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Abstract

The prediction of transient granular material flow is of fundamental industrial importance. The potential of using numerical

methods in system design for increasing the operating efficiency of industrial processes involving granular material flow is

huge. In the present study, a numerical tool for modelling dense transient granular material flow is presented and validated

against experiments. The granular materials are modelled as continuous materials using two different constitutive models.

The choice of constitutive models is made with the aim to predict the mechanical behaviour of a granular material during the

transition from stationary to flowing and back to stationary state. The particle finite element method (PFEM) is employed

as a numerical tool to simulate the transient granular material flow. Use of the PFEM enables a robust treatment of large

deformations and free surfaces. The fundamental problem of collapsing rectangular columns of granular material is studied

experimentally employing a novel approach for in-plane velocity measurements by digital image correlation. The proposed

numerical model is used to simulate the experimentally studied column collapses. The model prediction of the in-plane

velocity field during the collapse agrees well with experiments.

Keywords Particle finite element method · Transient granular material flow · Constitutive modelling · Strain-rate-dependent

strength · Digital image correlation

1 Introduction

A common aspect of various industrial processes and natural

phenomena is the flow behaviour of dense granular materi-

als. The lack of comprehensive theoretical models results in

a low operating efficiency of industrial processes including

dense granular material flow. A granular material is com-

posed of a large number of individual particles of arbitrary

size and shape. Although the individual particles may be of

relatively simple geometrical shape, granular materials fea-

tures a wide range of complex behaviours. The mechanical

behaviour of a granular material is strongly dependent on

the loading conditions. For quasi-static loading conditions,

the behaviour is solid-like, while the behaviour of a flowing

granular material typically is liquid-like [35]. The study of
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granular material flow is of importance in many industries,

such as the mining industry, the pharmaceutical industry and

the agricultural industry. Numerical modelling and simula-

tion provide insight into mechanisms of granular material

flow that are difficult or impossible to study experimentally.

High-quality numerical simulations of granular material flow

are of great industrial interest, and such simulations require

an adequate constitutive model and numerical method, but

also high-accuracy experimental data.

Typically, granular material flow is modelled either at the

particle scale, or at the continuum scale. The discrete ele-

ment method (DEM), originally formulated by Cundall and

Strack [15], is a method that has been widely used to model

granular material flow in various industrial processes. In the

DEM, each particle in the granular material mass is repre-

sented using a discrete particle. The motion of the discrete

particles is determined by Newton’s second law of motion,

and the motion of the granular material mass is governed

by the motion and interactions between the individual dis-

crete particles. In the DEM, a small overlap is allowed at the

contact between particles. The overlap is related to contact

forces via a force–displacement law. The time integration of
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Newton’s equations typically proceeds in an explicit man-

ner. Explicit integration requires that the time step size is

kept low to ensure numerical stability. However, in some

recent studies [66,71,72], the DEM has been implemented

using implicit time integration schemes, allowing for much

larger time steps. Implementations of the DEM commonly

use spherical particles to represent non-spherical real granu-

lar particles. To accurately represent a non-spherical particle

with a spherical particle requires careful selection of contact

parameters. Attempts has also been made to use a multi-

sphere approach to model non-spherical particles with the

DEM [7]. A multi-sphere approach can be appropriate, but

the authors still emphasize the difficulty and limitation of

the method: the difficulty in calibrating micro-scale param-

eters for the DEM models. The DEM has traditionally been

applied to model mainly frictional granular materials, but

recently a growing interest in wet granular materials has

stimulated the development of DEM models including cap-

illary forces between particles [36]. When using the DEM,

the computational cost increases with an increasing number

of particles. Today, the availability of increasingly power-

ful computational resources has enabled simulation of large

systems of granular materials, containing millions of par-

ticles [27]. However, the DEM is still impractical for the

simulation of industrial size-scaled granular material flows,

typically involving several billions of particles.

In a continuum approach, the granular mass is modelled

as a continuum and its behaviour is predicted by funda-

mental laws of physics, namely the conservation of mass,

momentum and energy. By this, the modelling of individ-

ual particles is avoided. Traditionally, when the continuum

approach has been used for modelling of solid-like granular

material behaviour, strain-rate-independent plasticity mod-

els, originating from Mohr–Coulomb plasticity, have been

used, see e.g. [2,17,54,64]. In the literature [56], it has been

shown that the mechanical behaviour of granular materials is

strain rate independent in the quasi-static regime and strain

rate dependent in the flow regime. In Andrade et al. [3], a

strain-rate-dependent constitutive model for granular materi-

als was formulated. The strain rate dependency was included

by postulating a material strength that evolves with the strain

rate.

When modelling fluid-like granular material behaviour,

the focus has mainly been on the prediction of the steady-

state flow regime. A visco-plastic rheology model, based

on the use of a dimensionless inertia number, was used in

[40,65] to model dense granular material flow. Promising

results were obtained for flows on inclined planes and for

the flow when a granular material was poured on top of a

pile. However, the visco-plastic rheology approach is lim-

ited to flows where the inertial number is low, corresponding

to relatively slow granular material flows. Furthermore, the

solid-like granular material behaviour at quasi-static load-

ing cannot be captured, and no hysteresis is included. No

inclusion of hysteresis means that an event where part of

the granular material is static, while some other part of it is

flowing, cannot be predicted correctly.

Modelling and simulation of the behaviour of granular

materials with a continuum approach require, besides the

selection of an adequate constitutive model, the choice of

a robust and efficient numerical method. The finite element

method (FEM) is a numerical method with a long tradition

that has been used for numerical modelling in a wide range of

technical fields [88]. When used with a Lagrangian descrip-

tion of motion, large deformations tend to severely distort

the FE mesh, resulting in numerical difficulties. Thus, to use

the FEM to model large deformation problems, some remedy

for the mesh distortion is required. The FEM used with an

Eulerian description of motion has been used to model gran-

ular material flow because it avoids mesh distortions at large

deformation [23,42,83]. However, the FEM with an Eule-

rian description suffers from difficulties in predicting free

surfaces and moving boundaries. The arbitrary Lagrangian–

Eulerian (ALE) method attempts to overcome the inherent

drawbacks of both Lagrangian and Eulerian descriptions.

Drawing on the advantages of pure Lagrangian and pure

Eulerian descriptions, the ALE method was used to model

granular material flow in [13,14,78]. Advantages and disad-

vantages of using the FEM for the numerical simulation of

forming processes involving large strains are discussed thor-

oughly in Rodríguez et al. [68].

There exist a number of particle methods within the

continuum approach, and they provide an attractive alter-

native to the above-mentioned numerical methods, for the

modelling of granular materials. Particle methods are com-

monly classified into two categories, particle methods that

use a background mesh and particle methods that do not

use a background mesh. One example of the latter is the

smoothed particle hydrodynamics (SPH). The SPH was orig-

inally developed for the simulation of astrophysical problems

[28,53]. The SPH is a Lagrangian mesh-free method, where

the computational domain is represented by a set of parti-

cles. The particles also serve as the frame over which the

field equations are approximated. In the SPH, no direct con-

nectivity between particles exists. Thus, it can be used to

treat problems involving large deformation, without suffering

from the numerical difficulties inherent in mesh-based meth-

ods. The original SPH suffers from a number of drawbacks

such as tensile instability, a lack of interpolation consis-

tency, zero-energy modes, difficulties in handling essential

boundary conditions and non-physical pressure oscillations.

