THE PATH-PARTITION PROBLEM IN BIPARTITE DISTANCE-HEREDITARY GRAPHS

Hong-Gwa Yeh* and Gerard J. Chang*

Abstract

A path partition of a graph is a collection of vertex-disjoint paths that cover all vertices of the graph. The path-partition problem is to find a path partition of minimum size. This paper gives a linear-time algorithm for the path-partition problem in bipartite distance-hereditary graphs.

1. Introduction

A path partition of a graph is a collection of vertex-disjoint paths that cover all vertices of the graph. The path-partition problem is finding the path-partition number $p(G)$ that is the minimum size of a path partition of G. Note that G has a Hamiltonian path if and only if $p(G)=1$. Since the Hamiltonian path problem is $\mathcal{N} \mathcal{P}$-complete for planar graphs [7], bipartite graphs [8], chordal graphs [8], chordal bipartite graphs [12], and strongly chordal graphs [12], so is the path-partition problem. On the other hand, the path-partition problem is polynomially solvable for trees [11,14], interval graphs $[1,3]$, cographs $[4,5]$, and block graphs $[15,16]$. In this paper we present a linear-time algorithm for the path-partition problem in bipartite distance-hereditary graphs. For technical reasons, we consider the following generalization of the path-partition problem. For a set S of vertices in a graph $G=(V, E)$, an S-path partition is a path partition \mathcal{P} in which every vertex of S is an endpoint of a path in \mathcal{P}. The S-path-partition problem is to determine the S-path-partition number $p(G, S)$ that is the minimum size of an S-path partition of G. Note that the path-partition problem is a special case of the S-path-partition problem, since $p(G)=p(G, \emptyset)$.

[^0]We now review distance-hereditary graphs. Suppose A and B are two sets of vertices in a graph $G=(V, E) . G[A]$ denotes the subgraph of G induced by A. The deletion of A from G, denoted by $G-A$, is the graph $G[V-A]$. The neighborhood $N_{A}(B)$ of B in A is the set of vertices in A that are adjacent to some vertex in B. The closed neighborhood $N_{A}[B]$ of B in A is $N_{A}(B) \cup B$. For simplicity, $N_{A}(v), N_{A}[v], N(B)$, and $N[B]$ stand for $N_{A}(\{v\}), N_{A}[\{v\}]$, $N_{V}(B)$, and $N_{V}[B]$, respectively. The degree of a vertex v is $\operatorname{deg}(v)=|N(v)|$. A vertex x is called a leaf of G if $\operatorname{deg}(x)=1$. The distance $d_{G}(x, y)$ between two vertices x and y in G is the minimum length of an $x-y$ path in G. The hanging h_{u} of a connected graph $G=(V, E)$ at a vertex $u \in V$ is the collection of sets $L_{0}(u), L_{1}(u), \ldots, L_{t}(u)$ (or $L_{0}, L_{1}, \ldots, L_{t}$ if there is no ambiguity), where $t=\max _{v \in V} d_{G}(u, v)$ and $L_{i}(u)=\left\{v \in V: d_{G}(u, v)=i\right\}$ for $0 \leq i \leq t$. For any $1 \leq i \leq t$ and any $v \in L_{i}$, let $N^{\prime}(v)=N(v) \bigcap L_{i-1}$. Note that the notion $N^{\prime}(v)$ depends on the hanging h_{u}. A vertex $v \in L_{i}$ with $1 \leq i \leq t$ has a minimal neighborhood in L_{i-1} if $N^{\prime}(v) \subseteq N^{\prime}(w)$ or $N^{\prime}(v) \cap N^{\prime}(w)=\emptyset$ for any $w \in L_{i}$.

A graph is distance-hereditary if every two vertices in a connected induced subgraph have the same distance as in the original graph. Distance-hereditary graphs were introduced by Howorka [10]. Characterizations and recognition of distance-hereditary graphs were studied in $[2,6,9]$. The following theorem contains some useful properties used in this paper.

