu) as

I lqp)ll ~ I I (QI I I ldvm)ll
(7.10)

Now if the norm is magnitude (or 2 norm or euclidean norm) we

have

WJs)) I s 1(?U,v(s))l [(av(s))l

] (1 [(u V(s)l = Amax ((iu,v(s))~ “ (iu,v (S)))]* (7 ~1)
9

.

A =“maximum eigenvalue
max

t ~ aiijoint ~ T*

T E transpose i

*E conjugate

This type of norm bounds the root mean square of the l~ul.

Using the cunorm gives

max [?U(S)I = I[(iu(s)]lm s Il(iu,v(s]lm Il(av(s))llm

U=1,2 )***?‘f

Il(av(s))llm = max ]av(s)l

V=1,2 ,...,Nv

29



. .
N

1?

II(?U Jd)ll = maxw
~ Iiu Js)l

i
u=l,2, ....Nf v=l ‘

s maximum row magnitude sum

(7.12)
‘,.

0

In this norm we have the maximum of all the l~ul. I f o~e has

criterion (say for system survivability) that all the !Vn(ju)

be-less than some value, this is equivalent to requiring that

\k~u)\!~ be less than some yalue. This can be assured if

ll(Tu,v)[!~ multiplied bY l((dv)l~is sufficiently small since th:
product is an upper bound.

a

s

But now look at the ~v(s) for our incident plane wave.

Furthermore set

(1.13)

with u,k real. Then from (7.2) with substitution from (6.8) we

have

(7.14)

(7.15)

the exponential-terms are removed b
%

the magnitude operation.

Next maximize ~dvl with resPect to e and ~h” Allowing all

possible directio s (4T steradians) for ~1, and a 1 poss’ble ~e

perpendicular to ? # t~ (2T radians), resultsin both e and h taking

on all possible directions. Thus
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r-

mx

h

lTJ;~ ) ● $J = 1

all
1 ’ e

n

giving

(7.16)

(7.17)

Now if all An are chosen to be ~~ual as

A ‘~{areaof S} , fern ,.. .,NsAn=K= = 1,2 (7.18)

s s

then

which is independe~t of n and hence of v. The maximum
infinity norm of (dv) is then

(7.19)

of the

(7.20)

Putting this all together gives the bound

where the matrix norm is as given in (7.12), and is in general

measurable. Note the simple form of the result which allows one
to bound the maximum signal inside the system for any (simulated)

direction of incidence and polarization in terms of the matrix

of transfer functions from the elementary dipoles. The result
of (7.9) for individual signals is also generalized as
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which

above

on S.

,

*E

mx

all ?1
~lJJ@l s fi ~ f I;(ju)l ll~~uo,v(j~)ll~

1’ e (7.22) ‘-~

uses only a vector of transfer functions.
●

t

In the limit as N~ + = wi”th spacing between dipoles +0 the

results tend to those for a continuous source distribution

The sums in the ~ norms for vectors and matrices become

integrals (of complex magnitudes) over ~s with summation over

dipole type and orientation. The vector and matrix norms can

then be reinterpreted as functional and operator norms in the

problem of bounding the signals inside a complex system over a

range of incident-wave parameters.
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VIII. Summary

This note has covered much territory in developing the

PARTES concept for EMP simulation. The incident fields have

been related to equivalent sources on a surface surrounding the

system of interest. These equivalent sources have been approxi-

mated by sets of electric and magnetic dipoles. These sources

have been related to the impedance integral equation when

matricized in MoM form. Choosing the incident field as an inci-

dent plane wave, it is shown that the transfer functions from

each of the dipoles to a failure port inside the system can be

used to bound the response at that failure port for all angles

of incidence and polarization by the use of vector/matrix norms.

This type of simulator is more complex than the commonly

used variety because of its use of spatial superposition. How-

ever, the individual sources are small and might be capable of

inclusion with a system of interest in its operational mode

(e.g., on a flying aircraft). As such it has the potential

application of monitoring hardness maintenance. Added to this

is the advantage of getting around the angle–of-incidence and

polarization variation, at least in a bounding sense. A limita-

tion of PARTES, on the other hand, is that with small sources

and measurement of transfer functions from individual dipoles

it does not address the nonlinear system response problems that

can be addressed in a criterion-like pulse EMP simulator. In

principle PARTES can be operated in a pulsed mode with many high-
amplitude pulsed dipoles timed together; however, one might
expect such a criterion-like pulsed version to be difficult to

build and operate.

There are various questions to be investigated concerning

PARTES . The individual dipoles need to be designed and optimum

positions and spacings established. Any practical implementation

of PARTES will surely have simulation errors; these need to be

quantified. The PARTES concept can be applied to other EMP

simulation problems, such as that of a plane wave incident on a

system on or near the earth surface. The general electromagnetic

theoretic aspects of PARTES and their implications for other

types of problems (such as EMP interaction) need further explora–

tion and extension.
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