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A first general principle and nowadays state of the art for the construction
of powerful multiple test procedures controlling a multiple level α is the
so-called closure principle. In this article we introduce another powerful
tool for the construction of multiple decision procedures, especially for the
construction of multiple test procedures and selection procedures. This tool
is based on a partition of the parameter space and will be called partitioning
principle (PP). In the first part of the paper we review basic concepts of
multiple hypotheses testing and discuss a slight generalization of the current
theory. In the second part we present various variants of the PP for the
construction of multiple test procedures, these are a general PP (GPP), a weak
PP (WPP) and a strong PP (SPP). It will be shown that, depending on the
underlying decision problem, a PP may lead to more powerful test procedures
than a formal application of the closure principle (FCP). Moreover, the more
complex SPP may be more powerful than the WPP. Based on a duality
between testing and selecting PPs can also be applied for the construction
of more powerful selection procedures. In the third part of the paper FCP,
WPP and SPP are applied and compared in some examples.

1. Introduction. A variety of multiple decision procedures has been proposed
and examined over the past approximately fifty years. Besides selection and
ranking approaches a convenient method to translate several questions concerning
a statistical experiment into a tractable form is the formulation of a multiple
hypotheses testing problem. Within this approach the most common requirement is
the control of what we call the multiple level α, commonly known in the literature
as strong control of the family-wise error rate at α, that is, the probability of any
false rejection of a true (null) hypothesis should be bounded by a prespecified
significance level α. This requirement causes serious problems in finding good
and powerful multiple test procedures.

A helpful tool for the construction of multiple level-α tests is the so-called
closure principle (CP for short). It was stated explicitly for the first time in Marcus,
Peritz and Gabriel (1976) but had been in the air for a long time previously.
Similar ideas closely related to the CP can be found, for example, in Fisher
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(1935), Newman (1939), Keuls (1952), Tukey (1953), Hartley (1955), Miller
(1966, 1981) and Naik (1975, 1977). A first more formal investigation of the
CP is given in Sonnemann (1982). Application of the CP leads to the class of
closed or stepwise test procedures. Although the CP is a very powerful method
for constructing new and improving existing multiple test procedures, it generates
a bunch of new questions and problems as, for example, the complexity of the
resulting test procedures, the problem of directional errors in two-sided testing
situations, problems in finding useful confidence sets being compatible with the
results of the test procedure, or, difficulties in proving that the critical values of
a stepwise procedure satisfy desirable monotonicity properties. Further and in
general difficult problems are the comparison of different multiple test procedures
and the related questions concerning admissibility.

Stefansson, Kim and Hsu (1988) first investigated methods based on partitioning
the parameter space to derive confidence sets being compatible with the results of
stepwise or closed multiple test procedures in specific situations; compare also
Hayter and Hsu (1994) and the textbook of Hsu (1996). In Finner and Giani (1994,
1996) it is shown that the closure principle can also be applied for the construction
of selection procedures. They developed a general duality between selection and
multiple testing problems.

A question near at hand is whether the CP is the most powerful principle for the
construction of a multiple test procedure for a prespecified family of hypotheses.
The goal of this paper is to show that suitable modifications of the closure principle
may lead to considerably more powerful decision procedures.

The paper is organized as follows. In Section 2 we first introduce some
notation and basic definitions. Then we briefly discuss and review coherence,
closure principle and interpretation of multiple decisions and the relationship to
confidence sets. The closure principle is stated as Theorem 2.1, and Theorem 2.2
shows that only coherent tests should be considered. Moreover, we introduce
strongly coherent multiple tests, which leads to a slight improvement of the CP
(cf. Theorem 2.3) as outlined in Finner (1994a).

In Section 3 we first formulate a general partitioning principle (GPP) in
Theorem 3.1 which is based on a suitable partition of the underlying family of
hypotheses.

It will be seen in Lemma 3.1 that any family of hypotheses generates a natural
partition of the parameter space. The relationship between a family of hypotheses
being closed under intersections and the natural partition will be summarized in
Remark 3.1.

Next we specify what we mean by a formal application of the closure principle
(FCP).

Then we consider two variants of the GPP designed for application in practice;
these are a weak partitioning principle (WPP) stated as Theorem 3.2 and a strong
partitioning principle (SPP) stated as Theorem 3.3. Moreover, a first comparison
of WPP, SPP and FCP is given. It will be shown that the WPP-related tests may
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be more powerful as FCP-related tests and that SPP-related tests may be more
powerful than WPP-related tests. While Stefansson, Kim and Hsu (1988) used
a partitioning principle to complement FCP-related multiple tests with confidence
sets, the WPP and SPP, respectively, are designed to produce possibly more (and
never less) powerful tests than FCP-related tests.

In Section 4 we apply and compare FCP, WPP and SPP in some selected
examples. Some concluding remarks are given in Section 5.

2. Closure principle, coherence and strong coherence. We first introduce
some notation. Let P = {Pϑ :ϑ ∈�} be a family of probability measures defined
on a common sample space (X,B) where B denotes a suitable σ -field over X
and � is a parameter space with |�| ≥ 2 (|A| denotes the cardinality of a set A).
Let H = {Hi : i ∈ I } be a family of (null) hypotheses with ∅ �=Hi ⊂�, Hi �=Hj
for i �= j, i, j ∈ I , where I is any index set which may be finite or infinite (the
notation A ⊂ B will be used if A ⊆ B and A �= B). The alternative hypotheses
are defined by Ki = � \ Hi . If all hypotheses in H = {Hi : i ∈ I } are pairwise
disjoint, then H will be called disjoint. For convenience, the union of disjoint
sets or hypotheses Hj , j ∈ J , will be denoted by

∑
j∈J Hj . In the case that there

exists at least one implication relation in H , that is, Hi ⊂ Hj for some i, j ∈ I ,
then various authors call H hierarchical (and nonhierarchical if there exists no
such implication relation). Furthermore, H is said to be closed under (arbitrary)
intersections (short: ∩-closed), if for all ∅ �= J ⊆ I either

