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Abstract 

A new finite element method is presented that features the ability to include 
in the finite element space knowledge about the partial differential equation 
being solved. This new method can therefore be more efficient than the usual 
finite element methods. An additional feature of the partition-of-unity finite 
element method is that finite element spaces of any desired regularity can be 
constructed very easily. Moreover, the method is of "meshless" type. This 
paper includes a convergence proof of this method and illustrates its efficiency 
by an application to the Helmholtz equation for high wave numbers. The basic 
estimates for a-posteriori error estimation for this new method are also proved. 
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1    Introduction 

In this paper, we present a new method, the "partition of unity finite element method" 
(PUFEM) to construct conforming finite element spaces (FE spaces) with local prop- 
erties determined by the user. The features of the PUFEM are: 

1. The ability to include a-priori knowledge about the partial differential equation 
in the FE space, 

2. the construction of FE spaces of any given regularity (which is a desirable feature 
for the approximation of higher order equations), 

3. the method is "mesh-free", 

4. the method can be understood as a generalization of the classical finite element 
methods; in particular the h, p, and hp versions of the finite element method 
can be understood as special cases of the PUFEM, 

5. the PUFEM permits a-posteriori error estimation and adaptive approaches. 

Let us elaborate these five features in more detail. The first feature touches the ques- 
tion of approximation properties of the FE spaces. The classical FE spaces, known 
as h and p version of the finite element method, are spaces which have good lo- 
cal approximation properties and are conforming; typically they consist of piecewise 
polynomials (or mapped polynomials) and satisfy some continuity requirement across 
inter-element boundaries. In the h version, the polynomial degree is fixed (typically 
p < 2) and approximation is achieved by decreasing the meshsize h. An appropriate 
interpolant (e.g., for p = 1 on triangles, nodal interpolation can be taken) produces 
a good approximation which satisfies the necessary continuity conditions. In the p 
version, local approximation is realized by polynomials of increasingly higher degree. 
The approximation properties of conforming p extensions are due to two facts. Un- 
constrained, i.e., without any inter-element continuity constraints, polynomials have 
good approximation properties on each patch. The resulting jumps across inter- 
element boundaries can be resolved by polynomial corrections because polynomial 
spaces are large enough to permit continuous extensions from the element boundaries 
into the elements (see [18],[20]). 
For many problems, the particular structure of the equation can be exploited to 
construct local spaces with better approximation properties than the usual h or p 

version based spaces. For example, solutions to Laplace's equation (Au — 0) in the 
plane can be approximated by harmonic polynomials only; it is not necessary to use 
all polynomials for an approximation in a p version fashion. However, as opposed 
to full polynomial spaces, there are not enough harmonic polynomials to construct 
conforming spaces which consist of piecewise harmonic polynomials. The PUFEM 
however, allows us to construct conforming spaces from harmonic polynomials and 
thus exploit their good approximation properties. 
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Let us mention a few examples, for which the special structure of the underlying 
partial differential equation can be exploited. "Generalized harmonic polynomials" 
can be constructed for elliptic equation with analytic coefficients. These "general- 
ized harmonic polynomials" have approximation properties very similar to those of 
harmonic polynomials (see [23, 3, 7, 8, 11]). For Laplace's equation or the elasticity 
equations, corners or sudden changes of boundary conditions produce certain types of 
singularities that are resolved very poorly by the classical methods unless a properly 
refined mesh is used. [14, 15] show that the use of special shape functions for these 
problems can be very efficient. 
For problems of 3-d elasticity on polyhedral domains, the creation of a properly 
refined mesh can be complicated in the vertices, where vertex and several edge singu- 
larities interact. The PUFEM circumvents this difficulty because it enables the user 
to incorporate the singularities directly in the FE space. 
The classical methods work well if the solution to be approximated is smooth. How- 
ever, for many problems of practical interest, the solution is not smooth. It can be 
highly oscillatory as in the case of Helmholtz's equation with high wave numbers, 
or it can be rough, as in the case of the analysis of composites, laminated materials 
or stiffeners. The usual finite element methods can be prohibitively expense for this 
kind of problems. However, as shown in [17], the use of shape functions reflecting 
this rough behavior can lead to optimal convergence rates. A similar observation 
can be made for highly oscillatory problems such as Helmholtz's equation. It was 
demonstrated in [11] that the approximation with plane waves displaying the same 
oscillatory behavior as the solution is very efficient. 
Another example, where non-polynomial approximation spaces are of physical inter- 
est, are problems on unbounded domains. For problems such as Laplace's equation 
or Helmholtz's equation, expansions of the solution around the point at infinity are 
known and can be used. 
Let us comment on the second feature of the method, the ability to construct FE 
spaces of any given regularity. The PUFEM creates FE spaces as follows (a more 
detailed description follows below). Let patches {fii} comprise a covering of the 
domain fi, and let {ipi} be a partition of unity subordinate to the covering. On each 
patch, let function spaces Vi reflect the local approximability. Then the global finite 
element space V is given by V = X^V»'^»- Local approximation in the spaces Vi can 
either be achieved by the smallness of the patch (an h version) or by good properties of 
Vi (a p version). Theorem 1 states that the global space V inherits the approximation 
properties of the local spaces V{. Addionally, it inherits the smoothness of the partition 
of unity (and the spaces Vi). Therefore, the construction of smoother FE spaces for the 
approximation of higher order equations as they appear, for example, in various plate 
and shell models is easily possible by using a partition of unity which is sufficiently 
smooth. 

Let us turn to the third feature. The method is mesh-free in the sense that no mesh 
has to be generated explicitly; rather, a "mesh" is determined implicitly through the 
overlapping patches of the covering. Let us observe that the creation of a partition 



of unity can be easy (if Wi are functions living on the patches fi,-, the functions 

9?i = Wi/ J2jwj f°rm a partition of unity) and fully automated. Hence, changing the 
FE space adaptively is easy. Moreover, changes as they are very common for problems 
like crack propagation or the optimal placement of a fastener can be done easily. In 
the latter example, for instance, the user would like to calculate several possible 
locations of the fastener. In the usual finite element method, he has to remesh (at 
least locally) for each case, which could be costly. In the PUFEM, the effect of the 
fastener could be modeled by a special function and hence, for each run, only a few 

spaces Vi (in which these special function are contained) have to be changed. "Mesh- 
free" methods have been proposed recently in [9, 13]. For an appropriate choice of 
parameter values, the method of [9] reduces to a particular type of PUFEM, and the 
computational analysis of [13] shows that the method of [9] is most efficient in that 
case. 
Commenting on the fourth point of the above list, we observe that the if we ap- 
proximate locally on patches by polynomials of degree p, we get a FE space with 
approximation properties similar to the usual finite element methods. If the approx- 
imation in the spaces V{ is achieved through the smallness of the patches, we get a 
method very similar to the h version; if approximability is realized by an increase of 
the polynomial degree, the method behaves like the p version. If both are varied, we 
get an hp version. In this sense, the method presented here is a generalization of the 
usual finite element method. It has the feature to include in the FE space knowledge 
about the structure of the particular problem at hand; however, one can achieve local 
approximation by polynomials and then the method produces essentially the usual 
FE spaces. 
Concerning the fifth point of the list, we mention that the PUFEM permits a- 
posteriori error estimation. The basic ideas for a-posteriori error estimation were 
developed in [1], [2] and in our development of a-posteriori error estimation, we will 
follow closely [1]. 

For a successful implementation of the PUFEM, three issues have to be addressed: 

1. The integration of the shape functions constructed by the PUFEM. 

2. Finding a basis of the PUFEM space and controlling the condition number of 
the stiffness matrix created by the PUFEM. 

3. The implementation of essential boundary conditions. 

Let us just briefly outline why these three issues arise. A more detailed analysis 
of these issues will be done in subsequent work. On the integration issue, we ob- 
serve that typically the shape functions are defined on the patches. Integrating two 
shape functions against each other requires an integration over the intersection of two 
patches. Hence the integrator has to be able to integrate efficiently over intersections 
of patches. The issue of finding bases of the PUFEM spaces and the problem of con- 
trolling the conditioning numbers of the stiffness matrices is illustrated in section 3.3. 



Finally, let us state that essential boundary conditions can be implemented in differ- 

ent ways. Either the local approximation spaces on patches close to the boundary 
are chosen large enough to permit an extension of the boundary data from boundary 
into the domain, or Lagrange multiplier or penalty methods are used. 

