
Multimed Tools Appl (2009) 45:83–107
DOI 10.1007/s11042-009-0287-7

The partial migration of game state and dynamic server
selection to reduce latency

Paul B. Beskow · Knut-Helge Vik ·
Pål Halvorsen · Carsten Griwodz

Published online: 5 May 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Massively multi-player online games (MMOGs) have stringent latency
requirements and must support large numbers of concurrent players. To handle these
conflicting requirements, it is common to divide the virtual environment into virtual
regions. As MMOGs are world-spanning games, it is plausible to disperse these
regions on geographically distributed servers. Core selection can then be applied to
locate an optimal server for placing a region, based on player latencies. Functionality
for migrating objects supports this objective, with a distributed name server ensuring
that references to the moved objects are maintained. As a result we anticipate a
decrease in the aggregate latency for the affected players. The core selection relies
on a set of servers and measurements of the interacting players latencies. Measuring
these latencies by actively probing the network is not scalable for a large number of
players. We therefore explore the use of latency estimation techniques to gather this
information.

Keywords Massively multi-player online games · Latency · Estimation ·
Server architecture

P. B. Beskow (B) · K.-H. Vik · P. Halvorsen · C. Griwodz
Simula Research Laboratory, Martin Linges v 17, 1364 Snarøya, Norway
e-mail: paulbb@ifi.uio.no

P. B. Beskow · K.-H. Vik · P. Halvorsen · C. Griwodz
Department of Informatics, University of Oslo, Gaustadalléen 23, 0373 Oslo, Norway

K.-H. Vik
e-mail: knuthelv@ifi.uio.no

P. Halvorsen
e-mail: paalh@ifi.uio.no

C. Griwodz
e-mail: griff@ifi.uio.no

84 Multimed Tools Appl (2009) 45:83–107

1 Introduction

“Lagger!” is a likely expression to hear uttered in a real-time interactive online game.
This term addresses players with excessive latency, which in the gaming community
is colloquially referred to as lag (no positive connotation is implied by this term). A
player with high latency will inadvertently have a negative effect on the perceived
quality of the game play [4, 14]. This occurs, as most online games are based on a
client-server model, where events are collected at the server, and distributed to the
interacting players. By its nature, if one player’s connection is comparatively slower,
any added delay is not isolated to the player alone. It will propagate to the interacting
parties and potentially result in inconsistencies, which the server must then recover
from. While having minor effects on the outcome of the game, it results in a perceived
deterioration to the quality of interaction [19]. As such, low latency for all players is
a prevalent goal. In this paper, we extend our body of work on migration and server
selection [7] and expand the latter to include an exploration of latency estimation
techniques to obtain the required network information in a scalable way. Thus, we
use migration techniques to move the processing to a more appropriately placed node
found using a core selection algorithm based on obtained network information.

The latency requirements of games vary greatly, ranging from 100 to 1000 ms [16].
One factor affecting the latency seen by the players is their physical distance to the
server. As such, to achieve a satisfactory quality of interaction, the player may need
to be located within a reasonable proximity to the game server, or that we have a
dynamic selection of servers; to be in the proximity of most of the users.

As an example, consider world-spanning MMOGs, which are persistent online
worlds that allow thousands of players to interact concurrently in a virtual environ-
ment. To support this many concurrently interacting players, the virtual environment
is commonly split into virtual regions. This makes it possible to distribute the regions
across a number of (possibly geographically distributed) servers. As the regions are
logically decomposed, each server is responsible for handling some regions and the
players interacting in each region. Since a player’s proximity to the server impacts
the latency, and in turn, latency is an integral factor for the playability of an online
game, this raises an interesting question: How can we optimize the placement of a
virtual region given the interacting players and a set of globally distributed servers?

Core selection provides a solution to this server selection problem. Given a set of
players and servers (and proxies), it finds an appropriate server (or proxy) for placing
a virtual region. It measures the latency of each player to each server and locates the
server that provides the minimum diameter (lowest of the highest pair-wise latencies)
in order to take into account that a game event sent from one player must reach all
other players within the latency constraints.

Core selection depends on latency measurements from the servers to the players.
These latencies may be obtained by actively probing and monitoring the network, but
this is not scalable due to the potentially large number of players and servers/proxies,
i.e, n2 measurements in the worst case. As such, we investigate the use of latency
estimation techniques for use with core selection, focusing on Vivaldi [18] and
Netvigator [41]. Estimation techniques measure a sub-set of the links, and then
estimate the remaining links based on these measurements. We consider the impact

Multimed Tools Appl (2009) 45:83–107 85

of estimation on the quality of the core selection process, because although these
techniques are scalable, a penalty arises from their estimation accuracy. Results show
that Netvigator yields accurate latency estimates, while Vivaldi is more inaccurate,
but still usable. Netvigator is harder to set up than Vivaldi, but they are both likely
candidates for use in distributed interactive applications.

Once a server has been selected, we use our migration functionality to move the
active region to its new location. To maintain an optimized set of references to
the migrated game state, we use a distributed name service. On the background
of existing work in distributed systems, we believe that the combination of core
selection, latency estimation, a distributed name server and migration, a viable solution
for creating a globally distributed game, which is capable of lowering the overall
latency of the interacting players.

The rest of the paper is organized as follows: in Section 2, we look at the basis
for our assumptions, and take a closer look at some related work. In Section 3, we
look at the migration functionality and how it is supported by the distributed name
service. In Section 4, the core selection process is described in detail, and how it can
be applied to the scenario we have described. In Section 5, we describe different
classes of latency estimation techniques. In Section 6, we evaluate our migration
functionality and the core selection process (using both measured and estimated
input). In Section 7, we discuss major aspects of this work. Finally, we summarize
our findings in Section 8.

2 Background and related work

2.1 Game characteristics

The body of work that analyzes game traffic has grown considerably in the recent
past. The main conclusions in our scenario are that 1) game traffic varies strongly
with time and the attractiveness of the individual game [12, 25], 2) some latency is
tolerable [14] as long as it does not exceed the threshold for playability from 100 ms
to 1000 ms depending on the type of game [16] and 3) geographical dispersion of
players in an online game depends heavily on the time of day [24]. In addition to
these works, we have analyzed packet traces (see [29]) from Funcom’s popular role-
playing MMOG Anarchy Online [26]. Statistics from the traces reveal that there lies
a potential latency improvement in using our migration middleware. For example,
in one of the game regions, with measurements recorded within a time span of
about one hour, we found approximately 175 distinct connections. These are sorted
according to their measured round-trip times (RTTs) in Fig. 1. With the knowledge
that the servers are located in the US, the observed minimum latencies in the figures
indicate that there are players concurrently located in the US, Europe and Asia. The
number of players in different areas of the world also typically vary according to
the time of day, and finding an appropriate location for the server might be of vital
importance in order to meet the latency requirements. In Fig. 1 we can see that the
majority of users are in the second range (20–140), as such, the average latency could
be reduced by moving the analyzed game region to a server in Europe.

