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Abstract In modern geographic information systems, route search represents an
important class of queries. In route search related applications, users may want to
define a number of traveling rules (traveling preferences) when they plan their trips.
However, these traveling rules are not considered in most existing techniques. In this
paper, we propose a novel spatial query type, the multi-rule partial sequenced route
(MRPSR) query, which enables efficient trip planning with user defined traveling
rules. The MRPSR query provides a unified framework that subsumes the well-
known trip planning query (TPQ) and the optimal sequenced route (OSR) query.
The difficulty in answering MRPSR queries lies in how to integrate multiple choices
of points-of-interest (POI) with traveling rules when searching for satisfying routes.
We prove that MRPSR query is NP-hard and then provide three algorithms by
mapping traveling rules to an activity on vertex network. Afterwards, we extend
all the proposed algorithms to road networks. By utilizing both real and synthetic
POI datasets, we investigate the performance of our algorithms. The results of
extensive simulations show that our algorithms are able to answer MRPSR queries
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effectively and efficiently with underlying road networks. Compared to the Light
Optimal Route Discoverer (LORD) based brute-force solution, the response time
of our algorithms is significantly reduced while the distances of the computed routes
are only slightly longer than the shortest route.

Keywords Advanced traveler information systems · Path search ·
Query processing · Location-based services

1 Introduction

In Geographic Information Systems (GIS) related research [4, 8, 24, 27, 30], sig-
nificant efforts have been spent on nearest neighbor (NN) queries, range queries
as well as their variants [16, 18, 31, 35]. While these query types are building blocks
for many existing applications, more advanced spatial query types must be studied
for future GIS systems. Route queries [5, 14, 18, 27, 32, 33] are an important class
of spatial queries for users to request an efficient path by specifying a source and a
destination. As an essential component, route queries are widely supported by many
of today’s popular online map service providers (e.g., Google Maps,1 MapQuest,2

Yahoo! Maps,3 Bing Maps4). By issuing a route query to a map service provider,
users will obtain a recommended route on the map with an estimated mileage and
turn-by-turn driving instructions. Li et al. [18] proposed solutions for Trip Planning
Queries (TPQ). With TPQ, the user specifies a set of Point of Interest (POI) types
and asks for the optimal route (with minimum distance) from her starting location
to a specified destination which passes through exactly one POI of each POI type.
On the other hand, Sharifzadeh et al. [27, 29] presented OSR queries where the user
asks for an optimal route from her starting location and passing through a number
of POIs (each with a different type) in a particular order (sequence) imposed on all
the types of POIs to be visited. However, both TPQ and OSR queries fail to consider
the sub-sequences of POI types which occur naturally in many GIS applications. To
remedy this, in this study, we propose a novel route query type, Multi-Rule Partial
Sequenced Route (MRPSR) query. Our objectives are to assist users to plan trips that
involve multiple POIs which belong to different POI categories (types) and satisfy a
number of user defined traveling rules in road networks with a short response time.
Our MRPSR query aims at unifying the well-known TPQ and OSR queries.

1.1 Motivation

As a motivating application, consider the scenario as shown in Fig. 1. Alice is
planning a trip that starts from her home and involves visiting the following POI
categories: a bank, a restaurant, a gas station, and a movie theater. In addition, Alice
also makes the following traveling rules on her trip:

1http://maps.google.com/
2http://www.mapquest.com/
3http://maps.yahoo.com/
4http://maps.bing.com/

http://maps.google.com/
http://www.mapquest.com/
http://maps.yahoo.com/
http://maps.bing.com/
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Fig. 1 Two possible routes
(solid and dashed arrows) of a
MRPSR query Gas

Station
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1. Visit a bank to withdraw money before having lunch at a restaurant.
2. Fill up gas before going to watch a movie.

In order to fulfill the two traveling rules, the returned trip must contain two sub-
sequences: (a) traveling to a bank before going to a restaurant and (b) visiting a
movie theater after filling up the gas tank in a gas station. Aside from these two
sequences, Alice is free to visit any of the other POI categories in any order she
pleases and furthermore, they can be interleaved in any order with the two rule-
based sequences. Figure 1 illustrates two possible satisfying routes in a road network
with different travel distances.

User defined traveling rules can be formulated as sub-sequences of POI categories
in MRPSR queries. Such sub-sequences (or partial sequence) exist inherently in
many GIS applications or can be specified by users as external constraints. There-
fore, MRPSR queries are useful in numerous fields such as automotive navigation
systems, transportation planning, supply chain management, online Web mapping
services, etc.

Note that the MRPSR query differs from the Traveling Salesman Problem (TSP).
In both cases a least-cost route is sought. However, with TSP a set of POIs (e.g.,
cities) is given and each element must be visited exactly once. On the other hand,
with MRPSR each POI is associated with a category and one may select any element
of that category. For example, if the route should include a gas station visit, then one
may choose any one of the available gas stations.

1.2 Contribution

In this study we present the MRPSR query and provide three fast approximation
algorithms which are designed to efficiently compute satisfying routes with the near-
optimal travel distance in road networks. This paper is based on our earlier paper [5],
in which all the proposed solutions and experiments are based on Euclidean distance
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in a vector space. In order to serve real-world GIS applications effectively, we extend
all the route query algorithms to road networks with an extensive set of simulations
in this paper. The contributions of our work are as follows:

– We formally define the Multi-rule Partial Sequenced Route (MRPSR) query and
prove the MRPSR problem to be a member of the NP-complete class.

– By casting traveling rules into an activity-on-vertex network, we utilize topolog-
ical sorting [13] to integrate traveling rules with multiple choices of POIs and
study the solvability of MRPSR queries.

– We propose the Nearest Neighbor-based Partial Sequence Route query
(NNPSR) algorithm. The NNPSR algorithm uses activity-on-vertex networks to
guide the search to retrieve a near-optimal route satisfying all the traveling rules
in road networks.

– We integrate NNPSR with the Light Optimal Route Discoverer (LORD) algo-
rithm [27] to create NNPSR-LORD that further reduces the trip distance based
on the NNPSR algorithm.