Furthermore, the SPH requires a homogeneous and smooth

particle distribution to obtain stable and reliable results. This

becomes particularly important in the evaluation of the pres-

sure field. In recent versions of SPH, many of the inherent

drawbacks of the original version have been addressed and
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solved. Today, SPH is used for modelling in a wide range of

engineering applications, including simulation of slope sta-

bility analysis and failure [6,58], and for the modelling of

granular material flow [5,30,37–39,48,57,63].

The material point method (MPM) is a particle method

that uses a background mesh. The MPM was developed

by Sulsky et al. [75,76], and it is based on a combined

Lagrangian–Eulerian description of motion. In the MPM,

the state variables are traced on Lagrangian material points,

while the equations of motion are integrated on a background

computational mesh. The material points can be chosen inde-

pendently of the mesh, and the connectivity between the

material points changes dynamically during the simulation.

In the MPM, each particle is assigned a fixed mass, which

ensures mass conservation as long as the number of particles

is kept constant throughout the simulation. Mass conserva-

tion is a strong advantage of the MPM, but since it is not

easy to add or remove particles inside a given mass, the con-

centration of mass in localized areas might create problems.

Since its original formulation, the MPM has become widely

used for modelling in computational mechanics. Noteworthy

publications include [10] where the MPM was used to treat

localized large deformations for brittle failure and in [1] to

model landslides using a Mohr–Coulomb yield criterion. Fur-

thermore, the literature contains a number of studies where

the MPM has been used to model granular material flow, for

instance to model the granular material column collapse of

frictional materials [20,24,55,74], cohesive–frictional mate-

rials [31] and silo discharge problems [80]. In a recent study

by [32], a stabilized mixed implicit MPM was developed

and used to model incompressible and compressible materi-

als with a variety of plasticity laws. The MPM, combined

with appropriate constitutive models, has been shown to

adequately predict granular material flow at varying flow

conditions.

The particle finite element method (PFEM) is another

mesh-based particle method, and it is a Lagrangian particle

method based on the FEM. The PFEM was initially devel-

oped for solving fluid dynamics problems in the context of

fluid–structure interaction and free-surface flow [33,34,60].

The first extension of the PFEM to solid mechanics applica-

tions was made by Oliver et al. [59]. Recently, the flexibility

and robustness of the PFEM have been demonstrated in a

variety of engineering applications such as modelling of

water waves generated by landslides [11,70], modelling rapid

landslide run-outs with a Drucker–Prager model cast as a

Bingham, non-Newtonian fluid model [12] and modelling

of failure of rockfill dams with a Mohr–Coulomb model in a

non-Newtonian Bingham form [46]. Furthermore, the PFEM

has been used to model a variety of granular material flow

problems, see e.g. [9,16,45,86]. In the PFEM, a Lagrangian

description of motion is used for the nodes in a finite ele-

ment mesh. The nodes are considered as free particles that

are allowed to separate from the domain they originally are a

part of. A cloud of particles is used to identify the computa-

tional domain, and a finite element discretization is utilized

to advance the solution by a time increment. The particles

contain all properties and variables, and the values of those

are projected onto the mesh at each time increment, where

the necessary equations are solved. The PFEM predicts a

smooth pressure field, and the non-physical pressure oscilla-

tions typical for the SPH method are avoided. One advantage

of the PFEM compared to the MPM is that in the PFEM it

is possible to add or remove particles during the simulation;

thus, concentration of mass in localized areas can be avoided.

If a numerical model is to be used for industrial decision-

making, it needs to produce trustworthy results. Here, vali-

dation against experimental observations is of major impor-

tance. The continued development of numerical methods for

modelling granular materials requires improved experimen-

tal methods that can provide high-accuracy results for model

calibration and validation. Experimental insight into the flow

dynamics can be obtained through in-plane velocity measure-

ment, and such measurements are very useful for validation

of numerical models. The introduction of digital photography

has led to the development of optical experimental techniques

such as digital particle image velocimetry (DPIV) [81]. In

DPIV, a cross-correlation method is applied to a series of

digital images to obtain the in-plane velocity field. DPIV was

applied by [73] for field measurements of granular material

flow during the discharge from plane hoppers. Digital image

correlation (DIC) is an optical experimental technique that

has been used extensively for the displacement and strain

field measurement of materials subjected to large strains

[41,62]. The DIC technique is based on the comparison of a

series of digital photographs of a specimen surface recorded

during deformation. Similar to the DPIV technique, a cross-

correlation procedure is applied to determine the in-plane

displacement field.

The collapse of granular material columns is an exper-

imental set-up that has received much attention in recent

years. The simplicity of the set-up and the ability to use it to

study complex granular material flow phenomena have made

the column collapse popular in the field of granular material

flow. The set-up was popularized by [43] and [51] where

cylindrical columns producing axisymmetric collapses were

used. Their work revealed that the flow dynamics and deposit

morphology were primarily dependent on the initial aspect

ratio between the height and radius of the columns. Non-

intrusive measurements of the deposit morphology using a

laser scanner equipment were presented in [79]. In [85], parti-

cle tracking velocimetry was used to obtain in-plane velocity

measurements of collapsing granular columns. In [47], the

DIC technique was used to study and characterize granular

material flow through field measurements.
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The aim of the present study was to obtain a robust

numerical tool for the simulation of granular material flow at

dissimilar flow conditions. Transient granular material flow

was modelled by the PFEM and a novel constitutive model

where the internal friction of the granular material evolves

with strain rate. To assess the capability of the proposed

modelling framework, a set of numerical simulations of

the fundamental problem of collapsing rectangular columns

of granular material were performed. An extensive exper-

imental investigation of the column collapse problem was

performed where a novel experimental technique based on

DIC was applied to quantify the flow dynamics in the form

of in-plane velocity measurements. The proposed numerical

model was validated by comparing results from the simula-

tions with experimental measurements.

2 Materials and experimental study

In the present study, the flow dynamics of two granular mate-

rials was investigated experimentally. The main purpose of

the experimental study was to obtain qualitative and quantita-

tive measures of the flow of the granular materials, to be used

for the calibration and validation of the proposed numerical

model.