86 Multimed Tools Appl (2009) 45:83–107

Fig. 1 Anarchy Online:
connection RTTs sorted by
min RTT

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180

R
T

T
 (

s)

connection RTTs sorted by min RTT

2.2 Migration techniques

Migration provides the functionality to move entities between servers/proxies/clients
in a distributed system. These entities can take different forms and be of greatly
varying granularity. In [13] Clark et al. migrate a live virtual machine from one node
in a cluster to another, with as little as 60 ms of downtime. In a similar study, Nelson
et al. [36] describe how a virtual machine can be transparently migrated with minimal
impact on the user. At a lower granularity level we find DEMOS/MP [39], Sprite [33]
and Mosix [3], which are all *NIX based operating systems that allow for processes
to be migrated. They are required to capture all of the data and state associated
with the process (the program data, its stack and registers: program counter, stack
pointer, and so on) to facilitate the migration. JavaScript and SQL [22] are examples
of systems that make code migration possible. JavaScript is client-side executed
code, while SQL is primarily executed by the database management system at the
server hosting the database system. Finally, Emerald [30] and Chorus/COOL [8]
are examples of systems that make it possible to migrate objects during run-time
execution of a program (per the object-oriented paradigm). Migration can be used to
serve several purposes, such as dynamic load distribution, fault resilience, increasing
resource locality or to facilitate system administration. In our case, we wish to achieve
a combination of load distribution and increased resource locality by migrating game
state to an optimal location (relative to the interacting users).

2.3 Server selection

Game server selection is an important facet of the playability for several types of
online games. This is particularly true for games that are highly sensitive to latency,
such as first person shooter (FPS) games. As such, the player’s selection process is
commonly guided by measuring dimensions that affect playability, such as latency
and packet loss. This sensitivity to latency is commonly alleviated by having a high
distribution, and availability, of servers. With respect to this, Chambers et al. [11]
have looked at how server selection can be optimized for a single client, when given
a set of available servers. In a further study, Claypool [15] notes that we regularly

Multimed Tools Appl (2009) 45:83–107 87

find groups of players that wish to play together on a server, such as friends or
clans (organized players). As such, he has investigated how server selection can
be optimized from the perspective of a group of players. In two related studies by
Armitage [1, 2], efficient ways of ranking servers in the discovery process itself are
examined. These papers have in common that they consider server selection from the
perspective of the player(s), and additionally assume a certain availability of servers
(it is common for geographically coupled players, such as real life friends, to play
against each other). For a world spanning game, however, where all users interact
in the same game instance, such as an MMOG, there is often a limited number
of servers to select from. In [34], Lee et al. present their heuristic for selecting a
minimum number of servers satisfying given delay constraints (from the perspective
of large scale interactive online games, such as MMOGs). Their aim, however, is to
have well provisioned network paths in a centralized architecture. Thus, they do not
consider the aspect of geographical dispersion of players. In a similar study, Brun
et al. [10] investigate how a server’s location can influence the fairness of a game,
and how selecting an appropriate server impacts this fairness. They use an objective
function, which they call critical response time to rank the servers.

2.4 Network estimation

It is straightforward to obtain a link’s RTT in the Internet using measurement tools
like ping and traceroute (or mechanisms like packet pair and packet train [20]). The
drawback with ping is that it does not return any measurements if the target host is
unreachable. Traceroute, on the other hand, returns latency measurements for each
(answering) hop on the route. This may be valuable for some latency estimation tech-
niques if they control network routers, and if the end-to-end reachability is limited.
Furthermore, in the scenario of large-scale distributed interactive applications, it is
currently not scalable to use measurement tools like ping or traceroute to actively
monitor networks for their link latencies. Instead, latency estimation techniques that
reduce the probing overhead should be applied.

Achieving full up-to-date knowledge of the network requires live latency moni-
toring and is not scalable for a large number of players and servers/proxies. In the
best case M × N (for M servers/proxies, and N players) measurements are required,
in the worst case N2 (in the case where all nodes can be used as servers, i.e., a peer-
to-peer setting) are required. This scalability problem is addressed by techniques
that estimate link latencies, but the trade-off is their accuracy. In general, a latency
estimation technique probes a (low) number of links to sample their link latencies,
and then attempts to estimate the remaining links based on these probes. There
are a multitude of latency estimation techniques. Many of the latency estimation
techniques are likely to be usable in a distributed interactive application setting.
However, the main comparative metric is whether or not the estimations are accurate
enough.

The estimation techniques may be classified into one of three classes [23].
Landmarks-based latency estimation technique assign each node a point in a

metric space, and aim to predict the latency between any two nodes. They use
landmark nodes, a set of nodes that are used by others as measurement references
for their relative position in the network. Examples of landmarks-based techniques

88 Multimed Tools Appl (2009) 45:83–107

are Netvigator [41], NetForecast [23], Global Network Positioning (GNP) [37] and
Practical Internet Coordinates [17].

Multidimensional-scaling based latency estimation techniques use statistical tech-
niques for exploring similarities and dissimilarities in data. For example, a matrix of
item-item similarities is used to assign a location for each item in a low-dimensional
space [17]. Vivaldi [18] is such a technique.

Finally, distributed network latency database techniques use active measurements
to build a knowledge base about the underlying network. These approaches have
been designed to efficiently answer queries of the form: Who is the closest neighbor
to node A in the network? Since these schemes are based on direct measurements
they have better accuracy. They also inject more traffic into the network compared to
the landmark-based and multidimensional-scaling based techniques. Meridian [45] is
a technique that uses a distributed network latency database.

Distributed network latency database techniques are not desirable for our target
area, because they are not designed to retrieve all-to-all link latencies. Instead,
however, we focus on landmarks-based and multidimensional-scaling based latency
estimation techniques. They are desirable for leader election scenarios, and discov-
ering the closest neighbor for a node.

2.5 Summary

Our analysis of the Anarchy Online game traffic shows that players connect from
all around the world (see Fig. 1). An approach to reducing the latency, both due to
RTT and loss, is to dynamically find the center of the group of players and migrate
the game objects to a server whose location is closer to the majority of the users.
We can accomplish this reduction through core selection, which helps us determine
which node to migrate the players to. An issue with core selection is that it depends
on latency measurements to run correctly. Actively measuring these latencies with
ping or traceroute is costly, and depending on the number of players, not scalable
either. As such, latency estimation techniques offer a viable alternative to gather
such information.

3 Moving worlds with migration

Core selection is applied to determine whether the current server hosting a virtual
region (based on its player population) is optimal. In the case where it is able
to locate a more appropriate server based on the latency to the active users, the
MMOG moves the game state of that region to its new location. To accommodate
this process, we have developed a middleware that is capable of performing such
migration of game state, which consists of a number of interacting objects (following
the object-oriented paradigm). Before migrating an object, we must know that
all references to that object are maintained. To accomplish this, we use a name
service. This service is responsible for keeping an up-to-date index for the location
of objects in the distributed system, and redirect method invocations accordingly. As
such, the reduction in aggregate latency is accomplished by decreasing the average
response time of remote method invocations (RMI). The response time is decreased
because we move objects closer to the majority of the players. To accommodate the

Multimed Tools Appl (2009) 45:83–107 89

development cycle we have also written a tool that generates code to ease integration
of the application with the middleware.

