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Recently Chazot et al. [J. Sound Vib. 332, 1918–1929 (2013)] applied the Partition of Unity Finite

Element Method for the analysis of interior sound fields with absorbing materials. The method was

shown to allow a substantial reduction of the number of degrees of freedom compared to the

standard Finite Element Method. The work is however restricted to a certain class of absorbing

materials that react like an equivalent fluid. This paper presents an extension of the method to the

numerical simulation of Biot’s waves in poroelastic materials. The technique relies mainly on

expanding the elastic displacement as well as the fluid phase pressure using sets of plane waves

which are solutions to the governing partial differential equations. To show the interest of the

method for tackling problems of practical interests, poroelastic-acoustic coupling conditions as

well as fixed or sliding edge conditions are presented and numerically tested. It is shown that the

technique is a good candidate for solving noise control problems at medium and high frequency.

VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4845315]

PACS number(s): 43.55.Ka, 43.20.Gp, 43.50.Gf, 43.20.Jr [FCS] Pages: 724–733

I. INTRODUCTION

In this work, we are concerned with the numerical

simulation of sound pressure field in enclosed cavities in

which absorbing porous materials are present. The type of

applications we have in mind ranges from room acoustics

predictions, sound proofing of aircraft or cars’ passenger

compartments, to muffler designs in Heat, Ventilation, and

Air-Conditioning systems. If the presence of absorbers can

sometimes be modeled with a normal incidence impedance

boundary condition, a precise description of the sound field

which is valid in all cases requires the discretization of the

absorbing materials as well.1 Furthermore, for a certain class

of absorbent materials such as polymer foams the solid struc-

ture has a finite stiffness. In this case, Biot’s theory describ-

ing the propagation of elastic and pressure waves in the

poroelastic material must be used.2 The numerical solution

of Biot’s equations using the finite element method (FEM)

has been extensively discussed in the literature and various

formulations involving different variables have been pro-

posed; see, for instance, Refs. 3–5, as well as quoted referen-

ces in Ref. 6. In this regard, the mixed (u, pp) formulation of

Atalla et al. offers the great computational advantage of

reducing the number of degrees of freedom as well as easing

the transmission conditions at the air-porous interface.4

Despite the progress being made, the classical finite element

discretization of the mixed formulation is known to suffer

from slow convergence rates, i.e., with respect to the number

of degrees of freedom required to achieve reliable results.6,7

The reasons for this lie in the biphasic nature of the poroelas-

tic medium and the disparity of scales between wavenum-

bers associated with the different type of waves allowed to

propagate in the material. This is discussed in Ref. 8 and

shown in Ref. 9 using the displacement formulation. These

limitations restrict the finite element analysis of poroelastic

materials to reduced-sized configurations. To alleviate this

convergence problem, the development of high-order hier-

archical elements was considered in Refs. 8, 10, and 11.

Modal reduction techniques were also investigated in Refs.

12–16. Alternatively, boundary integral formulations and

their discretized versions, the boundary element method, can

be used via the explicit knowledge of the Green’s tensor of

the poroelastic wave equations.17 In another domain, the

Pad�e approximant method has also been used efficiently

with shell elements in Ref. 18 to model multilayered struc-

tures with poroelastic materials.

All the approaches cited above have in common that the

unknown oscillatory solutions (pressure or displacement

fields) are approximated using piecewise polynomial shape

functions. The last decade has seen the emergence of new

approaches in which the solution to the problem is expanded

in the basis of wave functions, usually taking the form of

plane, cylindrical, or spherical waves. In essence, these func-

tions capture the oscillatory character of the wave field thus

allowing to tackle medium to high frequency problems.19

The idea was first developed to the Helmholtz equation giv-

ing rise to, to name but a few, the Partition of Unity Finite

Element Method (PUFEM),20,21 the Ultra-Weak formula-

tion,22,23 the Discontinuous Galerkin Method,24,25 the Wave
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Boundary Element Method,26 the Wave Based Method,27,28

the Variational Theory of Complex Rays,29 and, to some

extent, the Method of Fundamental Solutions.30 Extension to

the elastic wave equation can be found in Refs. 31 and 32,

for instance. Applications to Biot’s poroelastic wave equa-

tions have received little attention so far; we can cite three

recent research works in this direction in Refs. 33–35. All

these methods offer a drastic reduction in degrees of freedom

as compared with conventional discretization schemes.