⋂
j∈J Hj ∈ H or⋂

j∈J Hj =∅. If HI =⋂
i∈I Hi ∈H , then HI is usually referred to as the global

hypothesis.
Misleading is the definition of minimal and nonminimal hypotheses introduced

by Gabriel (1969). He called a hypothesis Hi ∈H minimal in H , if there exists
no Hj ∈ H with Hj ⊃ Hi . With respect to the natural order induced by the
implication relation we reverse this definition. A hypothesis Hi ∈ H will be
called minimal (maximal ), if there exists no Hj ∈H with Hj ⊂ Hi (Hj ⊃ Hi ).
Sonnemann (1982) used the term elementary hypothesis for a maximal hypothesis.
Often (but not always) the set of elementary or maximal hypotheses can be viewed
as the hypotheses of main interest. If ϑ ∈� is the “true” parameter, then Hi is
said to be true if ϑ ∈Hi . The index set I (ϑ)= {i ∈ I :Hi  ϑ} will denote the set
of all indices of true null hypotheses if ϑ is the true parameter. For convenience,
throughout the paper we restrict attention to nonrandomized multiple tests, that is,
the components of a multiple test ψ = (ψi : i ∈ I ) (say) take only values in {0,1}
with the usual interpretation.

A multiple testψ = (ψi : i ∈ I ) is said to control the multiple level α (α ∈ [0,1])
if

∀ϑ ∈� :Pϑ

( ⋃
i∈I (ϑ)

{ψi = 1}
)
≤ α,(2.1)

where the convention
⋃
i∈∅Ai =∅ is used. The set of all multiple tests ψ for H

satisfying (2.1) and some suitable measurability conditions is denoted by �α(H).
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It has been shown in Sonnemann (1982) that condition (2.1) is equivalent to

∀∅ �= J ⊆ I :∀ϑ ∈HJ =
⋂
j∈J

Hj :Pϑ

( ⋃
j∈J
{ψj = 1}

)
≤ α.(2.2)

Sometimes the notion of local level-α tests is useful. A multiple test ψ =
(ψi : i ∈ I ) is said to control the local level α (α ∈ [0,1]) if ψi ∈ �α({Hi}) for
all i ∈ I . The set of all local level-α (multiple) tests for H is denoted by �loc

α (H).
If H is disjoint, then �α(H)=�loc

α (H).
Several concepts to avoid contradictory results of multiple tests have been

discussed in the literature; cf., for example, Lehmann (1957a, b) and Gabriel
(1969). The following definition is due to Gabriel (1969).

A multiple test ψ = (ψi : i ∈ I ) ∈�α(H) is said to be:
(a) coherent, if

∀ i, j ∈ I : [Hi ⊂Hj �⇒ψi ≥ψj ],
(b) consonant, if

∀ i ∈ I :∀x ∈X :
[
ψi(x)= 1 and ∃Hj ⊃Hi �⇒ max

r :Hr⊃Hi
ψr(x)= 1

]
.

Conceptually, coherence is one of the most important terms in the theory of
multiple hypotheses testing. If Hi ⊂Hj and Hj is rejected, it is more than logical
thatHi should be rejected. A more formal reason for the requirement of coherence
will be given below.

Comparisons of multiple tests are in general extremely difficult. However, it is
often useful and possible to compare multiple tests pointwise and simultaneously
in all components. To this end let ψ1,ψ2 ∈�α(H). Then ψ1 is said to be:

(a) not less than ψ2 (short: ψ1 ≥ψ2 or ψ2 ≤ψ1), if ∀ i ∈ I :∀x ∈X :ψ1
i (x)≥

ψ2
i (x),
(b) greater than ψ2 (short: ψ1 >ψ2 or ψ2 <ψ1), if ψ1 ≥ψ2 and ∃ i ∈ I :∃x ∈

X :ψ1
i (x) > ψ

2
i (x).

In this context terms like not worse than or better than are avoided because the
previous definition does not distinguish whether a hypothesis is true or false. If
ψ1,ψ2 ∈�α(H) and ψ1 <ψ2, then ψ1 is often referred to as a conservative test
procedure.

The closure principle can be formally stated as follows.

THEOREM 2.1 (Closure principle). Let H be ∩-closed, ψ ∈ �loc
α (H), and

define

∀ i ∈ I :ψi = min
j :Hj⊆Hi

ψj .(2.3)

Then ψ = (ψi : i ∈ I ) ∈�α(H), and ψ ′ = (ψi : i ∈ I ′) ∈�α({Hi : i ∈ I ′}) for all
∅ �= I ′ ⊂ I . Furthermore, ψ and ψ ′ are coherent.
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It should be mentioned that if H is ∩-closed and if ψ ∈�loc
α (H) is coherent,

then ψ = ψ ∈ �α(H), where ψ is defined by (2.3) [cf. Sonnemann (1982)].
Hence, any coherent multiple test ψ ∈ �α(H) may be called a closed test or
a closed multiple test procedure for �α(H). Theorem 2.1 shows that it is no
restriction to consider a ∩-closed family H generated by a given family H =
{Hi : i ∈ I } by setting H = {H ⊂� :∃J ⊆ I :HJ =H �=∅}, where HJ is defined
as in (2.2). Subsequently, H will be called the closure of H . If ψ ∈�α(H) and
one is only interested in a subfamily H ′ ⊂H (e.g., the subfamily of all maximal
hypotheses), the corresponding components of ψ yield a multiple level-α test ψ ′
for H ′. In most multiple hypotheses testing problems it is not difficult to construct
a ψ ∈�loc

α (H). The main practical difficulty will be the determination of ψ for H
defined in (2.3) or a subtest ψ ′ of ψ for a subfamily H ′ ⊂H , depending on the
size of H and the complexity of implication relations between the elements of H .

The levels of the components of the local level-α test are often called nominal
levels, while the level of a component of ψ , that is,

αi = sup
ϑ∈Hi

Pϑ(ψi = 1),

is sometimes called true level of ψi [cf., e.g., Hochberg and Tamhane (1987),
page 67]. It is apparent that not the local levels but the true levels are the more
interesting characteristic of a multiple test procedure (which may be closed or
not). Notice that the acceptance region of ψi is given by

{ψi = 0} = ⋃
j :Hj⊆Hi

{ψj = 0},

and this region may be very “large” compared with the acceptance regions
{ψi = 0} of the corresponding local level-α test ψi . In view of this fact it is obvious
that a schematic application of the closure principle may lead to unnecessary
conservative test procedures. On the other hand, this observation offers a chance
to improve the closure principle.