– We also design an Advanced A* Search-based Partial Sequence Route query
(AASPSR(k)) algorithm. AASPSR(k) takes advantage of the location of the
destination as well as traveling rules to generate an efficient trip plan in road
networks.

– We compare the performance of NNPSR, AASPSR(k) and NNPSR-LORD
analytically.

– By using real and synthetic POI datasets, we compare experimentally the perfor-
mance of NNPSR, AASPSR(k), NNPSR-LORD and the LORD-based brute-
force solution in the road network of California.

1.3 Paper organization

The rest of the paper is organized as follows. The research problem is formally
defined in Section 2. In Section 3 we introduce AOV networks. We elaborate on
NNPSR, NNPSR-LORD, and AASPSR(k) algorithms in Section 4. The experimen-
tal validation of our design is presented in Section 5. Section 6 surveys the related
work. We conclude the paper with a discussion of future work in Section 7.

2 The multi-rule partial sequenced route query

In this section, we formulate the proposed multi-rule partial sequenced route query
and then discuss the properties of the proposed query type. The definitions of the
multi-rule partial sequenced route query and the partial sequence rules are intro-
duced in Section 2.1. The properties of the multi-rule partial sequenced route query
are discussed in Section 2.2. Section 2.3 presents the definition of the percentage of
the constrained categories.

2.1 Problem formulation

Definition 1 Given n disjoint sets of POI category {C1, C2, . . . , Cn}, each containing
a number of POIs in R2, the MRPSR query is to search for a route that satisfies the
following three requirements:
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1. The route will traverse through exactly one POI in each category;
2. The total traveling distance is minimized;
3. The route conforms with the given constraints (i.e., traveling rules).

While the first two requirements are commonly seen in the other types of
route queries [18, 27], the third requirement is unique. Here, the issue is how we
should properly define a constraint. Without loss of generality, we assume that each
constraint can be mapped into a partial sequence rule, defined as follows.

Definition 2 A partial sequence rule is defined as an ordered subset of categories
Ck1 → Ck2 → · · · → Ckm , which specifies the order of visits between < Cki > in the
subset.

For instance, a user may issue a MRPSR query with a constraint that he would
like to withdraw money at a bank before going for grocery shopping and dinner. This
constraint can be converted to the following two partial sequence rules:

1. CBank → CSupermarket

2. CBank → CRestaurant.

These two rules enforce that a bank should be visited before a supermarket and
a restaurant on the trip, but do not put a restriction on the order between the
supermarket and the restaurant.

Notice that if no restriction is placed on the format of the user’s constraints, the
translation itself is a challenging artificial intelligence research problem [21]. The
human natural language can be ambiguous and non-grammatical. The automatic
translation requires to create algorithms that can deal with not only the ambiguity
but also with parsing and interpretation of a large dynamic vocabulary, which is not
likely to be accomplished in real time. With the help of input forms, the types of
the user’s constraints can be limited so that the translation from the constraints to
the partial sequence rules can be handled with ease. With the notion of the partial
sequence rules, the compatibility of a set of partial sequence rules can be defined as
follows.

Definition 3 A set of the partial sequence rules is defined to be compatible if and
only if there is a total order of < Ci > that satisfies the order specified in each of the
rules in the set.

For instance, the set of rules {C1 → C2, C2 → C3, C3 → C1} is not compatible
since it will be impossible to satisfy all these three rules at the same time. When all
the travel constraints are represented as a set of partial sequence rules, the original
definition of the MRPSR query can be formulated as follows.

Definition 4 Given a set of POI categories and a set of partial sequence rules, a
MRPSR query is defined to return the route with the minimal total traveling distance
that satisfies the order specified in each of the partial sequence rules.
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2.2 Properties of The MRPSR query

The following theorem shows that MRPSR query provides a unified framework
that subsumes the well-known trip planning techniques, including the trip planning
queries (TPQ) [18] and the optimal sequenced route (OSR) queries [27].

Theorem 1 The problems of the trip planning query and the optimal sequenced route
query are special cases of the problem of the multi-rule partial sequenced route query.

Proof According to [18], the problem of the trip planning query is identical to the
problem of the multi-rule partial sequenced route query when the set of partial
sequence rules is empty. In addition, according to [27], the problem of the optimal
sequenced route for a given sequence of categories of POIs is the same as the
problem of the multi-rule partial sequenced route query when the set of partial
sequence rules contains one partial sequence rule specifying the same order. ��

From Theorem 1, we obtain the following important property for the MRPSR
query.

Corollary 1 The problem of the multi-rule partial sequence route query is NP-hard.

Proof According to [18], the problem of the trip planning query is NP-hard. To show
our problem of the multi-rule partial sequence route query is also NP-hard, we need
to construct a polynomial transformation from the problem of the trip planning query
to ours. Given an instance of the trip planning query, i.e., the optimal route between a
pair of source and destination with a given set of POI types, we can easily transform
it to a MRPSR query, which asks for the optimal route between exactly the same
source/destination and the same set of POI types with no rule specified between
the types. This transformation is obviously polynomial. According to [7], it follows
immediately that the problem of the multi-rule partial sequenced route query is NP-
hard. ��

Corollary 1 implies that when the search space is large, it is advisable to quickly
find a suboptimal route that satisfies the given partial sequence rules instead of the
route with the minimal total distance.

The set of the partial sequence rules plays an important role in the MRPSR query.
As indicated in Theorem 1 and Corollary 1, if the set is empty, the search space will
be large and the MRPSR query is NP-hard. However, if the rule specifies the total
order of the categories, the MRPSR problem can be solved in polynomial time [27].
Intuitively, the tighter the set of rules is, the smaller the search space will be and the
easier the MRPSR query can be answered. While it is difficult to quantify the level of
tightness for a set of partial sequence rules, we provide Theorem 2 to see if a given set
of rules will possibly lead to a solution. Theorem 2 shows the relationship between
the solvability of a MRPSR query and the compatibility of a given set of rules.