Among these techniques, the PUFEM has the advantage to

be very similar to the FEM and its numerical implementation

can be easily adapted to any FEM mesh.

In a recent paper,36 the present authors applied the

PUFEM for the analysis of interior sound fields with absorb-

ing materials. The work is, however, restricted to a certain

class of absorbing materials that react like an equivalent

fluid. This paper presents an extension of the method to the

numerical simulation of Biot’s waves in poroelastic materi-

als in the two-dimensional case. The paper is organized as

follows. The PUFEM formulation is presented in Sec. II. In

the porous domain, the pressure and displacement fields

are discretized using sets of plane waves with complex

wavenumbers and the classical coupling conditions at the

air-porous interface are enforced by the use of Lagrange

multipliers. In Sec. III, the performances of the method,

measured in terms of data reduction, are assessed for an arti-

ficial problem for which analytical solutions are available. In

Sec. IV, the interest of the method is illustrated on various

examples of practical interest such as the analysis of interior

sound fields in a car’s passenger compartment.

II. FORMULATION

A. Problem statement and governing equations

The general interior problem under consideration is

illustrated in Fig. 1. It consists of a bounded two-

dimensional domain V ¼ Va [ Vp where Va is an air-filled

cavity with density qa and sound speed ca and the domain Vp

is filled with a poroelastic material. For a brief nomenclature,

all quantities associated with the air cavity are referred by

the subscript a, whereas the porous domain is denoted by the

subscript p. We call Sc the air-porous interface and Sa and Sp
the remaining part of the boundary of each domain. In the

frequency domain (the time dependence e�ixt is assumed),

the governing equation for the acoustic pressure in the air is

the classical Helmholtz equation

Dpa þ k2apa ¼ 0; (1)

where ka ¼ x=ca is the wavenumber and x is the angular

frequency. The wave propagation involving, respectively,

the fluid and solid phases displacement U and u in the poroe-

lastic medium is described by the Biot-Allard model which

is well documented in the reference textbook.2 These equa-

tions can be written in a reduced form using only the solid

displacement and the fluid pressure pp as

r � rs þ x2qu ¼ � crpp; (2)

Dpp þ x2 q22
R

pp ¼ x2c
q22

/2
r � u: (3)

Here, / is the porosity of the porous material, c ¼
/ðq12=q22 � Q=RÞ and q ¼ q11 � q212=q22. The effective

density coefficient, q11, q22, respectively for the solid phase

and the fluid phase, and the coupling density coefficient q12,

are complex and the imaginary part takes into account the vis-

cous damping. The in vacuo stress tensor rs reads

r
s ¼ I Kb � 2

3
N

� �

r � uþ 2Ne; (4)

with e the in vacuo strain tensor. Here, Kb is the complex

dynamic bulk modulus of the frame. The shear modulus N

includes the structural damping, R is the effective bulk modu-

lus of the fluid phase, and Q indicates the coupling of the two

phase volumic dilatation. All these coefficients are related to

the poroelastic structural parameters37,38 (namely, the flow re-

sistivity r, the tortuosity a1, the viscous and thermal charac-

teristic lengths K and K
0, the Poisson coefficient �, and the

effective skeleton density q1) by the Johnson-Champoux-

Allard model. For completeness, their value for the XFM

foam which has been chosen in our applications is reminded

in Table I. Coupling conditions between the acoustic domain

and the poroelastic material are summarized by Debergue

et al.:39

rnp ¼ � pa np; (5)

pp ¼ pa; (6)

/ðUn � unÞ þ un ¼
1

qax
2

@pa
@np

: (7)

The first condition is the standard continuity requirement

of the normal stress at the interface [here �¼�s

�/pp(1þQ/R)I denotes the total stress tensor]. The second

condition ensures the continuity of the pressure between the

FIG. 1. Studied case and notations.

TABLE I. Material properties.

Foam / r

ð103Nm�4sÞ a1

K

ðlmÞ
K

0

ðlmÞ
q1

(kgm�3)

N

(kPa)

�

XFM 0.98 13.5 1.7 80 160 30 200(1� 0.05i) 0.35
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acoustic domain and the pores. The last condition ensures

the continuity of the normal displacement at the interface.

