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The Past, Present, and
Future of Speech
Processing

he special series for the 50th anniversary
of the Signal Processing Society contin-
ues in this issuc with an article that covers
the domain

computers become faster and morc ubiquitous,
these and other arcas in speech processing are ex-
pected to flourish further and bring about an era of
true human-computer

of the Spcech Process-
ing Technical Commit-

tee. This article :
provides a succinct re- Technical
view of the history and | Committee

current status of the

The Speech Processing

interaction.
To summarize the ex-
. citing developments in
this field, the article
presents an insightful
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field of speech-
processing rescarch and
describes future contri-
butions speech process-

review and reports the
authors’ views in the
various areas of speech
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ing will make to society.

Because speech is the most natural form of hu-
man communication, speech processing has been
one of the most cxciting areas of signal processing.
In the last several decades, speech research has
drawn scientists and engincers together to form an
important discipline. Tt has created many technical
impacts on society. Speech-coding algorithms have
made voice communication and the storage of voice
data effective and efficient. Speech-recognition
technology has made it possible for computers to
follow human voice commands and even under-
stand human languages. Speech-synthesis tech-
niques have created many interactive systems that
correspond with humans with a natural voice. As

IEEE SIGNAL PROCESSING MAGAZINE

S v clude speech analysis
and synthesis, speech
coding, speech enhancement, speech recognition,
spoken-language understanding, spcaker identifica-
tion and verification, and multimodal communica-
tion. In addition, a sidebar reviews the history of
secure voice coding,.

1 invite you to read this article to review the his-
tory of speech processing, to understand its current
trends, and to foresee its future prospects envisioned
by experts in the field. Enjoy!

Tsuban Chen, Guest Editor
Carnegie Mellon University
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s part of the celebration for the 50th anniver-
sary of the IEEE Signal Processing Society,
this article intends to provide a succinct re-
view of speech research, in particular its his-

tory, current trends, and prospects for the future. The

rescarch areas covered are speech analysis and synthesis,
speech coding, speech enhancement, speech recognition,
spoken language understanding, speaker identification
and venification, and multimodal communication. We
omit from this discussion such topics as speech percep-
tion and production and related physiological aspects,
not because they are not a part of speech research, but in
order to bound the scope of the effort and to cover those
topics most related to readers of this magazine. We hope
readers of IEEE Signal Processing Magnzine as well as
members of the IEEE Signal Processing Socicty will be
able to draw a picture of this important area of research
and to appreciate its significance, particularly from the
signal-processing perspective. We must caution the
reader that such a review is cursory at best and may suffer
from errors of judgement and omission.

This article was commissioned by the Speech Techni-
cal Committee of the Signal Processing Society. Many re-
nowned speech-communication researchers were invited
to contribute to this article. The list of authors represents
thosc who submitted written contributions.

Speech Analysis and Synthesis

Research in speech processing and communication, for
the most part, was motivated by people’s desire to build
mechanical models to emulate human verbal communica-
tion capabilities. The carliest attempt of this type was a
mechanical mimic of the human vocal apparatus by Wolt-
gang von Kempelen, described in his book published in
1791 [1]. Charles Wheatstone, some 40 years later, con-
structed a machine based on Kempelen's specification us-
ing a bellows to represent the lung in providing a
reservoir of compressed air [2]. The vocal cords were re-
placed by a vibrating reed that was placed at one end ot a
flexible leather tube—the “vocal tract”—whose cross-
sectional area could be varied to produce various voiced
sounds. Other sounds could be produced by the machine
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as well, e.g., nasals by opening a side branch tube (the
“nostrils™), fricatives by shutting off the reed and intro-
ducing turbulence at appropriate places in the vocal tract,
and stops by closing the tube and opening it abruptly. It
appears that Wheatstone was able to produce a fairly large
repertoire of vowels and consonants and even some short
sentences using this simple mechanical device.

Interest in mechanical analogs of the human vocal ap-
paratus continued into the 20th century. While several
notable people (Faber, Bell, Paget, and Riesz) followed
Kempelen and Wheatstonc’s spccch production models,
Helmholz, Miller, Koenig, and others pursued a dxﬁerent
design principle. They synthesized vowel sounds by su-
perimposing harmonically related sinusoids with appro-
priately adjusted amplitudes. These two fundamentally
different approaches, source-tract modeling (motivated
by physics) and sinusoidal modeling (motivated by
mathematics), have dominated the speech signal-
processing ficld for more than 100 years.

Rescarch interest in speech processing today has gone
well beyond the simple notion of mimicking the human
vocal apparatus (which still intrigues many researchers).
The scope (both breadth and depth) of speech research
today has become much larger due to advances in mathe-
matical tools (algorithms), computers,; and the almost
limitless potential applications of speech processing in
modern communication systems and networking. Con-
versely, speech research has been viewed as an important
driving force behind many of the advances in computing
and software engineering, including digital signal proces-
sors (DSPs). Such a synergetic relationship will continue
for years to come.

Source-Tract and Source-Filter Modeling

Source-tract modeling by clectrical circuits, realized in
the form of a source-filter system, was first proposed by
Homer Dudley at Bell Laboratories in the 1930s [3]. As
an clectrical engineer, Dudley exploited his insights in
modulated-carrier radio transmission to construct an elec-
trical speech synthesizer that dispensed with all the me-
chanical devices of von Kempelen’s synthesizer. A highly
simplificd, but accurate, schematic of Dudley’s synthe-
sizer is shown in Fig. 1. The electrical excitation source
had two components—a “buzz” source (for voiced
speech) and a “hiss™ source (for unvoiced speech). The
buzz source was a relaxation oscillator that generated a se-
quence of pulses with a controllable repetition rate (the
fundamental tfrequency) and provided the voiced carrier.
The hiss source was the shot noise generated by a vacuum
tube, and it provided the unvoiced carrier. The message
(i.c., the time-varying characteristics of the vocal tract)
was modulated on the source carrier by passing the out-
put of the source through a filter whose frequency re-
sponse was adjustablc. This variable filter was realized by
a bank (10 channels) of bandpass filters covering the
range of speech frequencies., Any desired ‘vocal-tract
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A 1. Schematic diagram of the VODER synthesizer (after Dudley,
Riesz, Watkins and Flanagan [2]).

frequency-response characteristic was achicved by adjust-
ing the amplitudes of the outputs of the bandpass filters.

With the collaboration of Riesz and Watkins, Dudley
implemented two highly acclaimed devices, the VODER
(VOicc DEmonstration Recorder) and the VOCODER,
based on this principle. The VODER (a schematic dia-
gram of which is shown in Fig.1) was a system in which
an operator manipulated a keyboard with 14 keys, a wrist
bar, and a foot pedal to generatc the control parameters
required to control the sound source and the filter bank.
This system was displayed with great success at the New
York World’s Fair in 1939. According to Dudley, it took
a few weeks of training to be able to operate a VODER
and produce intelligible speech on demand.

The VOCODER (4] derived its control parameters
from a speech signal recorded using an attached micro-
phone. From the speech signal the machine automatically
determined the fundamental frequency (for voiced
speech) as well as the gains for the bandpass filters. A
value of zero for the fundamental frequency indicated
that the hiss source was to be used. These control parame-
ters, when used in the manner described above, produced
a signal that was perceived to be similar to the input
speech signal. It is worth noting that the wareform of the
reconstructed signal gencrally was quite different from
the wavetorm of the input signal. However, the time-
variation of the distribution of speech energy with fre-
quency was similar cnough to fool the ear into judging
the two signals to be similar in sound.

Dudley’s demonstration that a speech signal could be
represented in terms of a set of slowly varying parameters
that could later be used as control parameters to rc-
synthesize an approximately matching speech signal
opened up the possibility of compressing the bandwidth
of'a speech signal. In modern digital telephony, this prin-
ciple led to a series of methods for efficient digitization of
speech for transmission (see the Speech Coding section).

From Tract Modeling to Spectral Estimation
Dudley used a bank of filters to control the sound spectrum
in the VODER system. In order to produce the intended
sound, the gain or attenuation of the filters at various fre-
quencies had to be commensurate with the power of the
input speech sound at those frequencies. Thus, the func-
tion of the filter bank was to model (nonparametrically)
the vocal-tract response and, therefore, the need to meas-
ure proper attenuation values required sophisticated tech-
niques for, in modern terms, spectral estimation [5]. The
VOCODER, as proposed by Dudley, aimed at the very

same purpose; namely, efficient estimation of the time-
varying spectrum of the i input speech signal.

Spectral estimation using a filter bank (i.e., in essence
the reverse of the VODER system) is depicted in Fig. 2.
Each filter in the bank attempts to estimate the speech sig-
nal energy at and around the center frequency of the filter.

Bandpass Non- Lowpass Sampling . Amplifude ,
Filter 1 Linearity Filter Rato Compression.
Reduction
o L/ 2 & ®
Speech — ] ® ® L] @
] ® @ &% @
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Non- Amplitude
> Bgirlltc:;:égs Linearity Lo'\:/v“?:rs ® 7 Rate Comgression I
Reduction :
A 2. A block diagram for spectral estimation with filterbank.
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The nonlincarity that follows the filter measures the en-
ergy of the filtcred signal. The result across the filter bank
is an estimate of the spectral profile, or frequency re-
sponse, that can be used to characterize the signal ata par-
ticular time.

The extraction of spectral control parameters from a
speech signal has many other applications besides speech
synthesis and bandwidth COlTlpI'(.SSlOﬂ Dudley himself re-
alized that the pattern of variation of these parameters with
time is characteristic of the utterance. This idea was ex-
plored by Dudley, and by many other researchers, for
automatic recognition of speech by machine. The parame-
ters could also be used to recognize the identity of a speaker
from his or her voice. Finally the realization of the funda-
mental importance of these parameters led to the construc-
tion of the sound spectrograph [6] for displaying the
time-varying spectra of speech (see Fig. 3). This in turn led
to attempts at using the principles of the sound spectro-
graph (the sonogram) as a means for communication with
the deaf, by teaching them how to recognize spoken words
from displays of their time-varying spectra [7].
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A 3. Broadband sound spectrogram of the utterance “That you
may see synthesizer (after Dudley, Riesz, Watkins and Flana-

gan [2]).

Linear Prediction

Representation of the vocal-tract frequency response, in-
dependent of the source parameters (e.g., voicing and
fundamental frequency), captured researchers’ interest in
the 1960s. One approach to this problem was to analyze
the speech signal using a transmission line analog of the
wave-propagation equation. This method allows use of a
time-varying source signal as excitation to the “lincar”
system of the vocal tract.

To make analysis of the vocal-tract response tractable,
one often assumes that the vocal tract is an acoustic sys-
tem consisting of a concatenation of uniform cylindrical
sections of different arcas with planar waves propagating
through the system. Each section can be modeled with an
equivalent circuit with wave reflections occurring at the
junctions between sections. Such a model allows analysis
of the system from its input-output characteristics {4, 8].