We proceed with a result derived in Sonnemann and Finner (1988) which shows
that there is no reason to use noncoherent multiple tests.

THEOREM 2.2. Let ψ ∈�α(H) and let ψ = (ψ
i
: i ∈ I ) with ψ

i
=

maxj :Hj⊇Hi ψj , i ∈ I . Then ψ has the following properties:
(a) ψ ∈�α(H),
(b) ψ is coherent,
(c) ψ ≥ψ .

In other words, a noncoherent multiple level-α test can be replaced by a coherent
multiple level-α test which is not less than the original test—and this can be done
without additional costs, that is, without exceeding the multiple level α. Therefore,
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coherence is not only a natural but also a minimal requirement for multiple tests.
Streitberg and Röhmel (1988) proposed to call ψ defined in Theorem 2.2 the co-
closure of ψ .

Which decision can be concluded from a multiple level-α test ψ ∈ �α(H)?
From a decision theoretic point of view a rejected null hypothesisHi is commonly
interpreted as a decision for the alternativeKi =�\Hi . IfHi is accepted, it is best
to conclude nothing, that is, the decision for�; cf., for example, Lehmann (1957b).
In a multiple hypotheses testing situation there are mainly two possibilities for
interpretation of the results. First, each componentψi ofψ = (ψi : i ∈ I ) ∈�α(H)
may be considered separately in the aforementioned sense. In many cases this
approach results in a bunch of inconsistent and contradictory decisions; cf., for
example, Lehmann (1957a, b) or Sonnemann (1982). The second possibility is to
summarize all partial decisions into a joint decision. For notational convenience
we define the (random) sets

Hψ(x) =
⋃

j : ψj (x)=1

Hj and Kψ(x) =� \Hψ(x), x ∈X.

The set Hψ(x) can be interpreted as the set of all ϑ’s rejected by one of the
components of ψ given x ∈X. Hence, the joint decision induced by ψ should
be Kψ(x) =⋂

j : ψj (x)=1Kj , which is in line with Lehmann (1957b). It seems to
the authors that this point of view is very helpful in understanding the nature of
multiple hypotheses testing and the relationship to other decision procedures as,
for instance, the confidence set approach. We note that C = (C(x) :x ∈X) with
C(x)=Kψ(x) defines a (1− α) confidence set for ϑ ∈� [Finner (1994a)].

It suggests itself that a null hypothesis Hi with Hi ⊆ Hψ(x) should be
rejected. It has been shown in Finner (1994a) that this requirement yields a
natural generalization of the coherence principle and finally a generalization of
Theorem 2.2. In Finner (1994a) a multiple test ψ ∈�α(H) is said to be strongly
coherent if

∀x ∈X :∀ i ∈ I : [Hi ⊆Hψ(x) �⇒ψi(x)= 1].(2.4)

Equivalently, a multiple test ψ ∈�α(H) is strongly coherent iff

ψi = min
ϑ∈Hi

max
j∈I (ϑ)ψj for all i ∈ I.

We conclude this section with the announced generalization of Theorem 2.2 for
strongly coherent multiple tests.

THEOREM 2.3 [Strong closure principle, Finner (1994a)]. Let ψ ∈�α(H)
and let ψ = (ψi : i ∈ I ) with

ψi = min
ϑ∈Hi

max
j∈I (ϑ)ψj for all i ∈ I.(2.5)

Then ψ has the following properties:
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(a) ψ ∈�α(H),
(b) ψ is strongly coherent,
(c) ψ ≥ψ ,
(d)

⋃
i∈I (ϑ){ψi = 1} =⋃

i∈I (ϑ){ψi = 1},
(e) Hψ(x) =Hψ(x) for all x ∈X.

3. The partitioning principle. It is well known and mentioned in Section 2
that in the case of a disjoint family of hypotheses H a local level-α test is a multiple
level-α test, that is, �α(H) =�loc

α (H). This fact is the basis for the partitioning
principle which can be stated in several variants. The main idea is to partition
the union of all hypotheses under consideration into disjoint sets�i ⊂� such that
each hypothesis can be written as the sum (i.e., disjoint union) of some of the�i ’s.
Then we construct level-α tests for all �i , i ∈ I , which are then used to construct
a multiple level-α test for the hypotheses of interest. As we will see, this can be
done in various ways. We start with the following theorem the proof of which is
trivial.

THEOREM 3.1 [General partitioning principle (GPP for short)]. Let H =
{Hi : i ∈ I } be a family of hypotheses and let �J = {�j : j ∈ J } denote a partition
of �′ ⊇⋃

i∈I Hi with a suitable index set J and �′ ⊆� such that

∀ j ∈ J :�j �=∅ and ∀ i ∈ I :∃J (i)⊆ J :Hi =
∑
j∈J (i)

�j .

Moreover, let ϕ = (ϕj : j ∈ J ) ∈�loc
α (�J ) and define ψ = (ψi : i ∈ I ) by

ψi = min
j∈J (i) ϕj ∀ i ∈ I.

Then ψ ∈�α(H) and ψ is strongly coherent.
Finally, for the joint decisions induced by ψ and ϕ we have

Kψ(x) =
( ⋃
i∈I :ψi(x)=1

Hi

)c
⊇
( ∑
j∈J : ϕj (x)=1

�j

)c
=Kϕ(x).

Note that ϕ may yield a more precise decisionKϕ(x) than ψ . The finest partition
is�� = {{ϑ} :ϑ ∈�}. The approach to construct a multiple level-α test for a given
family of hypotheses H = {Hi : i ∈ I } via level-α tests for each hypothesis Hϑ =
{ϑ} is due to the pioneering work of Stefansson, Kim and Hsu (1988). Their aim
was the construction of confidence sets being compatible with stepwise or closed
multiple tests which is a serious issue and has been believed to be impossible
for a long time. However, this approach has its difficulties, too. It is often not
easy to find tests for each ϑ which yield a useful joint decision containing more
desirable information than the multiple test itself. Moreover, converting the results
of unconventional level-α tests ϕϑ for testing Hϑ = {ϑ} versus Kϑ = � \ {ϑ},
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ϑ ∈ �, into a confidence set and into results for all hypotheses can be a hard
job. Examples where this method works well can be found, for example, in Miwa
and Hayter (1999) and Hayter, Miwa and Liu (2000). However, the advantage
of formulating and testing a bunch of (composite) hypotheses instead of testing
each ϑ is that they provide us with an idea in which direction the tests should be
powerful.