Theorem 1. ([2, 9]) Suppose $h_{u}=\left(L_{0}, L_{1}, \ldots, L_{t}\right)$ is a hanging of a connected distance-hereditary graph G at u. For each $1 \leq i \leq t$ and any two vertices $x, y \in L_{i}, N^{\prime}(x) \cap N^{\prime}(y)=\emptyset$ or $N^{\prime}(x) \subseteq N^{\prime}(y)$ or $N^{\prime}(y) \subseteq N^{\prime}(x)$. Consequently, for each $1 \leq i \leq t$, L_{i} contains a vertex v having a minimal neighborhood in L_{i-1}. In addition, for such a vertex v, we have $N_{V-N^{\prime}(v)}(x)=$ $N_{V-N^{\prime}(v)}(y)$ for every pair of vertices x and y in $N^{\prime}(v)$.

Note that for any bipartite distance-hereditary graph G with a hanging $h_{u}=\left(L_{0}, L_{1}, \ldots, L_{t}\right)$, each $G\left[L_{i}\right]$ contains no edges. Consequently, $N(x)=$ $N^{\prime}(x)$ for any $x \in L_{t}$. We shall frequently use this fact in Sections 2 and 3.

In this paper, we use the following notation. For a graph G and vertices w, x, y, we use $G-x$ for $G-\{x\}, G-x-y$ for $(G-\{x\})-\{y\} \cong G-\{x, y\}$, and $G-w-x-y$ for $G-\{w, x, y\} \ldots$ etc. For a set A and elements x and y, we use $A-x$ for $A-\{x\}, A+x$ for $A \cup\{x\}, A-x-y$ for $(A-\{x\})-\{y\}=A-\{x, y\}$, $A-x+y$ for $(A-\{x\}) \cup\{y\} \ldots$ etc.

2. Path Partition in Bipartite Distance-hereditary Graphs

To give a linear-time algorithm for the path-partition problem in bipartite
distance-hereditary graphs, we first establish three basic lemmas that are used later.

Lemma 2. If x is a leaf of G, then $p(G, S)=p(G, S+x)$.
In the following two lemmas, suppose $G=(V, E)$ is a connected bipartite distance-hereditary graph with a hanging $h_{u}=\left(L_{0}, \ldots, L_{t}\right)$ at u and $t \geq 1$. According to Lemma 2, for each vertex x in G, we may assume that either $x \in S$ or $x \notin S$ with $|N(x)| \geq 2$.

Lemma 3. Suppose $x \in L_{t}$ has a minimal neighborhood in L_{t-1} and $N(x) \subseteq S$.
(1) If $x \in S$, then $p(G, S)=p(G-x-y, S-x-y)+1$ for any $y \in N(x)$.
(2) If $x \notin S$ and $|N(x)| \geq 2$, then $p(G, S)=p(G-w-x-y, S-w-y)+1$ for any two distinct vertices $w, y \in N(x)$.

Proof. (1) Since an ($S-x-y$)-path partition of $G-x-y$, together with the path $x y$, forms an S-path partition of $G, p(G, S) \leq p(G-x-y, S-x-y)+1$. On the other hand, suppose \mathcal{P} is an optimal S-path partition of G. Since $N[x] \subseteq S$, for any optimal S-path partition \mathcal{P} of G either $x \in \mathcal{P}$ or $x y^{\prime} \in \mathcal{P}$ for some $y^{\prime} \in N(x)$. For the case in which $x \in \mathcal{P}$, let y be an endpoint of some $P \in \mathcal{P}$. Then, $\mathcal{P}^{\prime}=\mathcal{P}-x-P+x y+(P-y)$ is another optimal S-path partition of G. So, in any case, we may assume that $x y^{\prime} \in \mathcal{P}$ for some $y^{\prime} \in N(x)$. Since x has a minimal neighborhood in L_{t-1}, by Theorem $1, N\left(y^{\prime}\right)=N(y)$ and thus we may interchange the roles of y^{\prime} and y to assume that $x y \in \mathcal{P}$. Hence, $\mathcal{P}-x y$ is an $(S-x-y)$-path partition of $G-x-y$. Thus, $p(G, S)-1 \geq$ $p(G-x-y, S-x-y)$. Therefore, $p(G, S)=p(G-x-y, S-x-y)+1$.
(2) Since an $(S-w-y)$-path partition of $G-w-x-y$, together with the path $w x y$, forms an S-path partition of $G, p(G, S) \leq p(G-w-x-y, S-$ $w-y)+1$. On the other hand, suppose \mathcal{P} is an optimal S-path partition of G. Let P be the path of \mathcal{P} that contains x. By $N(x) \subseteq S,|N(x)| \geq 2$, and $x \notin S$, we have that P is x or $x y^{\prime}$ or $w^{\prime} x y^{\prime}$. By an argument similar to that for (1), we may assume that $w x y \in \mathcal{P}$. Hence, $\mathcal{P}-w x y$ is an $(S-w-y)$-path partition of $G-w-x-y$. Thus, $p(G, S)-1 \geq p(G-w-x-y, S-w-y)$. Therefore, $p(G, S)=p(G-w-x-y, S-w-y)+1$.