In the late 1960s, Atal [9] and Itakura [10] independ-
ently developed a spectral analysis method, now known
as linear prediction. While the motivations were differ-

MAY 1998

ent, they made an identical assumption; namely, that the
speech signal at time ¢ could be approximately predicted
by a lincar combination of its past values. In a discrete
time implementation of the method, this concept is ex-
pressed as

?
=S,
bt i i)

j=

where p is called the order of the analysis. The task is to
find the cocfficicnts {4;} that minimize some measure of
the difference between s; and §, over a short-time analysis
window. To retain the time-varying characteristics of the
speech signal, the analysis procedure updates the coeffi-
cient estimation process progressively over time. This
process is generally referred to as short-time spectral
analysis.

The linear prediction analysis method has several inter-
esting interpretations. In the frequency domain, the com-
puted coefficients {aj} define an all-pole spectrum
G/A(c"")whcre A(z)=1- Z z7 withz = ¢ Sucha
spectrum is essentially a shott-term estimate of the spec-
tral envelope of the speech signal, at a given time, as
shown in Fig. 4. The “envelope™ models the frequency re-
sponse of the vocal tract while the fine structure in the
Fourier spectrum 1s a manifestation of the source excita-
tion or driving function. This spectral envelope estimate
can be used for many purposes; e.g., as the spectral mag-
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A 4. Typical signals and spectra for linear predictive coding (LPC)
autocorrelation method for a segment of speech (after [89]).
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nitude control in a speech synthesizer or as features for
speech recognition, to name two.

Another interesting result of the linear prediction tech-
nique is that it provides an estimate of the reflection coet-
ficients as well as the arca functions of a cylindrical tube of
the type mentioned above [11]. Linear prediction thus
could be viewed as a spectral estimation technique as well
as a method for vocal-tract modeling (through the cylin-
drical tube model approximation).

The all-pole spectrum that resulted from linear predic-
tion is a very efficient rcprcscnmtion of the speech short-
time spectrum and is widely used in a range of speech-
coding systems (see the Speech Coding section).

Analysis of Non-spectral Properties

Aside from spectral analysis and modeling, other proper-
ties of speech arc also important in speech-processing ap-
plications and have been of research intercst for decades.
These properties include voicing, which indicates
whether or not the vocal cords are vibrating during pro-
duction of the sound; the fundamental frequency, which

is the frequency of vocal-cord vibration; and the status of

speech/nonspeech activity.

To estimate the fundamental frequency for a voiced
sound, one usually measures the repetitiveness in the sig-
nal. In the time domain, the repetitiveness can be mcas-
ured by the apparent peak in the autocorrelation function

at a lag corresponding to the pitch period (reciprocal of

the fundamental frequency) [12]. Another method that
capitalizes on the regularity in the spectrum [13] is the
method of cepstral analysis [14]. The cepstrum is the (in-
verse) Fourier transform of the log spectrum. Regularity
in the log spectrum such as repetitive spikes at essentially
equal spacing produced by periodic excitation of voiced
speech results in a clear spike in the cepstrum at a location
(i.e., the quefrency index) corresponding to the pitch pe-
riod. Cepstral analysis, although computationally more
costly than most traditional algorithms, is used extcn-
sively in pitch estimation and in feature measurement for
speech recognition [15, 16].

Synthesis by Parametric Methods

The VODER was aspecech synthesizer with nonparamet-
ric spectral controls. However, many speech synthesizers
use parametric controls: for example, articulatory con-
trols, formant frequencics, and linear prediction parame-
ters (discussed carlier). Different sets of control
parameters imply different structurcs for synthesizing the
waveform. These control parameters, when presented in
a time-varying sequence, form the basis of sound units
with linguistic labels suitable for synthesizing specch
from text. Complete text-to-speech systems, however, re-
quire a number of other procedures, such as text analysis
and normalization, for tull implementation (see [17, 18]
for progress in text-to-speech systems). We address only
the issues of synthesizer structure here.
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Articulatory Synthesis

While Homer Dudley’s analysis/synthesis idcas c)pcncd a
new direction in specdl processing, von Kempelen’s ma-
chine still intrigued researchers who attempted to build
models for the articulatory apparatus, albeit in a modern
sctting. Instead of manipulating a mechanical model, re-
scalchms implemented a computational model of the ar-
ticulatory mechanism. Groundwork for the icambxhtv of
this approach was laid during the 1950s and 1960s in the
form of a comprehensive theory of the acoustics 0f specch
production (as developed by Gunnar Fant [6] and oth-
ers). This work defined the operations required to com-
pute the acoustic pressure output of a vocal tract for
various types of speech sounds, such as vowels, fricatives,
nasal sounds, etc. Fant’s work was concerned ‘with the
acoustical propertics of stationary vocal tracts; his esti-
mates of vocal tract shapes (cross-sectional area function)
were derived from static x-ray pictures. Somewhat later,
several rescarchers used x-ray cinematography to collect
data on time-varying shapes of vocal tracts during speech
production. This data formed the basis of several para-
metric models of the kinematics and dynamics of a vocal
tract. Notable among these are models proposed by
Henke, Fujimura, Coker, and Mermelstein.

Around 1967, Cecil Coker of AT&T Bell Labs dem-
onstrated a computer program [19], later nicknamed
IGOR, that synthesized speech on the basis of anar ticula-
tory model. As i mput IGOR accepted English text typed
in via the computer’s keyboard. From this input it gener-
ated controls for a 7-parameter kinematic model of the
vocal tract, as well as controls for the sound source. Cok-
cr’s synthesizer was only partially an articulatory synthe-
sizer, because it did not model the vibrations of the vocal
u)rds. Instead, it approximated voiced excitation by a
train of stylized pulses with a controlled repetition rate.
The first quantitative model that generated vocal-cord vi-
bration from basic physical parameters such as lung pres-
sure, tension in the vocal cords, ete., was devised by James
L.. Flanagan in 1967 {20].

Articulatory synthesis can be classified in three ap-
proaches that simulate the basic building blocks of speech
production (excitation source, vocal tract, and radiation
filter). These include the concatenation of acoustic tubes
|21-24], modeling the acoustic propertics of the glottis
and vocal tract with a set of ditferential equations [20,
25-29], and a hybrid time-frequency domain method
[30, 31]. Yet another method of articulatory modeling s
a wave digital filter approach [32, 33].

Formant Synthesis

The formants are the resonances of the vocal tract and can
be estimated from the speech spectrum with-a certain
level of precision. The formant synthesizer reproduces
the formant structure of speech. The formant synthesizer
is closely related to the “terminal-analog” [8] synthesizers
using analog electrical nerworks of the late 1930s. These
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analog networks were serial or parallel combinations of
second-order resonators. A series of impulse-like wave-
forms, or white noise, was applied to the resonators i or-
der to generate vowels or fricative sounds.

In the 1960s, the discrete domain realizations of for-
mant synthesizers were proposed [8, 34]. The resonators
for the formant synthesizer were arranged in cither a cas-
cade or parallel manner [8,35,36]. Flanagan concluded
that the serial form was a better model for non-nasal
voiced sounds, while the parallel structure was superior
for nasal and unvoiced sounds. The reason was that the
vocal tract is considered as an all-pole filter for non-nasal
voiced sounds and as a pole-zero system for other phona-
tions. Thus, it is quite simple to use the cascade structure to
simulate an all-pole system and the parallel form-to imple-
ment a pole-zero system. Klatt’s system combined the cas-
cade and the parallel structures. Anti-resonances were
added to the cascade branch to enhance the ability of the
cascade configuration to model nasal and unvoiced
sounds. When the synthesis

mentation, they allow one to trade off accuracy, the
number of multiplications and additions, and complexity
[40]. Thesc arc important considerations in the realiza-
tion of synthesis technology.

Related Topics

In the early and mid 1980s, Hanson ctal. [41] as well as
McAulay and Quatieri [42] developed a sinusoidal model
for speech analysis/synthesis. This method has found use tor
speech transformations, such as time-scale and pitch-scale
modifications. Molines and Charpentier [43] suggested the
pitch-synchronous overlap-add (PSOLA) approach for
text-to-speech applications. This approach can modify the
prosody of the speech and is able to concatenate speech
waveforms. The speech is modified in either the time do-
main or the frequency domain. Other applications ot speech
synthesis include reading e-mail, fax, and webpages, and as a
proofing tool for previewing text in word processors.

variables arc properly speciticd
and the correct configuration is

used, this synthesizer is capable —

of synthesizing high-quality, in-
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The lincar predictive synthe-
sizer s a mathematical all-pole
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tures were proposed for digital
implementation of linear pre-
diction synthesizers [38, 39].
Aside from the usual digital
filter implementations (direct
form, parallel form, cascade
form, ctc.), structures devel-
oped for linear prediction syn-
thesis include: 1) a 2-multiplier
lattice; 2) a 4-multiplicr ladder
(having the form of the
Kelly-Lochbaum model [21]);
3) a I-multiplier form; and 4) a
4-multiplier normalized form
[40]. These implementations
are shown in Fig. 5. These

(b)

Eqn(2) 1

Sectionm .

structures were developed for
two major reasons: (a) they al-
low the synthesis filter to be im-
plemented directly from the

(d)

m=i1 . .
t(2) E+(z) Secho:u m Em—l(z)
— >
cos 0,
—sin 0
cos 0, "
zE,_(2)

(e)

reflection coefficients, and (b)
in an actual computer imple-
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A 5. Various forms of digital filter implementation: a) general form; b) 2-multiplier lattice; c) 4-
multiplier ladder d) 1-multiplier form; e) 4-multiplier normalized form.
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Speech Coding

Homer Dudley’s pioneering work [3] was motivated by
the need to increase the communication capacity
(number of channels) in a telephone network (which was
analog then). The term “bandwidth compression” was
generally used to refer to such a task. Today, most it not
all of the telephone network is digital and, hence, speech
bandwidth compression translates into speech coding,
which aims at representing the speech signal in binary
digits (bits) with highest efficiency (i.e., highest quality of
the reconstructed signal with least number of bits).

Digital encoding of speech begins with an analog-to-
digital conversion device that samples the analog speech
wavcform at an appropriate rate (usually 8,000 samples
per second for telephone bandwidth speech) and then
represents the amplitude of cach sample digitally. In com-
munication systems, this is the so-called pulse-coded
modulation (PCM). Typically, each waveform sample is
represented by 12-16 bits, resulting in a rate of 96-128
thousand bits per second (kbps or kb/s). Research in
speech coding attempts to find mcthods to increase the
efficiency in transmission and storage while maintaining
the speech quality.