The paper is organized as follows. In section 2 we develop the PUFEM and give a 
proof of its approximation properties. In sections 3.1-3.4, we illustrate some of the 
features of the PUFEM in a one dimensional setting. In section 3.1, we demonstrate 
how the PUFEM produces robust finite element spaces for a problem with a boundary 
layer. The performance of the PUFEM for this particular problem is comparable 
to the usual finite element methods for problems with smooth solutions because the 
PUFEM allows us to create finite element spaces which capture precisely the behavior 
of the boundary layer. Section 3.2 proposes several types of partitions of unity which 
satisfy the necessary conditions for the PUFEM to work. Section 3.3 analyzes in 
more detail the case of polynomial local approximation spaces. In particular, the 
problem of potential linear dependencies and the issue of the condition number of 
the stiffness matrix is addressed. In section 3.4 finally, a PUFEM is exhibited, in 
which all the degrees of freedom have the meaning of the value of the approximating 
function in appropriate points. Sections 4.1 and 4.2 discuss briefly methods how to 
choose good local approximation spaces and the issue of the optimality of local spaces. 
Two numerical examples are presented. In section 6.1, the PUFEM is compared with 
the usual p versions for the approximation of harmonic functions. In section 6.2 
the PUFEM is used for the approximation of solutions to Helmholtz's equation with 
large wave number. The PUFEM is shown to be superior (both in terms of error per 
degree of freedom and error per floating point operation) to several h version type 
finite element methods. The paper concludes with a proof of an a posteriori error 
estimator for the PUFEM, which is based on exact solutions of appropriate local 
problems. 

2    The Method 

In this section, we present our method of constructing conforming subspaces of ff^ß). 
We construct FE spaces which are subspaces of if^ß) as an example because of their 
importance in applications. We would like to stress again that the method leads to 
the construction of smoother spaces in a straight forward manner. Crucial to the 
construction of the PUFEM spaces is the notion of a (M, C^, CG) partition of unity. 

Definition 1 Let ß C Rn be an open set, {ßi} be an open cover of ß satisfying a 
pointwise overlap condition 

3M € N       Vz € ß card{i | x 6 ß,} < M. 



Let {ipi} be a Lipschitz partition of unity subordinate to the cover {fij} satisfying 

Vi, (1) 

(2) 

SUpp (fi C closure(fii) 

YJW 
= 1 on Q, 

||Vi|U°°(R") < Coo> 

||Vv3i||Loo(Rn) < 
cG 

(3) 

(4) 

where C^, CG are two constants. Then {<pi} is called a (M,COO,CG) partition of 

unity subordinate to the cover {£li}. The partition of unity {(fi} is said to be of 

degree m £ N0 if {fi} C Cm(Rn).  The covering sets {£);} are called patches. 

Definition 2 Let {ftj be an open cover o/O C 1" and let {pi} be a (M,COO,CG) 

partition of unity subordinate to {Qi}. Let Vi C £rl(Oj D Q) be given.  Then the space 

V:=J2<PM = {J2¥W \vieV-}C H\tt) 
i i 

is called the PUFEM space. The PUFEM space V is said to be of degree m G N if 
V C Cm(VL).The spaces Vi are referred to as the local approximation spaces. 

Theorem 1 Let Q, C Mn be given. Let {&i}, {fi}, and {Vi} be as in definitions 1, 

2. Let u £ if1(f2) be the function to be approximated. Assume that the local approxi- 
mation spaces Vi have the following approximation properties: On each patch Q^ fl Q, 
u can be approximated by a function Vi G Vi such that 

\\u - Vi\\L2^.nn)    <   ei(i), 

||V(u — -uOIU2(n£nn)   <   ^{i)- 

Then the function 

i 

satisfies 

II« - WaP|U»(n)   <   v/MCoo I ^ e\{i))      , 

||V(«-1^)11^(0)   <   ^^{^{-^^)2^) + Cle^) 
1/2 

Proof: Using the fact that ^ ipi = 1 on S7, we can write u — uap = ^. ipi(u — Vi). 

The theorem follows after an application of the second estimate of lemma 2 with 
Ui = (fi(u - Vi). D 



Example 1: The PUFEM as h version. Let u E Hk(Q), k > 1. Let each patch fi; 
have diameter hi < h, and let each Vi have approximation properties 

eiOO   ^   CK+1\\u\\Hk{nnni), ^ 
e2(i)   <   Ch?\\u\\Hk(anni) 

for some appropriate \i > 0. Then the error estimates of theorem 1 take the form 

II« - UapWmn)   <   MC00C
l^+1||'u||H).(n) , * 

\\W(u-uap)\\LHQ)   <   MC^2(CG + C^INI^n) {) 

where we used the first estimate of lemma 2 in the estimate of the sums £V ei(i)2, 
J2i€^Y- Note that estimate (6) holds for any system of local approximation spaces 
Vi satisfying (5). For example, if the spaces Vi consist of polynomials of degree p, then 
(5) holds with /z = min(Ä; — l,p). If the spaces Vi consist of harmonic polynomials of 
degree p, (5) holds also with fi = min(A; — l,p) if we know a priori that the function u 

is harmonic. In this example, local approximability of the spaces Vi (and thus global 
approximability by theorem 1) is achieved by the smallness of the patches fi, D fi. 

Example 2: The PUFEM as a p version. Let u G Hk(Q), k > 1, and let {fi;}^ 
be N fixed patches covering fi. Denote diam(fii) by hi. Assume that the spaces Vi 
(depending on a parameter p) have the approximation properties 

ei(i)   <    CÄip-"||u||Hfc(nnn,.), /7N 

e2(i)   <   Cp-^lltill^nnno 

for some appropriate fi > 0. Then the error estimates of theorem 1 take the form 

||« — «oP||L2(n)   ^   MCooC mzxhip~'1\\u\\Hk(ty, 

|| V(« - ««p)ll^(n)   <   MC^2(C2
G + Cl)p^\\u\\Hkm. 

Note that this estimate holds for any system Vi satisfying (7)—they do not have to 
polynomials of degree p. If the spaces Vi consist of polynomials of degree p then (7) 
holds with fj, = k — 1. Estimate (7) also holds for spaces Vi consisting of harmonic 
polynomials of degree p if the function u is known to be harmonic (see theorems 2, 
3). In this example, the approximation properties of the global PUFEM space are 
achieved through increased approximability of the local spaces while keeping the 
patches fixed. If we allow the size of the patches to vary as well, then this method 
behaves like an hp version. 

We would like to stress at this point that the requirements on the partition of unity 
are very weak: It only needs to be Lipschitzian in order to produce H1 subspaces. 
Also, we do not need positivity of the partition of unity-the elements of the partition 
of unity are allowed to change sign. However, if the partition of unity is of degree m 

(and the local approximation spaces are sufficiently smooth), then the finite element 



space V as constructed in definition 2 is also of degree m. Theorem 1 is formulated 
in terms of H1, appropriate for a large class of second order problems. Mutatis 

mutandis however, the estimates can be formulated in terms of Hk, k > 1 to produce 
finite element spaces for higher order equations. Similar estimates can be achieved in 
Sobolev spaces Wk'p. 

Remark 1: This idea of using a partition of unity to construct finite element 
spaces tailored to the differential equation has been used in [17], [10], and [11]. As 
mentioned in the introduction, for a judicious choice of parameters, the method of 
[9] reduces to a special type of PUFEM, and the convergence analysis of [13] for this 
special case is based on theorem 1. 

3    The PUFEM in One Dimension 

3.1    A One Dimensional Example 

Let us demonstrate for a one dimensional model problem how FE spaces with good 
approximation properties are constructed with the PUFEM. To this end, consider 

-u" + k2u   =   /eC2[0,l] on (0,1) 
u(0)   =   0 (8) 
u'(l)    =   g £R. 

We assume that the parameter k > 1 is large.   Associated with this problem is an 
"energy" norm, given by 

HE-= \\\v'\\h(n) + k2\\v\\2L2{n)f 
1/2 

Let us note that for large k, the solution to problem (8) typically exhibits a boundary 
layer in the neighborhood of x = 0, and thus the usual FEM perform poorly unless 
h is sufficiently small (relative to k'1) or a very strongly refined mesh is used. The 
PUFEM allows us to use local spaces reflecting this behavior, and therefore leads us 
to a robust FEM, i.e., a method which is good uniformly in k. 

Let n E N, h = ^ and define Xj = jh, j = 0,... ,n. Define also x^i = —h, 

xn+1 = 1 + h and let the patch Qj = (XJ^I,XJ+1), j = 0,... , n. On each patch Q,j, 

we have to define a local space which can approximate the solution u of problem (8) 
well. We consider 

Vj    =   span{l,sinh A;x,coshA;x} on Qj fl Q.,        j = l,...,n, 

V0    =   span{sinh kx, 1 — cosh kx} on Q,0 H Q. 

We note that the space VQ is constructed such that it satisfies the essential boundary 
condition at x = 0. The approximation properties of these spaces, which are tailored 
to this particular problem (8), are given by the following 



Lemma 1 Let u be the solution to problem (7) and let üj, V? be as defined above. 

Then there are Vj G V? such that 

(u-vJU^nn)   <   Ch}'2 h2 min (1, (kh)-2) \\fWL-w + jliriU-(O) 

||(u-«0llL»(n.-nn)   <   Ch1'2   /l
3min(l,(^)-2)||//||Lco(n) + 

+^min(/l,Ar
1)||/lL~(n) 

where C > 0 is independent of h, k, and f. 

Proof: Because the spaces Vj contain the fundamental system {sinh kx, cosh kx}, it 
is enough to approximate a particular solution to 

-u" + k2u = f on Clj n Q. 

