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phases depending on the ageing temperature and the nature of the phases
in equilibrium.
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The particle aspect of meson theory

By N. KEMMER
Imperial College of Science and Technology, London, S.W.7

(Communicated by S. Chapman, F.R.8.— Received 22 June 1939)

1. INTRODUOTION

For many years a central problem of theoretical physics has been to set
up a satisfactory relativistic theory of elementary particles. This problem
is yet far from solution, the notorious occurrence of infinite self-energies
and similar divergencies having hitherto frustrated all attempts at complete
formulation. Nevertheless, definite advances towards the understanding
of the general problem have recently been made, not so much by improve-
ment of the theory as by a more detailed study of all its possible types
and variants and the resulting clarification of the essential underlying
principles.

The picture of an elementary relativistic quantum-mechanical ““ particle”
can now be roughly outlined as follows: The “exact theory” is one of
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quantized waves, the particle characteristics appearing as consequences of
the non-commutation of the wave amplitudes. There exist possible theories
with any given integral or half-integral value s of the **spin” of the particle,
the number of independent states of polarization of the corresponding waves
then being 2s+ 1 = N (Fierz 1939; Fierz and Pauli 1939).

For integral s, i.e. odd N, the particles must be taken to obey Bose
statistics, for half-integral s, i.e. even N, only the assumption of Fermi
statistics leads to physically permissible results.

In the case of particles with an electric charge (or even a magnetic moment,
e.g. the neutron) the theory necessarily includes particles of either sign of
the charge (moment), and only the charge density, not the particle density,
is strictly an observable. However, if transitions involving the annihilation
of two opposite charges are excluded, as is rigorously correct in the non-
relativistic limit, the density can be interpreted as a true particle density.
Therefore the transition to the limiting theory of a classical particle is
possible.

On the other hand, for any uncharged particle the introduction of an
antiparticle can be avoided by taking the wave functions to be real as in
the well-known case of the photon (Majorana 1937; Kemmer 19385; Moller
1938). However, one then finds that either the density (in the Bose case)
or the energy density (in the Fermi case), if considered as c-numbers, vanish
identically. Further, the non-relativistic Schrédinger equation is not satis-
fied by such wave functions in the limiting case. Therefore a limiting
classical particle theory does not exist.

Conversely, one finds that, at least in the Bose case, a complete corre-
spondence of the theory of uncharged particles with a classical wave theory
exists, whereas the correspondence appears to fail for charged particles
(Bhabha 1939). The latter fact can well be understood, for a classical entity
corresponding to the quantum mechanical *‘charged field” is hard to
envisage.

For the special case of the meson we thus have the following peculiar
situation: although it seems likely that both charged and uncharged mesons
exist, and the quantum treatment of the two is well nigh identical (Kemmer
1938b), the uncharged one (neutretto) is classically a true field, the charged
one, on the other hand, a particle.

There can be no doubt that to the experimental worker also the charged
meson appears first and foremost as a particle observed in a cloud chamber
or by means of some other of its effects as a point charge. It is therefore
very surprising to find that theoretical work has laid stress on the wave
aspect of the meson practically throughout, the similarity to Maxwell’s
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equations having been extensively used. It is clear from the above that this
is neither justified by experimental considerations nor by arguments of
correspondence.

In the present paper an entirely different aspect of the meson equations
will be put forward, in which the similarity to Dirac’s equation of the
electron is emphasized. Although it would not seem to be so from previous
work, the similarity is found to be very striking and the new procedure
yields more than a mere restatement of old results. In the former presenta-
tion of the theory a number of points concerning the particle aspect of the
meson undoubtedly remained somewhat obscure. For instance, the correct
transition to the non-relativistic wave mechanics of a particle of spin 1
has never been completely given, and it can hardly be claimed that in the
meson case the use of the term ““spin’’ as distinet from polarization has been
fully justified. In addition, the relation—so important in non-relativistic
wave mechanics and in Dirac’s theory—which interprets the value of any
observable as the average of the corresponding operator over the given
probability distribution of the particle, hitherto appeared to possess no
counterpart in meson theory. The object of the following 1s to remedy these
omissions.

The meson equations will appear as equations of the Dirac type, but will

involve matrices obeying a different scheme of commutation rules. These
rules were first given by Duffin (1938).* A treatment of similar character
has also been developed by Belinfante (1939), who, however, presents the
matter in an entirely different form, namely in a generalized spinor notation.
Further, the “theory of the photon” proposed by de Broglie (1934, 1936)
is in all essentials equivalent to the free particle case of the following.
However, the treatment here proposed may claim to be more general in so
far as no use is made of any particular representation of the fundamental
matrices. Duffin confines himself to stating the representations, which in
fact prove to be the only non-trivial irreducible ones, Belinfante considers
only one of them, and the representation used by de Broglie is actually
reducible. The complete avoidance of spinor notation in the following may
also claim to be of some practical advantage and promises to simplify the
description of particles with higher spin values (Dirac 1936; Fierz 1939;
Fierz and Pauli 1939; also Majorana 1932; Klein 1936; Wigner 1939).

* The short note by Duffin contains much of the matter here more fully developed.
The writer was studying the same subject: previously, but is glad to acknowledge
that Duffin’s statement of the commutation rules was new to him and has greatly
influenced the detailed development of the work. Many thanks for exchange of
information are due both to Dr Duffin and to Dr Belinfante.
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The interconnexion of the various formalisms mentioned will be discussed
in more detail in §§ 6 and 7.