Aside from efficient transmission, speech coding is
also essential for achieving secure communications. This
is the main reason that speech compression and coding
research benefited from strong government support in
the past five decades. The “A History of Secure Voice
Coding” sidebar presented with this article provides a
brief, chronological perspective of this work.

In general, speech-coder attributes can be described in
terms of four classes: fit rate, complexity, delay, and quality.
The bit rate is the communication channcl bandwidth at
which the coder operates. Digital network telephony
generally operates at 64 kb/s, cellular systems operate
from 6.7 to 13 kb/s, and secure telephony at 2.4 and 4.8
kb/s. Systems can also be designed to take advantage of
the natural silences that take place during speech. CDMA
digital cellular telephony employs variable-rate speech
coders that opcrate at maximum rate during a talk-spurt
and minimal rate during silence.

Complexity refers to the computational complexity of
the speech coder. For most applications, speech coders
arc implemented on either special-purpose devices (such
as DSP chips) or on general-purpose computers (such as
a PCfor Internet telephony). In cither case, the important
quantities are the number of (million) instructions per
second that are needed to operate in real-time and the
amount of memory used. The greater the memory usage
and the greater the number of instructions per second, the
more expensive and power consuming the implementa-
tion platform. This has important conscquences for most
applications.

Delay refers to the communications delay caused by
the coder. One component of the delay is due to the algo-
rithm and the other to the compuration time. Individual
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sample coders have the lowest delay, while coders that
work on a block or frame of samples have greater delay.
Too much delay can have serious repercussions on a con-
versation. Excessive delay creates critical challénges on
the network echo canceler and also forces speakers into an
inconvenient “push-to-talk™ mode, making conversation
ineffective. The practical limit of round-trip delay for te-
lephony is about 300 ms. With the advent of packet te-
lephony, other sources of delay may be present, affcctmg
the design of the speech coder.

Quality refers to a large number of attnbutes As bit
rates are lowered, speech coders become more speech
specific and give less-faithful renditions of other sounds.
While music can be transmitted through 64 kb/s: PCM, it
may be umewgmzablc over some 2.4 kb/s codets. Back-
ground noises such as babble, traffic noise, or noise in-
side a car, office, shopping mall, etc., can all affect the
perceived quality of a speech coder. For many applica-
tions, speech coders are tandemed. For example, access-
ing a voicemail system from a cellular phone may involve
two different encodings. Quality and even intelligibility

may suffer.

In selecting a speech coder for a given apphcmon the
designer can make tradeoffs among these four classes of
attributes.

Today, speech coding finds a diverse range of applica-
tions such as cellular telephony, voice mail, multimedia
messaging, digital answering machines, packet teleph-
ony, audio-visual t(,lcwntucncmg, and of course many
other applications in the Internet arena.

From Quantization to Model-Based Coding
Digital representation of a signal requires quantization of
the amplitude; 1.¢., an analog sample of infinite precision
needs to be converted to a discrete number that can be
represented by a fixed number of bits. This is the first step
in speech coding. Early research focused on the design of
a quantization table (the set of values used to represent
speech) that minimizes the average quantization noise
(discrepancy between the original value and the repre-
sented one) [44-47]. Signal companding (compression
and expansion) 48] such as u-law or.A-law is often used
to transtorm the signal statistics (on a sample by sample
basis) for improved coding efficiency [44]. In digital te-
lephony, u-law and A-law PCM [44, 48] are theischemes
that were adopted for transmitting speech at 64; kbps (or
56 kbps).

Minimization of quantization noise requires. critical
knowledge of the signal statistics. Since speech characteris-
tics vary with time, improvements (further reduction of
quantization noise) can be achieved by adaptive quantizers
[49, 50], which adjust the quantization table according to
the time-varying signal properties. Adaptation can be im-
plemented in cither a forward or backward manner (or in
more sophisticated systems, a combination of both) [44].
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A History of Secure Voice Coding
Joseph P. Campbell Jr. and Richard A. Dean

~he NSA (National Security Agency of the U.S. Govern-
ment) inherited the responsibilities, traditions, and ex-
pertise of voice coding from the Army Security Agency for
-enciphered spccch applications in 1952. The engineers and
technicians who had participated in the now famous SIG-
SALY vocoder used by Roosevelt and Churchill for planning
the “D-Day” invasion were still developing their craft at
NSA. SIGSALY, shown in Fig. Al, was a vocoder-based
systemnot unhkc the “Talking Machine” first introduced by
Homer Dudley of Bell Labs at the 1939 World’s Fair. Devel-
oped with Belll. abs, it consisted of a bank of 10 bandpass fil-
ters spaced approxtmardy at the bands of equal articulation
for speech, from baseband up to 3000 Hz. Each filter could
be-excited by onie of six logarithmically spaced amplitudes as
developed by Harry Nyquist in the first application of PCM.
A “Buzz”/"Hiss” generator was used as an exciter for the vo-
coder corresponding to the voiced/unvoiced attribute of
cach 20 msec speech segment. Balance of the “Buzz”/"Hiss™
gencrator, or voicing, represented a major factor in the qual-
ity of the speech. To test and tunc this delicate balance,
Mitchell Brown developed the “Aaahhh™-“Sshhhhh™ test to
check for the proper balance of these sounds:
Tom Tremain of NSA cxpanded upon vocoder testing
and he instituted a defacto standard in diagnostic testing. His

A Al. A view of SIGSALY through the rear doors of a tractor
trailer. The first real-time secure voice system;, circa 1944.

The speech signal (due to its generation in an articula-
tory process) typically has a low-pass characteristic with
roughly a 6 dB/octave roll-off. This property is the basis
of a differential quantization scheme that encodes the dif-
ference between successive samples rather than the origi-
nal sample value. The differentiator essentially equalizes
the long-term speech spectrum (makes it flat across fre-
quency) and reduces the signal variance for casier quanti-
zation. The method is generally referred to as differential
PCM (DPCM) [49, 51] coding. When the coeflicient of
the differentiator and the quantization table are made
adaptive to the local signal characteristics, it is called
adaptive DPCM (ADPCM) [52, 53].
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A A2. The KY-9 transistorized secure voice system, circa 1953.

uniquie ability to interpret diagnostic rhyme tests (DRTs)
and diagnostic acceptability méasures (DAMs) to pinpoint
weaknesses in- speech-coding algorithms: and systems led
researchers from aroind the world to seek his expert advice
to Improve their systems.

From the time of SIGSALY until the beginning of 1960s,
several genérations of voice coders had been developed in
conjunction with Bell Labs. The KO-6 voice coder,
developed in 1949 and deployed in limited quanrity, was a
close approximation to the 1200 bps SIGSALY voice coder.
This was followed in 1953 by the 1650 bps KY-9 shown in
Fig. A2. Tt used a 12-channel vocoder and ‘hand-made
transistors and was onc ‘of the- carlicst applications of
solid-state technology. This resulted in‘a remarkable weight
reduction of SIGSALY’s vacuum tube technology (from 55
tons to amere 565 pounds!). In 1961, Tremain’s first project

continued on next page

A differential coding scheme can be further elabo-
rated; rather than coding the difterence between suc-
cessive samples, it can code the output of a
higher-order filter involving a fixed number of past
sample values. The scheme then becomes that of adap-
tive predictive coding (APC) [54], which shares a simi-
lar interpretation to lincar predictive coding (LPC) [9]
in terms of vocal-tract response modeling. That is, the
predictor filter tracks the time-varying characteristics
of the vocal tract. The effect of prediction in coding is
reduction of signal variance (the prediction error signal
or residual has a smaller variance than that of the origi-
nal signal) and whitening of the signal spectrum (the
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A'A3. The HY-Z(hanneI vacoder. circa 1961,

at NSA, led by ‘Brown, was the development of the HY-2
vocoder, the last generation of U8, channel vocoder
tcchnology The HY-2. shown in Fig. A3, was a 16-channel
2400-bps system using “Flyball” color-coded modular logic
to reduce the weight down to’100 pounds.

Even the best of U.S. vocoder technology was limited by
the analog technology that was the basis of its
implementation. :As the analog fileers and ampllhcrs vary
with' age and temperature, so does the sensitive tmdung
required betwcenthe epccch analyzer and speech
synthesizer. Pérformance - in - the ‘field, never approached
hboraturv pcrfurmamc, and uscrs, smmng with Churchill
and Roo:m ¢lt, were reluctant. to. use systems that had a
vnthetit “Donald Diick™ quality. President Johnson refused
to use the HY-2 because of its poor qualm and, as a result,
deployment was limited.

In the late 1960s, dxom[ signal processing, for voice was
“considered a produm\w new-dircction. Working with Bell
Labs, NSA started the lincar predictive coding (LPC)
generation of voice coders. In 1974, the first real-time
computer: simulation of LPC-10 on the CSP-30 computer
was demoinstrated, which “was -a. milestone in
signal-processing hlsrorv :
© 2 NSA’s real-time dlgltal voice: cocla led to a whole new
~family of \ISA vocoder products, called secure telephone

crror signal is essentially uncorrelated since most of
the signal redundancy is represented by the predictor
coefhu.ent.s) .

In the 1970s, rescarchers started to explore the possi-
bility of incorporating our perceptual knowledge ot audi-
tory masking in coding schemes, in addition to
attempting to invent new coding structures. Atal and
Schroeder [55] proposed the concept of crror signal
shaping with the implication that the coding error can be
made imperceptible (masked by the coded signal) if its
spectrum is properly shaped and stays below the audible
threshold in the presence of the co-existing signal. This
concept led to the usc of perceptual weighting in the error
criterion used by most of the analysis-by-synthesis coding

32 IEEE SIGNAL PROCESSING MAGAZINE

units (QTUq)J buile .1round the hrat gcncmtlon of
AMD2901-based high speed bit-slice signal processors that
forever changed ‘the way voice wdmg was accomplished.
[odavs blU HIE shown n I"IQ,‘ A4, is the third-generation
dcht()p rclcphom that uses an cnhanced 1PC- 10 and
SUPPOTLS: secure: VOIce: users’ thmughout the guvcrmncnt
Tremain’s. team, in cooperation with Bell Labs; developed
the Federal Standard 1016 Code Excited Linear Prediction
(CELP) speech coder in the lare 1980s. Through Tremain’s
cfforts, the CELP coder was developed and deployedin later
models of the STU- 11T and saw successful variationis adoptcd
into cellular phones Before his death in 1995, Tremigin was
also pivotal in brining about the ncw 2400 bpe vocoder
based onMELPD: :

Voice coders, long aeqoualcd on[y with e\otlc encry pnon
schemes, are :finding -numerous applications tochy tor
wireless. communications, voice mail, network
communications, and. synthetic voice apphcmom Today’s
voice coders used i satellites, answering machines, talkms.r,
toys, audio over the world wide web, Internet phones, and
hand-held digital cellular and- microcellular telcphohcs are
just a few of theodiréct descendants of the Secure
voice-coding work :

NG

A A4. The STU-IIl sec:uréyvoice terminal fqhﬁil)c circa'1 986.

structures [56]. The same concept has also been used in
bit-allocation schemes [57].