By Taylor's theorem, on Qj fl ft, f(x) = l(x) + r(x) where Z(x) is linear and \r(x)\ < 

(2/i)2||/"||x,°°(n) (note that diamfi, < 2/i). A particular solution to the problem with 
right hand side r{x) is given by the solution uT to 

—u" + k2uT   =   r on Qj n fi, 

u   =   0 on d(Qj n fl). 

Thus, 

from whence 

l    / ll2 7 2 ll       ti2 • ii    n2 

Prlli^nj-nn) + * ll'"'-||x,2(ninn) - "pllrllLoo(n;lnn)) 

/j2 

IKIU'Cfynn) < C/i1/2-rll/"IU°°(n), 

IKIIz^nn) < C7Ä1'2 jmin(ÄJ*-1)||r||L-(n) 

with C > 0 independent of /i, A;, and /. Finally, a particular solution to the problem 
with right hand side l(x) is given by ui(x) = k~2l(x) which can be approximated in 
Vj such that 

\\ui - Vj\\L2{n.nn) + h\\(ui - v,-)'||La(n,-nn) < Ch3h1/2jmn{l,(kh)~2)\\f'\\L^n), 

where C > 0 is independent of h, k, and /. The assertion of the lemma follows.     D 

Remark 2: The spaces Vj were chosen as local approximation spaces because 
they contain the fundamental system {sinhkx,coshes} and the particular solution 



that corresponds to a constant right hand side. It is easy to check that the func- 
tions {1, x,... , xp} actually span a space of particular solutions for polynomial right 
hand sides of degree p. Hence, lemma 1 can be adapted to produce the following 
approximation result. The spaces 

V?   =   span{sinh fca:, cosh kx, l,x,... ,xp} on ft5:fl ft,        j = l,...,n, 

V0    =   span{sinh kx, 1 — cosh kx, x,... , xp} on ft0 H ft. 

contain Vj G V? such that 

\\(u - ViYh^nO)    <    Cph}l2   F+2min(l,(M)-2)||/^+1)||Loo(n) + 

hP+2 

+ Vii/(p+2)n^(n) 
||(«-^)IU^nn)    <    Cph^[hp+3mm{l,(kh)-2)\\f^\\L~m+ 

k 

for some Cp independent of h, k, p, and /. 

UP+2 

+ --min(/l,I)||/^2)|Ucc(n) 

For any partition of unity {<pj} subordinate to the covering {ftj}, the finite element 
space V1 as constructed in definition 2 is given by 

V   = spa,n{(pj(x), <pj(x) sinh kx, <pj(x) cosh kx, 

<fo{x) sinh kx, ip0(x)(l — cosh kx) \j = l,..., n}. 

Since the assumptions on the partition of unity stipulate that the functions ipj be 
Lipschitz continuous, we see that V1 C i/'1(ft). Because each function <pj is assumed 
to vanish outside the patch ftj, and because the elements of Vj vanish at x = 0, 
we see that all elements of V1 vanish at x = 0.  Hence, a conforming finite element 
method can be based on V1, and the finite element solution is the best approximant 
in the energy norm: 

||ti - UFB||S < inf ||u —«HE. 
vev1 

Therefore, with the aid of theorem 1, the local approximation properties of the spaces 
Vj in lemma 1 lead to 

Proposition 1 Let the patches {fty} and the local approximation spaces {Vj1} be 

given as above. Let {<fj) be a (M, COO,CG) partition of unity subordinate to the 

patches {fty}.  Then the finite element solution UFE of the PUFEM satisfies 

lit* - uFE\\E < Ch2 {min (1, (kh)-1) ||/'||L~(n) + fc^liriU-cn)} (8) 

where C > 0 is independent of h, k, and f. 



This shows that the PUFEM enables us to construct robust finite element methods 

which are efficient uniformly in k, i.e., the finite element method behaves as well for 
rough case of large k as it does for the smooth case k = 1. The PUFEM gives these 
good uniform estimates because the local spaces V? capture the local behavior of the 
exact solution very well. Note that the number of degrees of freedom is comparable 
to the number of degrees of freedom of the usual, piecewise quadratic finite element 

method which is - with the exception of (piecewise) quadratic solutions - of order h2 

and not better. Thus, the PUFEM is as good as the usual piecewise quadratic finite 
element method for the smooth case k = 1. 
A simple adaptation of this idea is to choose the local spaces selectively. For example, 
since the right hand side / is smooth, we expect a boundary layer close to x = 0 but 
expect smooth behavior away from x = 0. Hence, it suffices to use the spaces V? on 
patches close to x = 0, and we can use polynomials spaces Vj = span{l,x,... ,xp} 

on patches away from x = 0. The idea of choosing the local approximation spaces 
selectively can also be employed in adaptive versions of the PUFEM. Keeping the 
patches and changing the degree p of the polynomials lets the PUFEM act like an 
adaptive p version; changing the size of the patches adaptively makes the PUFEM 
behave like an adaptive h version. 

3.2    Examples of Partitions of Unity 

In this section we propose several (M, Coo, CG) partitions of unity for the one dimen- 
sional example of the preceding section. Thus, the underlying cover of the domain 
(0,1) is the one given in the previous section. 

1. The usual piecewise linear hat-functions form a partition of unity. Let 

(1 + f for x e (-Ä.0] 

1-f forxe(0,/0 (9) 

1 + X 

h 
for x £ (-M] 

1- X 

h 
for x £ (<U) 

0 elsewhere, 

and define the partition of unity by <p)(x) = ip(x — Xj), j = 0,... ,n. 

2. Functions which are identically 1 on a subset of their support can also form a 
partition of unity. 

<p2(x) = < 

| + 2| for x €(-}*,-J] 

|-2| for x €($,}*) m 

k 0 elsewhere, 

and define the partition of unity by y^(x) = <p(x — Xj), j = 0,... , n. 

10 



3. A combination of the above two examples is to choose the functions </?]■ for 
patches in the interior but to modify the functions on patches close to the 
boundary. Define 

\l + l for x E (-A,0] 

1 for x G (0, h) 
O            X 
z    h for x G (h, 2h) 

o elsewhere. 

<?(*) = <n .      ''' (11) 

We observe that the patches fi0 U fli, fi„_i Ufin and fij, j = 2,... ,n — 2, cover 
fi. On the patches Qj, j = 2,... ,n - 2, we define <p){x) — <p)(x). On the 
patch Q0 U fix we choose ip\(x) = ip3(x) and on the patch fin_i U ttn we choose 
Vn-iC*) = V3(x ~ »n-i). Note that ^ = ^l + ^l and ^ = y,i_i + ^1 _ 

4. In all three examples above, the partition of unity is merely Lipschitz continu- 
ous. However, partitions of unity of any desired regularity can be constructed. 
Here is a piecewise polynomial C1 example. The resulting global finite element 
space V11 is then a subspace of C^O, 1]. Define 

**« = P 

(x + h)2(h - 2x) ioTxe(-h,0] 

{h-xf{h + 2x) forzG(0,/i) (12) 

0 elsewhere, 

and define the individual members of the partition of unity by ipj(x) = (p4(x—Xj) 
on the patches tij. 

5. In this example, let tij be any cover of Ü satisfying an overlap condition (i.e., 
not more than M patches overlap in any given point x EÜ). Let V'j be Lipschitz 
continuous functions supported by the patches £lj. If \if>'-\ < C and Y^i^i > 

C diam £lj on each üj D fi, for some C, C > 0 independent of j, then the 
functions 

VA ]     EM*) 
form a (AflCC,-1,CC'~1(l + MC2C~2)) partition of unity subordinate to the 
cover {Clj}. Note that the functions tpj scale with their supports in the sense 
that \ipj\ < C diamfij. The functions <pj inherit the smoothness of the functions 
ijjj, i.e., with this "normalizing" technique, one can easily construct partitions 
of unity of any desired regularity. Another feature of the construction is that 
it allows us to build (M, COO,CG) partitions of unity for very general covering 
situations. In particular, it enables us to produce the necessary partitions of 
unity whenever patches are added, removed or otherwise changed in an adaptive 
computational environment. 
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3.3    Polynomial Local Approximation Spaces and Linear De- 
pendencies 

In this section we want to analyze in more detail the PUFEM spaces based on poly- 

nomial local approximation spaces. We will see below that for polynomial local 
approximation spaces, the choice of the partition of unity has an influence on the 
approximation properties of the PUFEM space and has implementational ramifica- 
tions in the following sense. In any implementation, a basis of the PUFEM space 
has to be constructed and it would convenient if that basis were determined directly 
by the basis functions of the local approximation spaces. In general however, this is 
not true. For example, for piecewise linear partitions of unity and polynomial local 
approximation spaces, the local basis functions (multiplied by appropriate partition 
of unity function) are linearly dependent and thus do not form a basis of the PUFEM 
space (see below). Although this example is artificial, it suggests that even if the local 
basis functions lead to a basis of the PUFEM space, the resulting functions might be 
"nearly" linearly dependent, and the resulting finite element stiffness matrix will be 
badly conditioned. 