For the sake of conciseness it will be assumed that the physical contents
of meson theory (Yukawa, Sakata and Taketani 1938; Kemmer 1938a;
Frohlich, Heitler and Kemmer 1938; Bhabha 1938) are known from the
original ‘“wave theoretical” presentation. Dirac’s theory of the electron
will also be assumed to be known, and it will be used as a pattern throughout
in the form given to it by Pauli (1933) in the Handbuch der Physik. For
details of proof it will be often sufficient to refer to Pauli’s article.

2. THE WAVE EQUATION OF THE FREE MESON

It is proposed to develop the theory in a purely deductive manner, without
establishing the connexion with previous presentations until § 6. The term
meson will, by definition, be applied to a particle of mass m and charge +e,
which is described by the wave equation

apﬂp#”*"q& =0, (l)
together with the following commutation rules for the operators 4,:
ﬂpﬂvﬁp+ﬂpﬂvﬂp =~ ﬂpavp+ﬂp8vp' (2)

No further specification of the £, is made.
In (1) the abbreviations

me 0 :
K=T, 8,,=a—z", Z‘=$Ct,

are used and the usual convention regarding the summation over double
suffices is implied.
An immediate consequence of (2) is that

7s = 2f3—1 (3)
obeys the following algebraic relations:
Ba=NabBs=Bne M =1, }
nlﬂk+ﬂk”4 =0 (k=l’21 3)-
Hence, if ¥t is defined by Yt = y*y,, (4)

(3)

it satisfies the equation ) % ytp e kyt = 0. (5)
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Multiplying (1) by ,/,8, one deduces that

0¥ =19,8, B, (6)
and similarly from (5), oyt =0,y'8,.5, (7)

It is to be noted that the differential relations (6) and (7) appear as conse-
quences of (1) and (5) and not as initial conditions to be imposed on the wave
function. As will be shown in more detail later, this represents an essential
difference between the formalism here proposed and the aforementioned
formalisms of Dirac and of de Broglie.

From (1) and (6) the second order wave equation

0,0,¥ =k (8)
can immediately be deduced, and (5) and (7) similarly lead to
0,0, = K. o

A further consequence of (1) and (5) is that
9,8, =0, (10)
if 8, =Y'8.Y, (10)

so that s, may be interpreted as the four vector of current and density.
It must yet be proved that the scheme here proposed can be made
a relativistically invariant one by suitably defining the transformation
undergone by the ¥ functions when the space-time frame is subjected to
a Lorentz transformation. This proof will be furnished in § 4. Apart from
that point, however, equations (8) and (10) alone suffice to show that this
formalism is adequate to describe a quantum mechanical particle. As in
the case of the electron, it is sufficient to insert the well-known zero order
“WKB" approximation to the wave function

Y = aexp (iS/h)

into (8) to show that, in the limit # = 0, (8) describes a classical relativistic
particle (see Pauli 1933, p. 240). In addition, the existence of current and
density enable the more general quantum mechanical statistical particle
picture to be maintained. The density s, = s,/i is, of course, not necessarily
positive, but the discussion by Pauli and Weisskopf (1934) has proved that
this is in fact not a necessary requirement in the relativistic region. With
exactly as much justification as in the electron case one can attempt to
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connect the expectation value @ of any observable with an operator w by
the following definition (cf. de Broglie 1936):

e HWT_M/W. (11)

The form of the right-hand side of (11) allows the direct physical inter-
pretation of @ as the mean value of w taken over the density distribution s,.
As, however, contrary to the electron case, there exists no transformation
of the expression for s, into a form which does not contain f,, the above
definition contains some ambiguity as to the order of the factors w and f,.
In general one might expect some symmetrical combination to be the
suitable one, and the double bar in (11) has been inserted to denote this
symmetrization. It will be found, however, that for all operators of practical
significance there can be no doubt whatever as to the correct order.

The operator of the density itself is, of course, unity; the three space
components of s, on the other hand can be represented by the operators

8. = (B P+ Prba); (12)

1—
- L50By = 1 (Busi+ 8B = BiBut Bl = o (13)
and therefore 8 = f s dV. (14)

The most important application of (11) is to the case of the energy-
momentum vector. If the analogy to the electron case is to be maintained,

the operators w should here be the differential operators%a%:

w
B ; [WBG 0,V (15)

Such a definition of energy and momentum was not known in former
meson theory, and the expression usually given seems to be very different
from (15). That in fact the two definitions are equivalent, will nevertheless
be proved immediately. First, however, it should be noted that (15) is
equivalent to the postulate that the tensor of energy and momentum
density is

c fi h
7, - o[ wibSow—(Fo o | (16)
the second term being added in order to make 7}, real. Its integral is equal
to that of the first term. It follows immediately from (1) and (2) that

oT,,
axy =i O! (]7)
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so that the p, are constants as required for a free particle. The tensor (16)
is, however, not symmetrical; it can be replaced by a symmetrical one by
a method similar to the one given by Tetrode for the Dirae electron. From
(1) and (2) it follows that

ViB,0,¥ = ¥p,8,.0,¥
5 'ﬁf(ﬂvﬂpﬂp"'ﬂpﬂpﬂv_8wﬂp)ap¢-! (18)

and a similar transformation can be performed with the second term in (16).
Hence, putting ’