Theorem 2 If a multi-rule partial sequenced route query is solvable, then the corre-
sponding set of the partial sequence rules must be compatible.
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Proof The proof is done by contradiction. Assume that the set of rules is not
compatible, then according to Definition 3 there is no ordered sequence of categories
that satisfies all the rules. In other words, no matter how POIs are selected, it will be
impossible to order them so that the ordered sequence meets all of the constraints.

��

Notice that Theorem 2 does not guarantee that a compatible set of partial
sequence rules can always lead to a solution for a corresponding MRPSR query
because some categories may contain no POI. If each category contains at least one
POI, the inverse of Theorem 2 (i.e., the compatible set of rules implies the solvability
of the corresponding MRPSR query) will also be true. According to Definition 3,
if the partial sequence rules are compatible, then there must exist at least one total
order of categories < Ci > that satisfies the order specified in each of the rules. Let
one of such orders be {C1, C2, . . . , Cn}. Now since each category is not empty, we can
arbitrarily pick one POI px from each category Ci to compose a route {p1, p2, . . . , pn}
which traverses through exactly one POI in each category and conforms with the
given traveling rules. According to Definition 1, if there is only one such route, we
have our answer. If not, the one with the minimal traveling distance will be what
we want to retrieve. In Section 3, we will elaborate how to verify if a set of partial
sequence rules is compatible.

2.3 Percentage of the constrained categories

Definition 5 Given a MRPSR query, the Percentage of the Constrained Categories
(PCC) is defined as the percentage of the number of categories included in the set of
traveling rules over the total number of categories to be visited in the query.

PCC is used to measure the extent that a MRPSR query is constrained by traveling
rules. According to the definition of PCC, the trip planning query (TPQ) [18] can be
considered as a MRPSR query with a PCC of 0% while the optimal sequenced route
(OSR) query [27] can be treated as a MRPSR query with a PCC of 100%.

3 Activity-on-vertex networks

In order to plan a route which can fulfill all the user defined partial sequence rules,
we need a solution to combine all the provided traveling rules and verify if they are
compatible. The relationship between all the given traveling rules can be represented
as a directed graph in which the vertices represent POI categories and the directed
edges represent prerequisites. This graph has an edge <i, j> if and only if category i
is an immediate prerequisite for category j in one of the rules. The complete graph
is named Activity-On-Vertex (AOV) network [11]. The following theorem provides
the relationship of an AOV network and the compatibility of the traveling rules.

Theorem 3 The partial sequence rules are compatible if and only if the corresponding
AOV network is a directed acyclic graph.
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Proof Definition 3 indicates that the rules are compatible if and only if there is a
category sequence that satisfies the order specified in each of the traveling rules.
Let that category sequence be the feasible sequence of tasks that satisfies all of the
orders. According to [11], an AOV has a feasible sequence of tasks if and only if
the precedence relations in the AOV network are both transitive and irreflexive. In
other words, the corresponding AOV network must be directed and acyclic. ��

Table 1 lists the POI categories and partial sequence rules specified by an example
MRPSR query Q. The corresponding AOV network for Q is shown in Fig. 2.

After we represent all the partial sequence rules in a MRPSR query as an AOV
network, providing that the AOV network is directed and acyclic, Topological Order
(or Topological Sorting) can be used to generate a feasible complete ordering of POI
categories which is compatible with every partial sequence rule in the MRPSQ query.
In graph theory, a topological order of a directed acyclic graph (DAG) is a linear
ordering of its vertices in which each vertex comes before all vertices to which it has
outbound edges. Each DAG has at least one topological order. The algorithm to find
a topological order is as follows. The first step is to list out a vertex in the network that
has no predecessor. Then the second step is to delete this vertex and all edges leading
out from it from the AOV. By repeating these two steps until either all the vertices
have been listed or all remaining vertices have predecessors and hence none of them
can be removed. In the latter case, the AOV has a cycle and the trip is infeasible,
i.e., the partial sequence rules are not compatible. If a topological order has the
property that all pairs of consecutive vertices in it are connected by AOV edges,
then these edges form a directed Hamiltonian path in the AOV [13]. If a Hamilton
path exists, the topological sort order is unique and no other order respects the edges
of the path. On the contrary, if a topological order does not form a Hamiltonian
path, the AOV will have two or more valid topological orderings, for in this case
it is always possible to form a second valid ordering by swapping two consecutive
vertices that are not connected by an AOV edge to each other. For supporting both
cases, we keep a counter of the number of immediate predecessors for each vertex
and represent the network by its adjacency lists. Then we can carry out the deletion
of all incident edges of a vertex v by decreasing the predecessor count of all vertices
on its adjacency list. Whenever the count of a vertex drops to zero (in-degree = 0),
we place the vertex on a list (Lzero) of vertices with a zero count. As mentioned in
Section 1, the traveling rules (the AOV network) may not cover all the user selected

Table 1 POI categories and
partial sequence rules in an
example MRPSR query Q

Data type Name Prerequisites

C1 Bank None
C2 Bookstore None
C3 Restaurant C1, C2
C4 Gas station None
C5 Hospital C4
C6 Shopping center C5
C7 Church C3, C6
C8 Coffee shop C3
C9 Gift shop C7, C8
C10 Park C7
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Fig. 2 The AOV network of
Q represents POI categories as
vertices and prerequisites as
edges C1

C2

C3

C8

C7

C9

C10

C4 C5 C6

POI categories. With the goal of creating a complete trip plan (i.e., the plan covers
all requested categories), we add all the requested POI types which are not included
in the AOV into the list Lzero. The complexity of topological sort is O(e + n), where
n is the number of vertices and e is the total edge number. The sort can be finished
in linear time.