In what follows we restrict attention to the case where we are mainly interested
in the testing results for the hypotheses of interest. However, Theorem 3.1 tells
us that we can test some disjoint sets outside

⋃
i∈I Hi all at level α without any

additional costs. For example, an additional level-α test for (
⋃
i∈I Hi)c versus⋃

i∈I Hi may result in rejection which then indicates that at least one of the
hypotheses Hi, i ∈ I , may be true. Hence, the saying “the more questions
(hypotheses), the more you have to pay (α, power)” is not always true.

The following lemma shows that any family of hypotheses H = {Hi : i ∈ I } can
be used to generate a natural partition of

⋃
i∈I Hi .

LEMMA 3.1. Let�J = {ϑ ∈� : I (ϑ)= J }, ∅ �= J ⊆ I , and J = {∅ �= J ⊆ I :
�J �=∅}. Then

�J = {�J :J ∈ J}
is a partition of

⋃
i∈I Hi and Hi = ∑

J∈J : Ji �J for all i ∈ I . Moreover, the
∩-closed family of hypotheses induced by H generates the same partition as H
and for an intersection hypothesisHJ =⋂

j∈J Hj �=∅ it is HJ =∑
R∈J : R⊇J �R .

The number of elements of the natural partition may be much smaller than the
number of elements of the underlying ∩-closed family of hypotheses. For example,
consider the one-sided pair hypotheses Hij :ϑi − ϑj ≤ δ for 1 ≤ i, j ≤ 3, i �= j ,
δ > 0 fixed. Then the induced ∩-closed family has 63 elements while the natural
partition has only 19 elements.

REMARK 3.1. (a) The natural partition �J is the coarsest possible partition
among all partitions of

⋃
i∈I Hi with the property that each Hi can be represented

as a disjoint union of sets of the underlying partition.
(b) Suppose that H = {Hi : i ∈ I } is ∩-closed. Let �i =Hi ∩ (⋃j :Hj⊂Hi Hj)

c

for i ∈ I and let Jp = {i ∈ I :�i �=∅}. Then the natural partition generated by H
is given by

�(Jp)= {�i : i ∈ Jp},
that is, �(Jp)=�J . If Jp = I , then each hypothesisHi can be identified with �i
and vice versa. In general I �= Jp .

(c) The (partial) order on H defined by the implication relation ⊆ between
elements of H can be utilized to define a (natural) order (denoted by →) on the
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natural partition generated by H . Without loss of generality, let H be ∩-closed.
Then the (natural) (partial) order on �Jp is defined by

∀ i, j ∈ Jp : [Hj ⊆Hi �⇒�j →�i].
Note that �i→�i for all i ∈ Jp . Keeping this in mind we get

∀ i ∈ Jp :Hi =
∑

j∈Jp :�j→�i
�j .

(d) Two families of hypotheses H1,H2 may lead to the same (natural) partition
�J (say) but the order on �J generated by H1 may differ from the order on �J

generated by H2.
(e) It is consistent with the coherence requirement of a multiple test for a

∩-closed family H and often useful to require that ϕ = (ϕi : i ∈ Jp) ∈�loc
α (�(Jp))

should satisfy the consistency (coherence) condition

∀ i, j ∈ Jp : [�i→�j �⇒ ϕi ≥ ϕj ].(3.1)

Note that ψ = (ψi : i ∈ Jp) with ψi = minj∈Jp :�j→�i ϕj for all i ∈ Jp satis-
fies (3.1).

When we are faced with the problem of constructing a level-α test ϕ (say) for
a (composite) hypothesis H (say) with |H | > 1, in general we try to find a least
favorable parameter configuration (LFC) ϑ∗ (say) such that α∗ = Pϑ∗(ϕ = 1) =
supϑ∈H Pϑ(ϕ = 1) becomes as large as possible with the restriction α∗ ≤ α. It is
often possible (depending on assumptions concerning the underlying distributions)
to reduce the number of LFC-candidates to a finite number. In multiple testing
problems with a large number of composite hypotheses LFC-problems occur
repeatedly. It will be shown that the partitioning principle compared to a
formal application of the closure principle has some advantages concerning the
determination of LFCs and may result in more powerful testing procedures.

In the following we formulate two variants of the partitioning principle designed
for the construction of multiple level-α tests. Both principles will be based on the
natural partition generated by a ∩-closed family of hypotheses. However, we first
recall the situation when the closure principle is applied in a more or less formal
and schematic way. We refer to this method as formal closure principle (FCP).

(A) The formal closure principle (FCP). The first step is to construct a local
level-α test for a ∩-closed family of hypotheses H = {Hi : i ∈ I }. The easiest
way to do this is to choose a powerful level-α test ϕi for Hi for each i ∈ I
independently of each other. Loosely speaking, it is not required that a test ϕi
takes into account the structure of other tests ϕj , j �= i. In general, we choose the
ϕi ’s without further restrictions except that they should be as powerful as possible
for the corresponding testing problem Hi versus Ki such that

α∗i = sup
ϑ∈Hi

Pϑ(ϕi = 1)
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is as large as possible with the restriction α∗i ≤ α for all i ∈ I . Note that we have
to look for LFCs over Hi for all i ∈ I . Consider now the resulting closed test
ψ = (ψi : i ∈ I ) with ψi =minj :Hj⊆Hi ϕj , i ∈ I . As mentioned in Section 2, the
true local levels αi = supϑ∈Hi Pϑ(ψi = 1) of ψ may be much smaller than the α∗i ’s
so that the closed test procedure may be unnecessarily conservative. However, the
advantage of applying the FCP is that it is mostly much easier to choose the local
level-α tests ϕj independently of each other than to choose a multiple level-α test
ψ = (ψi : i ∈ I ) such that ψi = minj :Hj⊆Hi ψj and αi = supϑ∈Hi Pϑ(ψi = 1) is
as large as possible but less than or equal to α for all i ∈ I .