2.1 Materials

In the present study, two granular materials with very differ-

ent properties were investigated. The first granular material

was a potassium chloride (KCl) fertilizer, commonly known

as muriate of potash (MOP). MOP denotes mixtures of KCl,

at 95% or greater purity, and NaCl, which are adequate for

agricultural use [77]. The particle size for the granular MOP

was in the range of 2.0–4.0 mm, the particle shape was angu-

lar, the particle density was 1.99 g/cm3, and the bulk density

was 1.00 g/cm3. The second granular material was a sin-

tered aluminium oxide (Al2O3) used as a grinding media in

liquid fine grinding in stirred media mills. The particle shape

of the Al2O3 was spherical, and the particle size was in the

range 1.2–2.0 mm. The particle density was 3.41 g/cm3,

and the bulk density was 2.13 g/cm3. Optical light micro-

scope images of the two granular materials are shown in

Fig. 1, and it is observed that the granular materials have

very different particle shapes. The particle shape of a gran-

ular material affects the internal angle of friction, which in

turn affects its flowability. It has been shown [4,82] that par-

ticles with fairly spherical shape have a significantly lower

internal angle of friction compared to that of particles with

an angular and rough shape. In the present study, two granu-

lar materials with different particle shapes were chosen. The

Al2O3 consists of spherical particles and the KCl with angu-

lar and rough particles. This choice was made deliberately

Fig. 1 Optical light microscope images of (a) granular potassium chlo-

ride (KCl) fertilizer and (b) sintered aluminium oxide (Al2O3) grinding

media

to investigate the ability of the proposed numerical model

to represent granular materials with very different proper-

ties and bulk flow characteristics. Furthermore, an objective

of the present study was to evaluate the performance of the

proposed optical experimental technique for granular mate-

rials with different properties. Thus, this choice of granular

materials was considered adequate by the authors.

2.2 Experimental set-up and procedure

The study of the transient material flows that occur during the

collapse of columns of granular materials has been the focus

in a number of studies. The collapse of axisymmetric granular

material columns was studied experimentally in [43,51]. The

rectangular channel column collapse was studied in [4,52].

The granular column collapse problem includes the kine-

matics of granular materials on different stages. Initially,

the material is at rest in its container, and it then undergoes

acceleration during the collapse and deceleration when the

material comes to rest. Thus, the granular material column

collapse experiment provides a good foundation for evaluat-

ing a numerical model of transient granular material flows.

The experiments carried out in the present study constitute
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Fig. 2 Schematic of the

experimental set-up used for the

granular material column

collapse experiments

a complement to the experimental results found in the lit-

erature, especially concerning the optical measurements of

the in-plane velocity field which are rarely found in previous

studies.

An illustrative drawing of the experimental set-up used in

the present study is shown in Fig. 2. The experimental set-

up was designed as a 50-mm-wide, 590-mm-long and 230-

mm-high closed rectangular channel. The front panel was

made of hardened glass with a thickness of 4 mm. The other

panels of the channel were made of steel with a thickness

of 6 mm. The bottom of the channel was open, allowing

it to be placed on surfaces made of different materials, with

different surface properties. For all experiments in the present

study, a smooth and horizontal bottom surface made of steel

was used. A 6-mm-thick steel door was used to confine the

granular materials in a reservoir prior to the collapse. The

position of the door could be varied, enabling the study of a

wide range of initial shapes of the granular mass. The design

of the experimental set-up used in the present study was based

on the set-ups used for rectangular channel column collapse

experiments in [4,44].

The experimental procedure consisted in an initial posi-

tioning of the door and thus selecting a length li of the

reservoir. The reservoir was then partly filled by carefully

pouring a granular material mass to a height hi . Thus, form-

ing a rectangular column of granular material with a length

of li , a height of hi and a width of 50 mm. The top surface of

the granular material was evened out by hand. The door was

then quickly removed vertically via a weight, rope and pulley

system (Fig. 2). The use of a weight, rope and pulley system

made it possible to remove the door in a reproducible manner,

keeping the vertical speed of the door constant at approxi-

mately 1.5 m/s for all the experiments. When the door was

removed, the granular mass collapsed under the influence of

gravity and spread horizontally in the channel until it came to

a rest, forming a deposit profile. A conceptual initial set-up

and final deposit profile are shown in Fig. 3.

Fig. 3 Illustration of the initial set-up and the final deposit profile for

the column collapse experiment

The ratio between the initial height hi and length li was

used to express the aspect ratio ai = hi/li of the granular

mass. The aspect ratio was varied by either using different

amounts of granular material for a fixed door position and

thus varying hi , or by re-positioning the door and thus varying

li . This procedure enabled the investigation of the collapse of

columns of different masses but with the same aspect ratio.

In total, 17 experiments were carried out for each granu-

lar material and the experimental parameters are presented

in Table 1. Since all possible combinations of experimental

parameters would result in a huge test matrix, the choice of

hi and li was made arbitrarily with the aim to cover the span

of aspect ratios given in Table 1.
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Table 1 Initial length li and

height hi , aspect ratio

ai = hi /li and mass in the series

of column collapse experiments

for KCl and Al2O3

Material KCl Al2O3

Test li [mm] hi [mm] ai Mass[g] li [mm] hi [mm] ai Mass [g]

1 100 73 0.73 400 99 74 0.75 800

2 59 127 2.15 400 59 127 2.15 800

3 39 200 5.13 418 39 192 4.92 800

4 30 157 5.23 250 30 132 4.40 400

5 60 95 1.58 300 60 83 1.38 500

6 10 96 9.60 44 90 124 1.38 1166

7 100 83 0.83 440 10 97 9.70 96

8 50 152 3.04 400 110 66 0.60 750

9 30 92 3.07 148 40 98 2.45 400

10 50 104 2.08 270 20 49 2.45 96

11 20 124 6.20 130 30 98 3.27 300

12 10 63 6.30 33 20 121 6.05 250

13 20 158 7.90 165 10 60 5.95 58

14 20 169 8.45 180 20 151 7.55 300

15 60 61 1.02 190 20 161 8.05 330

16 90 107 1.19 510 10 81 8.05 81

17 40 162 4.05 340 70 70 1.00 500

18a 72 60 0.83 230 80 48 0.60 400

19a 22 115 5.23 130 21 92 4.38 200

aTests recorded with the high-speed camera and processed using digital image correlation

The experiments were recorded with a high-speed digital

camera. A MATLAB script was used to process the digital

images to extract the final height h∞, the final length l∞ and

the granular material deposit profile. For the KCl, l∞ was

defined as the horizontal position where the grains remained

in contact with the rest of the granular mass. Thus, individual

grains that had separated from the mass were not considered.

For the Al2O3, l∞ was defined as the horizontal position

where the granular material layer ceased to have at least two

grains in thickness. Furthermore, the digital images were pro-

cessed using a commercial digital image correlation (DIC)

software [29]. The methodology described in [47] was used

to obtain the in-plane velocity field. In short, the DIC tech-

nique is based on the comparison of a series of digital images

that are divided into overlapping sub-images. The in-plane

velocity field is determined by applying a cross-correlation

algorithm, which requires that the object to be traced is cov-

ered with a random surface pattern. The correlation algorithm

is then able to trace the motion of the sub-images, and thus,

the velocity field can be obtained. The granular materials that

were used in the present study form a natural random surface

pattern, and with a sufficient surface texture, the DIC tech-

nique could be used to obtain the in-plane velocity field. A

more detailed description of the DIC and its application to

quantify granular material flows can be found in [47].