4 Algorithm design

After having the AOV networks in hand, we can start to compute a trip plan
satisfying all the traveling rules. In this section, we propose three approximate
algorithms to answer a MRPSR query: the Nearest Neighbor-based Partial Se-
quenced Route (NNPSR) algorithm, the Nearest Neighbor-based Partial Sequenced
Route with Light Optimal Route Discoverer [27] (NNPSR-LORD) algorithm, and
the Advanced A* Search-based Partial Sequenced Route (AASPSR(k)) algorithm.
NNPSR applies AOV networks to capture traveling rules and launches successive
nearest neighbor queries to answer a given MRPSR query. NNPSR-LORD utilizes
the Light Optimal Route Discoverer [27] to optimize the route obtained by NNPSR.
In AASPSR(k), as a hybrid scheme of NNPSR and ASPSR, distance heuristic
functions are integrated with NNPSR to answer a MRPSR query. All of the proposed
algorithms aim to find the near-optimal route which follows all of the traveling rules.
Table 2 summarizes our set of notations.

4.1 Nearest neighbor search in road networks

In practice, users usually move only on the underlying road networks rather than
traveling freely through obstacles (e.g., buildings, rivers, etc.). Network distance
computations and nearest neighbor queries in road networks have been well stud-
ied [12, 15, 20]. As the basic building block of our proposed algorithms, in this
subsection, we briefly review how to answer a nearest neighbor query in road
networks by the incremental network expansion approach [20].

Figure 3 demonstrates the nearest neighbor search by applying the incremental
network expansion technique [20]. In Fig. 3, the black point, q, stands for the query



550 Geoinformatica (2011) 15:541–569

Table 2 Symbolic notations Symbol Meaning

A The adjacency list representation of an AOV
C The set of all the user selected categories
R The set of all the traveling rules
P A set of POIs
Q The priority queue
S The starting point of a MRPSR query
D The destination of a MRPSR query
q The query point of a nearest neighbor query
Ci A POI category
Ci.P All the POIs of a category
Lzero A list of AOV vertices with a zero count
Lroute A list of the POI sequence of a trip plan
PNN The query result of a nearest neighbor query
DistE(x, y) The Euclidean distance between points x and y
DistN(x, y) The network distance between points x and y

point, the white points, A, B, C, D, E, and F, denote road network junctions, the
triangles, P1, P2, and P3, represent POIs (which are in ascending order of their
Euclidean distance to q), and the numbers symbolize the distances between two
points. Incremental network expansion performs network expansion from q and
examines POIs in the order in which they are encountered. To be specific, first,
the road segment CD that covers q is found and all POIs on CD are retrieved.
Then a priority queue, Q =< (C, 5), (D, 7) >, is initiated. Since no POI is covered
by CD, the node C which is closest to q is de-queued and its adjacent nodes, A
and E, are inserted into Q with their accumulated distance from q, i.e., Q =<

Fig. 3 NN search by the
incremental network
expansion algorithm [20]
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(D, 7), (A, 9), (E, 10) >. No POI is discovered on CA and CE. Next, D whose
distance is closest to q in the current Q is expanded and its adjacent nodes, B and F,
are en-queued. Then, we have Q =< (A, 9), (E, 10), (F, 10), (B, 15) >. Afterward,
P3 can be discovered on DB with a distance of 9 while no POI is found on DF. This
distance offers an upper bound to restrict the search space. Because the next node to
expand is A and the distance from q to A is already 9, which is no less than the upper
bound, the algorithm terminates and returns P3 as the nearest neighbor to q with a
network distance of 9.

4.2 Nearest neighbor-based partial sequenced route algorithm

Here we devise a Nearest Neighbor-based Partial Sequence Route (NNPSR) query
algorithm by utilizing both the Lzero list and the nearest neighbor query (i.e.,
the incremental network expansion [20] based implementation) to generate a trip
satisfying all the traveling rules. With NNPSR, we first search for the nearest POI to
the query point q (as the starting point) whose category is included in Lzero. The
retrieved nearest POI PNN will be stored in a route list Lroute and the category
of PNN (i.e., PNN.C) will be removed from Lzero. Next, we update the adjacency
list and new zero count vertices may be added to Lzero. In addition, the query
point q is also updated to the location of PNN. The process will repeat until all the
selected categories are contained in the route. The complete algorithm of NNPSR is
formalized in Algorithm 1.

4.3 NNPSR with light optimal route discoverer algorithm

Suppose a complete POI sequence to be visited is given, the Light Optimal Route
Discoverer (LORD) algorithm [27] can guarantee to retrieve a route of minimum
distance. Since we can obtain a complete POI sequence after each execution of
the NNPSR algorithm, we can further optimize the trip by applying LORD on the
POI sequence found by NNPSR. LORD is a threshold-based algorithm and requires
less memory space compared with Dijkstra’s shortest path solution. The first step in
LORD is to issue consecutive nearest neighbor queries to find the greedy route that
follows the given POI category sequence from the starting point. Then, the length
of the greedy route becomes a constant threshold value Tc. In addition, LORD also
keeps a variable threshold value Tv whose value reduces after each iteration and
LORD discards all the POIs whose distances to the starting point are more than Tv .
Afterward, LORD iteratively builds and maintains a set of partial sequenced routes
in the reverse sequence (i.e., from the end points toward the starting point). During
each iteration of LORD, POIs from the following category are added to the head of
each of these partial sequence routes to make them closer to the starting point. The
two thresholds are utilized to prune non-promising routes for reducing the search
space.