3.1 Name service

A name service maintains references to objects in the distributed system. This task
can be accomplished in several ways, and Znati et al. [47] analyzed three approaches
to implementing a name service; in the form of centralized, hybrid and distributed
versions, which we have discussed thoroughly (in the context of MMOGs) in [5].
The conclusion is that the centralized model achieves acceptable performance only
as long as the ratio of remote to local requests is kept reasonable. The performance
of the hybrid model depends highly on the efficiency of the cache design, and with
all other network conditions equal the relative response times of the distributed
architecture were smaller. A distributed name service best suits our needs, primarily
because efficiency is more important then consistency in this scenario. In addition,
the following characteristics also have an impact on this decision:

1. There are thousands of concurrently interacting players.
2. The virtual environment is divided into virtual regions.
3. Players are dispersed physically as well as virtually.
4. The servers in the system are geographically distributed.
5. Code is shared so only data is migrated.
6. There occurs frequent object creation and destruction.
7. Efficiency is more important then consistency.

A distributed name service is more efficient then a centralized or hybrid approach
because there is no overhead in binding an object with the name service. This,
because each node has its own name service, to which objects are bound initially.
Communication between nodes (and thus the name services) only becomes necessary
when an object is migrated. Given that the servers in the system are geographically
distributed, binding objects locally becomes quite beneficial. Other advantages are
that there is no single point of failure, which implies that large parts of the application
can continue running if a server were to fail. Looking up objects is also efficient, as
we can directly query the node our name service has registered as the current care
taker of the object. Though it is worth noting that this access time will depend on the
number of times an object has been migrated (after its point of creation) and at which
point in this chain the invocation is performed. For further details and a thorough
discussion about the implementation of the name service, distributed references and
migration see [6]. In the following section, we will solidify our understanding of the
described mechanisms by looking at example of these concepts in use.

3.2 In action

Consider a system consisting of two servers, as seen in Fig. 2. The majority of the
interacting players are European, with a couple of players connected from Nuuk and
Seattle. Currently, all of the virtual regions are hosted in Oslo. Looking at Fig. 3a, we
see that at least two players have been bound to their local name service and received
an identifier (we do not show the other players in this example). Additionally, the
Nuuk player references the Seattle player. This reference is not to the player object

90 Multimed Tools Appl (2009) 45:83–107

Fig. 2 Latency as physical distance

in local memory, as we might expect, but to the identifier (created earlier) in the
name service. After some time the population density shifts towards an American
dominance, triggering a core selection for each virtual region (we describe this in
further detail in Section 4). For the region with our two players, the server in New
York is deemed a better fit. A migration is triggered, with our two players migrated to
the server in New York. The steps outlined in Figs. 3a (before) and 3b (during/after)
guide us through this process.

(a) Before migration. (b) A fter migration.

Fig. 3 Server configuration (a, b)

Multimed Tools Appl (2009) 45:83–107 91

First (1) we serialize the player object, which means a binary representation of the
object is created. The data representing the serialized object is then transmitted to
the receiving node, in this case the server in New York. The second step (2) consists
of deserializing the object at the receiving side. This recreation is accomplished by
initializing an object with the binary stream. Once the object has been recreated,
it is bound to the local name service, which is the third step (3). At this point in
time no reference between the original node and the new node exists. As such, the
original node will have no way of forwarding requests. To resolve this problem, the
new identifier assigned to the player object by the server in New York is returned
to the original server in Oslo, which concludes the fourth step (4). After Oslo has
updated its name service by associating the received identifier with the player object,
which happens in step five (5), we can without worry remove the object from local
memory; as is done in step six (6).

3.3 Code generation

Integrating code with a middleware, such as the one we have developed for migrating
objects, can be tedious and error-prone work. To accommodate the development
cycle we have written a tool for automatically generating skeletons that integrate
with the middleware. The code generation tool is implemented as a Python script,
which takes annotated C++ header files as input. To parse the C++ header files, we
make use of the GCC-XML [32] parser, which is a tool that extends the open source
GCC compiler, using its internal representation to produce XML output. Based on
information obtained by processing the XML-file, we generate the required code
to integrate the user-defined class seamlessly with the middleware. As mentioned,
the skeleton generator expects a C++ class declaration as its input. In addition to
normal C++ class syntax, GCC-XML allows for defining additional attributes. We
make use of this ability to extend the C++ syntax with our own keywords. When an
object is migrated, one does not necessarily want all the data to be serialized. We
therefore provide a special keyword (_serialize) to specify the data to be serialized.
Other suitable keywords will be introduced to support remote method invocation,
mark the classes that can be migrated and so forth.

4 Core selection

Today’s typical client/server model makes it easy to manage the global game state,
but it has drawbacks. The server is a potential bottleneck, both in terms of computing
and bandwidth capacity, and the latency depends heavily on the physical distance
from each individual player to the server. In Fig. 4a, we illustrate an example where
a centralized server stores the game state and thus cannot take into account the
physical location of the players.

Proxy technology is a distributed option. In this model, we have an infrastructure
with a centralized server and a set of distributed proxy servers. The proxies are used
to increase the physical distribution of servers, where we aim to achieve much the
same as content distribution networks (CDNs), i.e., have a distribution point in close
proximity to the players for faster distribution of data. In this scenario, an efficient
way to reduce latency can be to migrate game state to an appropriate server, close

92 Multimed Tools Appl (2009) 45:83–107

(a) Centralized architecture (b) Proxy architecture

Fig. 4 Architecture (a, b)

to the center of a given group of players. Consider an MMOG with geographically
distributed servers (see Fig. 2). At any time, a server can be hosting none, some
or all of the virtual regions making up a virtual environment of a game instance.
Furthermore, looking at Fig. 2, we can see how latency (reasonably) compares to
a measurement of physical distance. In case of a 250 ms delay requirement from
the server (e.g, according to the 500 ms pairwise latency requirement in RTS [14]),
the bordered intersection indicates an optimal area for the server to be located. In
Fig. 4b, the central server has migrated the game state to a proxy that is closer to the
group of players.

Proxy technology allows a trade-off between client/server and peer-to-peer advan-
tages and disadvantages. A pure peer-to-peer architecture then implies that the game
state is distributed among the players, with no central server (necessarily) involved.
This makes it very hard to administrate the game state such that it is consistent, and
additionally there is no working business model for such a scheme.

4.1 Core selection algorithms

It is desirable to determine if the server currently hosting a region is the optimal
choice. As such, we wish to make sure whether there is a server in the system that
would be able to provide these players with better overall performance in terms of
network delay. To accomplish this, we can use a core selection algorithm, which
determines which server provides the optimal placement for that region and its
players.