2.3 Data acquisition

To record the experiments, a Redlake MotionPro X3 high-

speed digital camera was used. During the recording, the

granular materials were illuminated using two Dedocool

floodlights equipped with 250 W lamps. The experiments

were recorded with the high-speed camera set to capture 1000

images per second, at a resolution of 1280 × 720 pixels and

with a shutter speed of 0.25 ms.

3 Numerical modelling and simulation

A granular material is a discrete media. However, in the

present study the modelling of granular materials was based

on the assumption that a granular material can be represented

as a continuous media.

The assumption of using a continuum representation of

discrete media is valid as long as the particles are much

smaller than the smallest characteristic dimension of the pro-

cess considered [21]. In the present study, two-dimensional

computational domains were used to represent the granular

materials. The PFEM, implemented in a MATLAB program,

was used, and the granular materials were modelled using

two different constitutive models.
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3.1 Governing equations

The balance of linear momentum can be expressed in a

Lagrangian description as

ρ
Dvi

Dt
−

∂σi j

∂x j

− bi = 0, (1)

where vi and bi are the velocity and body force components,

ρ is the density, x j are the material point positions, σi j is the

Cauchy stress tensor and Dvi

Dt
is the material derivative of the

velocity field

Dvi

Dt
=

∂vi

∂t
+ v j

∂vi

∂x j

. (2)

The Cauchy stress tensor can be split into a mean stress

component σ0 = 1
3
tr(σi j ) and a deviatoric component si j

according to

σi j = si j + σ0δi j , (3)

where δi j is the Kronecker delta. Furthermore, it is assumed

that the mass of a continuum body is conserved and that it is

a continuous function of volume. The conservation of mass

can be stated as

−
1

κ

Dσ0

Dt
+ εV = 0, (4)

where κ is the elastic bulk modulus, Dσ0
Dt

is the material

derivative of the mean stress and εV is the volumetric strain

rate. The volumetric strain rate is defined as the trace of the

rate of deformation tensor di j , which is given by

di j =
1

2

(

∂vi

∂x j

+
∂v j

∂xi

)

. (5)

3.2 Constitutive models

Modelling a granular material as a continuum requires a con-

stitutive model where the stresses in the material are related

to some measure of deformation. Constitutive models may

be dependent or independent of the strain rate, and in the

present study, two strain-rate- dependent constitutive mod-

els were evaluated and compared.

3.2.1 Flow formulation

The first constitutive model is based on a constitutive rela-

tion for the flow of plastic and visco-plastic solids. It was

originally outlined in [87] and was specialized in [8] to a

Drucker–Prager yield surface [19], with a non-associated

flow rule.

For large deformation, under plastic or visco-plastic con-

ditions, elastic deformations can be neglected. A constitutive

model linking the stresses and strain rates, where the viscos-

ity is dependent on the current strain rates, can be formulated

using the analogy with a viscous non-Newtonian incompress-

ible fluid. The constitutive relation for an incompressible

viscous fluid can be expressed as

σi j = σ0δi j + 2με̇i j , (6)

where μ is the viscosity and ε̇i j is the strain rate tensor. Equa-

tion (6) can be rewritten using the split of the Cauchy stress

tensor from Eq. (3)

ε̇i j =
1

2μ
si j , (7)

and following the definition of Perzyna non-associated visco-

plasticity [69], Eq. (7) can be written as

ε̇i j =
1

μp

〈F〉
∂G

∂σi j

, (8)

where μp is a ’pseudo-viscosity’, F = F(σi j ) = 0 is a

plastic yield surface and G = G(σi j ) is a plastic potential

function. The use of Macaulay brackets in Eq. (8) means that

〈F〉 = F if F > 0 and 〈F〉 = 0 if F ≤ 0, thus ensuring

no development of plastic flow if the stress state is inside the

yield surface. If the viscosity parameter μp → 0, it implies

that 〈F〉 → 0 in order for ε̇i j to be a finite quantity. Thus,

ε̇i j → λ̇∂G/∂σi j , where λ̇ is the plastic multiplier. In other

words, the visco-plastic relation in Eq. (8) reduces to rate

independent plasticity theory when μp → 0.

Cante et al. [8] specialized the Perzyna relationship to the

Drucker–Prager yield surface (Fig. 4), which has the follow-

ing functional form

F =
√

3

2
||si j || + b1σ0 − b2. (9)

The parameter b1 controls the influence of the mean stress

on the yield limit, and it can be interpreted as the internal

coefficient of friction of a granular material. The parameter

b2 corresponds to the yield strength of the material under

pure shear, and in the context of granular materials, it can be

interpreted as the granular material cohesion.

In the present study, the flow rule assigned to the Drucker–

Prager yield surface is non-associated and consists of a purely

deviatoric strain rate, and it can be expressed as

∂G

∂σi j

= si j . (10)
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Fig. 4 Drucker–Prager yield surface with a non-associated flow rule

The material flows at F ≥ 0 and from Eqs. (8) to (10) the

following expression can be obtained

6 ˙̄εi jμ
2 + 2μ(b1σ0 − b2) − μ̄ = 0, (11)

where ˙̄εi j =
√

2
3
||dev(ε̇i j )|| is the effective strain rate. For

ideal plasticity, μ̄ → 0 and the viscosity can be written as

μ =
b2 − b1σ0

3 ˙̄εi j

. (12)

Thus, a relationship between the deviatoric stresses and the

strain rate has been obtained. Using the above results, this

expression can be written in its final form as

si j = 2με̇i j . (13)

3.2.2 Flow formulation with strain-rate-dependent residual

strength

The second constitutive model used in the present study is

based on a strain-rate-dependent plasticity model introduced

in [3]. Considering the Drucker–Prager yield surface outlined

in the previous section, the parameter b1 is interpreted as the

frictional resistance of the granular material. Andrade et al.

[3] proposed a frictional resistance that is dependent on the

dilatancy β and on a residual resistance μ̄

b1 = β + μ̄. (14)

The dilatancy is considered to be a function of the devia-

toric shear strain εs , and its evolution is given by

β(εs) = β∗ εs

ε∗
s

exp

(

1 −
εs

ε∗
s

)

, (15)

where β∗ is the maximum dilatancy and ε∗
s is the correspond-

ing deviatoric shear strain. Following the form outlined in

[40], the evolution of the residual resistance is a function of

the deviatoric shear strain rate ε̇s , and it is given by

μ̄(ε̇s) = μ̄l +
μ̄u − μ̄l

1 + ε̇∗
s /ε̇s

, (16)

where μ̄l and μ̄u are the lower and upper bounds for the

residual resistance, respectively. The lower and upper bounds

are represented by ε̇s → 0 and ε̇s → ∞, respectively. The

parameter ε̇∗
s is a characteristic deviatoric shear strain rate at

which the residual resistance is μ̄ = 1/2(μ̄l + μ̄u). Thus, the

frictional resistance b1 is dependent on both the deviatoric

shear strain and the deviatoric shear strain rate. The evolution

of the frictional resistance is given by

b1(εs, ε̇s) = β(εs) + μ̄(ε̇s). (17)

The role of the dilatancy is to couple the deviatoric and

volumetric components of deformation, and it describes the

volume change of a material under shear deformation. The

dilatancy is important for the mechanical behaviour of gran-

ular materials at quasi-static loading. It is in contrast to other

materials, such as metals which are non-dilative. Dilatancy is

important for granular materials in the solid-like state, but it

can be neglected in the fluid-like state. In most granular mate-

rial flows, the variation of the volumetric fraction is small

[25], and if the granular material is considered as incompress-

ible, the dilatancy and frictional equations are decoupled.