—me2
@p =T[¢f(ﬂpﬂv+ﬂvﬂp)'ﬁ'_alww"rw]v (19)
weobtain T, = O, + -0 yN(p, B, = A, B, ) ¥ (20)
p
and 880;, =0, (21)

Now 6, is symmetrical,{ and moreover, by (4)
Ou = —mey,

so that the energy density is essentially positive. @ has in fact exactly the
same properties as the energy-momentum tensor usually considered in
meson theory. In § 6 it will be proved that for a suitable representation of
the £, it is actually identical with that tensor. On the other hand, it follows
from (20) that the expectation values of energy and momentum, as defined
by (15) can equally well be given in terms of @, namely, by

=t
B = io [Ou (22)
It is thus clear that it is not necessary to abandon the connexion between

fi : g
the operators 3 d, and the momenta, as seemed to be the case in previous

presentations of meson theory.
It is a general theorem that the existence of a symmetrical energy-

1 It should be noted that
O,F Ty + Ty )) = 6.

For the free meson the latter tensor can also be shown to satisfy a continuity equation
20,

i

oz,
interaction as will be done for ©,,. Further, —@{, is not necessarily positive. This
alternative procedure of symmetrization may therefore be ignored.

= 0, but there is no way of generalizing this result to the case of electromagnetic

Vol. 173. A. 7
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momentum tensor automatically ensures the possibility of defining angular
momentum. We have but to put

1
Pa= =By = g [(@,6u -2 0, (23)
and the F;; are necessarily constant. Now by (20)
he d
2,0y = 2, Thy— 27--’”1' T W(ﬂpﬂk Bs—PBsbPr ﬂp) v, (24)
P
« 1 i i
and hence B= ; ¢fﬂ‘(:cqak—z,‘{8, ydVv

+§J.¢.fﬂ‘ﬂfﬂk—iﬂkﬂiwdu (25)

The first term of (25) is evidently to be interpreted as the orbital momen-
tum, the second term as the spin of the meson, and by definition (11) the
spin operator then is

1
S = = (BiPr— PrPo)- (26)
The similarity to the electron case is striking; there the spin could be
written as %(yi‘yk—yk}'i). It is to be noted that S, commutes with f,,

8o that no ambiguity of the kind discussed on p. 96 arises. It is further very

noteworthy that
St = Size (27)

whence it follows that the eigenvalues of the spin in this theory can only
be + 1 and 0, as is to be expected if the formalism is indeed to be connected
with the meson. It seems satisfactory that there is such a possibility of

defining the spin as a momentum, independently of any consideration about
the number of states of polarization.

3. THE INTERACTION WITH THE ELECTROMAGNETIC FIELD

In non-relativistic wave mechanics and for the Dirac electron the inter-
action with the electromagnetic field is introduced very simply, by the

well-known substitutions
1€

a#—>3; =a‘“—*ﬁ‘é¢’u, (28)

when the differentiation applies to i, and
e ;
8,‘—>8jf=6/‘+ﬁ—i¢l‘, (28)
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when it applies to yt. It is not quite trivial that this mode of procedure
can also be used here, in fact, in theories of similar type (Dirac 1936; Fierz
and Pauli 1939) care must be taken in applying this rule, and it is in-
consistent, if applied to all fundamental equations. However, here it is
entirely correct to apply these substitutions to equations (1) and (6) which
therefore now read as

a;ﬂ‘¢+xl/l= 0 (29)

and op Y, — Kyt = 0. (30)

The considerations on relativistic invariance given in § 4 hold not only
for (1) and (5) but also for these generalized equations, and as there are no
“initial conditions™ in the present formulation, there can be no incon-
sistency in this generalization.

The introduction of electromagnetic interaction thus results in very few
changes to the developments of the previous section. As in the electron
case the definition of s,, (10), remains completely unaltered, and here the
same is also true of the symmetrical energy-momentum tensor 6, as
defined by (19). This can readily be seen to be so, in spite of the fact that the
unsymmetrical tensor now is

c i 3
7, - 5[ waorv-(Foivi)av (31)
Instead of (17) and (21) one can now derive the equations
oT, 00
| gl 2
oz, Oz, sy (82)

where the F,, are the electric and magnetic field strengths.

Similarly, equation (25) for the angular momentum is only altered in so
far as the operator 9, in the orbital part is replaced by 9, . The spin operator
is entirely unaltered.

An important difference, however, occurs in equations (6) and (7). Using

the commutation rules
e

oo —ofof=7 ﬁzF""' (33)
one now finds )
e
a/:¢= a;ﬂvﬂ;‘w+Q,’Tw‘iﬂp(ﬂpﬂllﬂv_appﬂv)‘& (34)
and Yt = 4 Y BB+ 5 BV BB By B3y, (34)

72
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and the second order wave equations are then readily seen to be

0 oY = K+ B, Y

_Eﬁp(ﬂp ﬂp ﬂv_"pp ﬂv) ¢-; (35)
and o} 0p Yt = Kt — T B yth, B,
+ 5508 By VB, By By— B8,y (36)

The first term on the right-hand side of (35) or (36) has its counterpart in
the theory of the electron. It describes the interaction of the external field
with the electric and magnetic moments of the particle. The second term,
however, is peculiar to meson theory and cannot be so directly interpreted.
To understand it better it is useful to define the magnetic moment in
another way, namely, as

My = 5 [ =) . (37)