Multimed Tools Appl (2009) 45:83–107 93

The core selection algorithms are devised from a graph theory perspective. Upon
core selection, the core nodes may be used to administrate players that join and
leave groups. Such groups can be defined and updated dynamically in an MMOG,
for example, based on some area-of-interest management (like existing in the same
virtual region). Typically, the core node of a group is contacted for each membership
change, such that it always has the latest view. When a limited set of nodes
handles the membership management, it simplifies membership updates; applica-
tions with highly dynamic groups, such as MMOGs, require fast and simple group
management.

Core-based protocols work on the assumption that one or more core nodes are
selected as group management and forwarding nodes. Therefore, the cores need to
be selected using a core selection algorithm. Several core selection algorithms have
been proposed, and a comprehensive study is given by Karaman and Hassanein [31].
An overall goal is to select cores on the basis of certain node properties, such as,
bandwidth and computational power. We wish to base this decision primarily on
latency. The cores that are selected depend on the group size and location, as well
as the capacities in the available core nodes. In this paper, our focus is on electing a
single core node for each defined group. The core may, for example, be a server or a
proxy administrated by the game provider.

The core selection algorithms presented below search among a predefined set
of servers and proxies to find one optimal core, which is the graph median. The
graph median is the node for which the sum of lengths of shortest paths to all other
vertices’s is the smallest. The algorithms are [31]:

– Topology Center: Find a central entity (server) that is closest to the topological
center of the global graph.

– Group Center: Find a proxy that is closest to the group center of the group graph.

Topology center is given as input a set of available servers that are located around the
world. The algorithm searches for the server for which the sum of latencies of shortest
paths to all players in its member network is the smallest, which is comparable to
finding an optimal server for an instance of the game world for all connected players.
The group center algorithm similarly searches among a set of available proxies
located around the world. It is given a group of players as input, and based on this
the algorithm selects the core proxy to be the proxy for which the sum of latencies
of shortest paths to all the players in the group is smallest, i.e., locating an optimal
placement for a subset of the players (interacting in a region of the game instance,
for example). These simple algorithms form powerful techniques in the search for
suitable hosts to migrate game state to. We have tested several algorithms [43] and
present the two most prominent, in the following. Both k-Median and k-Center find
optimal solutions to two different graph theoretical problems.

4.1.1 k-median core-node selection algorithm

The k-Median core-node selection algorithm finds k core-nodes that are the k nodes
with the lowest average pair-wise distances to the nodes in the member-node set. The
algorithm solves the k-minimum-pairwise problem, which when given a weighted
graph G = (V, E, c), and an integer 0 < k < |V|, finds a set D ⊂ V of size k, such that

94 Multimed Tools Appl (2009) 45:83–107

the sum of the distances from the vertices u ∈ D to all nodes v ∈ V is the smallest.
The k-Median algorithm has a time-complexity of O(n2) on any graph.

4.1.2 k-center core-node selection algorithm

The k-Center core-node selection algorithm finds k core-nodes that are the k nodes
with the lowest maximum distance (eccentricity) to a node in the member-node
set Z . It solves the k-minimum-eccentricity problem, which when given a weighted
graph G = (V, E, c), and an integer 0 < k < |V|. Find a set D ⊂ V of size k, such
that the sum of the eccentricities yielded by the vertices v ∈ D is the smallest. The
k-Center algorithm has a time-complexity of O(n2), when run on a complete graph.

5 Latency estimation

One important issue related to centralized core-node selection algorithms is that they
need all the required network information to be available at the executing node. As
monitoring the entire network is too expensive and does not scale, latency estimation
techniques are important to enable centralized core-node selection algorithms in
large-scale applications, such as MMOGs. When latency estimates are available,
the issue then becomes how these latency estimates affect the performance of
the core-node selection algorithms, which we evaluate in Section 6.3.2. We have
discussed different classes of latency estimation techniques (in Section 2.4), where we

Multimed Tools Appl (2009) 45:83–107 95

Table 1 Properties of the latency estimation techniques

Technique Measurement Requires Churn Infrastructure
overhead recovery dependability

Vivaldi − Inter-nodes traffic Yes No
Netvigator O(L ∗ N) Traceroute No Yes

concluded that landmarks- and multidimensional-scaling based latency estimation
techniques are the most appropriate for the problem domain. Netvigator [41] and
Vivaldi [18] are two highly valued techniques in their respective latency estimation
technique classes [23]. Table 1 provides a small comparison.

Vivaldi is a multidimensional scaling technique and is based on spring embedding,
which models network nodes as masses connected by springs (links) and then relaxes
the spring length (energy) in an iterative manner to reach the minimum energy
state for the system. All nodes joining the system are placed at the origin, and start
sharing Vivaldi information with selected nodes piggybacked on application level
data. The Vivaldi information includes its coordinates, confidence estimations and
the measured latency. If a global graph is desired, each node can report its Vivaldi
information to a repository that does some calculations and inserts the node in a
two-dimensional plane where the Euclidian distance equals the estimated latencies.
Vivaldi has the advantage that it recovers from node churn (nodes joining and
leaving), and does not depend on any infrastructure.

Netvigator, often considered the most accurate [41], on the other hand, needs
landmark nodes and does not (easily) recover from churn. With Netvigator, a set of
landmark nodes L are probed asynchronously by N nodes using Traceroute (L*N
probes). Each node reports its measurements to a repository (typically a server
node), which estimates a global graph of latencies. Netvigator was originally designed
for proximity estimation, that is, to rank nodes according to proximity to any given
node.

6 Evaluation

In order to evaluate our system, we have performed several experiments, using
simulations and live tests on PlanetLab. We first evaluate the costs of using our
migration prototype. Then, we look at core selection before analyzing the network
estimation accuracy and its influence on the core selection.

6.1 Migration

The migration and name service are implemented as a proof-of-concept prototype.
We have tested this prototype by implementing a basic protocol for group commu-
nication, with the intention of imitating the interaction (and distribution) patterns
that we would expect to see in a virtual region. The test consisted of two servers
(for pre- and post-migration) and several clients. All the clients joined the same
communication group at the same initial server, generating random messages at
irregular intervals. After a period of time, the communication group was migrated
to the post-migration server. After migration, the clients seamlessly continued their

96 Multimed Tools Appl (2009) 45:83–107

interaction. The described scenario was run in excess of 100 times. Each time the
clients were able to continue their interaction unhindered. As such, the system has
shown that it is capable of migrating objects, maintain references to these objects
(through the name service), and have the clients reconnect to their new location.

An important aspect of such a system is whether the overhead of migration is too
large with respect to low latency communication. Therefore, to measure overhead,
we have timed a remote method invocation (which includes a look up in the name
service, serialization and deserialization, and a few other operations) and compared it
to a regular method invocation. We ran the tests on an Intel Core 2 Duo, using only
one core, which was clocked at 800MHz. The machine was running the operating
system Linux (kernel version 2.6.22-14), and both the sender and receiver were both
running on the same machine. The result is summarized in Table 2, where we can
see the (expected) overhead of the migration middleware itself. This overhead is
considerable, but negligible when compared to the overhead added by the network.
Thus, with respect to the latency gain, this is totally dependent on the core node that
is found.