Thus, the incompressible assumption greatly simplifies the

constitutive model. In the present study, the granular materi-

als were modelled as quasi-incompressible. Thus, the effect

of the dilatancy was not included and the evolution of the

frictional resistance is given by

b1(ε̇s) = μ̄(ε̇s). (18)

The conceptual evolution of the residual strength as a func-

tion of ε̇s and ε̇∗
s is shown in Fig. 5.

3.3 The particle finite elementmethod

The PFEM is a particle-based numerical method where a

background mesh is used and on which the FEM is used

to solve the governing equations. The PFEM is founded

upon modelling using an updated Lagrangian formulation. In

the updated Lagrangian formulation, the equations are for-

mulated in the current configuration, and the variables are

assumed to be known at the last calculated configuration, at

time t . The new variables are sought at the updated configu-

ration, at time t + 
t . As outlined in [67], the PFEM can be

divided into the following basic steps:
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Fig. 5 Evolution of the residual strength μ̄ as a function of the deviatoric

strain rate ε̇ and the characteristic deviatoric strain rate ε̇∗
s

1. The computational domain is defined by a set of particles

of infinitesimal size.

2. A finite element mesh is generated, using the set of parti-

cles as nodes. The finite element mesh is obtained using

a Delaunay triangulation [49].

3. The alpha-shape method [22,84] is used to identify the

external boundaries onto which the boundary conditions

are imposed.

4. The nonlinear governing equations are solved for dis-

placement, velocity and pressure at every node of the

mesh.

5. Computed velocities and pressures are used to update the

position of the particles.

6. Return to step 2 and repeat for the next time increment.

Thus, the PFEM can be interpreted as an updated

Lagrangian approach, where the FEM is used to solve the

incremental problem. In the PFEM, the mesh works as the

background mesh for integration of the differential equations,

and simultaneously, the mesh is used to keep track of free sur-

faces and contacts. Similar to the standard FEM, the accuracy

of the solution in the PFEM depends on the mesh density and

quality.

In a Lagrangian description of motion, the particles in the

finite element mesh also represent material particles. Thus,

the particles will move with the flow of the material. The

motion of the particles might result in regions of increased

concentration of particles and consequently regions where

the particle spacing is large. The accuracy of the solution is

affected if the distribution of particles becomes too irregu-

lar. In the present implementation of the PFEM, this issue

is addressed by allowing the removal and addition of parti-

cles. A geometric criterion based on a characteristic element

size and distance between particles governs the addition

and removal of particles. In the PFEM, contact between the

deforming material domain and fixed boundaries is detected

Fig. 6 Conceptual illustration of the particle discretization of the

domain in the two-dimensional plane deformation column collapse sim-

ulation. The initial particle disposition is regular and rectangular. In the

figure, the fixed particles used to represent the bottom surface and left

wall are shown in a darker shade

automatically during the mesh generation, and no contact

search algorithm is required. Penetration of the nodes of the

deforming material into the fixed boundaries is prevented by

the incompressibility condition. In the present implementa-

tion of the PFEM, frictional contact between the deforming

domain and the fixed boundaries is modelled via the frictional

resistance of the deforming material. More details regarding

the automatic contact treatment of the PFEM can be found

in [61].

3.4 Simulation procedures

The column collapse experiment was simulated using a

two-dimensional plane deformation implementation of the

PFEM. The granular material mass was represented using

particles which were initially arranged in a regular rectan-

gular pattern. The bottom surface and the left wall were

modelled as stationary particles. The initial particle disposi-

tion and the location of the fixed particles used as boundaries

are conceptually illustrated in Fig. 6. Throughout the present

study, a stabilized linear triangular mixed velocity–pressure

finite element formulation was used to solve the Lagrangian

equations [18]. A fully implicit scheme was used for the

time integration where the time step size was a function of

the maximum velocity and the minimum distance between

the particles. A maximum allowed value of the time step was

set to 
t = 1.0 × 10−4 s, and a convergence criterion of

10−4 was used.

In the literature [44,52], the time evolution of the flow front

in the column collapse is commonly described using a char-

acteristic time scale based on the free-fall time of the granular

column τc =
√

hi/g. In the present study, the simulations

were terminated at the normalized time t̄ = t/τc = 4.0, at

which the flow front propagation was assumed to have ceased

for the investigated range of aspect ratios. In a comprehensive

experimental study of the collapse of granular columns along

a horizontal channel, Lube et al. [52] derived a t̄ = 3.3. Thus,

the assumption of a ceased flow front at t̄ = 4.0 is considered

adequate and conservative. Since the granular materials in the

present study were assumed to be dry and cohesionless, the
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Fig. 7 Photographs of the initial configuration and final deposit of the rectangular channel column collapse experiments with low aspect ratios. (a)

and (b) Test no. 1 for the KCl with ai = 0.73 and li = 100 mm. (c) and (d) Test no. 1 for the Al2O3 with ai = 0.75 and li = 99 mm

Fig. 8 Photographs of the initial configuration and final deposit of the rectangular channel column collapse experiments with high aspect ratios.

(a) and (b) Test no. 3 for the KCl with ai = 5.13 and li = 39 mm. (c) and (d) Test no. 3 for the Al2O3 with ai = 4.92 and li = 39 mm

constitutive model parameter b2, described in Sect. 3.2, was

kept at a very small positive value (b2 = 10−6 Pa) in all the

simulations. Since the granular materials were considered as

incompressible, the choice of bulk modulus is arbitrary. The

value of the bulk modulus was set to κ = 2.2 GPa, which

corresponds to the bulk modulus of water. The computational

time for the column collapse simulations on a 2.60 GHz Intel

Xeon processor was between 5 and 160 minutes, depending

on the size of the computational domain.

4 Results and discussion

In the following section, the experimental and numerical

results are presented and discussed. The flow dynamics of

the rectangular column collapse was investigated for a range

of initial aspect ratios. The PFEM was used with two different

constitutive models to simulate the experiments, using a two-

dimensional plane deformation formulation. The numerical

mesh convergence was studied, and the constitutive mod-

els were calibrated by inverse modelling. The constitutive
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Fig. 9 Mesh size dependency of the final deposit profile extracted from

the simulated rectangular column collapse with ai = 10 and li = 24 mm

Fig. 10 Comparison of experimental and simulated final deposit pro-

files from the rectangular column collapse, for the calibration of the

constitutive parameter b1. (a) Test no. 3 for the KCl with ai = 0.73 and

(b) test no. 3 for the Al2O3 with ai = 0.75

models were then evaluated and validated by comparing the

numerical and experimental results for column collapses over

a wide range of initial aspect ratios.