In the case of the electron the expression corresponding to this can be
split into two parts, the first giving an orbital moment, the second the
moment due to the spin; the current can be split correspondingly. Here we
can proceed analogously. By (29) and (30) we have

8, =yYp.¥ = 2%\,[9»* VB, B — VB B0 Y] (38)
and therefore by (34) and (34')
3/4 I/If)'ﬁ 1//1'8 ¢l+—*‘¢f(ﬂuﬂp ﬂ ﬂv)w g vp'ﬁ‘rﬂvﬂ/uﬁp'ﬁ]
(39)
Consequently

Moy = g 3 [ (e 25 — a0 )y
Ayl gy
s | Fw b B Buri~ B B Y | (0)

The first two terms are, of course, the orbital and the spin moments of
the meson respectively, and here, as for the electron, they are proportional
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to the corresponding terms of the mechanical moment, as given by (25),
except for the operator f,. A difference compared with the electron is,
however, the absence of the anomalous gyromagnetic factor 2 in the spin
term. Further, the additional third term is of a new type; it vanishes if
there is no external field and might best be described as a polarizability of
the meson. It is clear that it is connected with the appearance of the last
terms in (35) and (36) already noted.

A circumstance peculiar to this theory is also the fact that the absence
of f, in both orbital and spin magnetic moments makes the definition of
operators in the sense of (11) impossible for these physical quantities.* It
would appear that the latter do not possess a very direct meaning in the
particle picture of the meson, but except in the non-relativistic limit are
rather only measurable in a way not directly dependent on the probability
distribution of the particle.

The division of the current into two parts, as given by (39), is the counter-
part of the procedure given by Gordon for the electron. In both cases the
second term or ‘‘polarization current’ satisfies a continuity equation on
its own. The first term has the same form as the current in non-relativistic
theory, a fact of importance in the comparison with this limiting case.

These formulae may suffice to indicate the extent to which the matrix
treatment of meson theory is successful. There can hardly be any doubt
that it may serve to simplify practical calculations in cases where the meson
appears primarily as a particle. It has not been here attempted to include
the interaction of the meson with protons and neutrons, and it can readily
be seen that in the scheme here used this would not be simple. Itis, however,
clear that in that interaction the meson enters primarily as a field (although
a non-classical charged one), and it is then only natural to retain the old
formulation.

4. PROOF OF RELATIVISTIC INVARIANCE

The proof of the relativistic invariance of the formalism is so exactly
analogous to the electron case that it will almost suffice to refer to the proof
given for that case, for instance, by Pauli (1933). The behaviour of the d,
under Lorentz transformations is known, and the requirement is to find
a suitable linear transformation of the iy among themselves by which (1)
or (29) is brought back to its original form in the new co-ordinate system.

* [Note added in proof : It is however always possible to define such operators if
explicit dependence upon the momentum operators is permitted. This is achieved by

using the relation stated below as (69), and the procedure has proved essential in the
applications of the transformations which have since been studied.]
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It is sufficient to find such a transformation for the case of the general
infinitesimal four-dimensional rotation. The latter can be given in the form

T, = T,+€,7, (41)
where €, = —¢,,, and the required transformation of the yr may be ex-
pressed as

!/f, - SW: ('ﬁ?)' - W*S"l, (42)
where S=1+1%e,t, und t,=-t,.

The wave equation can readily be seen to be invariant if the ¢, are con-
nected with the g, by the relations

ﬂytvp_typﬂ,u = alwﬂp—appﬂw (43)
so that it remains to find a suitable set of £,,. Equation (42), for  and v#4,
however, also affords an independent definition of the spin operator, so
that the results of previous sections directly indicate that

t/w = ﬂpﬂv'—ﬂvﬂp S "S;un (44>
should be an adequate choice. This is indeed the case as can be proved
directly by interchanging v and p in equation (2) and subtracting from the
original equation:

ﬂp(ﬂv ﬂp _ﬂp ﬂv) == (ﬂuﬂp_ﬂp ﬂv) ﬂ;& == a;w ﬁp e a,up ﬂv' (45)
This is precisely the relation required by (43). The invariance of the
scheme is thus proved. By applying infinitesimal transformations similarly
it would also be easy to show that the s, defined by (10) are indeed a vector,
T8 tensor and so on. The procedure is completely independent of the
particular representation used for the #,. Once the theory is proved to be
equivalent to the tensor form of meson theory used previously, the in-
variance is of course also evident directly.

5. ALGEBRAIC PROPERTIES* OF THE f,

The previous development was entirely independent of the particular
form of the f, matrices, the commutation rules (2) having been sufficient
to define all the physical quantities that were of interest. In the case of
the Dirac electron a similar ‘development can of course be put forward,
but it can then be shown that the four row matrices found by Dirac give the
only irreducible representation of that particular algebra. The rigorous
proof of this fact is a matter of abstract algebra and in the present case the
corresponding procedure is, unfortunately, even more complicated than for

* The writer is greatly indebted to Professor W. Pauli for the suggestion of the

detailed study of the algebra of the £, and for the introduction to the mathematical
apparatus used.
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the electron, owing to the fact that the £, matrices occurring here possess
no reciprocals. The completely rigorous method has, however, actually
been carried through, and it is merely for the sake of brevity that the proof
is abridged. To find the possible independent irreducible representations
of the algebra given by (2) one must first find the number of linearly inde-
pendent quantities among the #, and their multiple products. In the
electron case there are 16 such quantities. Here their number is con-
siderably greater, but they may still be counted fairly easily if the auxiliary
quantities

7, = 2631 (46)

are introduced, of which the fourth has already been used in § 2. There
exist the following relations involving-the £, and the 7,:
ﬂft = ﬂl" 772 =1,
Nl =M = 0, ”pﬂv"'ﬂv”,u =0 (/“#V)! (47)
Bu.=n,P,= B, (no summation!).