After executing the NNPSR algorithm, we can acquire a sequence of POIs. Since
each POI belongs to an individual POI category, we can also obtain a POI category
sequence as the input of LORD. For most cases, the NNPSR-LORD solution
outperforms the original NNPSR algorithm in terms of route distance. More detailed
performance evaluations are presented in Section 5.
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Algorithm 1 Nearest neighbor-based partial sequenced route query (C, R, S, D)
1: Set Lroute = ∅ and q = S
2: Integrate all elements in R into an AOV adjacency list A and put all vertices with

zero count in Lzero

3: if The AOV network is a DAG then
4: Add all elements of C \ A into Lzero

5: while Lzero �= ∅ do
6: P = ∅
7: for each Ci ∈ Lzero do
8: P = Ci.P ∪P

9: end for
10: Identify the road segment nin j covering q.
11: Find all the POIs in P on nin j.
12: if If there exists at least one POI in P on nin j then
13: Update pNN with the POI Pk with the smallest DistN(q, Pk).
14: else
15: Q =< (ni, DistN(q, ni)), (n j, DistN(q, n j)) >

16: De-queue the node n in Q with the smallest DistN(q, n)

17: while DistN(q, n) < Threshold do
18: for each non-visited adjacent node nk of n do
19: Find all the POIs in P on the road segment nnk.
20: Update PNN from the POI p′ in P with the smallest network distance

found so far
21: Update Threshold with DistN(q, p′)
22: En-queue (nk, DistN(q, nk)) in Q
23: end for
24: De-queue the node n in the updated Q with the smallest DistN(q, n)

25: end while
26: end if
27: q = PNN

28: Lroute = Lroute ∪ PNN

29: Remove PNN.C from Lzero

30: Update A and Lzero

31: end while
32: return Lroute

33: else
34: Report cycles in R

35: end if

4.4 Advanced A* search-based partial sequenced route algorithm

Although the NNPSR and NNPSR-LORD algorithms can fulfill the traveling rules
and reduce the travel distance of a trip, they do not consider the location of the desti-
nation when greedily generating the route sequence. Consider the example shown in
Fig. 4. In Fig. 4, S and D denote the start point and destination of the trip. Suppose
we have a traveling rule which can be denoted as Bank → Restaurant. We will find
that the dashed route returned by NNPSR is much longer than another feasible trip
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Fig. 4 Two trips generated by
NNPSR (the dashed route) and
ASPSR (the solid route) with
the traveling rule
Bank → Restaurant

(the solid route) which considers the location of the destination. Therefore, another
approach is to limit the trip planning within a range defined by S and D (e.g., an
ellipse whose two focal points are S and D).

The A* search based Partial Sequenced Route (ASPSR) algorithm considers the
location of the destination in its heuristic function. Similar to the admissible heuristic
of the A* algorithm [23], in ASPSR, we retrieve the POI p with the minimum cost of
DistE(S, p) + DistE(p, D) in each category included in Lzero. Afterward the POI p
with the lowest cost will be added into the route list Lroute and the category of p will
be withdrawn from Lzero. Then both A and Lzero will be updated and the location of
p is set as the new query point. The process will reiterate until all the user selected
categories are covered.

However, there could be roundabout ways when we plan a trip by ASPSR.
Consider an example as shown in Fig. 5. Because the POIs which are closer to the
major axis of the ellipse (S and D are the two focal points) have a lower distance
cost, Bank1, Restaurant1 and Gas Station1 will be selected sequentially in ascending
order of their costs. Consequently, a detour will occur where the user has to travel
far away from from D to visit Gas Station1 and Restaurant1 before reaching D at last.
Therefore, we need to improve ASPSR to solve the aforementioned problem.

The improved version of ASPSR is named the Advanced A* Search-based Partial
Sequenced Route query (AASPSR) algorithm. In the following sections of this
paper, we use AASPSR(k) to denote our AASPSR algorithm with parameter k
to specify the number of POIs we retain for each category. AASPSR(k) can be
considered a hybrid scheme which combines ASPSR and NNPSR. To be specific,

Fig. 5 An illustration of a trip
search by ASPSR with the
traveling rule
Bank → Restaurant
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AASPSR(k) first computes Ci.P* for each category Ci in C such that every POI in
Ci.P* is a POI with the top-k minimum traveling distance sum from S to D in Ci. In
particular, if k = 1, only one POI with the shortest traveling distance sum from S to
D for Ci is added to Ci.P*. In contrast, if k = ∞, then all the POIs on the underlying
road network will be included in Ci.P* for each Ci. After Ci.P* has been generated
for each category, we launch NNPSR to generate a route only on these selected POIs
in each Ci.P*. Starting with S, we search for the nearest POI p in Ci.P* (Ci ∈ Lzero).
Afterward, p is inserted into Lroute and the location of p is used as the query point of
the following NN query. Next we remove the category of p from Lzero and recompute
the adjacency list. The whole process will repeat until Lzero becomes empty. The
complete algorithm of AASPSR(k) is illustrated in Algorithm 2. For comparison
purposes, the trips generated by AASPSR(1) and by AASPSR(2) are demonstrated
in Figs. 6 and 7, respectively.

4.5 Comparison between NNPSR, NNPSR-LORD and AASPSR

In order to analyze the performance of the three aforementioned algorithms, we use
the following two definitions:

Definition 6 A MRPSR query is called to be a strictly constrained query if its PCC
value is relatively high.

Definition 7 A MRPSR query is called to be a loosely constrained query if its PCC
value is relatively low.

Theorem 4 Given a MRPSR query, AASPSR does not necessarily return a shorter
route than NNPSR.

Proof We can prove our assertion by a counter-example as shown in Fig. 8. In
Fig. 8, the triangles, rectangles, and pentagons each represent a different category
of POIs, and S and D denote the start point and destination of the trip, respectively.
Additionally, we have a traveling rule denoted as triangle → rectangle → pentagon.
Consequently, the NNPSR created trip plan T1 = {S, px1, py1, pz1, D} (the solid
route) is shorter than the AASPSR created trip plan T2 = {S, px2, py2, pz2, D}
(the dashed route). The existence of traveling rules leads to a roundabout route
in AASPSR, which only chooses the POIs inside the ellipse. Therefore, AASPSR
performs worse than NNPSR in terms of route distance in this scenario. ��

In each category, AASPSR(k) only chooses the k POIs which have the minimum
traveling distance sum from the start point to the destination for the subsequent NN
search. Consequently, if there are too many traveling rules imposed, i.e., there are
many restrictions on the category order, AASPSR(k) will be very likely to generate
a roundabout route. Therefore, for strictly constrained MRPSR queries which have
a higher PCC, NNPSR usually returns a shorter route than AASPSR(k). On the
other hand, for loosely constrained MRPSR queries, which hold a lower PCC, such
as TPQ (PCC equals zero), AASPSR(k) usually outperforms NNPSR in terms of
route distance.
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Algorithm 2 Advanced A* search-based partial sequenced route query (C, R, S, D,
k)