Lemma 4. Suppose $x \in L_{t}$ has a minimal neighborhood in L_{t-1} and $N(x) \nsubseteq S$.
(1) If $x \in S$, then $p(G, S)=p(G-x, S-x+y)$ for any $y \in N(x)-S$.
(2) If $x \notin S$ and $|N(x)| \geq 2$, then $p(G, S)=p(G-x-y, S)$ for any $y \in N(x)-S$.

Proof. (1) Suppose \mathcal{P} is an optimal $(S-x+y)$-path partition of $G-x$ such that y is an endpoint of some path $P \in \mathcal{P}$. Then, $\mathcal{P}-P+P x$ is an S-path partition of G and so, $p(G, S) \leq p(G-x, S-x+y)$. On the other hand, suppose \mathcal{P} is an optimal S-path partition of G. Suppose the path P in \mathcal{P} containing x is $x v_{1} v_{2} \ldots v_{r}$, where $r \geq 0$. For the case of $r=0$, let $P_{1} y P_{2}$ be the path of \mathcal{P} that contains y. Then $\mathcal{P}-x-P_{1} y P_{2}+P_{1} y+P_{2}$ is an $(S-x+y)-$ path partition of $G-x$. For the case of $r \geq 1$, we have $y, v_{1} \in N(x)$. Since x has a minimal neighborhood in L_{t-1}, by Theorem $1, N(y)=N\left(v_{1}\right)$. Thus, we may interchange the roles of y and v_{1} and assume that $x y v_{2} \ldots v_{r} \in \mathcal{P}$. Then, $\mathcal{P}-P+y v_{2} \ldots v_{r}$ is an $(S-x+y)$-path partition of $G-x$. In any case, $p(G, S) \geq p(G-x, S-x+y)$. Therefore, $p(G, S)=p(G-x, S-x+y)$.
(2) Suppose \mathcal{P} is an optimal S-path partition of $G-x-y$. Since $\left|N_{G}(x)\right| \geq$ 2, without loss of generality, we may assume that \mathcal{P} has a path $P=v_{0} v_{1} \ldots$ $v_{i} v_{i+1} \ldots v_{k}$ such that $v_{i} \in N_{G}(x)$. Since x has a minimal neighborhood in L_{t-1}, by Theorem $1, N\left(v_{i}\right)=N(y)$. Thus, $P^{\prime}=v_{0} v_{1} \ldots v_{i} x y v_{i+1} \ldots v_{k}$ is a path of G. Therefore, $\mathcal{P}-P+P^{\prime}$ is an S-path partition of G and so $p(G, S) \leq p(G-x-y, S)$. On the other hand, suppose \mathcal{P} is an optimal S-path partition of G. Consider first the case in which x and y lie on path

$$
P=v_{0} v_{1} \ldots v_{i} x v_{i+1} \ldots v_{j} y v_{j+1} \ldots v_{k} \in \mathcal{P} .
$$