It follows from these that the following is a complete list of the linearly
independent elements of the algebra:

No. of No. of
elements of elements of

Element this. type Element, this type
I 1 U 12
By 4 Nuly 6
BB, 12 N7 B, 12
ﬂpﬂvﬂp 12 ”ﬂ”vﬂpﬂu 12\ (48)
BB B, By 6 1,77, 4
Ny 4 NN P 4
0,8, 12 NN e 1
1,.8.8, 24 Total no. 126

There are thus 126 independent elements among the multiple products
of the #,. Itisnext necessary to find the particular elements which commute
with all the others. If one proceeds to construct these by successively
postulating commutability with each of the quantities in the above list,
one readily finds that the following expressions have the desired property:

I (the unit matrix), M = $7,— X 7,7,
P u<v

and N = "7177:773"14(1 - Ev,,)~ (49)
"
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Any further expressions which might be shown to commute with all the
126 elements can be proved to be linear combinations of the above three.
The following are instances of this fact:

M?=10—-6M + 6N,
N2=5-2M, (50)
MN = 3M —4N.

Provided an algebra satisfies a certain regularity condition,* which has
been verified in the present case, the knowledge of the number of indepen-
dent elements and of the number of elements commuting with all others is
sufficient to determine the irreducible representations of the algebra. The
latter number directly gives the number of inequivalent irreducible repre-
sentations, whereas the total number of elements is known to be equal to
the sum of the squares of the degrees of these representations. Thus here we
must expect to find three inequivalent irreducible representations, say of
degrees n,, n, and n4 respectively, and

n}+ni+ni = 126. (51)

These three representations will be given in the next section. Their degrees
are actually 10, 5, and 1 (1024 5%+ 1% = 126). We can be sure that there
are no further inequivalent ones. Thus, in spite of the fact that the g,
possess no reciprocals and are therefore initially more difficult to deal with
than the Dirac y,, it is comparatively simple to obtain a complete picture
of their algebraic properties. Without going into any more details we may
conclude this section by giving one more algebraic relation which should
be of importance in further developments. This concerns the spurs of the
126 quantities listed in (48). It can be readily proved that, in any repre-
sentation of the 126 matrices only 16 have non-vanishing spurs, namely
the four 7, with all their multiple products. This set of quantities incidentally

* This condition is that the algebra should be “‘halbeinfach™ as for instance
defined by v. d. Waerden (1931). Professor Pauli kindly furnished a proof—taken
from lectures by Artin in 1927-8—that v. d. Waerden's definition of this condition
can be replaced by the following postulate:

Let e, be the matrices representing the independent elements of the algebra in
the “regular representation’’, and let

Gix = Spur(egeg).

The algebra is ‘‘halbeinfach™ if
Det | g [| 0.

This determinant (which in the present case has 1262 elements), proves comparatively
easy to evaluate and does not vanish.
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forms an abelian subgroup of the algebra. For the three irreducible repre-

sentations one finds the following spurs:
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(The dots in the above denote zeros.)
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It can be seen that the matrices given are really irreducible, for one can
readily find that any matrix of the same degree can be expressed as a linear
combination of the four matrices £, and their multiple products. Of the
three representations the third is a trivial one of little physical interest,
but the other two both give possible meson theories. Neither of them,
however, gives anything completely new; the ten-row representation simply
leads to the usual theory based on Proca’s (1936) equations, in which the
wave function consists of four components forming a four-vector and six
forming an antisymmetrical tensor; the five-row one to the Klein Gordon
or so called “scalar” theory, in which the wave function consists of a scalar
and its four-gradient. (From the point of view of spatial rotation only,
the former wave function consists of three vectors and a scalar, the latter
of one vector and two scalars. In (53) this has been marked by the dotted
lines subdividing the matrices.) The reflexion character of the wave
functions can still be determined arbitrarily, and therefore the above
schemes may be equally well taken to describe the dual theories, i.e. the
“pseudovector” and the “pseudoscalar” theory respectively (Kemmer
1938a). As no further possibilities are included in the formalism the fact
is confirmed that the cases already known are the only possible theories
for spin values 0 and 1.

It may appear surprising in this connexion that in the five-row or “scalar”
theory there still exists a spin operator S,, = (4, 8,—f, ). This, however,
merely comes from the fact that the four-gradient is included as part of
the wave function and, according to (44), the spin defines the infinitesimal
rotations of all components of the wave function. In spite of this the
quantity f#,8;, which, according to (25), gives the expectation value of the
mechanical moment is zero for this representation, so that it is still justifiable
to say that the “scalar’ meson has no spin. On the other hand, the second
term in (40) does not vanish so that in the relativistic region a magnetic
moment would exist even in scalar theory.