4.1 Experimental observations

The flow dynamics of the granular column collapse was stud-

ied experimentally for the two granular materials. A series

of representative examples showing how the flow dynamics

varied with the aspect ratio ai are shown in Figs. 7 and 8.

When the value of ai was low (Fig. 7), the flow was con-

tained in the top surface layer, and most of the granular mass

was stationary during the collapse. The final deposit profile

at low values of ai had a characteristic truncated cone shape,

where a large part of the granular mass remained undisturbed

during the collapse. Increasing the value of ai resulted in a

larger proportion of the granular mass being disturbed dur-

ing the collapse, and the final deposit profile converged to

become increasingly more cone shaped.

It is noted from Figs. 7 and 8 that the two granular mate-

rials resulted in final deposit profiles of different shapes, for

similar values of ai . The KCl resulted in a lower value of

l∞ compared to that of the Al2O3, for both the low and the

high ai . Both granular materials resulted in similar values of

h∞ for the low ai experiment, while h∞ was larger for the

KCl than that of the Al2O3 for high ai . Thus, the properties

of the granular materials had an effect on the flow dynamics

and on the shape of the deposit profiles. The angular shape

of the grains of the KCl yields a higher internal friction com-

pared to the spherical grains of the Al2O3. Thus, the Al2O3

flows more easily than the KCl. These observations are in

line with the results of previous studies [4,43], where it was

Fig. 11 Snapshots showing simulated strain rates during the column collapse for the KCl. (a) Test no. 1 with ai = 0.73 and li = 100 mm and (b)

test no. 3 with ai = 5.13 and li = 39 mm. (a) and (b) The strain rate at the normalized time t̄ = 1.4 and with the constitutive parameter b1 = 1.13
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Fig. 12 Evolution of the constitutive model parameter b1 as a function of strain rate ε̇, obtained from calibration against experimental results for

the column collapse. (a) The KCl and (b) the Al2O3

reported that the flow and spreading dynamics were mainly

dependent on the value of ai , but also on the internal friction

of the granular materials.

It was observed that repeated experiments with the same

input parameters resulted in slightly different final heights

and lengths. This was expected, at least to some extent, since

the nature of the granular material is very random and it

is difficult to obtain exactly the same material distribution in

the reservoir before each experiment. This observed random-

ness in the experiments is probably dominating over possible

instrumentation errors.

4.2 Mesh convergence study

The mesh convergence of the current implementation of the

PFEM was studied by running a test problem and varying the

initial distance between the particles. For this, the rectangu-

lar granular column collapse problem with an initial height

hi = 240 mm and initial length li = 24 mm was chosen. The

selected dimensions corresponded to ai = 10. A high aspect

ratio was selected to produce a case with large deformations

and large pressure and velocity gradients. Three initial parti-

cle distances were selected: 1.5 mm, 0.75 mm and 0.375 mm,

resulting in models containing approximately 3500, 12100

and 44800 particles, respectively. For the mesh convergence

study, the flow formulation constitutive model was used with

b1 = 1.0 and b2 = 10−6 Pa. The bulk density was set to

1.00 g/cm3. To evaluate the mesh size dependency, the final

deposit profile was extracted and compared for the three mod-

els. In Fig. 9, the final deposit profiles are compared, showing

that they are barely distinguishable. Thus, an initial particle

distance of 1.5 mm was considered adequate and was used

throughout the present study.

Fig. 13 Comparison of experimental and simulated final deposit pro-

files of the granular mass, for high aspect ratios. (a) Test no. 3 for the

KCl with ai = 5.13 and li = 39 mm and (b) test no. 3 for the Al2O3

with ai = 4.92 and li = 39 mm

4.3 Constitutive model parameter calibration

The calibration of the constitutive model parameters was con-

ducted in two steps, using the rectangular column collapse

experiments. In the first step, the parameter b1 was calibrated

using a low aspect ratio experiment, with ai = 0.73 for the

KCl and ai = 0.75 for the Al2O3. Experimental and simu-

lated final deposit profiles were compared for different values

of b1, as shown in Fig. 10. In addition to comparing the shape

of the deposit profile, the experimentally and numerically

obtained values of h∞ and l∞ were also compared. From

Fig. 10, it is observed that lowering the value of b1 resulted

in a less viscous behaviour of the granular mass, which is
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Table 2 Experimental and simulated final length l∞ and height h∞ from the series of column collapse experiments for KCl. Tests 1–3 were used

for calibration and tests 4–17 for validation

Test ai Experiment PFEM PFEM with μ̄(ε̇s)

l∞ [mm] h∞ [mm] l∞ [mm] %error h∞ [mm] %error l∞ [mm] %error h∞ [mm] %error

1 0.73 196 72 195 0.5 72 0 198 1.0 72 0

2 2.15 228 80 219 3.9 84 5.0 225 1.3 83 3.8

3 5.13 254 77 236 7.1 81 5.2 256 0.8 77 0

4 5.23 193 60 185 4.1 60 0 60 8.8 210 10.0

5 1.58 177 72 181 2.3 74 2.8 192 8.5 67 6.9

6 9.60 85 22 83 2.4 23 4.5 96 12.9 22 0

7 0.83 204 81 202 1.0 81 0 218 6.9 81 0

8 3.04 222 78 235 5.9 80 2.6 251 13.1 72 7.7

9 3.07 150 44 130 13.3 46 4.5 146 2.7 43 2.3

10 2.08 190 65 181 4.7 66 1.5 199 4.7 62 4.6

11 6.20 147 40 136 7.5 42 5.0 149 1.4 39 2.5

12 6.30 75 19 69 8.0 20 5.3 73 2.7 19 0

13 7.90 154 46 163 5.8 45 2.2 178 15.6 41 10.9

14 8.45 171 49 164 4.1 47 4.1 182 6.4 43 12.2

15 1.02 142 54 136 4.2 59 9.3 143 0.7 57 5.6

16 1.19 225 97 227 0.9 100 3.1 247 9.8 92 5.2

17 4.05 240 69 216 10.0 74 7.2 235 2.1 65 5.8

Median %a
error 4.5 3.6 6.6 5.4

aCalculated from tests 4–17

Table 3 Experimental and simulated final length l∞ and height h∞ from the series of column collapse experiments for Al2O3. Tests 1–3 were used

for calibration and tests 4–17 for validation

Test ai Experiment PFEM PFEM with μ̄(ε̇s)