Figure 6 is a block diagram of a generic analysis-by-
synthesis coding structure. The speech is first analyzed to
obtain the LPC synthesis filter for a frame of speech. A
perceptual weighting tilter is derived from the LPC filter.
The speech is passed through the perceptual weighting
filter to form the target signal. The possible excitation se-
quences arc passed through the combination of the LPC
filter and perceptual weighting filter. The excitation sig-
nal that minimizes the mean square error (MSE) between
the weighted outpur signal and the target signal is se-
lected. The pitch propertics of the specch signal can be ex-
ploited prior to selecting the excitation.
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Analysis-by-synthesis
coders are essentially
waveform-approximating
coders because thev produce
an output waveform that fol-
lows closely the original
waveform. (The minimiza-
tion of the MSE in the per-
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sifying a speech segment as
voiced or unvoiced. Such de-
cisions can never be made
flawlessly and many speech segments have both voiced
and unvoiced properties.

Today’s vocoders also have found ways to avoid mak-
ing the voiced/unvoiced decision. The multiband excita-
tion (MBE) [58] and sinusoidal transform coders (STC)
[42], also known as harmonic coders, divide the spec-
trum into a set of harmonic bands. Individual bands can
be declared voiced or unvoiced. This allows the coder to
produce a mixed signal: partially voiced and partially un-
voiced. Mixed-excitation LPC (MELP) [59] and wave-
form interpolation (WI) [60] produce excitation signals
that are a combination of periodic and noise-like compo-
nents. These modern vocoders produce excellent-quality
speech compared to their predecessors, the channel vo-
coder [61 ] and the LPCvocoder [62]. However, they are
still less robust than higher-bit-rate waveform coders.
They are more aftected by background noise and cannot
code music well.

Vector Quantization

Advances in coding theory suggest that optimal coding
efficiency can be attained asymptotically as the number
of signal samples encoded simultaneously is increased
[63]. This motivated speech-coding rescarchers in the
late 1970s and 1980s to explore the use of the methods
of vector quantization (as opposed to scalar, or single
sample) schemes.

Vector quantization aims at encoding an entire vector
of samples or coefficients simultaneously. The technique
was applied to spectral-parameter [64, 65] as well as to
waveform quantization [66]. Today, vector quantization
is used in most speech coders.

Research in vector quantization focused on methods
for generating the codebook [67], the type of distortion
measures [64], and efficient structures to achieve high-
rate, low-distortion VQ [68]. Vector quantization was
also essential in achieving extremely low-bit-rate (less
than 1000 bps) vocoders [65].
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A 6. A block diagram of a general analysis-by-synthesis coding structure.

Speech-Coding Standards

For speech coding to be useful in telecommunication ap-
plications, it has to be standardized (i.e., it must conform
to the same algorithm and bit format) to ensure universal
interoperability. Speech-coding standards are established
by various standards organizations: for example, the Inter-
national Telecommunications Union (ITU), the Telecom-
munications Industry Association (TIA), the Research
and Development Center for Radio Systems (RCR) in Ja-
pan, the International Maritime Satellite Corporation (In-
marsat}, the: European Telecommunications Standards
Institute (ETSI), and other government agencics.

The ITU (formerly CCITT) defined the “first”
speech-coding algorithm for digital telephony in 1972. Tt
is the 64 kb/s companded PCM coder. In North America
and Japan, g-law PCM is used. In the rest of the world,
A-law PCM is used. These coders use 8 bits to represent
each sample of the speech signal with a sampling rate of 8
kHz (i.c., maximum signal frequency of 4 kHz). The
standard is referred to as G.711 [69].

In 1984, Recommendation G:.721 [70], which is
based on ADPCM coding operating at 32 kb/s, was stan-
dardized for digital circuit multiplication equipment. As-
sociated with G.721 were 1) G.723 [69], which extends
G.721 to two additional bit rates, 24 and 40 kb/s; 2)
G.726 [69], which unifies and replaces G.721 and G.723
and extends it to 16 kb/s; 3) G.727 [69], which has an
even number of levels for all associared coders.

The low-delay, code-cexcited-linear-prediction (LD-
CELP) coder was standardized in 1992 and 1994 for 16
kb/s applications. It is designated as Recommendation
(G.728 [71]. Furthermore, G.729 (8 kb/s) and G.723.1
(5.3 and 6.3 kb/s) were subscquently standardized in
1995. Both coders are based on the analysis-by-synthesis
structure. For wideband (7 kHz bandwndth) speech, Rec-
ommendation G.722 [72] was established in 1988 for bit
rates of 48, 56 and 64 kb/s.

For digital cellular applications, the Europecan Groupe
Special Mobile (GSM) of CEPT defined a 13kb/s coder in
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1987 based on the regular-pulse-excitation with long-
term-predictor (RPE-LTP) coding algorithm [73]. An-
other coder defined by ETSI in 1994 was the 5.6 kb/s
vector-sum-excited-linear-prediction (VSELP) coder
[74], known as GSM Half-Rate. In North America,
VSELP was also adopted in 1989 as the TIA 1854 [54]
coder at 8 kb/s (7.95 kb/s) for digital cellular telephony.
In 1993, 1896 [75], the CELP-based coder, was recom-
mended for CDMA cellular systems operating at bit rates
8.0, 4,2, and 0.8 kb/s. Most rccently, 1S-641 was recom-
mended as an improved coder at 8 kb/s for TDMA cellu-
lar systems and IS-127 (or EVRC, enhanced variable
bit-rate coder) for CDMA applications.

Finally, the U.S. Department of Defense (DoD) an-
nounced FS1015 [76] based on linear prediction as the
standard coder at 2.4 kb/s for secure voice applications in
1984. In 1991, the DoD further adopted a CELP based
coder at 4.8 kb/s as the F§1016 standard [77]. Anew 2.4
kb/s coder based on MELP was announced in 1996 at 1C-
ASSP in a session dedicated to Tom Tremain [59].

New Challenges

Most of the low-bit speech coders designed in the past im-
plicitly assume that the signal is gencrated by a speaker
without much interference. These coders often demon-
strate degradation in quality when used in an environ-
ment in which there is a competing speech or background
noise. A recent research challenge is to make coders per-
form robustly under a wide range of conditions, includ-
ing noisy automobile environments.

Another challenge is the coder’s resistance to transmis-
sion errors, which arc particularly critical in cellular and
packet communication applications. Methods that combine
source and channel coding schemes or conceal errors are im-
portant in enhancing the usefulness of the coding system.

As packer networking is becoming morce and more
prevalent, a new breed of speech coders is emerging.
These coders need to take into account and negotiate for
the available network resources (unlike the existing digi-
tal telephony hierarchy in which a constant bit ratc per
channel is guaranteed) in order to determine the right
coder to use. They also have to be able to deal with packet
losses (severc at times). For this reason, the idea of em-
bedded and scaleable (in terms of bit rates) coders is being
investigated, with much interest [78].

Speech Enhancement

The idea that vocoder principles could be used to improve
the quality of a speech signal corrupted by additive noise
was first introduced by M.R. Schroeder in 1960 [79].
The basic idea was to generate a signal with a fine struc-
ture as close as possible to that of the original speech sig-
nal, but with an cnvelope that attenuates the signal
between formant peaks. This idca, with several modifica-
tions, was first simulated by Sievers and Sondhi [80] in
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1964. Although the idea was shown to be feasible, the
quality attained was not very good.

Since those early days, variants of this idea have been
proposed and implemented by several authors, notably
Weiss, Aschkenasy, and Parsons {81]; Boll [82],
McAulay and Malpass [83]; Ephraim and Malah [84];
and Lim and Oppenhcim [85]. The common features of
all these implementations are to split the noisy speech sig-
nal into frequency regions by passing it through a filter
bank and attenuating the output of each channel by a fac-
tor depending on the estimated signal-to-noise ratio in
that channel. The main differences between these various
proposals arc the methods used to estimate the level of
noise and of speech in various frequency bands. :

A method proposed by Ephraim, Malah, and Juang
[86] might formally be classified as belonging to this cate-
gory. However, it differs from the rest in that it bases its
selective attenuation of the various frequencies on hidden
Markov models (HMMs) of the noise and the speech.

Enhancement of speech signals in noise has been quite
uscful in telephony applications. Some recent implemen-
tations of Etter [87] and Diethorn [88] are some of the
best examples of this application.

Speech Recognition

Speech recognition by machine in a limited and strict sense
can be considered as a problem of converting a speech
waveform into words. It requircs analysis of the speech sig-
nal, conversion of the signal into elementary units of
speech such as phonemes or words, and interpretation of
the converted sequence in order to allow correction of the
misrecogmized words/units or for other linguistic process-
ing such as parsing and speech understanding.

A Brief History of the Research (after [89])

Research in automatic speech recognition by machine has
been done for almost four decadcs The carliest attempts
to devise systems for automatic speech recognition by
machine were made in the 1950s, when various research-
ers tried to exploit the fundamental ideas of acoustic-
phonetics. In 1952, at Bell Laboratories, Davis, Bid-
dulph, and Balashek built a system for isolated digit rec-
ognition for a single speaker [90]. The system relied
heavily on measuring spectral resonances during the
vowel region of cach digit. In an independent effort at
RCA TLaboratories in 1956, Olson and Belar tried to rec-
ognize 10 distinct syllables of a singlc speaker, as embod-
ied in 10 monosyllabic words [91].. The system again
relied on spectral measurements (as provided by an ana-
log filter bank) primarily during vowel regions. In 1959,
at University College in England, Fry and Denes tried to
build a phoneme recognizer to recognize four vowels and
nine consonants [92]. They used a spectrum analyzer and
a pattern matcher to make the recognition decision. A
novel aspect of this research was the use of statistical in-
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formation about allowable sequences of phonemes in
English (a rudimentary form of language syntax) to im-
prove overall phoneme accuracy for words consisting of
two or more phonemes. Another effort of note in this pe-
riod was the vowel recognizer of Forgie and Forgie, con-
structed at MIT Lincoln Laboratories in 1959, in which
10 vowels embedded in a /b/-vowel-/t/ format were rec-
ognized in a speaker-independent manner [93]. Again a
filter-bank analyzer was used to provide spectral informa-
tion, and a time-varying estimate of the vocal-tract reso-
nances was made to decide which vowel was spoken,