(B) The weak partitioning principle (WPP). Next we show that a mixture of
partitioning principle and formal closure principle, respectively, may improve a
test procedure derived by the FCP. The following theorem based on the natural
partition generated by a ∩-closed family of hypotheses is a direct consequence of
the GPP described in Theorem 3.1.

THEOREM 3.2 (Weak partitioning principle). Let H = {Hi : i ∈ I } be
∩-closed and let �(Jp) = {�i : i ∈ Jp} denote the natural partition generated
by H [as described in Remark 3.1(b)]. For each i ∈ Jp choose tests ϕi for testing
Hi versusKi such that

sup
ϑ∈�i

Pϑ(ϕi = 1)≤ α,

that is, ϕ = (ϕi : i ∈ Jp) ∈�loc
α (�(Jp)). Define ψ = (ψi : i ∈ I ) by

ψi = min
j∈Jp :�j⊆Hi

ϕj ∀ i ∈ I.
Then ψ ∈�α(H) and ψ is strongly coherent.

In contrast to the FCP we now choose in a first step level-α tests ϕi for testing
Hi versus Ki for i ∈ Jp (i.e., I is replaced by Jp ⊆ I ) such that type I errors
are only controlled over �i ⊆Hi , that is, we now have to look for LFCs over �i
instead of Hi as one would do when applying the FCP. As a result this may lead to
a test with a smaller acceptance region, hence a more powerful test for Hi versus
Ki which is now defined by ψi =minj∈Jp :�j⊆Hi ϕj .

Whether the WPP indeed yields a more powerful test procedure than the FCP
heavily depends on the structure of H and the structure of the acceptance regions.
Often tests are of the type {ϕi = 0} = {Ti ≤ ci}, where Ti denotes a suitable test
statistic. Assume for a moment that Ti tends to larger values if ϑ moves away
from Hi . Then in the case of the FCP ci = ci(FCP) (say) is determined such
that αi = supϑ∈Hi Pϑ(Ti > ci) is as large as possible but less than or equal to α
while in the case of the WPP ci = ci(WPP) (say) is determined such that αi =
supϑ∈�i Pϑ(Ti > ci) is as large as possible but less than or equal to α (assuming
that �i �=∅). Clearly, if the LFCs are different and ci(WPP) < ci(FCP), the WPP
yields a more powerful test than the FCP.
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(C) The strong partitioning principle (SPP). A more advanced and sometimes
more powerful method than FCP and WPP, respectively, is what we call the strong
partitioning principle (SPP).

THEOREM 3.3 (Strong partitioning principle). Under the assumptions of
Theorem 3.2 choose tests ϕi for testing Hi (or �i ) versus Ki for each i ∈ Jp
such that

∀ i ∈ Jp :ϕi = min
j∈Jp :�j⊆Hi

ϕj(3.2)

and

∀ i ∈ Jp : sup
ϑ∈�i

Pϑ(ϕi = 1)≤ α.

Moreover, set ϕi = minj∈Jp :�j⊆Hi ϕj for i ∈ I \ Jp . Then ϕ = (ϕi : i ∈ I ) ∈
�α(H) and ϕ is strongly coherent.

The difference between SPP and WPP is the additional requirement (3.2) for
the (local) level-α tests ϕi for Hi (or �i ) versus Ki , i ∈ Jp , which ensures the
consistency condition (3.1). Once all ϕi , i ∈ Jp , are constructed, the remaining
tests for those Hi with i ∈ I \ Jp are defined as in the case of the WPP.

Suppose we have the same testing problem with underlying test statistics Ti as
described in connection with the WPP. Let i ∈ Jp and suppose we already have
tests ϕj [and critical values cj = cj (SPP) (say)] for all �j →�i , �j �=�i , such
that {ϕj = 0} = ⋃

r∈Jp :�r⊆Hj {Tr ≤ cr} and supϑ∈�j Pϑ(ϕj = 1) ≤ α. Then we
choose a critical value ci = ci(SPP) as small as possible (which may be difficult)
such that

sup
ϑ∈�i

Pϑ

( ⋂
j :�j⊆Hi

{Tj > cj }
)
≤ α.

Choosing all critical values in this way results in ci(SPP)≤ ci(WPP) for all i ∈ Jp ,
but there may be some strict inequalities. In the latter case the SPP yields a more
powerful test procedure than the WPP.

To sum up, we now have three tools to construct a multiple level-α test,
the FCP, the WPP and the SPP. Whether the WPP (SPP) leads to an improved
multiple decision procedure compared with a FCP-related (WPP-related) decision
procedure heavily depends on the underlying decision problem. Roughly speaking,
in situations with many composite hypotheses (e.g., for Hij :ϑi − ϑj ≤ δ,
1 ≤ i, j ≤ k, i �= j ) there is often a good chance to improve FCP-related
procedures while in cases where only point hypotheses (e.g., Hij : |ϑi − ϑj | = 0,
1 ≤ i < j ≤ k) are considered a (meaningful) improvement of FCP-related
procedures is often impossible.
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A serious issue is optimality and admissibility of multiple decision procedures.
For example, one may ask whether a consequent application of the SPP yields
an admissible multiple test procedure which cannot be improved further. Clearly,
there cannot be a general answer to this question. However, sometimes it is
possible to show that a SPP-related multiple test ψ ∈�α(H) (say) satisfies

∀ψ ′ ∈�α(H) : [ψ ′ ≥ψ �⇒ψ ′ =ψ almost everywhere]
which means admissibility of ψ in a weak sense. This may happen especially if
all LFCs used for the determination of critical values are finite. But often some
of the components of an LFC are ±∞ which causes serious problems in proving
admissibility. A further discussion of this issue goes beyond the scope of this paper
and is directed to future research.

4. Application and comparison of FCP, WPP and SPP: examples. In this
section we apply the FCP, WPP and SPP, respectively, in multiple hypotheses
testing problems and a subset selection problem. For convenience we consider
a simple k-sample normal model, that is, let X = (X1, . . . ,Xk) denote a vector
of independent random normal variables with mean vector ϑ = (ϑ1, . . . , ϑk) ∈
� = R

k and common known variance σ 2 = 1. Moreover, let In = {1, . . . , n} for
n ∈N and let α ∈ (0,1). We start with an illustrative example with 2 hypotheses.