1: Set Lroute = ∅ and Q = S
2: Integrate all elements in R into an AOV adjacency list A and put all vertices with

zero count in Lzero

3: if The AOV network is a DAG then
4: Add all elements of C \ A into Lzero

5: for each category Ci ∈ C do
6: for each POI pj ∈ Ci.P do
7: Cost j = DistE(S, pj) + DistE(pj, D)

8: end for
9: Sort POI pj ∈ Ci in ascending order based on Cost j and add the top-k pj ∈

Ci with the minimum Cost j into Ci.P*
10: end for

{ASPSR search done, the subsequent NNPSR search starts}
11: while Lzero �= ∅ do
12: P = ∅
13: for each Ci ∈ Lzero do
14: P = P ∪ Ci.P∗
15: end for
16: Identify the road segment nin j covering q.
17: Find all the POIs in P on nin j.
18: if If there exists at least one POI in P on nin j then
19: Update PNN with the POI Pk with the smallest DistN(q, Pk).
20: else
21: Q =< (ni, DistN(q, ni)), (n j, DistN(q, n j)) >

22: De-queue the node n in Q with the smallest DistN(q, n)

23: while DistN(q, n) < Threshold do
24: for each non-visited adjacent node nk of n do
25: Find all the POIs in P on the road segment nnk.
26: Update PNN from the POI p′ in P with the smallest network distance

found so far
27: Update Threshold with DistN(q, p′)
28: En-queue (nk, DistN(q, nk)) in Q
29: end for
30: De-queue the node n in the updated Q with the smallest DistN(q, n)

31: end while
32: end if
33: q = PNN

34: Lroute = Lroute ∪ PNN

35: Remove PNN.C from Lzero

36: Update A and Lzero

37: end while
38: return Lroute

39: else
40: Report cycles in R

41: end if
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Fig. 6 An illustration of a trip
search by AASPSR(1) with
the traveling rule
Bank → Restaurant

Fig. 7 An illustration of a trip
search by AASPSR(2) with
the traveling rule
Bank → Restaurant

Fig. 8 An example where
AASPSR generates a longer
route than NNPSR

y2

z1y1x1

z2 x2

Table 3 Feature comparison among the proposed algorithms

Query Features NNPSR AASPSR(k) NNPSR-LORD

Strictly constrained MRPSR (e.g., OSR) � �
Loosely constrained MRPSR (e.g., TPQ) � �
Further optimized route �
Time sensitive applications � �
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By taking advantage of the LORD algorithm [27], NNPSR-LORD can further
shorten the length of the route retrieved by the NNPSR algorithm. Consequently,
NNPSR-LORD can consistently outperform NNPSR in terms of route distance.
However, as far as the response time is concerned, NNPSR-LORD, compared with
NNPSR and AASPSR, needs much more computational time, especially in road
networks. This is due to its extensive usage of network distance functions. Therefore,
NNPSR-LORD is only applicable to non-time sensitive applications. A complete
comparison among the proposed algorithms is provided in Table 3.

5 Experimental validation

5.1 Experimental setup

The experimental results are reported in this section. We implemented the NNPSR,
NNPSR-LORD, and AASPSR(k) algorithms with road networks to evaluate their
performances with respect to the returned route distance and the response time to
generate the corresponding routes. Furthermore, to highlight the benefits of our
three approximate approaches, we used the LORD-based brute-force solution as the
baseline, which applies LORD [27] on each possible permutation of all categories
to get the optimal sequenced route for each particular category sequence. For each
run of the LORD-based brute-force solution, we compared the distances of all the
possible optimal sequenced routes and recorded the minimum route distance and
overall response time.

As we discussed in Section 4, AASPSR(k) will exhibit more characteristics of
NNPSR when k increases (in particular, AASPSR(k) degrades to NNPSR if k = ∞)
and show more characteristics of AASPSR(1) when k decreases. Therefore, in this
section the focus is only on the performance of AASPSR(1) (the terms AASPSR
and AASPSR(1) are used interchangeably in this section). We varied the following
parameters to obtain their effects on the route distance and response time: the
Percentage of the Constrained Categories (PCC), the average category cardinality,
and the number of query categories. PCC describes the percentage of the number of
categories involved in traveling rules over the total number of categories to be visited
in a query. The average category cardinality is the average number of POIs over all
categories while the number of query categories is the total number of categories
to be visited in the query. For each result of the NNPSR, AASPSR and NNPSR-
LORD algorithms, 100 MRPSR queries were launched with a starting point and
a destination generated randomly on the road network, and then the results were
averaged. All experiments were conducted on a Linux machine with an Intel Core2
Quad CPU (Q9400 2.66GHz) and 4GB memory.

5.1.1 Road network dataset

To investigate the performance of our proposed algorithms for road networks,
first we obtained the road network dataset of the state of California from [1].
As shown in Fig. 9a, the road network of California contains 21,048 nodes
and 22,830 edges. Each node is described with a tuple of 〈Node_ID, Longitude,
Latitude〉 and each edge is represented by a tuple of 〈Edge_ID, Start_Node_ID,
End_Node_ID, L2_Distance〉.
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Road network of California. California points of interest distributiona b

Fig. 9 Real Datasets from the state of California

5.1.2 California point of interest dataset

We collected the points of interest of the state of California from [2] as shown
in Fig. 9b. This California dataset has 63 different categories, including airports,
hospitals, schools, populated places, etc., which correspond to more than 100,000
points of interest. Each category exhibits a distinct density and distribution. Each
point of interest is represented as a tuple of 〈Category_Name, Longitude, Latitude〉.
The cardinalities of all the categories used in our research is shown in Table 4.

To merge the points of interest in the real dataset with the road network, we
adopted the map format where each point of interest was at first mapped to a point
on an edge and then represented as the distance of this point to the start node of that
edge.