Note that for the sake of clarity, we put Un ¼ U � np and

un ¼ u � np. On the other part of the boundary of the air cav-

ity, a prescribed normal velocity va is imposed,

@pa
@na

¼ iqaxva; (8)

whereas the porous foam is assumed to be in contact with

rigid walls. To simulate the case of foam which is bonded to

the wall, we require that

u ¼ 0; (9)

Un � un ¼ 0: (10)

In the case where the foam is sliding the above condition

holds for the normal component only and the tangential

stress must be set to zero,

ðrnpÞ � t ¼ 0; (11)

Un ¼ un ¼ 0: (12)

B. Variational formulation

The starting point is to combine the weak integral for-

mulations for the mixed formulation (2), (3), and the

Helmholtz equation (1). This gives

ð

Vp

ðrs : de�qx2u � duÞdV

þ
ð

Vp

/2

x2q22
rpp � rdpp �

/2

R
ppdpp

 !

dV

�
ð

Vp

/

~a
dðrpp � uÞdV �

ð

Vp

/ 1þQ

R

� �� �

dðppr � uÞdV

þ
ð

Vp

1

qax
2
rpa � rdpa �

1

qac
2
a

pa dpa

� �

dV

þIc þ Ibop þ Islp ¼ iqax

ð

Sa

vadpadS; (13)

where the dynamic tortuosity ~a is obtained from /=~a
¼ c þ / 1 þ Q=Rð Þ. Here Ic, Ibop , and Islp stand for the

boundary integral terms arising from integration by parts.

Using a conventional nodal-based element, their explicit

form can be found in Ref. 5. The type of approximation con-

sidered in this work involves global coefficients so transmis-

sion conditions and boundary conditions must be enforced

using Lagrange multipliers. This is now explicitly stated:

(1) The air-porous interface Sc. It is convenient to introduce

a Lagrange multiplier defined as the normal derivative of

the acoustic pressure at the air-porous interface. To be

more precise we put

k ¼ 1

qax
2

@pa
@np

: (14)

After applying the continuity conditions (5), we find5

Ic ¼
ð

Sc

dðpp unÞ dS þ
ð

Sc

kðdpa � dppÞ dS: (15)

Note the last integral in Eq. (15) does not appear in

Ref. 5 as the continuity of pressure (i.e., pp¼ pa and

dpp¼ dpa) between the two domains is simply taken into

account algebraically through assembling. In the

PUFEM formulation, this condition must be enforced

weakly as

ð

Sc

dkðpa � ppÞ dS ¼ 0: (16)

(2) The bonding conditions at the wall Sbop . Here we intro-

duce a Lagrange multiplier (in a vector form) which

comprises the stress components at the hard wall, i.e.,

k
bo ¼ rnp. The boundary integral reads

Ibop ¼
ð

Sbop

k
bo � du dS: (17)

The condition that the elastic phase displacement must

be zero at the wall is enforced weakly,

ð

Sbop

dkbo � u dS ¼ 0: (18)

(3) The sliding conditions on Sslp . Here only the normal displace-

ment must be set to zero and by defining ksl ¼ ðrnpÞ � np,
the boundary integral becomes

Islp ¼
ð

Sslp

ksldun dS; (19)

with the additional constraints

ð

Sslp

dkslun dS ¼ 0: (20)

Before we end this section, we may notice that the

PUFEM weak formulation yields a symmetric matrix

(but with complex coefficients) as in conventional nodal-

based elements. The final system can always be recast as

the general form given by Eq. (19) in Ref. 36.

C. Plane wave finite elements

Let the domain V be partitioned into L non-overlapping

subdomains V(l) where l ranges from 1 to L. Each

sub-domain, or finite element in the engineering terminology,

is defined via the geometric mapping r¼ r
(l)(n, g) between

the real space and the local system of triangular type,

T ¼ fn � 0; g � 0; n þ g � 1g:

The key ingredient of the PUFEM relies on the enrichment

of the conventional finite element approximation by includ-

ing solutions of the homogeneous partial differential
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equation.20,40–42 In this work, we favored the use of plane

waves as these are easily computed. In each sub-domain V(l)

belonging to the acoustic domain, the acoustic pressure is

expanded as

paðrÞ ¼
X

3

j¼1

X

Qj

q¼1

N3
j ðn; gÞ exp ika djq � ðr � r

ðlÞ
j Þ

� �

P
ðlÞ
a;jq;