We also need to consider the overhead of migrating a virtual region, though this
will greatly depend on the number of objects being migrated, and the size of the
objects in question. With our middleware, we migrate data only, as the code is shared.
We give application developers the possibility of defining the parts of an object that
they wish to migrate, as detailed in Section 3.3. The serialization mechanisms and
more are described in further detail in [5, 6].

6.2 Core selection

Now that we are able to transparently migrate the game state to another node,
we need to find the most appropriate node to migrate to. To test our proxy (core)
selection algorithms, we have simulated several algorithms [43] mimicking group
communication in a game, and we present the results from two of the most promising:
k-median and k-center (Sections 4.1.1 and 4.1.2, respectively).

In our first experiment, we perform a simulation. Our network is generated using
BRITE [35] with flat, undirected Waxman topologies [44] consisting of 1000 nodes.
The network layout is a square world with sides equal to 200 ms. The nodes join and
leave groups throughout the simulation, causing group membership to be dynamic,
and group popularity is distributed according to a Zipf distribution [9]. As a metric,
we use the worst-case pair-wise latency between clients (diameter) in a network
(measured from the core node). Thus, the diameter should be below the latency
requirements of the application (see Section 2.1), and it is desirable that the diameter
is as low as possible. Figure 5a plots the average group diameter for which a single
core-node selection algorithm has chosen a server-node as the root of the group tree
(all communication flows via the root). We see that choosing the server to be in the
topology center does significantly reduce the group diameter. It is also clear that
having a limited number of proxies (other core nodes) placed around the world can

Table 2 Cost of method
invocation

Invocation type # of Invocations Mean overhead

Remote 100,000 2.26541 ms
Normal 100,000 0.10125 μs

Multimed Tools Appl (2009) 45:83–107 97

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 10 20 30 40 50 60 70 80m
ax

im
um

 d
ia

m
et

er
 (

se
co

nd
s)

 o
f

gr
ou

ps

group size

Topology worst: Worst-case server
Group center: Best case core-node in each group, k-Median(k=1)

Topology center: Best-case server, k-Median(k=1)
Group center: Proxy architecture, k-Center(k=2)
Group center: Proxy architecture, k-Center(k=4)
Group center: Proxy architecture, k-Center(k=8) 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 10 15 20 25 30m
ax

im
um

 d
ia

m
et

er
 (

se
co

nd
s)

 o
f

gr
ou

ps

group size

Worst-case server
k-Center(k=1)

k-Median(k=1)

(a) Simulator: k number of cores. (b) PlanetLab: a single core.

Fig. 5 Diameter (seconds) of groups using core selection (a, b)

reduce the group diameter. And as expected, increasing the number of proxies does
decrease the diameter further.

In our next experiment, we performed experiments on PlanetLab. Figure 5b plots
the group tree diameter based on experiments done on 100 PlanetLab nodes. We
observe similar results as from the simulations using the core selection algorithms to
select a server, we can greatly reduce the diameter of the communication tree.

As our results show, we are able to find a suitable proxies which lowers the
diameter of the distribution tree, when taking into account the available proxies and
the locations of the group of players active in the give region.

6.3 Latency estimation

As mentioned above, in order to make an efficient server selection using the core
selection algorithms, we need information about the network. In Section 5, we
saw that full monitoring is too expensive and estimations are therefore frequently
used. In this section, we therefore present results from experiments measuring the
accuracy of Netvigator and Vivaldi by comparing their estimates to real all-to-all
ping measurements. Then, we look at the estimates’ influence on the server (core)
selection algorithms. For our experiments, we again used PlanetLab using 215 nodes
(the total number of nodes we were able to access). We performed latency tests over
a period of 10 days.

For the Netvigator experiments, we used publicly available estimates performed
on PlanetLab. Netvigator is currently a running PlanetLab service that estimates the
link latencies between nearly every PlanetLab node. We used these measurements
in our experiments. The Netvigator configuration is currently a black box for us.

For the Vivaldi experiments, we used a combination of the parameters in Table 3,
and used group sizes up to 12 nodes (more neighbors makes more measurements
and better estimations [18]). The RTT measurements were obtained in two different
manners using tcpinfo or ping (but the results are very similar to [43] and the plots
below therefore only how the tcpinfo results). The packet rate was varied because
a higher rate follows the actual latency development more closely, while it is also
consuming more bandwidth itself, at least in the active measurements. The log times

98 Multimed Tools Appl (2009) 45:83–107

Table 3 Vivaldi experiment
configurations

Descriptions Configurations

Group sizes g = 4, 8, 12 clients
RTT measures tcpinfo, ping
Packet rates High (100 packets/s), low (2 packets/s)
Log times t = 4, 8, 12, 16, 20 min

(t) parameter determined for how long the Vivaldi information was collected until
its estimations were used for identification decisions.

6.3.1 Estimate accuracy

As a measure of the estimation accuracy, we use the metric directed relative error,
i.e., ping-measured all-to-all RTTs compared to the latency estimates for each pair
of PlanetLab nodes (for other metrics, see [43]). A scatterplot of the results is shown
in Fig. 6 plotting the directed relative deviation between the measured (real) latency
versus the estimated latency, i.e., each point optimally should be on the y = 0 line.

We see that Netvigator is very accurate in its estimations, closely following the
ideal line whereas Vivaldi has a bit more variation. Netvigator yields 80% of the
estimations within a 15% relative error of the ping measurements and is clearly best.
Vivaldi estimations are best in configurations with a high packet rate, and yields 80%

(a) Vivaldi, low packet rate. (b) Vivaldi, high packet rate.

(c) Netvigator.

Fig. 6 Directed relative error of latency (a–c)

Multimed Tools Appl (2009) 45:83–107 99

of the estimations within a 50% relative error for a 4-min log time. This is because
more probes generates more statistics for Vivaldi to measure from in a shorter
time-span. Lower packet rates require a considerably higher log time to approach
the relative error satisfyingly. Furthermore, both Vivaldi, and to a lesser extent,
Netvigator, overestimate RTTs for the smaller actual RTTs, while underestimating
for longer distances. When the actual RTTs are very small, the overestimations
are relatively high, but the absolute deviation may still be acceptable for many
applications.

6.3.2 Latency estimates applied to core-node selection

The question now is how the estimation (in)accuracies influence the core selection
algorithms. The following results are gathered by applying the Netvigator and
Vivaldi latency estimates to the core-node selection algorithm k-Median, 1 < k ≤ 25.
For the experiment, we used 100 nodes from PlanetLab. The core nodes were found
using the network information obtained using both the estimation techniques and
all-to-all measurements. For the Vivaldi estimates, we allowed a period of 4 minutes
to let the node coordinates stabilize. The tests were run each day for a 10 day period.