l∞ [mm] h∞ [mm] l∞ [mm] %error h∞ [mm] %error l∞ [mm] %error h∞ [mm] %error

1 0.73 243 72 245 0.8 72 0 236 2.9 72 0

2 2.15 290 67 307 5.9 66 1.5 290 0 66 1.5

3 5.13 327 63 353 8.0 60 4.8 324 0.9 60 4.8

4 5.23 220 44 247 12.3 43 2.3 236 7.3 44 0

5 1.58 214 55 218 1.9 56 1.8 211 1.4 57 3.6

6 9.60 313 87 345 10.2 85 2.3 315 0.6 87 0

7 0.83 120 17 125 4.2 18 5.9 122 1.7 19 11.8

8 3.04 240 64 240 0 65 1.6 224 6.7 65 1.6

9 3.07 215 47 213 0.9 46 2.1 206 4.2 47 0

10 2.08 100 22 106 6.0 23 4.5 89 11.0 23 4.5

11 6.20 193 38 202 4.7 38 0 187 3.1 39 2.6

12 6.30 183 32 195 6.6 31 3.1 184 0.5 33 3.1

13 7.90 87 16 88 1.1 15 6.3 92 5.7 16 0

14 8.45 223 35 239 7.2 33 5.7 215 3.6 34 2.9

15 1.02 225 37 240 6.7 34 8.1 224 0.4 36 2.7

16 1.19 96 17 115 19.8 17 0 110 14.6 18 5.9

17 4.05 201 57 208 3.5 59 4.4 192 4.5 59 4.4

Median %a
error 5.3 2.7 3.9 2.8

aCalculated from tests 4–17
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Fig. 14 Comparison of

experimental and simulated

normalized final height h∞ as a

function of the initial aspect

ratio ai from the rectangular

column collapse. (a) The KCl

and (b) the Al2O3

reflected in a larger simulated value of l∞ for both mate-

rials. Increasing the value of b1 resulted in a more viscous

behaviour and thus a smaller simulated value of l∞ for both

materials and an increased value of h∞ for the Al2O3, for

the range of investigated values of b1. Thus, b1 was adjusted

to obtain a good fit to the experimental values of h∞ and l∞.

The value of b1 that resulted in the most accurate prediction

of the experimentally obtained h∞ and l∞ was obtained for

the KCl (b1 = 1.13) and for the Al2O3 (b1 = 0.83).

The flow formulation constitutive model was then used

with the obtained values of b1 to simulate two additional

experiments with increasingly larger aspect ratios. Experi-

ments where ai = 2.15 and ai = 5.13 for the KCl and

ai = 2.15 and ai = 4.92 for the Al2O3 were considered.

Increasing the value of ai resulted in increasing strain rates

during the column collapse, as shown in Fig. 11. The value

of b1 obtained through the initial calibration failed to pre-

dict h∞ and l∞ for the experiments with larger ai , for both

the KCl and for the Al2O3. For the KCl, h∞ was overpre-

dicted, while l∞ was underpredicted for increasing values

of ai , indicating that a b1 = 1.13 overpredicted the mate-

rial strength at increasing strain rates. For the Al2O3, it was

the other way around, h∞ was underpredicted, while l∞ was

overpredicted for increasing values of ai , indicating that a

b1 = 0.83 underpredicted the material strength at increasing

strain rates.

Thus, to accurately model the rectangular column collapse

at increasing values of ai required a constitutive model able
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Fig. 15 Comparison of

experimental and simulated

normalized final length l∞ as a

function of the initial aspect

ratio ai from the rectangular

column collapse. (a) The KCl

and (b) the Al2O3

to account for the strain-rate-dependent material strength.

The second constitutive model of the present study allows the

internal coefficient of friction (the parameter b1) of the mate-

rial to be dependent on the strain rate. This model requires

the definition of some additional parameters governing the

evolution of the residual resistance μ̄, which is equal to b1

for a granular material in which the effect of dilatancy can

be neglected. As presented in Sect. 3.2.2, these parameters

are the lower and upper bounds of μ̄ (μ̄l and μ̄u) and the

equivalent deviatoric shear strain rate ε̇∗
s .

In the literature [3,40,50], the identification of model

parameters corresponding to μ̄l and μ̄u has been discussed.

The proposed relationships between the quasi-static material

strength and the material strength at high strain rates vary

depending on the granular material and the type of flow con-

sidered. It is thus difficult to know this relationship a priori

for arbitrary granular materials and flow conditions. In the

present study, the choice of relationship between μ̄l and μ̄u

was based on experimental observations from the column

collapses. For the KCl, the value of μ̄l was set to be equal to

the previously obtained value of b1 = 1.13, while the value

of μ̄u was set to 0.9 × b1. Thus, the residual resistance was

set to decrease with increasing strain rate. For the Al2O3,

the value of μ̄l was set equal to b1 = 0.83 and the value

of μ̄u was set to 1.1 × b1. Thus, μ̄ was set to increase with

increasing strain rate.

The remaining model parameter ε̇∗
s governs the transition

between μ̄l and μ̄u with increasing strain rate shown con-

ceptually in Fig. 5. The value of ε̇∗
s was obtained using three

column collapse experiments, where ai was varied between

0.73 and 5.13 for the KCl and between 0.75 and 4.92 for the

Al2O3. The same procedure that was used to calibrate b1 was
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Fig. 16 Comparison of the in-plane velocity fields during the column

collapse for the Al2O3. Measured using DIC (left column) and simulated

using the PFEM with the strain-rate-dependent residual strength consti-

tutive model (right column). The horizontal component of the velocity

is compared in (a)–(b), and the vertical component is compared in (c)–

(d). Results are from test no. 18 with ai = 0.60 and li = 80 mm. The

results are compared at the normalized time t̄ = 1.8

employed to calibrate ε̇∗
s . The shape of the final deposit and

the values of h∞ and l∞ were compared for different values

of ε̇∗
s . The best match to the experimentally obtained h∞ and

l∞ was obtained with ε̇∗
s = 25 for the KCl and ε̇∗

s = 10

for the Al2O3. In Fig. 13, the shape of the deposits obtained

experimentally and with the two constitutive models of the

present work is shown for the KCl and the Al2O3. The evo-

lution of the parameter b1 as a function of the strain rate is

shown in Fig. 12 for both granular materials.

The discrepancy between the experimental and the simu-

lated deposit profiles in Fig. 13 is slight for the Al2O3, but

more prominent for the KCl. A possible explanation is that

the assumption of using a continuum representation of a dis-

crete media might be questionable in the case of KCl. To

accurately model a discrete media as a continuum requires

that the particles are much smaller than the smallest charac-

teristic dimension of the process considered [21]. The size

and the angular shape of the grains of the KCl, and the length

scale of the experiments of the present study cause the flow-

ing layer of grains to be thin in comparison with the grain

size in some of the experiments, thus making the continuum

representation questionable at that location. A further possi-

ble explanation for the discrepancy is that the shape of the

grains of the KCl might result in some dilatation during the

column collapse, thus resulting in a slight volume increase.

The dilatation is typically small for a granular material in

the fluid-like state [25], and it is typically neglected. In the

present study, the granular materials are modelled as incom-

pressible; thus, any dilatation is not taken into account which

is an additional contributing factor to the slight deviation

between simulated and experimental profiles for the KCl.