(21)

where the plane wave amplitudes P
ðlÞ
a;jq are unknown coeffi-

cients and functions N3
j are the classical linear shape func-

tions on triangular elements. Points r
ðlÞ
j are the three nodes

associated with element V(l). Their presence in Eq. (21)

ensures that the nodal values are recovered simply as

paðrðlÞj Þ ¼
X

Qj

q¼1

P
ðlÞ
a;jq; (22)

and that the element matrices associated with this oscillatory

basis do not become artificially either too big or too small

(note this problem is not encountered with real wavenum-

bers). The directions, attached to node j, are chosen to be

evenly distributed over the unit circle; that is

djq ¼ ðcosðhqÞ; sinðhqÞÞ where hq ¼
2pq

Qj

;

q ¼ 1;…; Qj: (23)

The number of plane waves attached to each node j¼ 1, 2, 3

must be dependent on the frequency and the element size.

Although there is no rigorous theory in this matter as this

number might also depend on the studied configuration,

there is a common acceptance that the following criteria

should provide a good estimate:43

Qj ¼ round ½kah þ CðkahÞ1=3�: (24)

Here, h is taken as the largest element edge length connected

to node j within the acoustic domain and the constant C is

usually chosen to lie in the interval C 2 [2,20]. This coeffi-

cient can be adjusted depending on the configuration and the

expected accuracy. Note that Eq. (24) is restricted to two-

dimensional domains only. In the poroelastic domain, the

plane wave decomposition for the solid phase displacement

is obtained by recalling that u admits the Helmholtz decom-

position u ¼ rðu1 þ u2Þ þ r?u3. Under this form, each

potential ua; ða ¼ 1; 2; 3Þ fulfills the Helmholtz equation

Dua þ k2aua ¼ 0: (25)

Here, complex-valued wavenumbers ka are given explicitly as
2

k21 ¼
x2

2ðPR � Q2Þ ðPq22 þ Rq11 � 2Qq12 þ
ffiffiffiffi

D

p
Þ;

(26)

k22 ¼
x2

2ðPR� Q2Þ ðPq22 þ Rq11 � 2Qq12 �
ffiffiffiffi

D

p
Þ;

(27)

k23 ¼
x2

N

q11q22 � q212
q22

 !

; (28)

with P¼Aþ 2N and

D ¼ ðPq22 þ Rq11 � 2Qq12Þ2

� 4ðPR � Q2Þðq11q22 � q212Þ: (29)

This invites us to consider the following finite element plane

wave approximation as

uðrÞ ¼
X

2

a¼1

X

3

j¼1

X

Qa;j

q¼1

N3
j ðn; gÞ da;jq

� exp ðikada;jq � ðr � r
ðlÞ
j ÞÞUðlÞ

a;jq

þ
X

3

j¼1

X

Q3;j

q¼1

N3
j ðn; gÞ d?3;jq

� expðik3d3;jq � ðr � r
ðlÞ
j ÞÞUðlÞ

3;jq: (30)

The wave directions are chosen as in Eq. (23), i.e.,

da;jq ¼ ðcosðhqÞ; sinðhqÞÞ where hq ¼
2pq

Qa;j
;

q¼ 1;…;Qa;j; a¼ 1; 2; 3: (31)

As for the number of wave directions, the same criteria is

applied with the real part of the wavenumber since it corre-

sponds to the oscillating part of the solution

Qa;j ¼ round ½ReðkaÞh þ CðReðkaÞhÞ1=3�: (32)

Similarly, h is taken as the largest element edge length con-

nected to node j within the poroelastic domain. Following

Ref. 2, the pore pressure can be written as a linear combina-

tion of u1 and u2 and in fact

�/pp ¼ ðQ þ Rl1ÞDu1 þ ðQ þ Rl2ÞDu2; (33)

where l1 and l2 are the wave amplitude ratios between the

two phases in the porous material.2 Thus, it is natural to con-

sider the following plane wave expansion for the pressure

using the longitudinal waves only:

ppðrÞ ¼
X

2

a¼1

X

3

j¼1

X

Qa;j

q¼1

N3
j ðn; gÞ

� exp ðikada;jq � ðr � r
ðlÞ
j ÞÞPðlÞ

a;jq : (34)

In the present work, the finite element geometries are

defined using standard quadratic shape functions on triangu-

lar elements

rðlÞðn; gÞ ¼
X

6

j¼1

N6
j ðn; gÞr

ð0Þ
j ; (35)

as this description is integrated in most software (here

the finite element mesh generator Gmsh is used44). In
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Eq. (35) extra nodes r
ðlÞ
j for j ¼ 4; 5; 6 correspond to the

mid-node of the edges as shown in Fig. 2. On both sides of

the air-porous interface, meshes are designed to be compat-

ible. This choice is made for practical reasons as it consid-

erably eases the numerical implementation of the method.