In the 1960s several fundamental ideas in speech recog-

nition surfaced and were published. However, the decade
started with several Japanesc laboratories entering the rec-
ognition arena and building special-purpose hardware as
part of their systems. One early Japanese system, described
by Suzuki and Nakata of the Radio Research Lab in Tokyo
[94], was a hardware vowel recognizer. An claborate
filter-bank spectrum analyzer was used along with logic
that connected the outputs of each channel of the spectrum
analyzer (in a weighted manner) to a vowel-decision cir-
cuit, and a majority-decision logic scheme was used to
choose the spoken vowel. Another hardware effort in Ja-
pan was the work of Sakai and Doshita of Kyoto Univer-
sity in 1962, who built a hardware phoncmc recognizer
[95] A hardware speech segmenter was used along with a
zero-crossing analysis of different regions of the spoken in-
put to provide the recognition output. A third Japanese ef-
fort was the digit recognizer hardware of Nagata and
coworkers at NEC Laboratories in 1963 [96]. This effort
was perhaps most notable as the initial attempt at speech
recognition at NEC and led to a long and highly produc-
tive research program. ~

In the 1960s three key research projects were initiated
that have had major implications on the research and de-
velopment of speech recognition for the past 20 years.
The first of these projects was the efforts of Martin and
his colleagues at RCA Laborarories, beginning in the
late 1960s, to develop realistic solutions to the problems
associated with nonuniformity of time scales in speech
events. Martin developed a set of elementary time-
normalization methods, based on the ability to reliably
detect speech starts and ends, that significantly reduced
the variability of the recognition scores [97]. Martin ul-
timatcly developed the method and founded one of the
first companices, Threshold Technology, which built,
marketed, and sold spcech-recognition products. At
about the same time, in the Soviet Union, Vintsyuk pro-
posed the use of dynamic programming methods for
time aligning a pair of speech utterances [98]. Although
the essence of the concepts of dynamic time warping, as
well as rudimentary versions ‘of the algorithms for
connected-word recognition, were embodied in Vint-
syuk’s work, it was largely unknown in the West and did
not come to light until the early 1980s; this was long af-
ter the more formal methods were proposed and imple-
mented by others.
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A final achievement of note in the 1960s was the pio-

“neering rescarch of Reddy in the field of continuous

speech recognition by dynamic tracking of phonemes
[99]. Reddy’s research cventually spawned a long and
highly successful speech-recognition research program at

Carnegie Mcllon University (CMU) (to which Reddy
moved in the late 1960s). One of the first demonstrations

~ of spoken-language understanding at CMU was in 1973.

The Hearsay T System, developed at CMU, was able to
use semantic information to significantly reduce- the
number of alternatives considered by the recognizer. In
the Voice Chess task domain used by Hearsay I, the
number of alternative sentcnces that could be spoken at

“any given point was limited to the synonyms of the possi-

ble moves. There are not vet many systems that cftectively
demonstrate the role of semantics in reducing the com-
plexity of search. However, the principle that syntactic,
semantic, and contextual knowledge sources can be used
to reduce the number of possible alternatives to be con-
sidered in decoding appears to be central to the design of
spoken-language-understanding systems.

In the 1970s speech-recognition research achieved a
number of significant milestones. First, the area of
isolated-word or discrete-uttcrance recognition became a
viable and usable technology based on fundamental stud-
ics by Velichko and Zagoruyko in the Soviet Union
[100], Sakoe and Chiba in Japan [101], and Itakura in the
United States [102]. The Russian studies helped advance
the use of pattern-recognition ideas in speech recogni-
tion; the Japanesc rescarch showed how dynamic pro-
gramming methods could be successfully apphed and
Trakura’s research showed how the ideas of LPC, which
had already been successtully used in low-bit-rate speech
coding, could be extended to bpecch TECOZNILION SYStems
through the use of an appropriate dlstance measure based
on LPC spectral parameters.

Another milestone of the 1970s was the beginning of a
longstanding, highly successful group effort in large-
vocabulary automatic speech dictation at IBM in which
researchers studied three distinct tasks over a period of al-
most two decades (namely, the New Raleigh language
[103] for simple database queries, the laser patent text
language [104] for transcribing laser patents, and the of-
fice correspondence task) with a system called Tangora
[104], tor dictation of simple memos.

Finally, at AT&T Bell Labs (now Bell Labs, Lucent
Technologies, and AT&T Labs-Research), researchers
began a series of experiments aimed at making speech-
recognition systems that were truly speaker-independent
[106] for teleccommunication applications. The intended
application was telecommunication services, where hu-
mans and machines conduct dialogues in order to accom-
plish a task such as routing a call, or making a reservation
on cars or flights. To achieve this goal, a wide range of so-
phisticated algorithms were developed to deal with all
variations of different words and different expressions
across a wide user population. This research has been re-
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A 7. Dimensions of automatic-speech-recognition applications
and the current capabilities (shaded line).

fined over a decade so that the techniques for creating
speaker-independent speech models are now well under-
stood and widcly used.

Just as isolated word recognition was a key focus of
research in the 1970s, the problem of connected-word
recognition was a focus of research in the 1980s. Here
the goal was to create a robust system capable of recog-
nizing a fluently spoken string of words (c.g., digits)
based on matching a concatenated patrern of individual
words. A wide variety of connected-word-recognition
algorithms were formulated and implemented, includ-
ing the two-level dynamic programming approach of
Sakoe at Nippon Electric Corporation (NEC) [107],
the one-pass method of Bridle and Brown at Joint
Speech Research Unit (JSRU) in England [108], the
level-building approach of Myers and Rabincr at Bell
Labs [109], and the frame-synchronous level-building
approach of Lee and Rabiner atr Bell T.abs [110]. Each of
these “optimal” matching procedures had its own imple-
mentational advantages, which were exploited for a
wide range of tasks.

Speech research in the 1980s was characterized by a
shift in technology from template-based approaches to
statistical modeling methods—especially the HMM ap-
proach [111, 112] (discussed later).

The success of hidden Markov modeling gave rise to a
major impetus in the 1980s to large-vocabulary,
continuous-speech-recognition systems by the Defense
Advanced Research Projects Agency (DARPA) commu-
nity. (For ARPA cfforts in speech understanding in the
1970s, see [113].) Major research contributions resulted
from efforts at CMU (notably the well-known SPHINX
system) [114], BBN with the BYBLOS system [115],
Lincoln Labs [116], SRI [117], MIT [118], and AT&T
Bell Labs [119]. The DARPA program has continued
into the 1990s, with emphasis shifting from air-travel in-
formation retricval to a range of different speech-
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understanding applications areas, in conjunction with a
new focus on transcription of broadcast news. At the
same time, speech-recognition technology has been in-
creasingly used within traditional telecom networks to
automate as well as enhance operator services' [120].
Figure 7 shows a plot of various applications of
speech-recognition technologies along the dimensions
of vocabulary size and speaking style. The level of diffi-
culty increases roughly along the diagonal line away
from the lower-left corner, and the shaded bar repre-
sents a threshold of applications that can be supported
by the current technology. Many challenges are still
ahcad of us.

From Speech Analysis to Statistical Modeling
Until the 1970s and 1980s, automatic speech recogni-
tion was mostly considered to be a speech-analysis
problem. The fundamental belief was that if a proper
analysis method were available that could reliably pro-
duce the identity of a speech sound, recognition of
speech would be readily attainable. Such a determinis-
tic view of the speech-recognition problem was advo-
cated by researchers in acoustic-phonetics by citing
such examples as “A stitch in dime saves nine” (in con-
trast to “A stitch in time saves nine”), which they be-
lieve can only be recognized correctly by deriving
acoustic-phonetic features. This view may be appropri-
ate in a microscopic sense but does notaddress the mac-
roscopic question of how a recognizer should be
designed such that, on average (in dealing with all the
input sounds), it achieves the least errors or error rate.
Similarly, template-matching in most practical systems
without a proper statistical foundation does not pro-
vide a rigorous answer to this question, which is best
addressed by Bayes’ decision theory. (Template-
matching with asymptotically dense reference patterns
certainly would fall into the category of nonparametric
statistical-pattern-recognition approaches whose opti-
mality can be analyzed in reference to the Bayes deci-
sion theory formulation.)

Bayes Decision Theory

Bayes decision theory deals with random observations
from an information source consisting of M classcs of
events where the goal is to identify which class of event
the observation belongs to. Let the joint probability of X
(the observation) and C; (the class identity), (X, C)), be
known to the designer of the classifier. In other words,
the designer has full knowledge of the random nature of
the source. To measure the performance of the classitier,
for every class pair (7,2), a cost or loss function, ¢, is de-
fined to signify the cost of classifving (or recognizing) an
observation from class 7 as belonging to a class 7 event.
The loss function 1s generally nonnegative with ¢, = 0
representing correct classification.
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Given an arbitrary observation, X, a conditional loss
for classifying X as belonging to a class, I, event can be de-
tined as

A
R(C|X)=Y ¢, P(C,|X)
f“ (1)

where P(C, | X) is the a posterdors probability. This leads to
a reasonable performance measure for the classifier, 1.
the expected loss, defined as

&= [ R(C(X)|X)p( X)X (2)

where C(X) represents the classifier’s decision, assuming
one of the M “values,” C, C, ... C,,.

For speech recognition, the loss funcrion, e, is usually
chosen to be the zero-one loss function defined by ¢,=0
fori =jand =1fori#j i,j = 1,2 ... M, which assigns no
loss to correct classification and a unit loss to any error, re-
gardless of the class. With this type of loss function, the
expected loss, &, s, thus, the error probability of classifi-
cation or recognition. The conditional loss becomes

R(C|x)=Y P(C,

X)
:I_P(Ci‘X) (3)

‘The optimal classifier that achieves minimum &£ is thus
the one that implements the following:

C(X)=C, it P(C,

X) = max P(c,|x). @

In other words, for minimum-error-rate classification,
the classificr employs the decision rule of Eq. (4), which is
called the maximum a posteriori (MADP) decision. The
minimum error achicved by the MADP decision is called
Bayes risk. (1t's worth being somewhat mathematical here
since formulating the recognizer’s performance in terms
of minimum expected loss is the basis of the paradigm
shift from deterministic pattern matching to statistical-
pattern recognition.)

The required knowledge for an optimal classification
decision is, thus, the a posteriori probabilities for the im-
plementation of the MAP rule. These probabilities, how-
ever, are #ot known in advance and generallv have to be
estimated from a training data ser with known class labels.
Bayes decision theory thus cftectively transtorms the clas-
sifier design problem into a distribution estimation prob-
lem. This 1s the basis of the statistical approach to pattern
recognition.

The a posteriori probability P(C; | X) can be rewritten
as

P(C|X)=P(X

C)P(C,)/ P(X).
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Since P(X) is not a function of the class index and, thus,
has no effect in the MAP decision, the needed probabilis-
tic knowledge can be represented by the class prior, P(C)),
and the conditional probability P(X| C,).