5.1.3 Synthetic point of interest datasets

To control different cardinalities and distributions of categories, we also applied
synthetic datasets in our experiments. We generated different numbers of points of

Table 4 The category
cardinalities used in our
California dataset

Category Size

Airport 995
Area 287
Bar 278
Building 4,110
Church 7,680
Hospital 835
Locale 13,481
Park 6,728
School 11,173
Populated place 6,900
Summit 5,594
Valley 7,596



Geoinformatica (2011) 15:541–569 559

interest for different datasets and uniformly distributed the points of interest on the
edges of the California road networks.

5.1.4 Traveling rules

Without loss of generality, for the real dataset, rules were generated between
Building and Populated place, Church and Hospital, and Locale and Park, i.e., rules
can be represented as follows: Building → Populated place, Church → Hospital and
Locale → Park. For the synthetic datasets, rules were generated between any two
arbitrary categories at random.

5.2 Effect of the percentage of the constrained categories

In our first experiment, we varied the Percentage of the Constrained Categories
(PCC) to investigate the performance of NNPSR, AASPSR, NNPSR-LORD and
the LORD-based brute-force solution in terms of the route distance and response
time. Since our proposed MRPSR query subsumes the TPQ and OSR queries, the
MRPSR queries exhibit the characteristics of TPQ queries when PCC decreases and
the characteristics of OSR queries when PCC increases. Our results are based on the
California POI dataset and the synthetic POI datasets, respectively. In the synthetic
POI dataset, the average category cardinality is 6,000. Furthermore, we assumed that
the number of query categories is 6. Figure 10 illustrates the relationship between
route distance and PCC for NNPSR, AASPSR, NNPSR-LORD, and LORD-based
brute-force algorithms.

In Fig. 10 route distance increases with the increase of PCC for all the algorithms.
This is because with a higher PCC, there will be more restrictions on the order of the
categories, which leads to a longer route. Note that the route distance of AASPSR
changes remarkably against PCC in contrast to NNPSR and NNPSR-LORD. The
lower PCC is, the better AASPSR works compared with NNPSR. With a higher PCC,
the route distance of AASPSR increases dramatically. In other words, AASPSR is
only suitable for planning a trip with a low PCC, such as TPQ (PCC equals zero).

0 20 40 60 80 100 0 20 40 60 80 100
0

60

80

100

120

140

160

180

R
ou

te
 d

is
ta

nc
e 

(k
m

)

Percentage of constrained categories (%)

 NNPSR
 AASPSR
 NNPSR-LORD
 Brute-force

0

60

80

100

120

140

160

180

R
ou

te
 d

is
ta

nc
e 

(k
m

)

Percentage of constrained categories (%)

 NNPSR
 AASPSR
 NNPSR-LORD
 Brute-force

California dataset Synthetic dataseta b

Fig. 10 Route distance of NNPSR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a
function of PCC
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This is because AASPSR only picks a single POI in each category for the subsequent
NN search. Consequently, given a higher PCC (there are more restrictions on the
category order), a longer route may be needed to traverse all the POIs picked up
in the first step. In addition, NNPSR-LORD outperforms NNPSR and AASPSR in
terms of route distance given any PCC. The reason is that NNPSR-LORD employs
LORD to obtain the shortest route under the specific order of categories in the route
found by NNPSR.

Figure 11 plots the response time against PCC for NNPSR, AASPSR, NNPSR-
LORD, and the LORD-based brute-force method. Notice that in Fig. 11b and d,
we plotted the relationship by using the log-linear (semi-log) scale because the
response times of NNPSR-LORD and LORD-based brute-force solutions are in
different orders of magnitude. First, as shown in Fig. 11, all our proposed algorithms
significantly reduce the response time compared with the LORD-based brute-force
solution. To be specific, NNPSR and AASPSR are more than 10000 times faster in
some cases than the LORD-based brute-force method while NNPSR-LORD is more
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function of PCC
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than 100 times faster. Second, the response times decrease with the increase of PCC.
This is because a higher PCC will decrease the search space of POIs.

5.3 Effect of the average category cardinality

Next, we studied the effect of the average category cardinality by varying the
cardinality from 2,000 to 14,000 using synthetic datasets. Here we assumed that the
number of query categories is 6. Figure 12 shows the route distances of NNPSR,
AASPSR, NNPSR-LORD, and the LORD-based brute-force method where PCC
equals 33% and 66%, respectively. As Fig. 12 shows, the route distance decreases for
each algorithm with the increase of the average category cardinality. The reason is
that a denser distribution of a category will lead to more POI choices, which result in
a lower probability of detours. Notice that AASPSR has relatively poor performance
with either a PCC of 33% or 66% because AASPSR outperforms NNPSR in terms
of route distance only if PCC is very low. The PCC of 33% or 66% is large enough
to deteriorate the performance of AASPSR. Figure 13 shows the response time for
the above algorithms. As Fig. 13 demonstrates, the response time of each algorithm
increases with the enlargement of the average category cardinality. This is due to a
higher density of each POI category which elongates the computational time.

5.4 Effect of the number of query categories

In this subsection, we changed the number of query categories to 3, 6, 9 and 12 to
investigate the impact of the number of query categories on the performance of
NNPSR, AASPSR, NNPSR-LORD, and the LORD-based brute-force method. Our
experiments are based on the California POI and the synthetic POI datasets, respec-
tively. In the synthetic POI dataset, the average category cardinality is assumed to
be 6,000. In addition, we assume that PCC equals 66%. Figures 14 and 15 illustrate
the experimental results. As shown in Fig. 14, when the number of query categories
increases, the route distance of each algorithm extends dramatically. This is because
with an increasing number of categories to be visited, there will be more POIs to
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Fig. 12 Route distance of NNSPR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a
function of the average category cardinality
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Fig. 15 Response time of NNSPR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a
function of the number of query categories

be traversed in a trip. Notice that the number of query categories has a significant
impact on whether AASPSR outperforms NNPSR in terms of route distance. For
three-category cases, AASPSR returns a shorter route distance than NNPSR. On
the contrary, for the 6, 9, or 12 category cases, AASPSR reports a longer route than
NNPSR. The reason is that fewer categories will lead to a lower probability for a
detour to occur when AASPSR tries to traverse all the POIs selected in its first step.
On the other hand, as Fig. 15 shows, when the number of query categories increases,
the response time prolongs accordingly. The reason is that all the algorithms need
more time to compute more categories to answer a MRPSR query. In particular,
AAPSR consistently needs more response time than NNPSR, irrespective of the
number of query categories.