EXAMPLE 4.1. Assume k = 2 for the moment and suppose the hypothe-
ses of interest are H1 : max{ϑ1, ϑ2} ≤ δ and H2 : min{ϑ1, ϑ2} ≥ −δ for some
fixed δ > 0, that is, H = {H1,H2}. Then H12 : max{|ϑ1|, |ϑ2|} ≤ δ is the in-
tersection of H1 and H2, hence H = {H1,H2,H12}. Let cFCP

1 be the solu-
tion of infϑ∈H1 Pϑ(max{X1,X2} ≤ c) = P(δ,δ)(max{X1,X2} ≤ c) = 1 − α, that
is, cFCP

1 = δ + �−1(
√

1− α) = δ + u√1−α , and let cFCP
2 be the solution of

infϑ∈H12 Pϑ(max{|X1|, |X2|} ≤ c)= P(δ,δ)(max{|X1|, |X2|} ≤ c)= 1− α, that is,
cFCP

2 is the solution of the equation �(c − δ) − �(−c − δ) = √1− α. Hence,
the definition of a level-α test for every hypothesis in H is obvious. Appli-
cation of the FCP leads to the following (step-down) procedure: reject H12 if
max{|X1|, |X2|}> cFCP

2 , reject H1 (H2) if H12 is rejected and max{X1,X2} ≥ cFCP
1

(min{X1,X2} ≤ −cFCP
1 ).

Next we apply the WPP. The natural partition induced by H is given by
�12 = H12, �i = Hi \�12, i = 1,2. This yields an improved critical value cWPP

1
(say) instead of cFCP

1 . Now we have to solve infϑ∈�1 Pϑ(max{X1,X2} ≤ c)= 1−α.
A little reflection yields as LFC for this problem ϑ = (δ,−δ) [or ϑ = (−δ, δ)], that
is, cWPP

1 can be obtained as the solution of the equation �(c− δ)�(c+ δ)= 1− α.
Hence, the WPP leads to the same procedure as before but now with critical values
cFCP

2 , cWPP
1 ,−cWPP

1 with cWPP
1 < cFCP

1 .
Application of the SPP yields a further improvement. Now the structure of the

local level-α tests for Hi , i = 1,2, will change. We determine a suitable critical
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FIG. 1. Values of cFCP
2 − δ, cFCP

1 − δ, cWPP
1 − δ, cSPP

1 − δ in Example 4.1 for α = 0.05 as functions
of δ.

value cSPP
1 such that

inf
ϑ∈�1

Pϑ
({

max{|X1|, |X2|} ≤ cFCP
2
}∪ {max{X1,X2} ≤ cSPP

1
})= 1− α.

Although the determination of a LFC for this problem is less trivial than before,
it can be shown that ϑ = (δ,−∞) [or ϑ = (−∞, δ)] does the job, that is,
cSPP

1 = δ+�−1(1−α). Replacing cWPP
1 by cSPP

1 yields the announced improvement.
Figure 1 illustrates the improvement of SPP over WPP and WPP over FCP for

α = 0.05 and 0 ≤ δ ≤ 1. Finally we note that it is possible to add the hypotheses
H3 : max{ϑ1,−ϑ2} < −δ and/or H4 : min{ϑ1,−ϑ2} > δ to, for example, H
without any additional costs, that is, one may test H3 and H4 each at full level α.
For example, one may reject H3 if max{X1,−X2}> c3 = cFCP

1 − 2δ.

The second example is devoted to the directional error problem in multiple
hypotheses testing.

EXAMPLE 4.2. Let α ∈ (0,1/2) for the moment and consider the family of
hypotheses denoted by H containing H2i−1 :ϑi ≥ −δ, H2i :ϑi ≤ δ, i ∈ Ik . The
∩-closed family of hypotheses H = {HJ =⋂

j∈J Hj : ∅ �= J ⊆ I2k} generated by
H has 22k − 1 elements. The natural partition �J induced by H has 3k elements.
First note that HJ \⋂R : J⊂R HR =∅ if there exists an i ∈ Ik such that both 2i− 1
and 2i are elements of J . Therefore,

�J = {
$1 × · · · × $k :$i ∈ {(−∞,−δ), [−δ, δ], (δ,∞)} for all i ∈ Ik}.
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A natural test statistic for testing a hypothesis HJ ∈ H is maxj∈J Tj where
T2j−1 = −Xj and T2j =Xj , 1 ≤ j ≤ k. Application of the FCP requires level-α
tests ϕJ for each HJ ∈H . Therefore, we define critical values cJ by

inf
ϑ∈HJ

Pϑ
(
TJ (X)≤ cJ )= 1− α, ∅ �= J ⊆ I2k.(4.1)

Since only one of the two hypotheses H2i−1, H2i (1≤ i ≤ k) can be rejected, we
can restrict attention to index sets J ∈M, where

M = {|J ∩ {2i − 1,2i}| �= 0 for all 1≤ i ≤ k and

|J ∩ {2i − 1,2i}| = 2| for at least one i
}
,

that is, a hypothesis Hi is rejected if and only if HJ ⊆ Hi is rejected at level
α for all J ∈M. It turns out that the corresponding critical values depend only
on |J |. Without loss of generality, we can restrict attention to J ’s of the type
J = I2r ∪{2r+2,2r+4, . . . ,2k}. For |J | = k+ r the corresponding critical value
will be denoted by cFCP

r . It can easily be shown that a LFC under HJ is given by
ϑ = (δ, . . . , δ). Hence, the corresponding critical value cFCP

r is the solution of the
equation

[�(c− δ)−�(−c− δ)]r�(c− δ)k−r = 1− α.
The critical values obviously satisfy cFCP

k > · · ·> cFCP
1 . The resulting test procedure

may be reformulated as a (short-cut) step-down procedure with directional
decisions. Suppose w.l.o.g. that the realizations of X1, . . . ,Xk satisfy |xk|> · · ·>
|x1|. Then H2i−1 (H2i ) is rejected if |xj | > cFCP

j for all j ≥ i and xi < −cFCP
i

(xi > cFCP
i ). This procedure is slightly better than the Bonferroni–Holm procedure