At the matching interface, the Lagrange multiplier is

expanded using real plane waves with the highest oscilla-

tions, i.e.,

Reðk�aÞ ¼ max
a

ðReðkaÞÞ; (36)

that is

kðrÞ ¼
X

2

j¼1

X

Q�a ;j

q¼1

N2
j ðnÞ expðik�ad�a;jq � ðr � r

ðlÞ
j ÞÞ kðlÞjq ;

(37)

where amplitudes k
ðlÞ
jq are unknown coefficients, linear

functions N2
j are simply the restriction of the shape func-

tions N3
j on the boundary line Sc, and the superscript (l)

refers to the adjacent element V(l) belonging to the porous

domain. The other multipliers corresponding to the stress

components at the hard wall are approximated using a simi-

lar expansion.

Finally, the element matrices are formed using a

Galerkin scheme: the weight functions dpa, dpp, du, etc…,

are chosen from the plane wave basis Eqs. (21), (34), (30),

and (37). As plane wave finite elements may span many

wavelengths, the computation of the element matrices

requires the integration of highly oscillating functions, espe-

cially in the porous domain where the real part of the wave-

number can be much larger than the acoustic one. Here, the

adaptive Gauss quadrature algorithm gauleg from

Numerical Recipes45 is used, and the integration over the tri-

angular domain T is carried out by general Cartesian prod-

uct rules as in Ref. 21. The number of Gauss points is

chosen to ensure that at least an average of 20 points per

wavelength (the smallest one is considered in the porous do-

main) are used in the computation. As the examples will

show in Sec. IV, this number might need to be increased to

achieve better accuracy.

III. PUFEM PERFORMANCES FOR THE
POROELASTIC WAVE EQUATIONS

The aim of this section is to assess the PUFEM performan-

ces for the discretization of the poroelastic wave equations

only. Our main concern is to identify the gain of the present

method in terms of data reduction when compared to classical

FEM discretization schemes.9 The porous domain has the shape

of a square of size 0.2m which is partitioned into 16 identical

PUFEM elements as shown in Fig. 3. The origin corresponds

to the bottom left corner of the mesh. In all numerical tests pre-

sented in this work, the XFM foam whose properties are

reported in Table I was chosen. An exact poroelastic wave field

uex: and pex:p can be constructed via the Helmholtz decomposi-

tion and Eq. (34) from the three potentials uex:
a ða ¼ 1; 2; 3Þ

each having the form of a traveling plane wave,

uex:
a ¼ 1

jkaj
expðikada � ðr � r0ÞÞ: (38)

Here, the reference point r
0¼ (0.1, 0.1) is the center of

the square domain and the directions of propagation

da¼ (cos(ha), sin(ha)) are chosen to be h1 ¼
ffiffiffi

2
p

p, h2 ¼
ffiffiffi

3
p

p,

and h3 ¼
ffiffiffi

5
p

p.

FIG. 2. Plane wave finite element with quadratic geometry and matching

mesh.

FIG. 3. Tested mesh for the porous domain.

FIG. 4. Efficiency of the PUFEM for the poroelastic wave equations; C¼ 5

(circle), C¼ 10 (cross), C¼ 15 (triangle).
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This choice was motivated to ensure that none of the

directions in the PUFEM plane wave basis coincide with

those of the exact field. Because this is not a poroelastic-

acoustic coupled problem but rather an artificial one, the

boundary terms arising from the weak formulation of the

poroelastic wave equations are all known, this yields (once

placed in the right-hand side of the equation)

ð

Sp

r
ex:np � du dS þ

ð

Sp

/ðUex:
n � uexn Þdpp dS: (39)

It is convenient for the analysis to assess the efficiency

of the method by defining the average discretization level nk
defined as the average number of variables needed to capture

a single wavelength,

nk ¼ k�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ndof

area ðVpÞ

s

; (40)

where Ndof is the total number of degrees of freedom. In Eq.