Figure 7a plots the core-node selection hit ratio, which measures the ratio of “hits”
for each time the k-Median finds the same core-node using estimated latencies and
real all-to-all ping measurements. It is clear that Netvigator yields better estimates
for use in core-node search, and stabilizes around 80% core-node selection hit ratio
quickly. The hit-ratio is much lower using Vivaldi estimates (using a high packet
rate gives slightly better results), especially when the number of core-nodes is less
than 10.

Figure 7b plots the CDF of the minimum (min) core-node error in terms of latency
between the core-nodes found using latency estimates and the (optimal) core-nodes
found using the real all-to-all ping measurements. If the core-node error is zero, the
same core-node(s) is found using estimates and real measurements. As expected,
k-Median is most accurate when it uses Netvigator, with 95 % of the core-nodes
within 10 ms of an optimal core-node. The Vivaldi estimates makes k-Median return
more inaccurate results, with 85 % of the core-nodes within 10 ms of an optimal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
or

e
hi

t r
at

io

Number of cores

Netvigator
Vivaldi, low packet rate, g=8

 0

 0.2

 0.4

 0.6

 0.8

 1

Netvigator
Vivaldi, ping, low packet rate, g=8

(a) Ratio of optimal core selection hits when
k -Median is applied to Vivaldi and Netvigator
estimates.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

Fr
ac

tio
n

of
 s

am
pl

es

Relative core error (seconds)

Netvigator (min)
Vivaldi, high packet rate (min)

Netvigator (ecc)
Vivaldi, high packet rate (ecc)

(b) CDFs of relative core error. Minimum
(min) latency and eccentricity (ecc) for cores
from estimates to real cores.

Fig. 7 Netvigator and Vivaldi performance in core selection (a, b)

100 Multimed Tools Appl (2009) 45:83–107

(a) Vivaldi, low packet rate. (b) Vivaldi, high packet rate.

(c) Netvigator.

Fig. 8 Directed relative error of the reported eccentricity to the real eccentricity from cores to group
members (a–c)

core-node. Moreover, Fig. 7b also plots the maximum latency (ecc) between the
core-nodes found using latency estimates and the optimal core-nodes. Finally, the
discrepancy between the reported eccentricities and the real eccentricities are plotted
in Fig. 8 in terms of the directed relative error. Netvigator is clearly the best and has
a performance very close to the real eccentricity.

In summary, it is clear that Netvigator’s more accurate estimates enable the core-
node selection algorithm to return the better core-nodes. Nevertheless, Vivaldi’s
estimates still enable the core selection to find nodes within 20 ms of the optimal
core-nodes. Thus, both estimation techniques could be used. An important note,
however, is that the performance of Vivaldi depends on the packet rate, and in the
game scenario, the packet rate is closer to the tested low rate. Piggybacking Vivaldi
data in the data packets might therefore not be sufficient and additional probing
packets might be required.

7 Discussion

Following the discussion throughout this paper, a few things become apparent.
In order to perform migration we need a way of maintaining references to ob-
jects. As such, any object is identified through the name service by querying its

Multimed Tools Appl (2009) 45:83–107 101

home-address, an identifier which is provided by the name service at object creation.
The indirection through the name service is necessary for accessing objects at remote
nodes transparently. Core selection is dependent on full knowledge of the network,
but obtaining latency measurements through active probing is not a scalable solution.
Latency estimation techniques provide an alternative.

7.1 Implications of migration

Due to the distributed name service resolving references to remote objects can
become a time consuming task. An object that is frequently migrated will create
trails of object references at the nodes it visits. To reach the object, one could be
required to unravel a number of these references before being able to access the
object, though this will depend on where in the chain of references the object request
propagates from. One possible solution to solving this problem is to use leases, as
originally described by Gray et al. [28]. They describe a lease as a promise from the
server that it will push updates to the client for a specified amount of time. A more
flexible approach is described by Duvvuri et al. [21] in form of adaptive leases, which
make it possible for the server to adapt leases depending on different criteria. Thus,
the node that has migrated the object can request a lease on an object, and have the
server send it updates about the object reference for the duration of that lease.

Another concern is related to the side-effects of migrating game-state during
execution of the simulation. If migration is not performed transparently, we might
adversely affect the interacting players. In [36], Nelson et al. demonstrate how an
active application is moved from one virtual machine to another, with minimal
perceived impact to the user’s interaction with the application.

We also need to consider how to clean-up objects that are no longer in use.
With a distributed system, where objects are frequently moved around, the garbage
collection process becomes more complicated then otherwise. One solution is to use
reference counting, when the number of references to an object reaches zero, we can
remove the object. As such, each object holding a reference to another object must
send a message when it is no longer interested in holding a reference.

7.2 Partial failures

Partial failures occur when a node in a distributed system becomes unavailable,
effectively rendering the objects managed by it inaccessible. The current architecture
does not accommodate for partial failures, but there are ways to minimize the
repercussions of these incidents. One possibility has its roots in peer to peer based file
systems, where copies of an object will be distributed to several nodes in the system.
PAST [40] and OceanStore [27] have, for example, implemented such systems with
success. PAST copies objects to random nodes, in an attempt to distribute the objects
evenly. OceanStore uses a more deterministic approach, and places the objects
close to nodes which access them. Lookup of objects in the system can then be
implemented in a fashion similar to that of Chord [42] or Tapestry [46]. These
implementations are based on the principle of incrementally forwarding messages
from point to point, until they reach their destination. Each node in the system keeps
a small routing map, which is used to determine which nodes to forward the message
to. A problem with this type of look up is that the response time might be too high

102 Multimed Tools Appl (2009) 45:83–107

for interactive applications. A centralized approach would avoid the lookup time
problem, but would itself become a point of failure, and would also have to handle
all the network messages, which could potentially congest the server.

7.3 Latency estimation techniques

We have evaluated Netvigator and Vivaldi as popular representatives for the latency
estimation techniques. It is clear that Netvigator yields better estimations, but it is
also more difficult to set up as it depends on landmark nodes. In the scenario of
MMOGs, when the game provider has dedicated servers, this is not an issue, the
benefit of the increased accuracy outweighs the initial setup cost. However, while
Vivaldi does perform worse, it has the advantage of easy deployment and the ability
to recover from churn. The Netvigator configuration is a blackbox, as PlanetLab
has not disclosed this information. For Vivaldi, however, the best configuration was
a group size of 8 (and above) and high packet rates. A low packet rate reduced
the estimation accuracy, and required 8 min to stabilize, in contrast to 4 min at
high packet rates. This might be important to keep in mind, as Vivaldi piggybacks
probing information, and many games have a low packet rate [38], i.e., additional
probing packets might be needed using Vivaldi. For both Netvigator and Vivaldi,
k-Median is able to find close-to-optimal core-nodes, and it is clear that Netvigator
estimates enable the core-node selection algorithm to return the more optimal core-
nodes. Nevertheless, Vivaldi’s estimates still enable the core selection to find nodes
within some tens of milliseconds distance of the optimal core-nodes (with the server
densities that we tested). Thus, both estimation techniques could be used.