Define 

Vj1   =   span{x,... , xp} on £20 H tt, 

Vf1   =   span{l, x,... , xp} = span{l, x — Xj,... , (x — Xj)F} on SI,- D fi 

for j = 1,... , n and set VQ
1
 = {0} if p = 0. For any partition of unity {<Pj}, the 

PUFEM space is given by 

V" = sp&n{(pj(x)xm,tp0(x)x9\j = 1,... ,n,        m = 0,...,p, q = l,...,p}. 

The fact that the functions {<fj} form a partition of unity, i.e., YljVjix) = 1 on 

fi, implies that the space V11 satisfies a consistency condition in the sense that all 
polynomials of degree < p which vanish in x = 0 are contained in V11. 

Let us now consider the spaces V11 based on the various partitions of unity of the 
previous section more closely. Denote by V11'1, V11'2, and V11,3 the spaces Vn con- 
structed using the partitions of unity {<p)}, {<p*}, and {v?f} respectively. Let us 
concentrate on V11'1 first. Owing to the fact that the functions ip1- are piecewise 
polynomials, the space V ,x is precisely the space of piecewise polynomials of degree 
p + 1 constrained to vanish in x = 0. This is an example where the global finite ele- 
ment space has even better approximation properties than guaranteed by theorem 1: 
Locally, approximation is done by polynomials of degree p and theorem 1 states that 
the local approximation properties are inherited by the global space, i.e., the Hl ap- 
proximability is 0(hp). However, the space of piecewise polynomials of degree p + 1 
has better approximation properties: it is 0{hp+1) for H1 estimates. Let us note that 
dimV11'1 = n(p + I). 
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As mentioned above, it would be convenient for implementational purposes to take as 

a basis of the finite element space V11'1 functions which are determined by the basis 
functions of the local spaces Vj1', i.e., we would like to take the functions 

tp)(x)(x-Xj)m, j = l,...,n,        m = 0,...,p, (13) 

cpl(x)xm, m = l,...,p. (14) 

However, these functions are not linearly independent for p > 1 as a simple counting 
argument reveals: there are n(p+l)+p functions but dim V7/|1 = n(p-\-l) < n(p-\-l)+p 

for p > 1. Of course, one can still use these functions. For problem (7) they will lead 
to a positive semi-definite matrix (as opposed to a positive definite matrix, which is 
obtained if a basis is used), which has many algebraic solutions. However, all these 
algebraic solutions are merely different representations of the same function on fi. 
One way to solve this linear system is to use a penalty method to deal with the linear 
dependencies (see [10] for a computational analysis). 
One can avoid these linear dependencies if one uses a different partition of unity. For 
example, whenever the partition of unity is such that each member (fj is identically 1 
on an open set Oj C tij (~l ti (and all the other ones vanish there), linear dependencies 
as above cannot occur. Hence, the functions 

<p){x)(x - Xj)
m, i = l,...,n,        m = 0,...,p, (15) 

<^(x)xm, m = l,...,p. (16) 

form indeed a basis of the space V11'2. 
A more careful analysis of the linear dependencies occurring for the case of V11,1 

reveals that the local approximation space at either the left or the right endpoint 
of Q contains too many functions. Thus, a modification of the partition of unity 
at one (or both) endpoints allows us to exclude linear dependencies: The functions 
(p3(x)(x — Xj)m, j = 2,... ,n — 1, m = 0,... ,p, <pl(x)xm, m = 1,... ,p, form a basis 
of V11'3. Let us point out that the space V11'3 does no longer contain all piecewise 
polynomials of degree p + 1. Let us note here that this space is very closely related 
to V11'1. In fact for problem (7) the stiffness matrix of the finite element method 
based on V11'3 can be easily extracted from the positive semi-definite stiffness matrix 
constructed using V11,1. 

The example V11'1 shows that "unfortunate" combinations of local approximation 
spaces and partitions of unity exist, where the basis elements of the local spaces 
multiplied by the appropriate partition of unity function are linearly dependent. This 
indicates that even if the chosen functions derived from the local bases are linearly 
independent and form a basis of the finite element space, the resulting stiffness matrix 
may still be badly conditioned. 
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3.4    Polynomial Local Approximation Spaces; Lagrange Type 
Elements 

If we choose the functions (pj(x)(x — Xj)m as basis functions of the space V11, the 
degrees of freedom cannot be identified directly as function values in certain points. 
Rather, the degrees of freedom are related to higher derivatives of the elements of 
Vn in the points Xj. In this sense, the functions <pj(x)(x — Xj)m produce a Hermite 
type space. However, it is also possible to construct Lagrange type spaces, where the 
degrees of freedom represent the function values in particular "Lagrange interpolation 
points". Let us illustrate this for the case where we want to approximate locally 
with polynomials of degree p. Let {Qj} be a cover of ft = (0,1) and let {<pj} be a 
(M, Coo, CQ) partition of unity subordinate to the cover. Let yi, i = 1,... , TV, be the 
"Lagrange interpolation points", and assume that there are p + 1 points y, in each 
patch Qj. In order to be able to enforce the essential boundary condition at x = 0, we 
will stipulate yx = 0. On each patch fty, let LjiVi be the usual polynomial Lagrange 
interpolation function of degree p which is 1 in the point yi and vanishes in all the 
other p "Lagrange interpolation points" which are in the patch ttj. As before, we 
define the global finite element space by 

yin
 = IE E ?;(*) W*K* i HV< € i 

l i=l      j 

This is exactly the same space as is obtained if the local spaces Vj are chosen to be 
span{l,x,... ,xp}. Now, if we identify unknowns associated with the same interpo- 
lation point, i.e., if we set am>yi = aniVi for all n, m for each point yi, and denote these 
common values by ayi, we arrive at the space 

V IV 
N 

^ E   Vi(x)Li.vi(x) ayi | ayi G R 

t=l ^■■vietij                      -1 
> . 

Because the functions tpj form a partition of unity and because the functions LjiVi 

take only the values 0 and 1 in the "Lagrange interpolation points" ym, the values 
ayi are precisely the function values of the elements of VIV. Hence, we can take as a 
basis of VIV the functions 

*<(*) =   E   ^(^^(z), i = l,... ,N. 

The essential boundary condition at x = 0 is also easily enforced by simply setting 
ayi = 0) which gives the space 

I i=2 
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Let us make a few remarks on the approximation properties of the space Vv. The 
approximation properties of the spaces V11 are given by the approximation proper- 
ties of the local spaces Vj1, i.e., by the approximation properties of polynomials of 
degree p. For fixed degree p and appropriate conditions on the distributions of the 
interpolation points on each patch, it can be shown that approximation with Vv is 
- up to a constant - as good as with VH. Finally, let us mention that these spaces 
VIV, Vv are closely related to the method proposed in [9]. 
Above we noted that the close relation between the spaces V11'1 and V11'3 enables us 
to construct the stiffness matrix based on V1I,Z easily from the one based on V11'1. 

Similarly, the stiffness matrix based on the functions $; can be extracted from the 
stiffness matrix based on the functions (pjLjiVi. 

4    Comments on Choosing Local Approximation 
Spaces 

4.1    Change of Variables Techniques 

In section 3.1, we chose the local approximation spaces for problem (7) to consist 
of a fundamental system for the differential equation and particular solutions for 
polynomial right hand sides. A different method to construct local approximation 
spaces is based on changes of variables. If the change of variables x H-> x maps the 
problem onto a problem which can be approximated well (in some appropriate norm) 
by polynomials (in x), say, then the "mapped polynomials", i.e., P(x(x)), where P is 
a polynomial, also have good approximation properties. For example, [17] considered 
the problem 

—dx(a(x,y)dxu) — dy(a(x,y)dyu)   =   / on £2, 

u   —   0 on dQ, 

where the coefficient a(x,y) is assumed to satisfy 

0 < a < a(x,y) < ß < oo 

and is uni-directionally rough, i.e., the coefficient a(x,y) is smooth in the y direction 
while it is rough in the x direction. The roughness of the coefficient a(x,y) results in 
poor regularity properties of the solution u, and thus the usual finite element method 
leads to mesh sizes h which are prohibitively expensive. For the simplified model, 
a(x,y) = a(x), the change of variables 

r— 
L   ö(i) (0* 

y  = y 

transforms the problem into one for which a better regularity theorem holds: if / € 
£2(fi), then the transformed function ü is in H2(ti) (Ö denotes the image of fi under 
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the above transformation; cf. [17] for a proof). Thus, ü can be approximated by 

linear functions in x, y. Formulating in the original coordinates gives that u can be 
approximated on the patch Qj by- 

such that 

^espan{l,  /   -777,2/} 
Jo   a\t) 

I« - VjllHi(Oi) ^ CCdiamfi,-) ||/|U*(n3-)- 

The constant C > 0 depends only on a, ß and is independent of the roughness of the 
coefficient a(x) and thus these local spaces have good approximation properties on 
patches independent of the bad behavior the coefficient a(x) might display. 
Let us finally point out for this example that the change of variables can be done 
locally: if (xj,yj) £ tij, then the approximating functions can be chosen to be in 
span{l,j;* jjlj.y}. 