By Theorem 1, v_{i} is adjacent to v_{j} and v_{i+1} is adjacent to v_{j+1}. Hence,

$$
P^{\prime}=v_{0} v_{1} \ldots v_{i-1} v_{i} v_{j} v_{j-1} v_{j-2} \ldots v_{i+2} v_{i+1} v_{j+1} v_{j+2} \ldots v_{k}
$$

is a path in $G-x-y$ containing all vertices of P except x and y. Therefore, $\mathcal{P}-P+P^{\prime}$ is an S-path partition of $G-x-y$. Next consider the case in which x and y lie on two distinct paths
$P_{1}=v_{0} v_{1} \ldots v_{i} x v_{i+1} \ldots v_{k-1} v_{k} \in \mathcal{P}$ and $P_{2}=u_{0} u_{1} \ldots u_{j} y u_{j+1} \ldots u_{k^{\prime}-1} u_{k^{\prime}} \in \mathcal{P}$.
By Theorem 1, v_{i} is adjacent to u_{j+1} and u_{j} is adjacent to v_{i+1}. Hence,

$$
P_{1}^{\prime}=v_{0} v_{1} \ldots v_{i-1} v_{i} u_{j+1} u_{j+2} \ldots u_{k^{\prime}-1} u_{k^{\prime}}
$$

and

$$
P_{2}^{\prime}=u_{0} u_{1} \ldots u_{j-1} u_{j} v_{i+1} v_{i+2} \ldots v_{k-1} v_{k}
$$

are paths in $G-x-y$ containing all vertices of P_{1} and P_{2} except x and y. Therefore, $\mathcal{P}-P_{1}-P_{2}+P_{1}^{\prime}+P_{2}^{\prime}$ is an S-path partition of $G-x-y$. In any case, we have that $p(G, S) \geq p(G-x-y, S)$. Therefore, $p(G, S)=p(G-x-y, S)$.

Based on Lemmas 2 to 4, we have the following algorithm for the S-path partition problem in bipartite distance-hereditary graphs.

Algorithm PP-dh. Find the S-path partition number of a connected bipartite distance-hereditary graph.

Input: A connected bipartite distance-hereditary graph $G=(V, E)$ and $S \subseteq V$.
Output: The S-path partition number $p(G, S)$.

Method:

```
\(P(G, S) \longleftarrow 0 ;\)
determine the hanging \(h_{u}=\left(L_{0}, L_{1}, \ldots, L_{t}\right)\) of \(G\) at a vertex \(u\);
for \(i=t\) to 1 step -1 do
\{ let \(L_{i}=\left\{x_{1}, x_{2}, \ldots, x_{j}\right\}\);
    sort \(L_{i}\) such that \(\left|N^{\prime}\left(x_{i_{1}}\right)\right| \leq\left|N^{\prime}\left(x_{i_{2}}\right)\right| \leq \ldots \leq\left|N^{\prime}\left(x_{i_{j}}\right)\right|\);
    for \(k=1\) to \(j\) do
    \(\left\{\quad x \longleftarrow x_{i_{k}}\right.\);
        if \(\operatorname{deg}(x)=1\) then \(S \longleftarrow S+x\);
        if \(N(x) \subseteq S\)
        then \(\{P(G, S) \longleftarrow P(G, S)+1\);
            if \(x \in S\) then \(\{\) pick \(y \in N(x)\);
                                    \(G \longleftarrow G-x-y ;\)
                                    \(S \longleftarrow S-x-y ;\)
                                    \(\left.L_{i-1} \longleftarrow L_{i-1}-y ;\right\}\)
            else \(\{\) pick \(w, y \in N(x)\);
                                    \(G \longleftarrow G-w-x-y ;\)
                                    \(S \longleftarrow S-w-y ;\)
                                    \(\left.L_{i-1} \longleftarrow L_{i-1}-w-y ;\right\}\)
            \}
        else \(\{\) pick \(y \in N(x)-S\);
                if \(x \in S\) then \(\{G \longleftarrow G-x\);
                        \(S \longleftarrow S-x+y ;\}\)
                        else \(\{G \longleftarrow G-x-y\);
                        \(\left.L_{i-1} \longleftarrow L_{i-1}-y ;\right\}\)
            \}
    \}
\}
```

Theorem 5. Algorithm $P P$-dh finds the S-path-partition number of a bipartite distance-hereditary graph $G=(V, E)$ with $S \subseteq V$ in linear time.

Proof. The correctness of the theorem follows from Lemmas 2 to 4 . In order to make the running time linear, we can use a bucket-sort to sort L_{i}.