7.4 Activation policies

Core selection and migration require resources in the form of processing power and
network messages when activated. As such, they should be triggered methodically
and on-demand, with policies governing their activation. The combined process
consists of two stages, where the first stage evaluates if activating a core selection
is potentially beneficial. The activation criteria we have identified so far are: churn
(in the form of players joining/leaving), time of day, player arrival rate, history based
(this being a preemptive approach, where known situations, such as battles, trigger
the activation) and server-load. If the first stage is completed successfully, and a new
core is selected, the second stage needs to determine if performing a migration is
beneficial. Metrics of consideration include: threshold of aggregate latency, number
of players, packet loss, and server load. For both stages the metrics are not necessarily
mutually exclusive, and we do not consider these lists to be exhaustive.

8 Conclusion

It has been shown that there is a strong correlation between latency and the playabil-
ity of an online game [16], with the perceived game play deteriorating considerably
as the latency increases.

An important factor for world-spanning games, such as MMOGs, lies in the diver-
sity of its user base. There will, at any point in time, be a number of players connected

Multimed Tools Appl (2009) 45:83–107 103

from different physical locations. It has, however, been shown that distinct groupings
will appear, and change with the time-of-day [24, 29]. There have been made few
efforts into determining how to best support the dynamic player masses in virtual
worlds hosting thousands of concurrently interacting players, when geographically
distributed servers are available.

In this paper, we have presented a viable solution with geographically distributed
servers. We have shown how core selection can be used to find an optimal node in
the system for placing a virtual region, and correspondingly the players interacting in
that region. We have looked at how latency estimation techniques can be utilized to
gather information about the network in a scalable manner. Once an optimal node
has been located we can migrate the game state to that node, maintaining references
to the migrated state through the use of our distributed name service. By performing
this migration, the overall latency of that region can be lowered decreasing the
average network latency.

Thus far, we have implemented the migration and name service as a proof-of-
concept, and run some basic tests to determine its usability. Furthermore, we have
run simulations on core selection and determined its applicability in the scenarios
we have described. Additionally, we have run extensive tests that show how latency
estimation, using for example Vivaldi or Netvigator, provides a scalable approach
to gathering information about the network. Now, it remains to integrate this
functionality with an application and run large-scale tests.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

1. Armitage G (2008) Client-side adaptive search optimisation for online game server discovery.
Lect Notes Comput Sci 4982:494

2. Armitage G (2008) Optimising online fps game server discovery through clustering servers by
origin autonomous system. In: International workshop on network and operating system support
for digital audio and video (NOSSDAV)

3. Barak A, Guday S, Wheeler RG (1993) The MOSIX distributed operating system: load balancing
for UNIX. Springer, New York

4. Beigbeder T, Coughlan R, Lusher C, Plunkett J, Agu E, Claypool M (2004) The effects of
loss and latency on user performance in unreal tournament 2003. In: The proceedings of
NetGames’04, Portland, pp 144–151

5. Beskow P (2007) Migration of objects in a middleware for distributed real-time interatctive
applications. Master’s thesis, Department of Informatics, University of Oslo, Norway

6. Beskow P, Halvorsen P, Griwodz C (2007) Latency reduction in massively multi-player online
games by partial migration of game state. In: Second international conference on internet tech-
nologies and applications, Wrexham, pp 153–163

7. Beskow P, Vik K-H, Griwodz C, Halvorsen P (2008) Latency reduction by dynamic core selection
and partial migration of game state. In: Proceedings of NetGames’08, Worcester

8. Blair G, Coulson G, Robin P, Papathomas M (1998) An architecture for next generation middle-
ware. In: Proceedings of the IFIP international conference on distributed systems platforms and
open distributed processing. Springer, Berlin Heidelberg New York, pp 191–206

9. Brookes B (1968) The derivation and application of the Bradford-Zipf distribution. J Doc
24(4):247–265

10. Brun J, Safaei F, Boustead P (2006) Server topology considerations in online games. In:
NetGames ’06: Proceedings of 5th ACM SIGCOMM workshop on network and system support
for games. ACM, New York, p 26

104 Multimed Tools Appl (2009) 45:83–107

11. Chambers C, Feng W, Feng W, Saha D (2003) A geographic redirection service for on-line
games. In: Proceedings of the eleventh ACM international conference on Multimedia, Berkeley,
pp 227–230

12. Chambers C, Feng W, Sahu S, Saha D (2005) Measurement-based characterization of a collec-
tion of on-line games. In: The proceedings of the 5th ACM SIGCOMM workshop on internet
measurement, Berkeley, pp 1–14

13. Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt I, Warfield A (2005) Live
migration of virtual machines. In: NSDI’05: proceedings of the 2nd conference on symposium
on networked systems design & implementation. USENIX Association, Berkeley, pp 273–286

14. Claypool M (2005) The effect of latency on user performance in real-time strategy games.
Elsevier Comput Netw 49(1):52–70

15. Claypool M (2008) Network characteristics for server selection in online games. In: Proceedings
of the fifteenth annual multimedia computing and networking (MMCN’08), vol 6818, San Jose,
p 681808

16. Claypool M, Claypool K (2005) Latency and player actions in online games. Commun ACM
49(11):40–45

17. Costa M, Castro M, Rowstron A, Key P (2004) Pic: practical internet coordinates for distance
estimation. In: ICDCS ’04: proceedings of the 24th international conference on distributed
computing systems (ICDCS’04). IEEE Computer Society, Washington, DC, pp 178–187

18. Dabek F, Cox R, Kaashoek F, Morris R (2004) Vivaldi: a decentralized network coordinate
system. In: ACM international conference on applications, technologies, architectures, and pro-
tocols for computer communications (SIGCOMM), pp 15–26

19. Dick M, Wellnitz O, Wolf L (2005) Analysis of factors affecting players’ performance and
perception in multiplayer games. In: The proceedings of NetGames’05, Hawthorne, pp 1–7

20. Dovrolis C, Ramanathan P, Moore D (2001) What do packet dispersion techniques measure? In:
INFOCOM 2001. Twentieth annual joint conference of the IEEE computer and communications
societies, Proceedings, vol 2. IEEE, Piscataway

21. Duvvuri V, Shenoy P, Tewari R (2003) Adaptive leases: a strong consistency mechanism for the
world wide web. IEEE Trans Knowl Data Eng 15(5):1266–1276

22. Egenhofer M, Spatial S (1994) A query and presentation language. IEEE Trans Knowl Data Eng
6(1):86–95

23. Elmokashfi A, Kleis M, Popescu A (2007) Netforecast: a delay prediction scheme for provider
controlled networks. In: IEEE Globecom

24. Feng W, Feng W (2003) On the geographic distribution of on-line game servers and players. In:
The proceedings of NetGames’03, Redwood City, pp 173–179