with critical values c′j determined by �(c′j ) = 1 − α/(k + j), j = 1, . . . , k.
However, application of the WPP yields a first improvement upon the FCP-related
procedure because LFCs change. The infimum in (4.1) is now taken over �J
instead of HJ . Consider again J = I2r ∪ {2r + 2,2r + 4, . . . ,2k}. Then an LFC is
given by (δ, . . . , δ,−δ, . . . ,−δ) with r entries δ. Hence, cWPP

r is now the solution
of

[�(c− δ)−�(−c− δ)]r�(c+ δ)k−r = 1− α.
This results in cWPP

k > · · · > cWPP
1 , where cWPP

k = cFCP
k and cWPP

i < cFCP
i for i =

1, . . . , k−1. Finally, application of the SPP results in the classical directional error
problem for stepwise multiple test procedures; cf., for example, Shaffer (1980) and
Finner (1999). The results in, for example, Shaffer (1980) show that the critical
values cSPP

r can be chosen as solutions of

[�(c− δ)−�(−c− δ)]r = 1− α, r = 1, . . . , k,

which results in cSPP
k > · · · > cSPP

1 , where cSPP
k = cWPP

k and cSPP
i < cWPP

i for i =
1, . . . , k − 1. With the critical values cSPP|J | we get in fact for each J ∈M that

inf
ϑ∈�J

Pϑ

( ⋃
R∈M : J⊆R

{
TR(X)≤ cSPP|R|

})= 1− α.
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For J = I2r ∪ {2r + 2,2r + 4, . . . ,2k} ∈ M the infimum is attained for ϑ =
(δ, . . . , δ,−∞, . . . ,−∞) with r entries δ.

In the following example we consider a selection goal for the k-sample
normal model where the ϑi ’s are now interpreted as population means. Given
ϑ = (ϑ1, . . . , ϑk) ∈ � = R

k , the set of good populations is denoted by G(ϑ) =
{i :ϑk : k − ϑi ≤ δ} for some fixed δ > 0, where ϑ1 : k ≤ · · · ≤ ϑk : k denote the
ordered parameter values. In Finner (1994a) and Finner and Giani (1996) one can
find a general theory concerning the duality between selecting and multiple testing
based on the closure principle. By utilizing a special structured gain function
a selection goal can be translated into a multiple testing problem and the resulting
multiple test can be converted in a selection procedure satisfying the desired
selection goal. The duality theory may be extended to multiple tests based on
a partitioning principle and corresponding selection procedures. But this is not
the aim of this paper. Instead, we give a brief description how the construction
principles discussed in this paper apply.

EXAMPLE 4.3 (Selection of a subset that contains all good populations). The
aim is the construction of a selection rule S(X) taking values in {J : ∅ �= J ⊆ I }
such that

∀ϑ ∈� :Pϑ
(
G(ϑ)⊆ S(X))≥ P ∗,(4.2)

where the selected subset should be as small as possible and P ∗ ∈ (0,1) is
fixed. Based on the ∩-closed family of hypotheses H = {HJ : ∅ �= J ⊆ I } with
HJ :J ⊆ G(ϑ), test statistics TJ = Xk : I − X1 : J , where X1 : J ≤ · · · ≤ Xk : J
denote the order statistics of the Xj , j ∈ J and critical values cFCP

1 ≤ · · · ≤ cFCP
k

satisfying

inf
ϑ∈HJ

Pϑ
(
TJ (X)≤ cFCP|J |

)= P ∗,(4.3)

the duality theory yields that S(X) = {i ∈ I :TJ (X) > c|J | for all J  i} defines a
(step-down) subset selection rule satisfying (4.2). Note that ϕ = (ϕJ : ∅ �= J ⊆ I )
with ϕJ (X)= 1 iff TJ (X) > cFCP|J | defines a local level-(1−P ∗) test for H . One of
the main problems was the calculation of LFCs ϑ∗J such that infϑ∈HJ Pϑ(TJ (X)≤
cFCP|J |) = Pϑ∗J (TJ (X) ≤ cFCP|J |) = P ∗. A partial solution of the LFC problem can
be found in Finner and Giani (1996). But now the WPP says that we can take
the infimum in (4.3) over HJ \ ⋃R : R⊃J HR = �J (say) instead of HJ . But
�J = {ϑ :G(ϑ) = J } is much smaller than HJ . And in fact, it turns out that the
LFCs over�J andHJ differ for certain J ’s which finally results in smaller critical
values and a more powerful (step-down) subset selection procedure. Detailed
results which can be proved with similar methods as in Finner and Giani (2001)
will be reported elsewhere.
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Probably, application of the SPP may yield a further improvement. In this case
one may try to find a set of critical values such that

∀∅ �= J ⊆ I : inf
ϑ∈�J

Pϑ

( ⋃
R : R⊇J

{
TR(X)≤ cSPP|R|

})= P ∗.
It was pointed out in Finner and Giani (1996) that this problem is closely

related to directional error problems in multiple comparisons [cf. Finner (1999)].
It is conjectured that the (optimal) critical values are finally determined by
Pϑ(max1≤i≤j Xi −min1≤i≤j Xi ≤ cSPP

j ) = P ∗, j = 2, . . . , k, with ϑ ∈ R
j having

m entries equal to 0 and j −m entries equal to δ if j = 2m or j = 2m+ 1.
Construction of a corresponding so-called step-up procedure seems to be an

extremely difficult job and will not be considered here; for a proposal, cf. Finner
and Giani (1996).

Closely related to the subset selection approach in Example 4.3 are MCB-
methods (multiple comparisons with the best). Stefansson, Kim and Hsu (1988)
discuss simultaneous confidence intervals (depending on a single critical value)
for ϑi −maxj �=i ϑj based on partitioning the parameter space and pivoting level-α
tests on the resulting partitions (which corresponds to the case δ = 0 in the sub-
set selection formulation). These confidence intervals reproduce the testing re-
sults of a single-step procedure. Moreover, Hsu (1992) derived confidence in-
tervals for ϑi − maxj �=i ϑj (by partitioning the parameter space) which repro-
duce the results of a FCP-related step-down test procedure for the hypothesesHi :
ϑi −maxj �=i ϑj = 0.