6 Related work

In this section we review previous work related to nearest neighbor queries and route
planning queries.
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6.1 Nearest neighbor query

The nearest neighbor query is a very important query type for supporting GIS
applications. With the R-tree family [3, 9, 26] of spatial indices, depth first search
(DFS) [22] and best first search (BFS) [10] have been the prevalent branch-and-
bound techniques for processing nearest neighbor queries. The DFS method re-
cursively expands the intermediate nodes for searching NN candidates. At each
newly visited index node, DFS computes the ordering metrics for all its child nodes
and applies pruning strategies to remove non-promising branches. When the search
reaches a leaf node, the data objects are retrieved and the NN candidates are
updated. On the other hand, the BFS method employs a priority queue to store
nodes to be explored through the search process. The nodes in the queue are sorted
according to their minimum distance (MINDIST) to the query point. During the
search process, BFS repeatedly dequeues the top entry in the queue and enqueues
its child nodes with their MINDIST into the queue. When a data entry is dequeued,
it is included in the result set.

Recently nearest neighbor search solutions have been extended to support queries
on spatial networks. Jensen et al. [12] proposed data models and graph represen-
tations for NN queries in road networks and designed corresponding solutions.
Papadias et al. [20] presented solutions for NN queries in spatial network databases
by progressively expanding road segments around a query point. A network Voronoi
diagram based solution for NN search in road network databases was proposed
in [15]. Sharifzadeh et al. [28] extended the Voronoi diagram based approach
for spatial data streams by using approximate Voronoi cell computation. On the
contrary, in order to speed up the NN search, Samet et al. [25] proposed a solution
to explore the entire spatial network by pre-computing the shortest paths between
all the vertices in the network and using a shortest path quadtree to capture spatial
coherence. By employing their approach, the shortest paths between various vertices
can be computed only once to answer different NN queries on a given spatial
network. However, the above pre-computation based approaches suffer from high
overhead and adapt poorly to network updates. To overcome this shortcoming, Lee
et al. [17] presented an efficient and flexible query framework, ROAD, based on
search space pruning by using shortcuts for accelerating network traversals and object
abstracts for guiding traversals.

6.2 Route planning query

In many GIS applications (e.g., logistics and supply chain management), users have
to plan a trip to a number of locations with several sequence rules and the goal is to
find the optimal route that minimizes the total traveling distance. One related query
type is named the optimal sequenced route (OSR) query proposed by Sharifzadeh
et al. [27]. OSR query retrieves a route of minimum length starting from a given
source location and passing through a number of locations (with different types) in a
particular order (sequence) imposed on all the POI types. In [29], a pre-computation
approach was provided to answer OSR query by taking advantage of a family of AW-
Voronoi diagrams for different POI types. However, because the searches in [29]
are based on NN queries, the authors need to investigate the performance of their
method in terms of the traveling distance besides the response time. A multi-type
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nearest neighbor (MTNN) query solution was proposed in [19] by Ma et al. Given
a query point and a collection of locations (with difference types), a MTNN query
finds the shortest path for the query point such that only one instance of each type
is visited during the trip. MTNN can be treated as an extended solution of OSR
by exploiting a page-level upper bound. On the contrary, Li et al. [18] designed
solutions for another new query type – Trip Planning Queries (TPQ). With TPQ,
the user specifies a set of POI types and asks for the optimal route from her starting
location to a specified destination which passes through exactly one POI in each
POI type. Notice that compared to a OSR query, there is no order imposed on
the types of POIs to be visited in a TPQ query. Terrovitis et al. [34] illustrated a-
autonomy shortest path and k-stops shortest path problems for spatial databases.
Given a source point and a destination point, the first query retrieves a sequence
of points from the database where the distance between any two consecutive points
in the path is not greater than a. The second query searches for the optimal path
from a origin to an end which passes through exactly k intermediate points in the
database. Tian et al. [32] proposed skyline path queries in road networks based on
multiple route search criteria (i.e., shortest traveling distance and shortest traveling
time). By taking into account the probability that each POI type satisfies the user’s
particular need, an interactive approach was proposed in [14]. In order to capture
the characteristics of ever-changeling road networks, Tian et al. [33] proposed the
continuous min-cost path query and presented a system, PathMon, to monitor min-
cost routes in dynamic road networks. However, all the aforementioned solutions
cannot support MRPSR queries.

Another related problem to MRPSR is the sequential ordering problem (SOP) [6]
and it is stated as follows. Given a graph G with n vertices and directed weighted
edges, find a minimal cost Hamiltonian path from the start vertex to the terminal
vertex which also observes precedence constraints. Nevertheless, a Hamilton path
is not required in MRPSR and the types of visited locations are considered by our
solution.

7 Conclusions

Geographic information systems are getting increasingly sophisticated and route
queries with traveling rules represent a significant class of spatial queries. Existing
solutions only focus on trips with a complete POI category sequence or without any
sequence. However, GIS users usually want to set a number of traveling preferences
when they plan their trips. In this paper we propose the MRPSR query and design
three fast approximation algorithms to efficiently compute routes which can fulfill all
the traveling rules with a near-optimal travel distance based on the underlying road
networks. With extensive simulations, we show that our techniques can generate
satisfying trips which are very close to the shortest routes with remarkable short
response time. For future work, we plan to extend our algorithms to support dynamic
road networks in which traffic information (e.g., travel time, traffic congestion, etc.)
is incrementally becoming available as a data stream.
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