(40), it is understood that k�a ¼ 2p=Reðk�aÞ where the index �a

corresponds to the wave type having the highest oscillation,

see Eq. (36). For instance, using conventional finite element

discretization, it is widely accepted that numerical solutions

of the Helmholtz equation are expected to be of acceptable

accuracy if around ten nodes per wavelength are used. This

condition is however difficult to establish for the poroelastic

wave equations depending on the type of waves which is pre-

dominant in the porous material and/or the boundary con-

ditions.9 Another important parameter is the size of the

PUFEM element and more precisely the number of (smallest)

wavelengths spanning over a characteristic element length

hmesh of the finite element mesh which we shall define as

b ¼ hmesh

k�a
: (41)

By varying the frequency, the dependence between the dis-

cretization level nk, the element length (in b), and the coeffi-

cient C which defines the number of plane waves at each

node is conveniently reported in Fig. 4. Here, all symbols

correspond to numerical results obtained with less than 1%

deviation (for both p and u) compared with the exact solu-

tion. The mean error for the pressure and for the displace-

ment is measured using

Ep ¼ 100 � kp � pex:k
kpex:k and Eu ¼ 100 � ku � uex:k

kuex:k ;

(42)

where p stands for either the pore pressure or the acoustic

pressure and k � k stands for the classical L2-norm with

respect to the domain under consideration.

Figure 4 shows typical L-shaped curves similar to previ-

ous studies. This behavior can be anticipated in the case of

an ideal mesh of infinite extent for the Helmholtz equation.36

In this particular case, it can be shown that the average dis-

cretization level decreases like Oð1=
ffiffiffi

b
p

Þ. This somewhat

surprising fact is simply reflected in the formula (24) indicat-

ing that the number of variables needed to simulate

FIG. 5. Convergence study for the pressure; f¼ 100Hz (cross), f¼ 1000Hz

(square), f¼ 5000Hz (triangle).

FIG. 6. (Color online) Poroelastic wave

field (real part) over the computational

domain. Top: Computed, bottom:

Exact. From left to right: Acoustic pres-

sure (pp), horizontal displacement (ux),

and vertical displacement (uy).
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approximately b2 wavelengths over a bi-dimensional domain

behaves almost linearly with respect to b. Results of Fig. 4

show that this behavior is also observed for the poroelastic

wave equations. We can anticipate that standard FEM would

require a discretization level of at least nk � 20; this figure is

based on 6 degrees of freedom per smallest wavelength and

per independent variables, namely pp, ux, and uy. Clearly, for

high frequency or equivalently for large PUFEM elements,

the gain is substantial as very accurate results can be obtained

with less than 5 degrees of freedom per wavelength, and the

gain would be even greater in three dimensions. In this

respect, it should be noticed that the error on the pressure is

usually much lower than the error on the displacement, say by

an order of magnitude at least. This can be explained by the

absence of the shortest wavelength; that is the shear wave, in

the expression for the pressure. The other reason lies in the na-

ture of the mixed (u, pp) formulation for which it is known

that both physical variables do not converge at the same rate

and the order of approximation for the displacement must be

higher than for the pressure; this is discussed for instance in

Ref. 7.

Figure 5 shows a convergence study for the pore pressure

in the computational domain. As the total number of degrees of

freedom is solely defined via the coefficient C in Eqs. (24) and

(32), it is natural and instructive to carry out the convergence

analysis with respect to this single coefficient. This confirms

that the selection rule [Eqs. (24) and (32)] which was originally

devised for the non-dissipative Helmholtz equation43 performs

very well when applied to poroelastic equations (note this

excellent accuracy was obtained by taking 20 integration points

per wavelength). Again, this level of accuracy would be liter-

ally impossible to reach with conventional nodal-based ele-

ments. We can observe that the convergence (with respect to

C) is a little slower for higher frequencies. This suggests that

the tuning coefficient C might be weakly dependent on kh. The

fact that C must be increased at high frequency in order to

maintain the same accuracy is also reflected in Fig. 4. Now, the

somewhat erratic behavior of the convergence curves when C

increases is due to the ill-conditioning nature of the PUFEM

with plane waves combined with the mixed (u, pp) formulation

which is also known to be ill-conditioned even for finite ele-

ment low-order approximations. As far as the authors’ experi-

ence, the conditioning issue is not necessarily a major problem

as long as the matrices are calculated with sufficient precision

in order to avoid results corrupted by round-off errors during

the inversion process.