The results just given are already essentially contained in Duffin’s (1938)
note, the starting point of which is that Proca’s and the scalar theory
can be stated with the help of the matrices (53). The formulation due to
Belinfante (1939) is also closely connected with the above; this can be seen
as follows:

If one takes two sets of Dirac matrices that act on two separate suffices
of a wave function, which would thus have to possess 16 components, and
if one puts

Bu =¥y, L' +7, 1), (54)
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these matrices satisfy Duffin’s commutation rules (2). Thus a theory based
on the equation
0 ,
5;(‘)'#1'+‘y,‘1)?[’+x‘1’=0 (55)

u

is equivalent to the theory here presented, but uses a reducible set of
f-matrices. A closer study of the reflexion character, as fixed by (54) and
by the assumption that ¥ transforms like the product of two Dirac wave
functions, shows that (55) gives the sum of the Proca theory and the
pseudoscalar theory and in addition the trivial equation «%,, = 0 for a
sixteenth, scalar component of ¥. In other words, each of the three in-
equivalent representations of the f, is contained just once in the particular
representation f/.* Belinfante now specializes the representation by postu-
lating that ¥ should behave like the symmetrical product of two Dirac
functions. This procedure is equivalent to reduction of the £, and restric-
tion of one’s considerations to the ten-row representation only. Belinfante
thus studies a formulation of the Proca theory alone. In other respects
his treatment is, however, more general than the present one in so far as he
includes nuclear interaction which is here omitted altogether.

It is of considerable importance to note that the formulations hitherto
described have the characteristic in common that they are analogous to
the Dirac equation in the form

0,7 ¥ +Kyr =0, (56)

and not to its alternative formulation
1 .
Ea,vﬁ+aka,‘¢+wy4¢= 0. (87)

In the electron case (57) is for many purposes more useful than (56), and
it is therefore of interest to see whether an equation analogous to it might
also be used as the starting point in meson theory. For instance, one might
attempt to put

A,=Ya,I'+a, 1) (ag=7y), (58)

and to take }:a,wa,,A,,wnxA‘w =0, (59)

as the fundamental wave equation. This formalism has never actually been

* These facts are of interest in connexion with the suggestion put forward by
Moller and Rosenfeld (1939) that a pseudoscalar meson should be included in the
theory in order to obtain a more satisfactory deseription of nuclear interaction
and f-decay.
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used to describe the meson, but has been studied in various other connexions.
In particular, the theory proposed by de Broglie (1934, 1936) for the photon
and studied in detail in many papers by his pupils (e.g. Géhéniau 1938;
Tonnelat 1939), is in fact based on (58) and (59). (An entirely different
approach to the same formalism is afforded by the study of the interaction
of two particles each obeying a Dirac equation; e.g. Kemmer 1937.)

For the description of a relativistic particle—meson or de Broglie
photon—the theory of this paper appears to have some distinct advantages
as compared with de Broglie’s formulation. If (59) is postulated instead
of (1) it becomes essential to introduce further initial conditions which
the wave functions must satisfy, so that the second order wave
equation (8) shall hold. There appear to be numerous different ways of
stating these conditions; de Broglie’s method involves the use of matrices
not expressible by means of the £}, alone (namely, the matrices y, I’ — v, I),
and two alternative methods will be stated in § 7. They are not algebraically
equivalent to de Broglie’s, but in his particular representation they give
essentially the same equations. To avoid initial conditions altogether, the
only method seems to be to postulate (1), as done here.

Relativistic wave equations of a most general kind have also been given
by Dirac (1936). He presents the theory in two separate ways, in spinor
notation and in a “Hamiltonian” form. A particular case of his theory
are Proca’s equations, but as can immediately be seen in his spinor formula-
tion, Dirac’s equations are again not algebraically equivalent to the above.
This is partly due to the identification of a ‘““self-dual” tensor with one
symmetrical spinor, a connexion which is in any case inappropriate if
complex tensors are to be considered, but even if his theory is reformulated
with the introduction of a second symmetrical spinor (the two spinors
representing the complex antisymmetrical tensor), it differs from ours in
the handling of the additional conditions. In Dirac’s form wave equation
and initial conditions are so interwoven that the introduction of electro-
magnetic interaction by means of (28) is not a consistent procedure. On the
other hand, Dirac’s “Hamiltonian’ formulation shows clearly that the
differences of his theory compared with the present one are merely due to
details of representation; in the following section a development of our
theory will be given, which exactly parallels the Hamiltonian form. This,
in fact, is shown to be essentially equivalent with the de Broglie form of the
theory. We have preferred to leave this aspect to the end as it appears
preferable to use (1) alone in the initial statement of the theory, but the
alternative form is admittedly of some interest quite apart from its con-
nexions with other authors’ work. It is decidedly helpful in the study of
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the non-relativistic limit and may also prove to be of use in practical
calculations.

7. THE HAMILTONIAN FORMULATION

Let equation (1) be multiplied by f,:

PRV + O PaBr¥r + kB = 0, (60)
and (6) be stated in the form
04(1 =) Y — kB Bsy = 0. (61)

Then, adding the two equations, we obtain
ga,¢+ak(i’ﬁ‘fl}£‘ﬁ) Y ik = 0. (62)

As this equation contains ¢, multiplied into the unit matrix, it is the
counterpart of the Dirac equation in the form (57), the hermitian matrices

g-(ﬂ,,ﬂ,,— f.45;) corresponding to the o -matrices. We may properly call

H = ?akw) +me2f,, (63)
the Hamiltonian—writing equation (62) as
ho
(HJ’{a—t)‘”: 0, (64)
for by (11) and (15) the expectation value of the energy is

B= 1];&*( —?3) yav = lJ VABHY Y, (65)

i i ot 0
so that H is a possible form of the energy operator. The inclusion of the
factor £, on the right-hand side of (65) is, of course, essential, the quantities

;J}p*H:ﬁdV or fw*H;b’dV,

having no connexion with the energy. It is important to note this in
view of some criticism of Dirac’s Hamiltonian conception which has
recently been put forward, and is actually based on such an incorrect
definition of the energy expectation value.
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It follows from the above that if any physical quantity is represented by

= 1
Q=;|vteya, (66)
its time derivative can be stated as
g 5 1 .
m_R-;J.v/r Rydv, (67)
where = %(HQ— QH). (68)

The only fact about these relations, which makes them less simple than in
electron theory is that @ and R are not the operators corresponding to @
and R by definition (11), so that great care regarding factors f, must be
taken when using (68).