Another instance where the idea of using a change of variables is successfully used 
can be found in [14, 15]. For elliptic problems in 2-d with corners or interfaces, the 
use of a conformal map is proposed which maps the rough solution to a smoother 
function. This smoother function on the mapped domain can be approximated by 
polynomials. Hence, the images of polynomials under the inverse of this conformal 
map are used for the approximation of the original problem. 

4.2    Optimality of Local Approximation Spaces and n-Width 

An interesting issue in the context of finding good local approximation spaces is the 
question of optimality of the local spaces. We measure optimality in terms of n-width, 
i.e., in terms error per degree of freedom for a whole class of functions: 

d(n,\\ ■\\,S) = inf sup mf \\f - g\\ 
En   f£S 9£En 

where En denotes an n-dimensional space, and S is the class of functions that we wish 
to approximate; typically, S is chosen as the unit ball of some appropriate Banach 
space. A minimizing space En is called an optimal space. We see that this notion 
of optimality depends on the dimension n, the norm || • ||, in which we measure the 
approximation error, and the choice of the class S. In particular, different classes S 

lead to different optimal spaces. In practice, of course, we want robust optimal (or 
near optimal) approximation spaces because we might not know with respect to which 
class of functions we should optimize (this uncertainty issue is elaborated in [16]). For 
example, if we choose || • || = || • ||iji(n), and if we are interested in approximating 

functions which are analytic on tt DD fi, the class S could be taken as the unit ball of 
any Hk(£l), k > 1. Thus, due to this uncertainty, we want the approximation spaces 
to be optimal for as large a class of functions as possible. 
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Proposition 2 below exhibits an example of approximation spaces which are optimal 
for large classes of harmonic functions. In the framework of the PUFEM, proposi- 
tion 2 yields the following result: For the approximation of harmonic functions on 
patches fii which are discs C K2, the choice of spaces of harmonic polynomials as 
local approximation spaces Vi is the optimal one. The notion of optimality here is 
tied to the assumptions of proposition 2, namely, the restriction to functions defined 
on discs and to rotationally invariant classes of harmonic functions. 

For ease of exposition, we deal with complex-valued, holomorphic (analytic) functions 
and observe that the case of harmonic functions follows by taking real parts. 
We introduce the spaces 

Hk = {f£ H\BR(0)) I / is holomorphic on BR(0)},        k>0 

and a Hilbert space 7i of holomorphic functions with inner product < -, • >n and 
norm || • \\n is called rotationally invariant if 

ll/Mlk = ll/(*)ll* VaeC,M = i. 

The space H° (H1) is a Hilbert space with the L2 (H1) inner product and thus a closed 
subspaces of L2(BR(Q)) (H\BR(0))). Therefore, the space L\BR(Q)) (^(^(0))) 
can be written as the direct sum of H° {7il) and its orthogonal complement. This 
reduces the search for optimal spaces for the approximation of holomorphic functions 
in the L2 (H1) norm to the problem of finding optimal subspaces of H° (H1). 
The polynomials (zn)„=0 form an orthogonal basis of Hk, k > 0, and it is easy to 
see that they actually form an orthogonal basis for any rotationally invariant Hilbert 
space of holomorphic functions. Therefore, setting ipn(n) =< zn,zn >H, gives the 
representation 

\2n = £ |/„|V«(n) 
n=0 

where the fn are the Taylor coefficients of the holomorphic function /, i.e., 

oo 

f(z) = J2fnZn
 onBR(0). 

71=0 

For example, we have 

n + i 
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Proposition 2 Let Hi, H2 be two rotationally invariant Hubert spaces of holomor- 

phic functions on BR(0). Assume that the quotient 

TpnAn) 

is monotonically decreasing in n.  Then the spaces 

Tp = span{zn | n = 0,... ,p} 

are optimal spaces for the approximation of functions in H2 in the \\ ■ ||^1 norm, i.e., 
the space Tp minimizes the expression 

supinfK^lk (17) 
fen79€Ep    \\f\\Ha ^    J 

over all p dimensional subspaces Ep of Hi. 

Proof: The proof proceeds in two steps. First, we will see that (17) is bigger than 
or equal to 

AMP+I)\
1/2 

for any p dimensional subspace of Hi. In the second step, we see that this infimum 
is attained for the choice of Tp as p dimensional approximation space. Let a p di- 
mensional subspace Ep of Hi be given. Choose / 6 Tp+1 orthogonal (with respect to 
< •, • >HX) t° Ep. Then, the square of (17) can be bounded from below by 

k>    inf    »/»«I      ^i(P + l) 
n2     /6

rp+i ll/llwa      i>nÄP+l) 

where we made use of the monotonicity assumption. On the other hand, the choice 
Ep = Tp implies 

■ f ll/-g||^  < E^P+1IM
2^(n)      ^(p + l) 

™i°h    \\m2     -fei   E~ol/n|2^2(n)   -^(p + 1) 

where we made again use of the monotonicity assumption. D 

Choosing Hi in proposition 2 to be H° or Hl shows that the spaces Tp are optimal if 
we measure approximability in the L2 or H1 norm and if we approximate rotationally 
invariant classes which satisfy a certain monotonicity of the numbers •0w2(

n)- All 
spaces H fall into this latter category and many spaces of holomorphic functions 
which are in some weighted Hk spaces where the weight is rotationally symmetric. 
Let us further note that in the context of the PUFEM, theorem 1 suggests that we 

optimize with respect to the norm (diam2(fti)| • \2Hi/n.\ + \\ ■ \\2L2m.\)     . The proof of 
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proposition 2 shows that this choice of norm also leads to the spaces Tp as optimal 
approximation spaces. 

Remark 3: As stated earlier, proposition 2 can be formulated for harmonic func- 
tions as well. Then, the 2p + 1 dimensional spaces of harmonic polynomials are 
optimal under similar conditions. For example, the 2p + 1 dimensional spaces of har- 
monic polynomials are optimal for the approximation of harmonic function on the 
discs BR(0) which are in the spaces Hk(BR(0)), k > 1. 

Remark 4: Proposition 2 and the preceding remark state (loosely speaking) that 
harmonic polynomials are universally optimal for the approximation of harmonic 
functions on discs. This is partly a justification for the approximation with harmonic 
polynomials in section 6.1: As long as the patches differ not too much from discs, we 
expect spaces of harmonic polynomials to be nearly optimal for the approximation of 
harmonic functions. 

Let us stress here that harmonic polynomials are no longer optimal if one of the 
assumptions of proposition 2 is changed. For example, consider approximation on a 
sector W with angle u and size R (for notational convenience, we identify R2 with 
the complex plane C): 

W = {z G C| \z\ < R and 0 < arg2; < u}. 

Assume that we are interested in approximating (in H1, say) harmonic functions 
satisfying homogeneous Dirichlet conditions on the two straight sides of the sector, 
i.e., functions of the form 

00 

u = ]Tan Im-z™/" 
n=l 

with coefficients an G E. Then the functions Imz""^, n = 1,... ,p form optimal 
spaces of dimension p for the whole scale of spaces 

{00 00 ^ 

u = Y^ anlmz™/" I an G R and £ |an|2(l + n)2k-lR2m'u < oo I ,     Jfe > 1. 
n=l n=l J 

The proof of this statement is very similar to the proof of proposition 2. A different 
way of defining the spaces Hk is to say that harmonic functions in Hk(BR^/u(Q)) 

which are antisymmetric with respect to the real axis are mapped onto the elements 
of 'Hk under the conformal change of variables z H-> zwlT. 

5    The PUFEM in Two Dimensions 

In the two dimensional case - just as in the one dimensional one - we have to address 
the creation of a partition of unity and the choice of local approximation spaces. Let 
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us first outline two different types of partitions of unity. If a domain 0 D fi is given 

by a mesh (i.e., triangles, quadrilaterals, or mapped triangles or quadrilaterals), then 
the usual pyramid functions associated with the nodes of the mesh form a piecewise 
smooth partition of unity. Since in all the numerical examples below, we use this kind 
of partition of unity, let us exemplify this idea with one example. Let Q be the unit 
square (0,1) x (0,1) and let it be subdivided into n2, n 6 N squares of side length 

h = - with nodes (xj,yj), j = 1,... , (n + l)2. Define 

ip(x) = < 

(l-x)(l-y) for (3,0)6 [0,1] x [0,1] 

(l + x)(l-y) for(x,s/)6[-l,0]x[0,l] 

(1 + x)(l+y) for (x,y) 6 [-1,0] x [-1,0] (18) 

(l-x)(l+y) for(x,2/)6[0,l]x[-l,0] 

0 elsewhere. 