For the sake of illustration, Fig. 6 (left) shows the sound

pressure level (in dB) calculated as well as the exact solution

at 10 000Hz. The real part of the horizontal and vertical dis-

placements is also shown. In this example, the number of

smallest wavelengths spanning a single PUFEM element can

be identified (around five) so the gain in terms of data reduc-

tion, is quite substantial. In this specific example, the three

wavenumbers are k1¼ 271.4þ 31.98i, k2¼ 380.6þ 27.05i,

and k3¼ 774.9þ 40.14i. The number of plane waves

attached to each interior node of the mesh is calculated

according to Eq. (33) (with C¼ 15) giving Q1¼ 72, Q2¼ 90,

and Q3¼ 142.

IV. EXTENSION TO POROELASTIC-ACOUSTIC
PROBLEMS

A. The standing wave tube

In order to measure precisely the performance of the

PUFEM for the simulation of poroelastic-acoustic problems,

FIG. 7. (Color online) The standing wave tube; the gray color refers to the

porous material.

FIG. 8. (Color online) The standing wave tube: Pressure level (in dB) along

the tube (sliding foam). Solid line: Analytical results; Markers: Numerical

results obtained with the PUFEM.

FIG. 9. (Color online) The standing

wave tube: Pressure level (in dB) along

the tube (foam bonded to the wall).
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the first series of tests concerns that of a standing wave tube

whose geometry is illustrated in Fig. 7. The triangular mesh

used in our calculation is also shown. The tube of length

L¼ 0.6m is divided into three regions of equal length with

x1¼ L/3 and x2¼ 2L/3. The first region contains the incident

and reflected wave and a normal velocity is imposed at the

left wall. The second area in gray is the porous absorber

which, for the moment, is allowed to slide tangentially to the

wall. The last region is an air gap terminated by a rigid wall.

This simple test case is chosen as one-dimensional analytical

solutions are easily obtained (see the Appendix) and it corre-

sponds to configurations of practical interest.28 As the exact

solution can be expressed as the sum of two horizontal plane

waves propagating in opposite directions, all calculations

were performed without the horizontal directions in order to

ensure that the exact solution is not included in the plane

wave basis. For this configuration, the characteristic length of

the mesh is the longest edge, that is hmesh¼ 0.2m which also

corresponds to the width of the tube. The graph of the acous-

tic pressure (in dB) with respect to the horizontal axis is

shown in Fig. 8 for the XFM foam. These results correspond

to a relatively high frequency calculation with f¼ 5000 Hz.

The comparison with the analytical curve, in a solid line,

shows very good agreements as discrepancies are hardly no-

ticeable. Note that in the third region (air gap), where the

sound level is extremely low, results are accurate within 1%

whereas the error level reaches about 5� 10�7% in the first

region! These results are computed by taking C¼ 15 which

yields around 5300 degrees of freedom. They show a sound

transmission loss of about 40 up to 60 dB between the inci-

dent and the silent zone. For the sake of comparison with

FEM, a series of numerical tests have been carried out using

standard quadratic interpolation for both displacements and

pressure. It was found that reasonable results, say below 3%

of errors, can be obtained with approximately 16 000 degrees

of freedom. Here the gain in terms of data reduction is not

drastic. This is due to the finiteness of the domain, i.e., the

contribution of the plane wave basis associated with nodes on

the boundary is restricted to the interior domain, the rela-

tively small number of elements, and the additional number

of degrees of freedom (the Lagrange multiplier) at the

air-porous interfaces and at the wall. In the last example, the

foam is sliding so the shear wave component (a¼ 3) as well

as the vertical displacement are absent. In a second test case,

we increase the difficulty by considering porous foam which

is now bonded to the wall. Figure 9 shows the resulting pres-

sure field level (in dB) over the whole computational domain

at a frequency of 2500 Hz. The associated elastic displace-

ment fields in both x and y directions are also displayed in

Fig. 10. For this example, the integration procedure was

pushed to around 30Gauss points per wavelength to ensure

that convergence was reached. The number of plane waves

attached at each node (except the middle one) in the porous

domain is Q1¼ 76, Q2¼ 90, and Q3¼ 142. Here there are

approximately 3 to 4 oscillations per element.