Probability Distributions for Speech

The statistical method, as discussed above, requires that a
proper, usually parametric, distribution form for the ob-
servations be chosen in order to implement the MAP de-
cision. A key issue is what is the right distribution form
for speech utterances? This question involves two essen-
tial aspects: i) finding the speech dimensions that carry
the most pertinent linguistic information, and i) decid-
ing how to statistically characterize the information along
the chosen dimensions.

Based on empirical observations, the HMM was pro-
posed [15, 121, 122] as a simple means to characterize
speech signals. For detailed discussions of the HMM, ref-
erences [112] and [122] provide good insights.

Developments of HUM
The statistical method of hidden Markov modeling for
speech recognition encompasses several interesting prob-
lems, particularly the estimation problem | 111, 123,124,
125]. Given an observation sequence (or a set of se-
quences), X, the estimation problem involves finding the
“right™ model parameter values that specify a source
model (probability distribution) most likely to produce
the given sequence of observations. In solving the estima-
tion problem, we usually use the method of maximum
likelihood (ML); that is, we choose A such that P (X | &)
1s maximized for the given “training” sequence, X.
Several major advances have been made since Baum
[123] proposed the original idea of HMM. Baum’s work
allows estimation of parameters associated with a discrete
HMM (i.c., a modcl in which the probability distribution
of observations in cach Markov state is discrete) or a con-
tinuous density HMM in which the observation density
in a statc satistics a log-concavity assumption. This is a se-
rious limitation on this otherwise powertul modeling
technique because the more the chosen form of the distri-
bution deviates from that of the true distribution, the less
likely it is to be able to achieve Bayes” optimal perform-
ance. In 1982, Liporace [124] broadened the class of
HMMs that can be estimated by the re-estimation algo-
rithm to elliptically symmetric densities. In 1984, Juang
[125] (and subsequently Juang, Levinson, and Sondhi
[126]) was successful in elimimating these prior assump-
tions and limitations on the form of the distribution and
showed a method for estimating HMMs with mixture
densities (which allow arbitrarily close approximation to
the true data distribution). This advance gave HMM a
firm foundation for use as a probability distribution of
speech for statistical-recognition system designs.
Mixture-density HMM has since become-the prevalent
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speech-modeling method and is being used in most
speech-recognition systems.

The Search Problem

Hidden Markov models are finite-state automata in na-
ture and form a powerful union when combined with
finite-state nerworks to represent a language (from pho-
nemes to words to grammars that specify the word se-
quence relationship), particularly for large-vocabulary
continuous-speech-recognition systems [127, 128].
Such networks are often very large, and it becomes im-
portant to find efficient scarch methods that evaluate the
likelihood that a “path™ in such a vast network produces
the observed acoustic signal and then find the best among
all possible paths.

In the carly development of speech recognition, dy-
namic programming (DP) techniques [107-109] were
the focus of the efforts (discussed earlier). Along with the
development of the HMM, the fundamental DP tech-
nique is now often called the Viterbi algorithm [89].

To deal with large-vocabulary, continuous-speech-
recognition problems, the techniques often used are
beam search [129], which prunes unlikely events from
the scarch list to achieve efficiency, and the stack algo-
rithm [130], which attempts to find the best path first.
New algorithms such as the tree-trellis algorithm [131]
which combines a Viterbi forward search and an A4*
[132] backward search are very cfficient in gencrating
N-best results.

From Bayes to Neyman-Pearson
Bayes’ formulation of the pattern-recognition problem
assumes that each unknown observation belongs to one
ot M classes. The maximum a posteriori (MAP) decision
rule guarantees optimal performance, i.c., minimum
Bayes risk or error, if the joint distribution of the observa-
tion and the class, P(X,C), is known. In many speech-
recognition applications, however, the speech pattern to
be recognized may not belong to any of the registered
classes. This may appear in the form of so-called “out-of-
vocabulary” (OOV) words or as a result of disfluency
such as repair or partially spoken words. Another exam-
ple occurs in a particular telecommunication call-routing
application [120] in which the speaker is allowed to em-
bed “keywords” (“collect,” “person-to-person,” “opera-
tor,” “credit card,” etc.) in naturally spoken sentences
(e.g., “T'd like to make a collect call.”). In such cases the
recognizer needs to be able to distinguish keywords from
nonkeywords as well as ro identify which keyword has
been spokcn For this kind of task, namely detection of
target event, a formulation based on hypothcsm testing
becomes necessary [ 133, 134].

Let us denote the target event (c.g., a keyword) by £
and the nontarget event by E. The likelihood ratio test
performed on an unknown observation, X, is defined as
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P(X|E) (21, then X €E
P(X|E) |<t, then X €E

The likelihood ratio is an important parameter for the
calculation of a confidence measure. The threshold de-
fines an operating point on the ROC (receiver operating
characteristic) curve for a desired tradeoft between mis-
detection and false-alarm (false-triggering) errors. For
many voice command and control applications, the abil-
ity to avoid false triggering by spurious sounds is criti-
cally important.

The Neyman-Pearson formalism is also the basis of a
new approach to speech understanding focusing on key
words and key phrases that carry the main intention or
meaning that the speaker would like to deliver [135].

Language Modeling

Just as the goal of acoustic modeling is to find thc regu-
larities and variability in the realization of words and
phrases, the aim of a language model is to find and repre-
sent the relationship among words in sentences. Tradi-
tionally, word relationships are expressed in terms of a
grammar (c.g., [136]). Shannon’s information theory
spawned a new perspective in language modeling in
which word sequence relationships are expressed as con-
ditional probabilities. If W is a sequence of words:

W=ww,--w,

then

P(W)=P(w,w,-w,)
=P(w, )P(w2 |w1 )P( w, ’Wz w, )

'-P(WQ |WQ_l W )

The ensemble of the conditional probabilities (often
truncated to length N, P(w,| w,y., ... W, 1), the so-called
N-gram) forms a probabilistic model of the language.
Specitfic values of the conditional probabilities can be esti-
mated from a large text data set via methods such as maxi-
mum likelihood training |[104]. This corresponds to
modcling a language with a finite-state stochastic gram-
mar that can be effectively used in practice. Although
such a grammar often overgenerates with respect to a
natural Janguage grammar, it has the advantage of com-
plete coverage of natural sentences. If the model is well
trained, then ungrammatical sentences would have lower
probabilities than the grammatical ones.

The statistical language model has been shown to be
effective in large-vocabulary speech recognition. How-
ever, its interaction with the acoustic model, in terms of
the overall accuracy for speech-to-text conversion, is still
not well understood. A language model that achieves
lower perplexity (average word-branching factor) for a
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particular (text) database may not necessarily lead to
higher recognition accuracy.

The Robustness Problem

The statistical appre rach to specch recognition relics heav-
ily on the training data that is available for creating the
reference models. The closer the collected training data is
to the actual signal encountered during operation, the
higher the recognition accuracy is expected to be. The
variability in speech, however, comes from many factors

and is so large (and at times heterogeneous) that only in

rare cases is the amount of collected speech data consid-
ered to be reliably sufficient. What is often observed in
speech-recognition applications is that a recognizer de-
signed on a data sct in the laboratory does not perform as
well in the field. In other words, a mismatch between the
modcling (training) and the operating (testing) condi-
tions usually exists and causes degradation in the recog-
nizer’s performance [137].

Besides the mismatch, several adverse conditions are
also often present during operation, such as ambient and
transmission noise, distortions due to room acoustics and
transducers, and even changes in speech characteristics
due to psychological awareness of talking to a machine
[137]. These conditions need to be dealt with in order for
the recognizer to be able to deliver reliable results. This is
the so-called “robustness” problem in automatic speech
recognition.

One method that achieves robust results is to collect an
extremely large amount of data that reflects the actual op-
crating conditions of the recognizer. With a proper data
set, multi-style training [138] was shown to be effective.
When the distortion is mostly linear, cepstral compensa-
tion in the form of cepstral mean subtraction [139] and
cepstral bias removal [140] is simple and works well. More
recent advances in robust speech recognition include paral-
lel model combination [ 141 ], maximum a posteriori adap-
tation | 142, 143}, and stochastic matching [144].

In spite of these developments, the robustness problem
remains today an acrive research area in speech recognition.

Other Advances

While the paradigm shift to statistical methods put
speech-recognition research on a mathematically sound
basis, it also exposed the limitation of our knowledgc in
pursuing the Baves minimum error. Recall that the opti-
mal performance of a recognition system, in terms of the
ervor rate, is attainable only when complete, accurate
knowledge on the joint observation-class distribution is
available to the designer. Practically, the distribution can
only be approximated and, therefore, the distribution es-
timation approach cannot guarantee any optimality. To
circumvent this problem, in order to obtain best accuracy
given the choice (form) of the recognizer structure (or
distribution function), the method of minimum classifi-
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cation error with a generalized probabilistic descent algo-
rithm [122, 145] was shown to be extremely effective and
suitable for speech-recognition applications. This process
is known as discriminative training.

Another important methodological advance 1s adap-
tive training Adaptation of system parameters is neces-
sary in the following scenarios:

AA spcxkcr dependent system trained on a particular
speaker is to be used by another speaker;

A A speaker-independent system needs to deliver im-
proved performance for a specific speaker;

A A system needs to adapt to the operating environment
to deliver high, robust, performance; or

A A speaker-dependent system needs to track changes in
the speaker’s speech characteristics (e.g., as a result of
catching a cold).

The maximum & posteriori formulation has been pro-
posed as a framework [ . This is also an active re-
search area at present.

Spoken-Language Understanding

Except for dictation and some simple command and con-
trol applications, speech recognition (transcribing the
words spoken) is not nearly as uscful as speech under-
standing (interpreting those words). Although spoken
language has been used for centuries by humans to inter-
actively solve problcms itis only in recent years that it has
begun to be used in human-machine interfaces. It is also
only in recent years that it is possible to envision technol-
ogy that makes speech as accessible as textas an informa-
tion source. This section outlines progress in
spoken-language understanding over the past 50 years,
summarizes current applications in database query and
information extraction, and discusses future possibilities.

A Brief History
Spoken-language understanding as undertaken at prescnt
involves integrating speech recognition (what are the
words?) and natural language understanding (what do
those words mean?). T he past 50 years have witnessed
dramatic changes in each of these component technolo-
gies. Some of these «.lunges in speech recognition have al-
readv been reviewed in this article. Dram"mf~ changes
have also taken place in language understanding. Two im-
portant books crystalizing a formal approach to language
appeared in 1951, one more influenced by algebra (Zellig
Harris>s Methods in Structural Linguistics appeared in
1951), and one more influenced by psychology and the
processing of information by humans (George Miller’s
Language and Communication). Taken together, these
works made it possible to imagine the possibility of auto-
matic speech understanding as the computation of an ab-
stract representation and extraction of information.