The procedures described in Example 4.3 will be available shortly in the
software package SEPARATE (SElecting, PARtitioning And TEsting, developed
by the authors and others) including the case of unknown variance σ 2. The FCP-
related step-down procedure described in Example 4.3 is already available there.
SEPARATE is designed for sample size determination and the calculation of
critical values in selecting, partitioning and testing problems. A demo version
can be found on the Web page www.ddfi.uni-duesseldorf.de/main/separate/index.
htm.

5. Concluding remarks. The examples in the previous section illustrate
that application of both the WPP and SPP can lead to more powerful decision
procedures as a formal application of the closure principle. The most rigorous
principle is the SPP. On the one hand, the number of hypotheses which have to be
tested may be reduced by applying a partitioning principle, on the other hand LFC
problems may become more difficult because unions of acceptance regions may
no longer be convex. In the case of a family of point hypotheses there may be no
improvement of a FCP-related procedure by applying WPP or SPP because LFCs
do not change. However, although testing of point hypotheses has a long tradition,
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the authors’ opinion in most practical problems it is more sensible to formulate
hypotheses or selection goals in terms of some threshold values. Rejection of a
point hypotheses H :ϑi = 0 and a decision like ϑi �= 0 is not very informative.
Testing for material significance [as introduced by Hodges and Lehmann (1954)]
or relevant differences may yield much more informative results.

Finally, we look at multiple decision problems from a more general perspective.
Often certain subsets of the parameter space can be associated with some verbal
interpretation as, for example, “(i is the best population” or “the populations
(i, i = 1,3, are good,” and so on. At a fixed level of significance α we would like
to learn something about the true ϑ-value. Therefore, we try to reject as many ϑ’s
as possible and end up with some subset of non rejected ϑ’s as the final decision
which can be interpreted as a confidence set at confidence level (1− α).

Without referring to hypotheses a decision process which is closest to the SPP
can be described as follows. In a first step, we collect ϑ’s which should be rejected
simultaneously in (pairwise disjoint) sets �i ⊂ � of ϑ’s with |�i | ≥ 1. This
yields a partition �I = {�i : i ∈ I } of �, where I is a suitable index set. In a
second step, we fix a (partial) order “→” on �I (which determines the order
of the rejection process) which is reflexive, antisymmetric, and transitive, that is,
(i) ∀ i ∈ I :�i→�i , (ii) ∀ i, j ∈ I : [�i→�j and �j →�i �⇒�i =�j ], and,
(iii) ∀ i, j, k ∈ I : [�i → �j and �j → �k �⇒ �i → �k]. In a third step, we
construct a multiple level-α test for �I satisfying the consistency condition (3.1).
Finally, the multiple test procedure can be translated into a (1− α) confidence set.

The main problem is to fix a partial order on�I to steer the rejection process. As
we have seen in the examples in the previous section, application of the SPP often
yields a natural order how to proceed through the thicket of partitions (hypotheses,
questions) and how to incorporate previous acceptance or rejection regions into the
next step.

A method described in Hayter and Hsu (1994) and Finner (1994b) in connection
with two-sided tests and one-sided confidence intervals can be considered as
an application of the SPP, too. Starting with, for example, a two-sided test for
H :ϑ = 0 we proceed after rejection of H in two directions simultaneously.
A value ϑ > 0 (ϑ < 0) can only be rejected if all ϑ ′ ∈ [0, ϑ) (ϑ ′ ∈ (ϑ,0])
(or, alternatively, all hypotheses H = [0, ϑ ′] for ϑ ′ ∈ [0, ϑ) (H = [ϑ ′,0] for
ϑ ′ ∈ (ϑ,0])) are rejected in previous steps. An appropriate choice of level-α
tests for each ϑ then yields (in the case that ϑ = 0 is rejected) a one-sided
confidence interval which is close to the corresponding classical full level-α one-
sided confidence interval.

Hayter and Hsu (1994) extended this method for two-dimensional problems.
For higher dimensions it is mostly very difficult to fix a suitable order of testing
for each ϑ ∈�, at least, if all directions have the same weight and if there are no
ticketed ones.

However, sometimes the hypotheses of interest are pre-ordered as for instance
in dose-response and toxicity studies. Hsu and Berger (1999) derived stepwise
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confidence intervals related to pre-ordered hypotheses which can be considered
as a result of a partitioning principle. Consider for example the hypotheses Hi :
ϑi ≤ ϑ0 + δ, i = 1, . . . , k, δ > 0 fixed, where ϑ0 is the mean of a control group
and ϑ1, . . . , ϑk are the mean responses corresponding to increasing doses of a
test drug. One may test the hypotheses in a stepwise manner (H1 first, then H2

and so on) all at level α until the first acceptance occurs. This yields a multi-
ple level-α test which is due to the fact that �1 = H1 (≡ “is dose 1 not ef-
ficacious”), �2 = Hc1 ∩ H2 (≡ “is dose 1 efficacious but dose 2 not effica-
cious”), . . . , �k = Hc1 ∩ · · · ∩ Hck−1 ∩ Hk are disjoint. A more precise joint
decision yields the following (partitioning) method. Let �i,η = {ϑ :ϑi = ϑ0 +
η} ∩ Hc1 ∩ · · · ∩ Hci−1 for i = 1, . . . , k and η ≤ δ with H0 = � = R

k+1, and
let �k+1,η = {ϑ : mini=1,...,k ϑi = ϑ0 + η} ∩ Hc1 ∩ · · · ∩ Hck for η > δ. This
yields a partition of �. Define a partial order on this partition by �i,η1 →
�j,η2 if i < j and �i,η1 → �i,η2 if η1 ≤ η2, respectively [with ηm ≤ (>)δ
according to i (or j ) ≤ (or >) k, m = 1,2]. Testing all these �i,η with ap-
propriate one-sided tests all at level α with respect to the predetermined or-
der leads to the stepwise confidence interval procedure described in Hsu and
Berger (1999).

Undoubtedly, the method of testing each ϑ ∈�with a level-α test [which yields
a family of (1− α) confidence sets] is the most powerful method and yields the
most precise decision. Therefore, one may argue that there is no necessity for
something like a closure principle or partitioning principle. However, the authors’
opinion such principles are a helpful tool for the construction of meaningful
decisions. Moreover, one may consider the application of such principles as a first
step in finding a decision. In a second step, one can try to improve the decision
of a multiple hypotheses test or selection procedure with a method as described in
Stefansson, Kim and Hsu (1988).
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