B. Applications

In the last example, the PUFEM is applied to the numer-

ical simulation of the sound field in a bi-dimensional interior

car cavity. The geometry and the PUFEM mesh used in our

calculation is shown in Fig. 11, the length of the car is about

3.2m. The sound field is generated by imposing an arbitrary

normal velocity at the front windscreen (we simply put

@pa=@na ¼ 1). The car seat, in gray color, is made of poroe-

lastic foam (XFM). In Fig. 12 are shown the distribution of

sound in the car cavity at a frequency of 5000 Hz. Note the

FIG. 10. (Color online) The standing

wave tube: elastic displacement fields

(real part) in both x and y directions

(foam bonded to the wall).

FIG. 11. (Color online) Model of bi-dimensional car interior cavity with the

PUFEM mesh. FIG. 12. (Color online) Sound pressure level (in dB) in the car at 5000Hz.
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PUFEM convergence was reached using C¼ 20 and the

computation of the element matrices was performed using

40 integration points per wavelength. The total number of

degrees of freedom including the Lagrange multipliers is

27 988. A similar calculation using standard quadratic finite

elements would require about 150 000 variables to achieve

the same accuracy. This rough estimation is based on previ-

ous studies led by the authors.36

V. CONCLUSIONS

This paper has demonstrated the applicability of the

PUFEM for the numerical simulation of elastic and pressure

waves in poroelastic media. The main ingredient of the

method relies on the enrichment of the conventional finite

element approximation by including a set of plane waves

propagating in various directions. The performances of the

method, measured in terms of data reduction, are assessed

for an artificial problem for which analytical solutions are

available. It is shown that the PUFEM allows a substantial

reduction of the number of degrees of freedom compared to

the standard FEM and that best performances are obtained

when the element size contains a minimum of three to five

wavelengths (here the shortest wavelength is considered). To

show the interest of the method for tackling problems of

practical interests the PUFEM is extended to the analysis of

poroelastic-acoustic problems in Sec. IV. Coupling condi-

tions at the air-porous interface as well as fixed or sliding

edge conditions are presented and numerically tested. It is

shown that the technique is a good candidate for solving

noise control problems at medium and high frequency.

Finally, it is hoped that this work could serve as a starting

point for the analysis of tri-dimensional short wave problems

involving poroelastic materials with potential applications,

not only in acoustics, but also in geophysics, ultrasonic, and

seismic modeling. In this regard, the reader may find inter-

esting references in this topic in a recent review.46

APPENDIX: SOLUTION OF THE STANDING WAVE
TUBE

Here are presented the guidelines for the one-

dimensional solution of the standing wave tube described in

Sec. IV. For a brief nomenclature, the indices i¼ I, II, III is

associated with the three regions x 2 0 ; L=3½ �,
x 2 L=3; 2L=3½ �, and x 2 2L=3 ; L½ �. In the air domain (i.e.,

i¼ I and III), the acoustic displacement potential ui
0 can be

written as the sum of two traveling plane waves,

ui
0 ¼ A

i;þ
0 eikax þ A

i;�
0 e�ikax: (A1)

The acoustic pressure and the horizontal displacement in

each region is obtained from pia ¼ x2qau0 and wi
x ¼ @xu0.

In the poroelastic domain, there is no shear component and

the displacements are horizontal only. By using the

Helmholtz decomposition, we have2

ux ¼ @xu
II
1 þ @xu

II
2 ; (A2)

Ux ¼ l1@xu
II
1 þ l2@xu

II
2 ; (A3)

where l1 and l2 are the wave amplitude ratios between the

two phases in the porous material.2 Here, each potential

(a¼ 1, 2) has the form

uII
a ¼ AII;þ

a eikax þ AII;�
a e�ikax: (A4)

The normal total stress is obtained thanks to Eq. (4),

rxx ¼ �uII
1 k

2
1½ðP þ QÞ þ l1ðR þ QÞ�

� uII
2 k

2
2½ðP þ QÞ þ l2ðR þ QÞ�; (A5)

and similarly, using Eq. (34),

pp ¼
1

/
½ðQ þ l1RÞuII

1 k
2
1 þ ðQ þ l2RÞuII

2 k
2
2�: (A6)

Once the acoustic velocity is prescribed at x¼ 0, the cou-

pling conditions (5), (6), and (7) at the air-porous interface at

x1¼L/3 and x2¼ L/3 as well as the wall boundary condition

at x¼ L yield a matrix system for the 8 unknown plane

waves amplitudes Ai;6
a .
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