Equation (62), however, does not contain the whole of the original wave
equation (1) as the multiplication by f, (equation (60)) obliterates the part
of (1) which belongs to the eigenvalue 0 of £,. This omitted part can readily
be singled out by multiplying (1) by 1—f£3. In this way one obtains

Ok P BiY + (1= B3k = 0, (69)

an equation that does not contain the time, and can thus be regarded as an
initial condition which the wave function must satisfy. By studying the
particular #’ representation used by de Broglie one finds that (69) contains
exactly the same differential relations as postulated by de Broglie, although
the algebraic form of his initial condition,

0, (YaVu ' —vavu )Y +k(ys I'—ys I) Y = 0, (70)

has no connexion with (69). The form (69) certainly appears to be the most
concise for stating these conditions. It can also be easily seen that (62)
and (69) together are a complete substitute for (1), for the latter equation
can be obtained from the other two by working backwards.

There is another alternative way of putting down the initial conditions,
which consists in proceeding as in equations (60) to (62) for the three space
co-ordinates as well as for the time. One then obtains the four equations

apw+at'(ﬂyﬁv_ﬂvﬂp)¢+xﬂp¢= 0, (71)

of which the fourth is the Hamiltonian wave equation and the other three
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are the initial conditions. This is the formulation of Dirac’s paper. In spite
of its symmetry it has considerable disadvantages because the wave
equation (1) and the second order wave equation (8) are not deducible
algebraically from (71) alone. The unsymmetrical statement of the initial
condition as given by (69) is therefore to be preferred.

In the present section electromagnetic interaction was hitherto omitted.
If we add it, it follows from (34) that the Hamiltonian equation will be

H= %a;'w'*'mczﬂd_gﬂp(ﬂpﬂ‘ By=0u ), ()

and the other equations of (71) will have a similar form. The condition (69),
on the other hand, will simply become

Ok B By + (1 - ) kY = 0. (73)

The final field-dependent term in H was not included in Dirac’s statement
of the Hamiltonian, but it must clearly be added to preserve the invariance
of the scheme.

An interesting property of the Hamiltonian given in equation (63) is
that fora plane wave solution with momentum p and energy £ = ¢(p? + m??)t
there exists the relation

H3r = E*Hyr. (74)

Therefore the eigenvalues of H can only be 0 and + £. Now let us consider
a plane wave solution of the equation (1). Its energy value can, according
to (65), be given as

= ;[wp.tryar (75)
Owing to the continuity equation (10)
n = [WBapay (76)
is a constant and can be so normalized that n = + 1. In the non-relativistic
limit (§ 8) a wave function for which n = + 1 will be a solution of the true

one-body wave equation of a particle with positive charge, and if n = —1,
the wave function belongs to a negatively charged state. Therefore we have

: f YAB(H — E)yrdV =0, 71)



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

12 N. Kemmer

for ““positive charge” states, and
- j VB(H + E)frdV = 0, (78)
for “negative charge’ states. From this we see that the operators
Dt = o (H+E) and D= ﬁ,(ﬂ—lf])

will have the same property of ““annihilation operators’ as in the electron
theory, and a technique of calculation which merely uses spur conditions
and annihilation operators appears to be possible here just as in the electron
case. The necessary spur relations have already been given at the end of § 5.

8. THE NON-RELATIVISTIC LIMIT

A theory of the type here considered must go over in'to a classical rela-
tivistic particle theory, if % is put equal to 0, and must also contain non-
relativistic quantum mechanics as the limiting case ¢ — co. The former
limiting process has already been briefly mentioned on p. 95, and does not
differ in the least from the corresponding limit in the electron case. It is
therefore sufficient to refer to Pauli’s article, p. 240, and no further dis-
cussion of this case is necessary. The non-relativistic limit ¢ - co, on the
other hand, has some unexpected features when dealt with by means of
our formalism, and will now be discussed. In the wave formulation this
problem has been considered by Proca (1938).