In the late 1950s and carly 1960s, one of Harris’s stu-
dents, Noam Chomsky, promoted a new view of the
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proper study of linguistics. This view built on the formal
methods developed by Harris but replaced the previous
focus on language analysis with a new focus on language
generation. This work was influential in advances in speech
synthesis, and it could have served as an important comple-
ment to the earlier analytical work (since, normally, people
both generate and understand language). However, the im-
pact was to define linguistics for a large share of language
rescarchers as the study of how to gencrate speech from the
“perfect” spcaker-hearer. This dramatically limited the use-
tulness of linguistics in language understanding since
analysis (not just gencration) is required for understand-
ing, and since understanding of “imperfect” input needs to
be accounted for. A side-cffect was the interpretation of
“data™: instead of being what people actually said, data
came to be interpreted as the linguist’s intuitions about
what the ideal speaker would say. Suah methods and goals
that are so different from those of engincers led to some-
what of a cultural gap between “linguistic knowledge™ and
“speech knowledge.” Successtul speech understanding re-
quires the bridging of this gap.

In the 1960s and 1970s, as socio-linguists and anthro-
pological linguists remained focussed on obscrving actu-
ally occurring language, computational linguists began
linguistically relevant computations. However, it was
only about 10 years ago that the natural-language-
understmdmg community began to Lhmgc the trend
from the use of “typical® cmmplcs based on intuitions to
test their systems to the use of data from humans produc-
ing language in a communicative setting.

Efforts over the last 10 years show an increasing im-
pact of the two ficlds on cach other (see, e.g.,
[146]-[151]). Although the usc of linguistic knowledge
and techniques in engineering may have lagged the use of
statistical methods in computational linguistics, there are
signs of growth in this arca as engineers tackle the more
abstract linguistic units (with and without collaboration
with natural language experts). These more-abstract units
are more rare, and therefore more difficult to model by
standard, data-hungry engincering techniques. How-
ever, perhaps the biggest recent development for both
speech and language understanding has been the use of
more realistic data. This focus, partially driven by funding
sources (e.g., DARPA) in search of more near-term ap-
plications, has led to some basic research toward theories
that can accommodate the broadest class of language use:
we will be able to “generalize” more of what we learn
from working on conversational speech to recognizing
isolated digits than we would be able to generalize from
digits to conversational speech.

Present Focus: Database Query and

Information Extraction

Narural-langunage understanding presently focuses on ap-
plications of the following two classcs: databasc query
systems and information extraction systems. A natural-
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language-database query system formulates a query, usu-
ally based on one or a few sentences, into a specification of
informaion fields and values in the context of the particu-
lar database’s structure. An information-extraction sys-
tem aims at detecting or summarizing information of
interest from a report (e.g., a newswirc story or broad-
cast) in general domains. A pioneering effort that utilized
tormal models of linguistic structure for “database query”
was the work by Levinson and Shipley [152], which pre-
ceded much of the current focus and taxonomy of ap-
proaches.

Evaluation of spoken-language-understanding sys-
tems is required to estimate the state of the art ob]ecnvclv
However, evaluation itsclf has been one of the challenges
of spokcn language undersrandmg The only systematic
program with broad participation for assessing speech
understanding has been the (D)ARPA benchmarks fo-
cussed on the air travel planning domain (see
[153]-[155]). Since it has not yet been possible to agree
on a representation for meaning, these evaluations werce
carried out by human assessment of the results of a data-
base query. Trained annotators translated the human
queries into formal database queries with additional an-
notations for ambiguitics and context dependencies. For
cxample, a query, “T want flights from Boston to DC” is
expected to produce a table of flights, listing carriers,
flight numbers, departing times, and arrival times, etc.
Annotation of this type proved to be an expensive propo-
sition, and vet it did not allow for the evaluation of the in-
teractive aspect of the task, since systems were evaluated
only on the results returned from a database. Although
ong test set was set aside for future evaluations, these tests
have not been used since 1994.

In the last Air Travel Information Service (ATIS)
evaluation of DARPA (December 1994) [155] the
speech-recognition word error rate in the best system was
under 2%; uttcrance error rates were about 13% to 25%.
The utterance-understanding error rates ranged from 6%
to 41%, although about 25% of the urterances were con-
sidered impossible to cvaluate in the testing paradigm
(the trained annotator could not determine what the cor-
rect response should be). Hence, these figures do not con-
sider quite the same set. For limited domains, thesc error
rates arc probably adequate for many potential applica-
tions. Since conversational repairs in human-human dia-
logue can often be in the ranges observed for these
systems, the bounding factor in applications may be not
the error rates so much as the ability of the svstem to man-
age and recover from errors.

The state of the art in information extraction, based on
the DARPA Message Understanding Conference
(MUC) evaluations, spans a wide range [156]. Informa-
tion extraction addresses the problem of updating struc-
tured databases (relational or object-oriented) from
speech or text. For instance, suppose one needs to update
a databasc of the officers of a corporation with the posi-
tions that they hold from broadcast news or newswire
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stories that report changes in the company officers. The
goal is not only to scan source speech and text for such an-
nouncements, but also to automatically update the data-
base. For the “named entity” application, where the
system has to find all named organizations, locations, per-
sons, dates, times, monetary amounts, and percentages,
the error rate from text is 5%. For the “scenario template”
application, where the system has to extract complex (but
prespecified) relationships in well-defined domains (such
as changes in corporate officers) in an open source (such
as the Wall Street Journal), the error rate for finding the
correct elements of the templates is around 45%.

Researchers are still discussing possibilities for some
type of limited speech understanding that would be less
costly and more relevant in applications. Part-of-speech
tagging has been discussed, but it has not been shown
that good part-of-speech ragging is either necessary or
sufficient for good understanding. Other possibilities in-
clude dividing spoken conversations into linguistic units
more like sentence and phrase boundaries, finding the
main verb (if any) in that unit, and/or indicating words
with cxtra emphasis.

Future Challenges

Speech-understanding research was nonexistent 50 years
ago. The dramatic changes in speech recognition and in
language understanding during the past 50 years, com-
bined with political changes and changes in the computing
infrastructure, led to the state of the art that we observe to-
day. Challenges remain in several areas (see [157]):

A Integration. There is much evidence that human
speech understanding involves the integration of a great
variety of knowledge sources, including knowledge of the
world or context, knowledge of the speaker and/or topic,
lexical frequency, previous uses of a word or a semanti-
cally related topic, facial expressions (in face-to-face com-
munication), prosody. in addition to the acoustic
attributes of the words. Our systems could do much bet-
ter by integrating these knowledge sources.

A Prosody. Prosody can be defined as information in
speech that is not localized to a specific sound segment, or
information that does not change the identity of speech
segments (see, e.g., [158], [159], [160]). Such informa-
tion includes the pitch, duration, energy, stress, and other
supra-segmental attributes. The segmentation (or group-
ing) function of prosody may be related more to syntax
(with some relation to semantics), while the saliency or
prominence function may play a larger role in semantics
and pragmatics than in syntax. To make maximum use of
the potential of prosody will likely require a well-
integrated system, since prosody is related to linguistic
units not just at and below the word level, but also to ab-
stract units in svntax, semantics, discourse, and pragmat-
ics. Our systems make quite limited (or no) use of
prosody at present.
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A Spontaneous Speech. The same acoustic attributes
that indicate much of the prosodic structure (e.g., pitch,
stress, and duration patterns) are also very common in as-
pects of spontaneous speech that seem to be more related
to the speech planning process than to the structure of the
utterance. For example, a long syllable followed by a
pause can indicate either an important syntactic boundary
or that the speaker is planning the rest of the utterance.
Similarly, a prominent syllable may mark new or impor-
tant information, or a restart intended to replace some-
thing said in crror. Although spontancous speech effects
are quite common in human communication and may be
cxpected to increase in human machine discoursc as peo-
ple become more comfortable conversing with machins,
modeling of speech disfluencies is only just beginning
(see, e.g., [161], [162]).

Much of our thinking about spoken language has been
focused on its use as an interface in human-machine inter-
actions mostly for information access and extraction.
With increases in cellular phone use and dependence on
networked information resources, and as rapid access to
information becomes an increasingly important eco-
nomic factor, telephorie access to data and telephone
transactions will no doubt risc dramatically. There is a
growing interest, however, in viewing spoken language
not just as a means to access information, but as, itself, a
source of information. Important attributes that would
make spoken language more useful in this respect in-
clude: random access, sorting (e.g., by speaker, by topic,
by urgency), scanning, and editing. How could our lives
be changed by such tools? Enabling such a vision chal-
lenges our systems still further in noise robustncss and in
spontancous speech effects. Further, the resulting in-
creased accessibility to information from conversational
speech will likely also raise increased concern for privacy
and security, some of which may be addressed by control-
ling access by speech: speaker identification and verifica-
tion (see the next section).

While such near-term application possibilitics arc cx-
citing, we can envision an even greater information revo-
lution on par with the development of writing systems if
we can successfully meet the challenges of spoken lan-
guage both as a medium for information access and as it-
self a source of information. Spoken language is still the
means of communication used first and foremost by hu-
mans, and only a small percentage of human communica-
tion is written. Automatic-spoken-language
understanding can add many of the advantages normally
associated only with text (random access, sorting, and ac-
cess at different times and places) to the many benefits of
spoken language. Making this vision a reality will require
significant advances.

Speaker Verification and Identification

Speaker recognition is the process of automatically recog-
nizing a speaker by using speaker-specific information in-
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cluded in his or her speech [163-166]. This technique can
be used to verify the identity claimed by people .1cccssmg
systems; that is, it enables control of access to various
services by voice. Applicable services include voice dial-
ing, banking over a telephone network, telephone shop-
ping, databasc access services, information and
reservation services, voice mail, security control for confi-
dential information, and remote access to computers.

Speaker recognition can be classified into speaker
identification and speaker verification. Closed-set speaker
identification is the process of determining which of the
registered speakers a given utterance comes from.
Speaker verification is the process of accepting or reject-
ing the identity claim of a speaker. Most of the applica-
tions in which voice is used to contirm the identity claim
of a speaker require speaker verification.

Speaker-recognition methods can also be divided into
text-dependent and text-independent methods. The
former requires the speaker to provide utterances of key
words or sentences that arc the same text for both training
and recognition, whereas the latter does not rely on a spe-
cific, prescribed text. The text-dependent methods are
usually based on template-matching techniques in which
the time axis of an input speech sample and each reference
template or reference model of the registered speakers are
aligned, and the similarity between them is accumulated
from the beginning to the end of the utterance [164 167,
168]. Since this method can directly exploit voice indi-
viduality associated with each phoncmc or syllable, it gen-
erally achieves higher-recognition performance than the
text- mdcpcndent model.