Then the functions <Pj(x) = v?((x — Xj)/h, (y — yj)/h) associated with the (n + l)2 

patches £lj = {(x,y) | |x — Xj\ < h,\y — yj\ < h} form a partition of unity. This is the 
analogous construction to the first construction of section 3.2. 
The second type of partition of unity is given by the construction described in the 
fifth method of section 3.2. For example, if O is covered by circles, ellipses, or quadri- 
laterals, it is easy to construct a partition of unity of any desired regularity by the 
"normalizing" technique outlined in the fifth method of section 3.2. 
Let us stress at this point that the partition of unity does not have to be related to 
the geometry of the domain of interest. 
Many of the observations of section 3.3 about the one dimensional case are true in 
the two dimensional setting as well. For example, it can be shown that the piecewise 
bilinear partition of unity described above in conjunction with polynomial local ap- 
proximation spaces Vj displays the same difficulties with linear dependencies as the 
space V11'1 of section 3.3 (cf. [10]). However, the same idea of modifying the parti- 
tion of unity on patches close to the boundary as is proposed in the third method of 
section 3.2 leads to a basis of the finite element space which is directly related to the 
bases of the local spaces. As observed in the one dimensional case, the stiffness matrix 
resulting from the modified partition of unity can actually be constructed from the 
original one. 
Related to the choice of the partition of unity (and of the local approximation spaces) 
is the question of integrating the shape functions against each other, because the par- 
tition of unity is typically only piecewise smooth (and hence the shape functions). 
This issue will be explored in more details in a forthcoming paper. For all the nu- 
merical examples below, we use the partition of unity for the unit square described 
above, and therefore the usual integration schemes on each of the n2 square can be 
applied. 
Another important question is the implementation of essential boundary conditions. 

For some problems, it is easy to construct local approximation spaces Vj on patches 
close to the boundary which have both good approximation properties and satisfy the 

20 



essential boundary conditions. This is the case in the one dimensional problem (7) 
with the choice Vj. For an example in two dimension, consider the implementation of 

homogeneous Dirichlet conditions on a straight part of the boundary for the problem 

—Au = 0. Here, harmonic polynomials which are antisymmetric with respect to 
that straight line have good approximation properties and satisfy the homogeneous 
boundary conditions. A similar approach works in a corner. 
One way to imitate the way essential boundary conditions are implemented in the 
classical finite element methods is to use spaces of (piecewise) full polynomials on 
patches close to the boundary. In that case, all the techniques of the usual finite 
element methods can be applied. Another approach to the implementation of essential 
boundary conditions is the use of Lagrange multipliers or a penalty method. In the 
numerical examples below, we chose the boundary conditions to be natural in order 
to be able to concentrate on the approximation properties of the spaces constructed 
with the PUFEM. 

6    Numerical Examples 

In this section, we will present two numerical examples, namely, the approximation 
of solutions to Laplace's equation and Helmholtz's equation on the unit square with 
the PUFEM. 

6.1    Laplace's Equation 

Let us consider first approximations to the solution of 

-At*   =   0 on « = (0,1) x (0,1) 

1 1 

a2 — z2      a2 + z 
dnu   =   dnRe[ _2_   2 + _2 |  _2 ) on 5«, a = 1.05, 

and we fix u in (0,0) in order to make the solution of this problem unique. Since 
we want to present a p version of the PUFEM where the local approximation spaces 
are chosen as spaces of harmonic polynomials of degree p, we need to clarify the 
approximation properties of harmonic polynomials. This is done in the following two 
theorems. Note that there are only 2p + 1 harmonic polynomials of degree p. 

Theorem 2 (Szegö) Let « C IR2 be a simply connected, bounded Lipschitz domain. 

Let « DD « and assume that u (E i2(«) is harmonic on «. Then there is a sequence 
(up)^L0 of harmonic polynomials of degree p such that 

||«-«p||L-(fi) < C'e-'n'||u||La(fl), 

\Mu-up)\\L~w<Ce-™\\u\\Lm 

where 7, C > 0 depend only onti, «. 
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Proof: See [21], [24]. D 

Theorem 3 Let 0 be a simply connected bounded Lipschitz domain, star-shaped with 

respect to a ball. Let the exterior angle o/fi be bounded from below by \ir, 0 < A < 2. 

Assume that u G Hk(£l), k > 1, is harmonic. Then there is a sequence (up)%L2 °f 
harmonic polynomials of degree p such that 

\u ~ Up\\H:W < C (  j 
Hk-j) 

Mlfl*(n),        i = 0,... , [As] 

where C > 0 depends only on fi and k. 

See [11] for a proof of theorem 3. Note that typically A < 1 and that for domains 
with re-entrant corners, A can be significantly less than 1. 
Remark 5: The restriction in theorem 3 that Q, be star-shaped with respect to 
a ball is not a big constraint for our purposes because we are interested in local 
estimates on patches and the patches are typically chosen to be star-shaped. 

Figure 1: PUFEM, classical p version for Laplace's equation; a = 1.05,8x8 elements 
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For the PUFEM the domain Q, is covered by square patches and the partition of unity 
is chosen to be piecewise bilinear as described in section 5. The specific choice n = 8 
was made, and the local approximation spaces Vj consist of harmonic polynomials 
of degree p (p ranging from 0 to 8).  In figure 1 we plot the relative error in energy 
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norm (i.e., the relative error in the H1 semi norm) versus the number of unknowns 
for three methods. The PUFEM is compared with two classical p versions, namely, 

the tensor product spaces Qp and the serendipity spaces Q' based on an 8 x 8 mesh. 
We see clearly that the use of harmonic polynomials made possible by the PUFEM 
is advantageous: in order to achieve 1% error in H1, the PUFEM based on harmonic 
polynomials needs only half as many DOF as the usual p version spaces Qp, Q'. This is 
in accordance with our earlier observation that the number of harmonic polynomials 
grows linearly with the degree p whereas the size of full polynomial spaces grows 
quadratically. Note that the disparity between the PUFEM and the spaces of full 
polynomials becomes bigger for higher accuracy. See [10] for a more detailed study 
of the performance of the PUFEM as the parameters n and a are varied. 
Remark 6: For the elasticity equations in 2-d, the situation is completely analogous 
to Laplace's equation. In the absence of body forces, the displacement field (u,v) 

under the plane strain assumption can be expressed by two holomorphic functions <p, 
1> (see [12]): 

2fi(u + iv) = K(p(z) — zip'(z) — ip(z) (19) 

where K — (A + 3/z)/(A + fi) and A, // are the Lame constants. Choosing K = 
(A* + 3/x)/(A* 4- fi) with A* = 2A/x/(A + 2/4) gives the representation for the case 
of plane stress. The holomorphic functions <p, if) can be approximated by complex 
polynomials (pp, ißp of degree p, and thus the functions 

K<pp(z) - zlpp(z) - V>p(z) 

take the role of "harmonic" polynomials for the elasticity equations. It can be shown 
that theorems 2, 3 hold verbatim for the approximation of the solutions to the elas- 
ticity equations with these "harmonic" polynomials (see [11]). 

6.2    Helmholtz's Equation 

The next numerical example deals with the approximations to Helmholtz's equation. 
On the unit square, we consider 

-Au-Jb2u   =   0 onfi = (0,l)x(0,l) 
dnu + iku   =   g on dti ^    ' 

where g is chosen such that the exact solution is a plane wave of the form 

u(x, y) — exp{ik(x cos 6 + y sin 6)}, 6 = —. 
16 

The following two types of local approximation spaces were analyzed in [11]. The 
first type are "generalized harmonic polynomials" as alluded to in the introduction. 
Written in polar coordinates, they take the form 

VV(p) = s?&n{e±ineJn(kr)\n = 0,... ,p}, (21) 
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where the functions Jn are the Bessel functions of the first kind (see, e.g., [6]). The 
second type are systems of plane waves given by 

W{p) = span{exp(i&(a; cos9j + y sinOj)) \ 6j = —j,j = 0,... ,p — 1}. 

(22) 

Remark 7: The spaces Vv(p), the spaces of "generalized harmonic polynomials", 
share the optimality properties of the harmonic polynomials for the approximation 
of harmonic functions on discs (see section 4.2); the spaces Vv(p) are optimal in 
the sense of n-width for large classes of rotationally invariant spaces of solutions of 
Helmholtz's equation on discs. 

Remark 8: The numerical examples below are based on the spaces W(p). In all 
computations we chose p to be of the form 2 +4m, m G N0, so that the exact solution 
of problem (20) is not an element of the PUFEM space. 

The approximation properties of these two types of spaces are very similar to the 
usual harmonic polynomials. In fact, we have 

Theorem 4 Let Q C R2 be a simply connected, bounded Lipschitz domain. Let 

fi DD fi and assume that u £ L2(£l) solves the homogeneous Helmholtz equation on 
Cl.  Then 

jnf     ||« - Up||Äi(n) < <?e~7P||«||L2(fi) 

where C, C, 7, and 7 depend only on Q, Ö. 

Remark 9: For the solution of the model problem (20), theorem 4 can be strength- 
ened: 

mf     H«-«P|k1(n)<C7(7,fi)e-^, 
up€Vv(p) 

'v£t>-*>p\\Hiv)<cb,n)e--» 

holds for any fixed 7 > 0. 