It is not possible to give the theory in terms of abstract §,, but one can
nevertheless state it in a general form that covers both the essential
inequivalent representations of these matrices. The point of departure is
the cnoice of a representation of the £, in which g, is diagonal. As f§ = f,,
the eigenvalues of #, are + 1, 0and — 1 only. For either of the two irreducible
representations let the components of i be divided into three groups

¥ = (Y1 g1, ym), (79)
so that BN =Y () =0, (By) =—ym. (80)

It can be seen without much difficulty that the three other f, can then
be chosen in such a way that

(Br)t = Gy, l
(Bryr)™ = Lhyrt+ &y,
(Br)M = Gy,

(81)
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The ¢, are rectangular matrices and the f, §k and {f their hermitian
conjugates, transposed and complex conjugate matrices respectively. From
(29) and (33) one then immediately obtains the equations

(03 +K) Y1+ 0 Y™ = 0,
(=05 +&) Y+ 0 Gy = 0,

(0 + ) Y-+ 205 Gyt = — o0

F(GhG—-8 8t ym

2mc?
—%Fka(g'/ﬂ*‘gﬂkm); [ (82)
and (=07 +K) YT LY = + 5 Bu(C G~ GG Y

Tt %FM(Q Y+ gym), ‘

This method is obviously a direct generalization of the procedure in the
electron case, in which the Pauli spin matrices take the place of the .
Now, from (64) and (77) we see,that for the wave functions corresponding
to positive charge

E
so that in the first approximation (& ~mec?):
1
Yo = —opLlyA, . (84
and Y = — oGy, (85)

Therefore I then becomes the “large’ set of components, I being
smaller by the factor v/e, /I even by v?/c®. To the first approximation the
wave equation for

§ = et (36)
then becomes Lag- 00T G L =0, (87)

and further approximations can, of course, be found as for the electron
(Pauli 1933). The actual form of the matrices as well as the number of
components combined in the non-relativistic wave function naturally de-
pends upon which of the two representations is used, and in practice it
will be more convenient not to use the abstract equation (87) but to state

Vol 173. A 8
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the non-relativistic theory separately for the two representations. The
above formulae then lead to the following:

(a) Proca’s equations: i has the eigenvalue + 1 three times, so that ¢
has three components which form a space vector. In the tensor notation
of the usual meson theory (Kemmer 1938a) we find these three components

to be the quantities \/i2 (s + 1 X0:)-

The wave equation (87) then has the form

e
;al_¢k aai¢k Ve Fla¢1 (88)

This is therefore the correct non-relativistic wave equation for a particle
of spin 1,

(b) Klein-Gordon equation: There is but one eigenvalue +1 of ¥ and ¢
has but one component. As is only natural to expect, the wave equation is

fi h?

i.e. simply the ordinary Schrodinger equation, but a detailed comparison

with the above reveals that this ¢ is not the non-relativistic limit of the i
oy

K 5[)

Thus even in this seemingly well-known case the above treatment appears
to bring some clarification of the physical interpretation.

of the Klein-Gordon equation but of - «/ 5 ( v+

9. CONCLUDING REMARKS

The above must suffice to indicate what is meant by the “* particle aspect ™
of meson theory. It has only been possible to go through the formalism
very briefly and further interesting points may come to light when attempts
are made to apply the above to practical calculations. However, it is felt
that the main gaps hitherto left in the interpretation of meson theory have
been filled at least in principle. As already stated earlier, no attempt has
been made to tackle the problem of formulating nuclear interaction on this
basis, because it seems clear that in the description of those effects the wave
aspect must be the more fruitful. For a similar reason we have refrained
from presenting the second quantization of the meson equations in this
new form. In the quantized (g-number) theory the two aspects, particle
and wave, are essentially inseparable and it is clear that the complete
picture is already contained in the Pauli-Weisskopf (1934) theory and its
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generalization for spin 1. It would, of course, be possible to obtain the same
operator equations by starting from the particle formalism given in this
paper, but the final equations will be identical whichever way one proceeds.
Let it therefore be sufficient to indicate the commutation rules as they
would appear in the particle formulation. Particular care must be taken
that those components of y are dealt with correctly, for which g3 = 0,
for in the case of these equation (1) does not determine the time derivative.
In the quantized theory these components will therefore not occur as
separate variables but must be considered as equal by definition to certain
spatial derivatives of the other components. The defining equation is (69).
The commutation rule must then contain only the other components. It
can be readily seen that its correct form is

[ D Bub)] = [ B0, (BIY)] = 8,8 —).  (90)

The rest of the quantization is straightforward, and can in fact best be
performed by translating the former wave theoretical formalism into the
/A language step by step.

A final question which immediately presents itself is whether similar
formalisms can also be found for higher values of the spin, for which the
theories have recently been formulated in spinor notation by Fierz and Pauli
(1939). As kindly communicated to the author by Professor Pauli, a good
deal of the foregoing formalism can be generalized for these cases, but it
is yet an undecided question whether a completely satisfactory theory can
be built up on these lines. Perhaps the opinion is justified that if such
a formulation were to fail, the possibility of the existence of such higher
particles would be, to say the least, doubtful. They would certainly not be
particles in the full sense, i.e. as defined by the axioms of Dirac’s electron
theory, axioms which the meson has here been shown to obey.

In conclusion the writer wishes to express his sincerest thanks to Professor
Pauli for the interest taken in the work and the help given in its algebraical
part.

SUMMARY

It is shown that a re-formulation of the meson equations is helpful in
the interpretation of the meson as a localized particle. Instead of using
the usual tensor form, the wave equations are stated as

0 me
a‘;ﬂﬂ,;!”*‘ F Y=,
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where the f, are operators completely defined by a set of commutation rules
first given by Duffin (1938). The theory can be developed in strikingly
close correspondence to Dirac’s electron theory, practically all the definitions
of which find their exact counterpart, e.g. spin, magnetic moment, ete.
The algebraic properties of the £, are studied in detail, a comparison with
other similar formulations is given and the limiting non-relativistic theory
is developed. The formalism proves simple to handle and is expected to be
useful in all calculations primarily concerned with the particle aspect of
the meson.
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