It must also be noted that when using the PFEM, the

remeshing method may cause a slight variation of the volume

of the computational domain. To prevent this, the choice of

the value of the alpha-shape parameter should be carefully

considered. The issue of volume conservation and remeshing

in the PFEM is discussed in detail in [26] where it is sug-

gested that values of the alpha-shape parameter close to 1.2

keep the volume variation at acceptable levels for problems

of highly unsteady flows. Thus, throughout the present study,

the value of the alpha-shape parameter was set to 1.2.

In the present study, a strategy for calibration of the

constitutive parameters based on a comparison between

experimental and simulated column collapses is presented.

Using this approach, a set of constitutive parameters were

obtained for the two granular materials. To obtain a unique
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Fig. 17 Comparison of the in-plane velocity fields during the column

collapse for the KCl. Measured using DIC (left column) and simulated

using the PFEM with the strain-rate-dependent residual strength consti-

tutive model (right column). The horizontal component of the velocity

is compared in (a)–(b), and the vertical component of it is compared in

(c)–(d). Results are from test no. 18 with ai = 0.83 and li = 72 mm.

The results are compared at the normalized time t̄ = 1.4

set of constitutive parameters is indeed a difficult task, partly

because it is difficult to experimentally measure the evolu-

tion of the frictional resistance as a function of the strain

rate in a granular material. Thus, the parameters obtained in

this study are considered to be of use in the present appli-

cation and at the investigated loading conditions. A strategy

to obtain a unique set of constitutive parameters for arbitrary

loading conditions and granular materials would indeed be an

improvement but lies outside the scope of the present study.

4.4 Model validation

To validate the proposed numerical model, a number of col-

umn collapses with varying ai were simulated and compared

to experimental results. In total, the 17 cases from Table 1

were simulated for each granular material, where ai was var-

ied between 0.73 and 9.60 for the KCl and between 0.60 and

9.70 for the Al2O3. Experimental and simulated values of l∞
and h∞ are presented in Tables 2 and 3. The experimentally

measured h∞ and l∞ were normalized with respect to the

initial length li and were plotted as a function of ai , using

a logarithmic scale on both the horizontal and the vertical

axes, as shown in Figs. 14 and 15. The normalized h∞ and

l∞ obtained from the simulations were plotted together with

the experimental results, as shown in Figs. 14 and 15. When

comparing the experimental and numerical h∞ and l∞, it

is observed that the strain-rate-dependent residual strength

constitutive model is able to accurately predict the column

collapse at the investigated range of ai , for both the KCl

and the Al2O3. An error percentage for simulated l∞ and

h∞ compared to experimental results was calculated and the

median of the error percentage was determined, excluding

the tests used for calibration of ε̇∗
s , as given in Tables 2 and

3. For the KCl, comparing the median percentage errors, the

most accurate prediction was obtained for the constitutive

model without strain-rate-dependent residual strength. For

the Al2O3, the strain-rate-dependent residual strength model

resulted in a more accurate prediction of l∞, while for h∞ a
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similar accuracy was obtained for both constitutive models.

The best model predictions resulted in median percentage

errors less than 5, for both granular materials.

To further compare the experimentally observed flow

dynamics to the PFEM simulations, the horizontal and ver-

tical velocity fields were extracted from the column collapse

experiment using DIC, as described in Sect. 2.2. In Figs. 16

and 17, the horizontal and vertical velocity fields are com-

pared for the Al2O3 with ai = 0.60 and li = 80 mm and

for the KCl with ai = 0.83 and li = 72 mm. Compared to

the experimentally measured velocities, the proposed strain-

rate-dependent residual strength model was able to predict

the flow dynamics of the column collapse accurately. Fur-

thermore, the time evolution of the column height during the

collapse was measured experimentally from the high-speed

recording of test no. 19, for both the KCl and the Al2O3.

The test was simulated, and the time evolution is compared

in Fig. 18. The PFEM model resulted in a slight underpre-

diction of the time it takes for the column to settle, with a

more accurate prediction for the Al2O3 compared to that of

the KCl. A possible reason for the underprediction is that

the vertical removal of the door is not included in the sim-

ulation. The finite time required to remove the door in the

experiments might affect the flow dynamics, causing a lower

vertical velocity of the top layer of the column during the col-

lapse, compared to a collapse where the door is not included.

In the present implementation of the PFEM, friction

between granular materials and surrounding structures is not

treated explicitly. This is due to the use of the incompressibil-

ity condition to model the interaction between the deforming

domain and the fixed boundaries. Thus, the granular material

strength governs the flow at the interface between granular

mass and fixed boundaries. The use of a simplified contact

treatment is given some validity from an experimental study

by Lube et al. [51], where column collapses of a number

of different granular materials were conducted on three dif-

ferent surfaces: a smooth wooden surface, a smooth plastic

surface and a rough surface made of sand paper. The authors

found that the shape of the deposits was not significantly

affected by the surface properties. It was suggested that a

possible explanation for the independence of surface friction

was the development of a dynamic interface a few particles

from the base surface, separating the flow between stationary

and moving granular material.

It should be noted that regardless of the choice of numeri-

cal model for the transient granular material flow, validation

has to be performed to ensure reliable model predictions.

The accurate DIC measurements of the granular material

flow dynamics provided a foundation to assess the validity of

the proposed PFEM model. In this work, a two-dimensional

PFEM model was applied and validated for the fundamental

problem of collapsing rectangular columns.

Fig. 18 Comparison of experimental and simulated time evolution of

column height during the collapse. Results are from test no. 19, and the

simulations were performed using the strain-rate-dependent residual

strength constitutive model. (a) The Al2O3 with ai = 4.38 and li =
21 mm and (b) the KCL with ai = 5.23 and li = 22 mm

5 Conclusions

The particle finite element method (PFEM) is used to model

the transient granular material flow of a collapsing rect-

angular column. A novel experimental methodology for

quantification of the flow dynamics of the collapsing col-

umn of granular material is designed. The experimental

results are used to calibrate and validate the proposed numer-

ical model. A conclusion from the present study is that the

flow dynamics of the column collapse can be quantified by

measuring the in-plane velocity field using digital image cor-

relation. A numerical model, where the PFEM is used with

two strain-rate-dependent constitutive models, is evaluated

and compared to experimental results. It is concluded that

the PFEM model of the present study accurately predicts the
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flow dynamics of the column collapse for two granular mate-

rials with different material properties and over a range of

aspect ratios. By validation, it is shown that the strain-rate-

dependent residual strength constitutive model is the most

accurate for the Al2O3. In general, the best model prediction

is obtained for the Al2O3, while some discrepancy between

experimental and simulated results is observed for the KCl.

One possible cause of the discrepancy is that the length scale

of the granular material flow is too small for the KCl to

accurately model it as a continuum. The proposed novel

strain-rate-dependent residual strength constitutive model

requires the calibration of only three parameters, the lower

and upper bounds of the residual resistance μ̄l and μ̄u and the

equivalent deviatoric shear strain rate parameter ε̇∗
s . The num-

ber of parameters of the proposed model is low compared to

other numerical methods commonly used for the simulation

of granular material flow, such as the DEM. In conclusion,

the proposed PFEM model is a robust numerical tool that is

useful for modelling transient granular material flow.
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