Theorem 5 Let Q, be a simply connected bounded Lipschitz domain, star-shaped with 

respect to a ball. Let the exterior angle ofQ, be bounded from below by \ir, 0 < A < 2. 
Assume that u 6 Hk{ß), k > 1, satisfies the homogeneous Helmholtz equation.  Then 

(1 \   A(fc—]) 

^Tj \\
U

\\H«(0),        j = 0,...,[k], 

(In2 v\ x(k~^ 
—J NlH*(n),        j = 0,...,[k}. 
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Tab e 1: DOF necessary to obtain accuracy e in L2 norm; k = 100 

30% 

10% 
5% 

best 
approximant 

2.045D+3 

5.041D+3 

8.464D+3 

QSFEM     GLSFEM       FEM 

3.969D+3 
1.000D+4 

1.960D+4 

2.016D+4 

6.150D+4 

1.274D+5 

7.784D+4 

2.352D+5 

4.692D+5 

Table 2: DOF necessary to achieve various accuracies in L2 for PUFEM with n = 4 
s oth er methoc s; Jb = 100 

V L2 error PUFEM best approx. QSFEM FEM 
26 10.8% 6.50D+2 3.80D+3 7.95D+3 2.08D+5 
30 0.69% 7.50D+2 5.89D+4 1.23D+5 3.23D+6 
34 0.11% 8.50D+2 3.45D+5 7.23D+5 1.90D+7 

The PUFEM can be based on either approximation space. In the numerical results 
below, we concentrate on the PUFEM based on the spaces W{p) of plane waves (for 
a comparison with the "generalized harmonic polynomials" Vv(p), see [11]). The 
domain Q, is covered by square patches and the partition of unity consists again of 
piecewise bilinear functions as described in section 5. The local approximation spaces 
Vj are taken as the spaces W(p). 

Remark 10: The theorems above merely address the issue of approximability; 
we do not deal with the delicate question of stability of the finite element methods 
based on these spaces. Suffice it to say that the spaces created by the PUFEM are 
stable under the assumption that the mesh size h is sufficiently small with respect to 
the wave number k (see [11]). However, as can be seen in the numerical results, the 
PUFEM performs very well as a p version for very coarse meshes. 

In tables 1-6 the PUFEM is compared with the usual Galerkin finite element method 
(FEM), the generalized least squares finite element method (GLSFEM) of [22], and 
the quasi-stabilized finite element method (QSFEM) of [19]. Since all three methods 
are based on piecewise linear functions on uniform grids, tables 1 and 2 include the 
piecewise linear best approximant for reference. The FEM, GLSFEM, and QSFEM 
differ in their choice of the bilinear form. In particular, the bilinear form of the 
QSFEM is constructed such that "pollution" (see [19]) is minimized, and thus the 

Table 3: number of operations using band elimination - the p version of the PUFEM; 
n = 4; k = 100; error in L2 

V L2 error PUFEM QSFEM FEM 
26 10.8% 1.76D+7 6.3D+7 4.3D+11 
30 0.69% 2.71D+7 1.5D+10 1.01D+13 
34 0.11% 3.94D+7 5.2D+11 3.6D+14 
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Table 4: number of operations for hp version of PUFEM; k = 100; L2 error 

p n L2 error NOP PUFEM 
26 4 10.8% 1.76D+7 
18 8 10.6% 5.23D+7 
14 16 9.5% 2.75D+8 

Table 5: operation count for solving linear system; error in H1 norm;Ä; = 32 
Galerkin QSFEM 

VDOF 
hline 32 

H1 error 
65% 

No. iter 
232 

NOP 
4.51D+6 

H1 error 
30.5% 

No. iter 
272 

NOP 
5.29D+6 

64 21.7% 434 3.37D+7 14.3% 492 3.82D+7 
128 8.16% 831 2.68D+8 7.02% 953 2.96D+8 
256 3.64% 1665 2.07D+9 3.48% 1863 2.31D+9 
512 1.72% 3263 1.62D+10 1.69% 3752 1.86D+10 

Table 6: operation count for band elimination for PUFEM; k = 32, error in H1; n = 1 

p H1 error NOP PUFEM 
18 46% 1.3D+5 
22 6.7% 2.3D+5 
26 0.38% 3.8D+5 
30 0.00025% 5.9D+5 
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QSFEM is virtually the best method available which is based on piecewise linear 
functions. We will see that the PUFEM compares very favorably with the QSFEM. 
We discuss the cases k — 100 with the L2 norm as the error measure and k = 32 with 
the H1 as the error measure. Tables 1-4 show the performance of the PUFEM in 
comparison with the other methods for k = 100 and the L2 norm as error measure. 
Table 1 shows the number of DOF needed to achieve a certain L2 accuracy for the 

various piecewise linear methods. We see that the QSFEM needs 2 times as many 
DOF as the best approximant, while the GLSFEM needs 10-15 and the FEM 40-50 
as many. Table 2 shows that the p version of the PUFEM can achieve the same accu- 
racy as the other methods with markedly fewer DOF. This can be attributed to the 
exponential approximability of the PUFEM: According to remark 6.2 the approxima- 
tion properties of the PUFEM space based on plane waves W(p) are exponential in p 

whereas the h versions of the piecewise linear methods can only have algebraic rates 
of convergence. This explains why the discrepancy between the PUFEM and the 
other methods becomes more pronounced for high accuracy: in order to achieve 10% 
accuracy in L2, the best approximant needs 6 times as many DOF as the PUFEM, 
whereas it needs 400 times as many as the PUFEM to achieve 0.11% accuracy. Ta- 
ble 3 shows how this reduction of DOF translates into a reduction in the operation 
count if a direct solver (band elimination) is used. Again, the PUFEM outperforms 
the QSFEM and the FEM for the case of 10.8% accuracy and is greatly superior for 
high accuracy. 
In tables 1-3 we saw the performance of the PUFEM as a p version. Table 4 shows 
the performance of the PUFEM as an hp version by listing the number of operations 
for the band elimination for various combinations of p and h = - which result in an 
accuracy of ca. 10% in L2. We see that the operation count increases with n (and thus 
with decreasing p). This can again be explained by the fact that the PUFEM spaces 
feature exponential approximability as p versions but only algebraic approximability 
as h versions. 
Tables 5-6 illustrate the case k = 32 with the H1 semi norm as the error measure. 
The linear system of the usual FEM and the QSFEM is solved using the iterative 
scheme proposed in [4]. We compare the cost of these iterative schemes (table 5) with 
the cost of the band elimination for the PUFEM (table 6) as a p version (n = 1). 
We see that the PUFEM is cheaper than the QSFEM, which is virtually the optimal 
method for piecewise linear ansatz functions. The PUFEM is cheaper in the whole 
range of accuracies (50%-0%). As in the case of DOF versus L2 accuracy above, 
the disparity between the PUFEM and the other methods becomes bigger for high 
accuracy: for 50% error, the PUFEM is 30 times cheaper than the FEM, and for 1% 
the PUFEM is 105 times cheaper! 

Remark 11: In the operation count for the PUFEM (tables 4, 6) only the con- 
tributions of the band elimination are reported. This is justified by the particular 
structure of the problem under consideration. The mesh is uniform, the partition of 
unity consists of piecewise bilinear functions and the local approximation spaces are 
spaces of plane waves. All of this can be exploited in the construction of the stiffness 
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matrix, and the resulting cost of the generation the stiffness matrix is of lower order 
compared with the cost of the linear solver. 

The numerical examples show that the PUFEM performs much better than the usual 
h versions both in terms of error versus DOF and error versus operation count. This 
is due to the fact that the PUFEM allows us to use local approximation spaces that 
capture the local behavior of the solution very well, even if the solution is rough. In 
this example, the approximation with plane waves is very efficient although the wave 
number k is large (k = 32, k = 100). We saw that the PUFEM outperforms the h 

version for accuracies of practical interest (50%—1% in H1, say) and that the PUFEM 
is immensely superior for high accuracy. 

7    A-posteriori Error Estimation 

A-posteriori error estimation for finite element solutions obtained by the PUFEM is 
possible if local problems on the patches fii n Q can be solved (or suitably approxi- 
mated). In order to demonstrate this, let us consider the model problem 

Lu = - div a(x) gi&du + c(x)u   =   f £ L2(ü) on Q 

u   =   0 on TD C du, TD ^ 0 
anu = a(x)dnu   =   g<EH-V2(TN)     onVN = dü\YD       (23) 

where a, c are bounded functions and satisfy the inequality 

0 < a < min(o(a;), c(z)) < max(a(x), c(x)) < ß < oo. 

The weak form of this problem is to find u G H})(£1) such that 

B(u,v) = F(v)   \/v£H1
D(n) = {veH\n)\v = 0onTD} (24) 

where the bilinear form B and the linear functional F are defined in the standard 
way. The conditions on the coefficients a, c imply that 

«IMIi^n) <B{u,u), 

\B(u,v)\<ß\\u\\mm\\v\\mm. 