However, there are several applications, such as foren-
sic and surveillance applications, in which predetermined
keywords cannot be used. Moreover, human beings can
often recognize speakers irrespective of the content of the
utterance. Thcrctorc text- mdependent methods have re-
cently attracted more attention. Another advantage of
text-independent recognition is that it can be done se-
quentially, until a desired level of significance is reached,
without the annoyance of the speaker having to repeat the
key words again and again.

Both text-dependent and text-independent methods
have a serious weakness. These systems can easily be de-
feated, becausc someone who plays back the recorded
voice of a registered speaker uttering key words or sen-
tences into the microphone can be accepted as the regis-
tered speaker. To cope with this problem, a
text-prompted speaker-recognition method has recently
been proposed.

Basic Structures of Speaker-Recognition Systems
The fundamental techniques, such as signal analysis,
modeling and pattern matching, in a speaker identifica-
tion/verification system are essentially identical to those
used in a speech-recognition system. What differentiates
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them is the need to find speaker-specific information and
the explicit usc of hypothesis analysis and thresholding,

In the closed-set speaker-identification task, a speech
utterance from an unknown speaker is analyzed and com-
pared with speech models of known speakers. The un-
known speaker is identified as the speaker whose model
best matches the input utterance. In speaker verification,
an identity claim is made by an unknown speaker, and an
utterance of this unknown speaker is compared with the
model for the speaker whose identity is claimed. Tf the
match is good enough, that is, above a threshold, the
identity claim is accepted. A high threshold makes it diffi-
cult for impostors to be accepted by the system, but at the
price of falsely rejecting valid users. Conversely, a low
threshold enables valid users to be accepted consistently,
bur at the price of accepting impostors. To set the thresh-
old at the desired level of customer rejection and impostor
acceptance, it is necessary to know the distribution of cus-
tomer and impostor scorcs.

The effectiveness of speaker-verification systems can
be evaluated by using the receiver operating characteris-
tics (ROC) curve, which shows the system performance
in terms of two probabilitics: the probability of correct
acceptance and the probability of incorrect acceptance.
By varving the decision threshold, a point on the ROC
curve can be sclected for operating purposes (to achieve
the desired tradeoft between the two probabilities)
[169]. The equal-error rate (EER) is commonly accepted
as an overall measure of the system performance. It corre-
sponds to the threshold at which the false acceptance rate
is equal to the false rejection rate.

From Spoken Language
to Multimodal Communication

Human-machine communication (HMC) is cvolving
from text interface (i.e., keyboard and screen display) to
spoken language (automatic speech recognition and un-
derstanding) to multimodal communication involving
difterent senses (audio, visual, tactile, or even gestural)
with synergy [170, 171]. Human communication in-
cludes the perception or production of a message or of an
action as an explicit or implicit cognitive process. For per-
ception, there are the “five senses™ hearing, vision,
touch, taste, and smell, with reading as a specific visual
operation, and speech perception as a specific hearing op-
eration. For production, it includes sound (speech, or
general sound production) and vision (generation of
dl awings, graphics or, more typically, written messages).
Cognition includes the means to understand or to gener-
ate a message or an action from a knowledge source.
The machine serves as a means for the human being to
communicate with the world. In the domain of HMC,
the computer has various artificial perception abilities:
speech, character, graphics, and gesture or movement
recognition. This recognition function can be accompa-
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nied by the recognition of the identity of the person
through the same modcs Gesture or movement recogni-
tion is made through the use of special equipment (such
as the VPL DataGlove or DataSuit, or the Cyberglovc),
which includes position sensors. Other sensors allow for
recognizing the direction of viewing (through an oculo-
meter or through a camera). Reciprocally, the computer
can produce messages using various modes ranging from
the display of a textual or graphical (including icons) mes-
sage tO CONCEpt-to-text gencration or summary genera-
tion, speech synthesis, and static or animated image
synthesis. The visual information can be produced in
stereovision or within a complete environment in which
the uscr is immersed (“virtual” reality), or it can be super-
imposed on the real environment (“augmented” reality),
which would require the wearing of special equipment.
The provided information can be multimedia, including
text, real or synthetic images, and sound. It is also possi-
ble, in the gestural communication mode, to produce a
kinesthetic feedback, allowing for the generation of simu-
lated solid objects.

The machine also needs to have cognitive abilities. Tt
must take into account a model of the user, of the world
on which he acts, of the relationship between those two
clements, but also of the task that has to be carned out and
of the structures of the dialogue. It must be able to reason,
to plan a linguistic or nonlinguistic act in order to rcach a
target, to solve problems and aid in decision making, to
merge information coming from various sensors, and to
learn new knowledge or new structurcs. Multimodal
communication raises the problem of co-reference (e.g.,
when the user designates an object, or a spot, on the com-
puter display and pronounces a sentence relative to an ac-
tion on that object).

To accomplish the goal of multimodal human-
machine communication, while it is important to under-
stand the human functions in order to get some inspira-
tion when designing a system, of greater importance is
the ability to model in the machine the user with whom it
has to communicate. It is also necessary to model the
world in which they occur. This extends HMC to various
research domains such as room acoustics, physics, or op-
tics, and also physiology and cognitive psychology (for
generating intelligent agents or avatars).

Linking Language and Image

With the coming of “intelligent™ images, the relationship
between language and image is getting closer [172]. It
justifies advanced human-machine communication
modes. In an “intelligent” synthetic image ( which implies
the modeling of physical characteristics of the real world),
a sentence such as “Throw the ball on the table” will in-
duce a complex scenario where the ball will rebound on
the table, then fall on the ground. This scenario would be
difficult to describe to the machine with usnal low-level
computer languages or interfaces. Visual communication
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is directly involved in human-to-machine communica-
tion (¢.g., for recognizing the user or the expressions on
his face), but also indirectly involved in the building of a
visual reference that will be shared by the human and the
machine, allowing for a common understanding of the
messages that they exchange (for example, in the under-

~ standing of the command “Take the knife which is on the

small marble table” addressed to a robot). Instead of con-
sidering the user on one side and the machine on the other
side, the user himself may become an element of the simu-
lated world: acting and moving in this world, and getting
reactions from it.

There are several similarities in the research concern-
mg these different communication modes. In speech, vi-
sion, and gesture processing, similar methods are used for
signal processing, coding and pattern recognition. The
same approach based on statistical modeling has been ap-
plicd with similar algorithms to various domains of HMC
such as speech recognition, visual recognition of charac-
ter or object, or gesture [173]. This approach requires
large databases, which are now available for speech, char-
acters and text data, but have yet to be made available for
visual, gestural, and multimodal data.

Humans use multimodal communication when they
speak to each other, cxcept in the case of pathology or of
telephone communication. Movements of the face and
lips, as well as expression and posture, will be involved in
the spoken language communication process. Studies in
speech intelligibility also showed that having both visual
and audio information improves the informarion com-
munication, especially when the message is complex or
when the communication takes place in a noisy environ-
ment [174], [175]. This has led to studies in bimodal
speech synthcsis and recognition.

In the ficld of speech synthesis, models of speaking
faces were designed and used in speech dialogue systems
[176]. The face and lip movements were synthesized by
studying those movements in human speech production
through image analysis. It resulted in text-to-ralking
heads synthesxs systems. Studies in using the visual mfor-
mation in speech communication (e.g., using the i image
of the lips only, or the bottom of the face or the entire
face) showed that the intelligibility of the synthesized
speech was improved for the human “listener,” especially
in a noisy environment. In the same way, the use of the
visual face information, and especially the lips, in speech
recognition was studied, and results showed that using
both types of information gives better recognition per-
formances than using only the audio or only the visual in-
formation, especially in a noisy environment [177, 178].

While this visual information on the human image can
be used as part of the spoken-language-communication
process, other types of visual information related to the hu-
man user can also be considered by the machine. The fact
that the user is in the room, or is seated in front of the com-
puter display, as well as the dircction of his/her gaze can be
used in the communication process (e.g., waiting for the
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presence of the human in the room to synthesize a mes-
sage, or choosing between a graphic or spoken mode for
delivering information, depending of whether the user is
in front of the computer or somewhere else in the room,
adjusting the synthesis volume depending on how far he
is from the loudspcaker, adapting a microphonc array on
the basis of the position of the user in the room [179],
checking what the user is looking at on the screen in order
to deliver information relative to that area [180], etc.)

Multimodal Multimedia Communication
Communication can also involve several verbal and non-
verbal media. Berkley and Flanagan [181] designed the
AT&T Bell Labs HuMaNet system for multipoint con-
ferencing over the public telephone network. The system
fearures hands-free sound pick up through microphone
arrays, voice control of call set-up, data access and display
through speech recognition, speech synthesis, speaker
verification for privileged data, still image and stereo im-
age coding. It has been extended to also include tactile in-
teraction, gesturing and handwriting inputs, and face
recognition [182]. In Japan, ATR has a similar advanced
teleconferencing program, including 3D object model-
ing, face modeling, voice command, and gestural com-
munication. At IRST, Stringa et al. [183] have designed,
within the MAIA project, a multimodal interface (speech
recognition and synthesis, and vision) to communicate
with a “concicrge” of the institute, which answers ques-
tions on the institute and its researchers, and with a mo-
bile robot, which has the task of delivering books or
accompanying visitors.

In the ESPRIT “Multimodal-Multimedia Automated
Service Kiosk” (MASK) project, speech recognition and
synthesis are used in parallel with other input (touch
screen) and output (graphics) means [184]. The applica-
tion is to provide railway travel information to railway
customers, including the possibility of making reserva-
tions. The users get both visual (graphics) and audio
(speech synthesis) information, and they may choose to
either use speech or tactile input. First studies show that
subjects tend to use one mode or the other, based on its
apparent reliability or on their own preference, but they
will not mix them up during the dialog.

In the closcly related domain of multimedia informa-
tion processing, interesting results have been obtained in
the Informedia project at CMU on the automatic index-
ing of TV broadcast data (news), and multimedia infor-
mation query by voice. The system uses continuous
speech recognition to transcribe the speech. It segments
the video information in sequences, and uses natural-
language-processing techniques to automatically index
those sequences from the result of the textual transcrip-
tions. Although the speech recognition is far from being
perfect (about 50% recognition rate), it seems to be good

enough for allowing the user to get a sufficient amount of

multimedia information trom his queries [185].
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Conclusion

We attempted to provide a comprehensive, albeit cur-
sory, review of how speech signal-processing technolo-
gies progressed in the past as well as the challenges ahead.
Speech processing is one of the most intriguing areas of
intelligent signal processing because humans generate,
use, and appreciate speech on a daily basis. Speech re-
search has attracted scientists as an important discipline
and has created tcchn()logmal impact on society and is ex-
pected to turther flourish in this era of machine intelli-
gence and human-machine interaction. We hope this
article brings about understanding as well as inspiration.
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