25. Feng W, Chang F, Feng W, Walpole J (2002) Provisioning on-line games: a traffic analysis of
a busy Counter-strike server. In: The proceedings of the 2nd ACM SIGCOMM workshop on
internet measurement, Marseille, pp 151–156

26. Funcom (2008) Anarchy online. http://www.anarchy-online.com/
27. Geels D (2002) Data Replication in OceanStore. Tech. Rep. UCB//CSD-02-1217, Computer

Science Division, U. C. Berkeley
28. Gray C, Cheriton D (1989) Leases: an efficient fault-tolerant mechanism for distributed file cache

consistency. SIGOPS Oper Syst Rev 23(5):202–210
29. Griwodz C, Halvorsen P (2006) The fun of using TCP for an MMORPG. In: International

workshop on network and operating system support for digital audio and video (NOSSDAV).
ACM, New York, pp 1–7

30. Jul E, Levy H, Hutchinson N, Black A (1988) Fine-grained mobility in the Emerald system. ACM
Trans Comput Syst (TOCS) 6(1):109–133

31. Karaman A, Hassanein HS (2006) Core-selection algorithms in multicast routing—comparative
and complexity analysis. Comput Commun 29(8):998–1014

32. King B (2007) GCC-XML the xml output extension to gcc. Undated. http://www.gccxml.
org/HTML/Index.html

33. Kupfer MD (1993) Sprite on mach. In: MSYM’93: proceedings of the 3rd conference on USENIX
MACH III Symposium. USENIX Association, Berkeley, pp 7–7

34. Lee K, Ko B, Calo S (2005) Adaptive server selection for large scale interactive online games.
Comput Netw 49(1):84–102

35. Medina A, Lakhina A, Matta I, Byers J (2001) BRITE: Universal topology generation from
a user’s perspective. Tech. rep. BUCS-TR-2001-003, Computer Science Department, Boston
University

http://www.anarchy-online.com/
http://www.gccxml.org/HTML/Index.html
http://www.gccxml.org/HTML/Index.html

Multimed Tools Appl (2009) 45:83–107 105

36. Nelson M, Lim B, Hutchins G (2005) Fast transparent migration for virtual machines. In:
Proceedings of the USENIX annual technical conference 2005 on USENIX annual technical
conference table of contents, pp 25–25

37. Ng T, Zhang H (2001) Towards global network positioning. In: Proceedings of the 1st ACM
SIGCOMM workshop on internet measurement. ACM, New York, pp 25–29

38. Petlund A, Evensen K, Griwodz C, Halvorsen P (2008) Improving application layer latency
for reliable thin-stream game traffic. In: Workshop on network and system support for games
(NETGAMES), pp 91–98

39. Powell ML, Miller BP (1983) Process migration in demos/mp. Tech. rep., Berkeley
40. Rowstron A, Druschel P (2001) Storage management and caching in PAST, a large-scale, persis-

tent peer-to-peer storage utility. In: Proceedings of SOSP’01, Lake Louise, pp 188–201
41. Sharma P, Xu Z, Banerjee S, Lee S-J (2006) Estimating network proximity and latency.

SIGCOMM Comput Commun Rev 36(3):39–50
42. Stoica I, Morris R, Karger D, Kaashoek M, Balakrishnan H (2001) Chord: a scalable peer-to-

peer lookup service for internet applications. In: Proceedings of SIGCOMM’ 01, San Diego,
pp 149–160

43. Vik K-H (2008) Group communication techniques in overlay networks. Ph.D. thesis, Department
of Informatics, University of Oslo, Norway

44. Waxman BM (1991) Dynamic Steiner tree problem. SIAM J Discrete Math 4:364–384
45. Wong B, Slivkins A, Sirer E (2005) Meridian: a lightweight network location service without vir-

tual coordinates. Computing and Information Science Technical Report TR2005-1982, Cornell
University

46. Zhao B, Kubiatowicz J, Joseph A (2001) Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Tech. Rep. UCB/CSD-01-1141, Computer Science Division, U. C.,
Berkeley

47. Znati TB, Molka J (1992) A simulation based analysis of naming schemes for distributed systems.
In: Proceedings of the 25th annual simulation symposium, Los Alamitos, pp 42–53

Paul B. Beskow received his B.Sc. in Informatics in 2003, and his M.Sc. in 2007, both at the University
of Oslo (UiO) and is currently working on his Ph.D. at UiO and part-time at Simula Research Labo-
ratory. His main research interests include system support for low-latency communication including
object migration, network protocol optimizations, as well as various TCP protocol optimization
issues.

106 Multimed Tools Appl (2009) 45:83–107

Knut-Helge Vik is a Ph.D. student at the Simula Research Laboratory. His recent research activi-
ties address system demands for distributed interactive applications. The research include graph
theoretical problems for overlay network design, practical simulations and experiments of overlay
network construction algorithms, group management requirements related to latency and consis-
tency, etc. He received a Master of Science in Computer Science from Washington State University
in 2004, and has been a Ph.D. student at the Department of Informatics, University of Oslo and
Simula Research Laboratory since October 2004. More information and the publication list can be
found at http://home.ifi.uio.no/knuthelv.

Pål Halvorsen is an associate professor at Simula Research Laboratory and at the Department of
Informatics, University of Oslo, Norway. He is member of the Center for Research-based Innovation
“Information Access Disruptions”. He received his master and doctoral degree in computer science
from the University of Oslo in 1997 and 2001, respectively. His research activities focus mostly on
resource utilization and system support for distributed multimedia systems, and in particular, in the
area of on-demand streaming applications and multiplayer games.

http://home.ifi.uio.no/knuthelv

Multimed Tools Appl (2009) 45:83–107 107

Carsten Griwodz is a professor at Simula Research Laboratory, Norway and at the Department
of Informatics at the University of Oslo. He is member of the Center for Research-based Inno-
vation “Information Access Disruptions”. He received his Diploma in Computer Science from the
University of Paderborn, Germany, in 1993. From 1993 to 1997, he worked at the IBM European
Networking Center in Heidelberg, Germany. In 1997 he joined the multimedia communications
lab at Darmstadt University of Technology, Germany, where he obtained his doctoral degree in
2000. His interests lie in the improvement of system support for interactive distributed multimedia,
with operating systems and protocol support for on-demand streaming applications and multiplayer
games in particular.

	The partial migration of game state and dynamic server selection to reduce latency
	Abstract
	Introduction
	Background and related work
	Game characteristics
	Migration techniques
	Server selection
	Network estimation
	Summary

	Moving worlds with migration
	Name service
	In action
	Code generation

	Core selection
	Core selection algorithms
	k-median core-node selection algorithm
	k-center core-node selection algorithm

	Latency estimation
	Evaluation
	Migration
	Core selection
	Latency estimation
	Estimate accuracy
	Latency estimates applied to core-node selection

	Discussion
	Implications of migration
	Partial failures
	Latency estimation techniques
	Activation policies

	Conclusion
	References