Let VFE be a conforming PUFEM space, i.e., VFE C H},(Q,). Then, the finite element 
solution UFE G VFE is denned by 

B(uFE,v) = F(v)       Vv 6 VFE C H^Sl). (25) 

On each patch fi; D fi, we introduce the local problem 

und VleWi B{r}i,v) = B(u-uFE,v) Vv G W{ (26) 
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where 

Wi = {v e #x(ßt n ß) \ v = o on 5(ß,- n ß) \ r^}. (27) 

Remark 12: If we require the PUFEM space to be of degree 2, i.e., if VFE C 

H})(ti) n C2(ß), integration by parts allows us to express the right hand side of (26) 
explicitly in terms of the given data L, f, and g: 

B(r)i, v) = B(u - uFE, v)= (/ - LuFE)vdx +  /   (g - anuFE)vds. 
■/n.nn JvN (2%) 

In this last integration by parts argument, we made use of the assumption VFE C 
C2(ß). This is an important simplification in practice because in that way, the 
evaluation of the right hand side of (26) requires only knowledge about uFE and its 
derivatives on the patch ß;Dß. If the space VFE is less regular (e.g., VFE C C(ß) and 
piecewise C2) the integration by parts argument introduces additional terms related 
to the jumps of derivatives; restricting ourselves to the case VFE C C2(ß) removes 
the necessity to determine the points where these jumps may occur. 

Before we proceed to prove theorem 6, which relates the error of the finite element 
solution to the local functions rji, we need to impose some approximation properties 
on the local approximation spaces V{. 

Definition 3 A collection Vi of local approximation spaces has the uniform Poincare 
property if there is Cv > 0 independent of i such that 

1. fori such that fi; D To = 0; Vi contains the constant functions and 

infAeR ||v - A||L2(n.nn) < CP diam(nt)||'y||ifi(ninn)        Vu e H1^ D ß) 

2. for i such that ß; n YD ^ 0 

||v||L»(n,-nn) < CP diam(ßi)||u||Hl(n.nn)        Vu G {v G iT^ßiHß) | v = 0 on VD} 

Theorem 6 Let {ß^} be a cover o/ß and {tpi} a (M, CM, CG) partition of unity sub- 

ordinate to the cover {ßi}. Let the local approximation spaces {Vi} have the uniform 

Poincare property and assume that Vi = 0 on TD for Vi € Vi with ß; D TD ^ 0. Then 

there is C = C(a,ß, M, Coo, CG, Cp) > 0 (which is explicitly available from the proof 
below) such that 

C 1 ( X) IMlHl(*nn) j      < h-uFE\\HHn) < C f X IMlHMfVin) j 

1/2 j N 1/2 

(29) 

where uFE and rji are defined in equations (25), (26). 

Proof: The proof follows very closely [1]. First we observe that the finite element 

space VFE constructed by the PUFEM is conforming, i.e., VFE C H\>{ti). Further- 
more, we have Wi C #£>(ß) by continuing the elements of Wi by zero on ß \ (ßi D ß). 
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By the coercivity of B, the orthogonality relation satisfied by UFE, and the fact that 
]TV (fi = 1 on £2, we have 

a\\u -uFE\\2Hi(ty < B(U-UFE,U-UFE) 

= B(u — UFE,U — UFE — VFE) \fvpE €: VFE 

= B(u- uFE, 22 Vi(u - UFE - Vi)) VFE = ^ ViVi,      Vi € Vi 

  
= J^ B(rji, tpi(u - UFE - Vi)) 

<^fEll^ll^nn)J      fell^C 
1/2 

i{U - UFE - Vi)\\m{u.nn) 

where we made use of the fact that ipi(u — UFE — Vi) G W; C H]}(Q). The uniform 
Poincare property gives the existence of Vi £ E. such that 

II"" - V.FE - ■y,||z,2(ninn) < min(l, CP diam(fi,)) \\u - UFE||#i(fi<nn), 

and thus we can estimate 

E IMU ~ UFE
 ~ ^Ollirntiinn) < E <?~llu - UFE - Vi\\2L2^.nU) + 

+ 2C2
00\Mu-UFE-Vi)\\lHninn) + 

C2 

+ 2^{üi)>-UFE~V^n^ 

- z2 (3C,~ + 2C
G
C

P) \\u - uFE\\m{ninn) 

< M (3Cl + 2C2
GCP) \\u - uFE\\2HHQ) 

where we used lemma 2 below. This gives the upper estimate of (29). For the lower 
estimate, we use the fact that each 77; G Wi C H})(Sl) and thus 

Yl IMl3:rl(n.-nn) ^ a_1 E B(rl"rli) 
i i 

< a-l^TB(u-uFE,r)i) = a~lB(u - UFE,^^) 

E* <ßa    \\U-UFE\\W (0) 

/ri(n) 

< /3a ^u - UFS||HI(O)V^ I E H^l 

1/2 

H^n.-nn) 

where we made again use of lemma 2 below. This concludes the proof of theorem 6. 
D 
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Lemma 2 Let ü be an open set, {tii} be an open cover ofQ satisfying the pointwise 
overlap condition 

card{z | x 6 ^} < M Vx G ti. 

Let u, Ui 6 Hl(£l) be such that 

suppig C closure^ fl fi). 

Then 

£ ll^llWo - MHull^(n)        A; = 0,1, 

II J2ui\\2H"(n) < MJ2 IMI^nn*)        A; = 0,1. 
i i 

Proof: We will show the case k = 0, the case k = 1 being handled similarly. Let Xi 
be the characteristic function of the domain f^ fl ti. Then 

^   ./ninn i   ./n 7n " Jo. 
\u\2. 

This proves the first estimate. For the second estimate, we use the overlap condition 
and the condition on the supports of the functions u; to see that for each i£fi, the 
sum on the left hand side extends over not more than M terms. Therefore, 

L{^^LMVUill-MVH 2 
L2(f2<nn)- 

D 

Remark 13: The proof of theorem 6 shows that the uniform Poincare property 
could be weakened. It is enough that the L2 projections II; : H1^ D tt) —> V; satisfy 

liniuHtfi^nn) < Cp|M|iji(ninft), 

||u - Iiiu\\L2{n.nn) < CP diam(J7i)||u||ifi(n.nn). 

Remark 14: The existence of the uniform Poincare constant is related to a certain 
uniformity of shapes of the patches. More precisely, for any bounded domain D, the 
constant A, defined by 

A-i/>=    sup    inf "" " ^{D) 

uem(D)^R   \\vu\\L2{D) 

is the second (i.e., the first non-zero) eigenvalue of the Neumann problem 

—Au   =   \u on D, 

dnu   =   0 on 3D. 
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Remark 15: Let us note that a simple scaling argument shows that the uniform 

Poincare constant of definition 3 depends only on the shape of the patches and not 

the diameters. Thus, one simple way to enforce a uniform Poincare property is to 
restrict the number of possible shapes of the patches ft; f"l ft. 

Let us outline sufficient conditions on the patches ft; D ft that guarantee the uniform 
Poincare property of the local approximation spaces Vi based on the following lemma. 

Lemma 3 Let ft C Kn be a convex domain, u 6 if1(ft).  Then 

/ \   l-l/n 

h -1*11^(0) < [^j (diam(ft))n || Vu\\LHQ) (30) 

where u is the average of u over ft 

(31) ~=w\Lu' 
|ft| stands for the volume ofti, and un is the surface of the unit sphere in Rn. 

Proof: Section 7.8 of [5]. D 

For patches ft; fl ft such that ft; D TD = 0, lemma 3 gives the uniform Poincare 
property if ft; fl ft is convex and if there is p > 0 such that each patch contains a ball 
of radius ^dian^ft;) (and is trivially contained in a ball of radius diam(ft,)). Note 
that this is reasonable restriction on the patches in view of condition (4). 
Let us now turn to the patches close to the boundary where the Dirichlet conditions 
are prescribed. For simplicity, consider a two dimensional setting, assume that the 
patches ft; are discs, and that ft; D TD ^ 0, ft, n TN = 0. Moreover, let ft; fl TD be a 
straight line segment. If ft; n ft is less than a half-disc (but ft; n ft still contains a ball 
with diameter /9diam(ft;)), the reflection across To yields a convex domain ft C ft;. 
For u G if1 (ft; fl ft) such that u\rD = 0, the antisymmetric extension across Tu gives 
an if1 (ft) function with zero average, and thus lemma 3 gives 

\/2 
2||u||L2(n.nn) = ||u||L2(n) < —diam(fti)||Vu||L2(n;nn)- 

The case that ft; n ft is bigger than a half-disc can be reduced to the above one by 
an appropriate mapping.  The necessary condition for the Poincare constant not to 
degenerate is that the length of the line segment ft; n TD > pdiam(ft;). 

The case ft; fl TD / 0, ft; H Tjy ^ 0 can be dealt with using similar ideas. Again, the 
necessary condition is that the length of the line segment ft; fl TD > />diam(ft;). 
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