3. Discussion

This paper gives a linear-time algorithm for the path-partition problem in bipartite distance-hereditary graphs by using the concepts of hanging and a vertex with a minimal neighbor. The same idea also works for the Hamiltoniancycle problem in bipartite distance-hereditary graphs.

Lemma 6. Suppose $G=(V, E)$ is a connected bipartite distance-hereditary graph with a hanging $h_{u}=\left(L_{0}, L_{1}, \ldots, L_{t}\right)$ at u such that $t \geq 2$ and $|V| \geq 5$. If $x \in L_{t}$ has a minimal neighborhood in L_{t-1} and $\operatorname{deg}(x) \geq 2$, then for every $y \in N(x), G$ has a Hamiltonian cycle if and only if $G-x-y$ has a Hamiltonian cycle.

Proof. Suppose G has a Hamiltonian cycle $C=v_{1} v_{2} v_{3} \ldots v_{n} v_{1}$ with $x=v_{1}$. We first consider the case in which $y=v_{i}$ with $3 \leq i \leq n-1$. Since x has a minimal neighbor in L_{t-1}, by Theorem $1, N\left(v_{2}\right)=N\left(v_{i}\right)$. Therefore, we may interchange the roles of v_{2} and v_{i} and assume that $v_{1} v_{i} v_{3} v_{4} \ldots v_{i-1} v_{2} v_{i+1} \ldots v_{n} v_{1}$ is a Hamiltonian cycle of G. So, without loss of generality, we may assume that $v_{2}=y$ in C. Now consider the Hamiltonian cycle C of G. Since $v_{n}, v_{2} \in N(x)$, by Theorem $1, N\left(v_{n}\right)=N\left(v_{2}\right)$ and so v_{n} is adjacent to v_{3}. Therefore, $G-\{x, y\}$ has a Hamiltonian cycle $v_{3} v_{4} v_{5} \ldots v_{n} v_{3}$.

Conversely, suppose $G-x-y$ has a Hamiltonian cycle $v_{1} v_{2} v_{3} \ldots v_{n-2} v_{1}$. Since $\operatorname{deg}(x) \geq 2$, we may assume $v_{1} \in N(x)$. Since $y, v_{1} \in N(x)$, by Theorem $1, N(y)=N\left(v_{1}\right)$ and so y is adjacent to v_{2} in G. Therefore, G has a Hamiltonian cycle $v_{1} x y v_{2} v_{3} \ldots v_{n-1} v_{1}$.

Based on Lemma 6, we have the following algorithm for the Hamiltonian cycle problem in bipartite distance-hereditary graphs.

Algorithm HC-dh. Determine whether or not a connected bipartite distance-hereditary graph has a Hamiltonian cycle.

Input: A connected bipartite distance-hereditary graph $G=(V, E)$.
Output: " G has a Hamiltonian cycle" or " G has no Hamiltonian cycle."
Method:
determine the hanging $h_{u}=\left(L_{0}, L_{1}, \ldots, L_{t}\right)$ of G at a vertex u;

```
for i=t to 1 step -1 do
{ let Li = { (x, , x , ,.., 和};
    sort }\mp@subsup{L}{i}{}\mathrm{ such that }|\mp@subsup{N}{}{\prime}(\mp@subsup{x}{\mp@subsup{i}{1}{}}{})|\leq|\mp@subsup{N}{}{\prime}(\mp@subsup{x}{\mp@subsup{i}{2}{}}{})|\leq\ldots\leq|\mp@subsup{N}{}{\prime}(\mp@subsup{x}{\mp@subsup{i}{j}{}}{})|
    for k=1 to j do
    { if |V(G)|\leq4 then if G\cong C then goto (y) else goto (n);
        if deg(\mp@subsup{x}{\mp@subsup{i}{k}{}}{})\leq1 then goto (n);
        choose }y\inN(\mp@subsup{x}{\mp@subsup{i}{k}{}}{})\mathrm{ ;
        G\longleftarrowG- \mp@subsup{x}{\mp@subsup{i}{k}{}}{}-y;
        Li-1}\longleftarrow\mp@subsup{L}{i-1}{}-y
    }
}
(y) print " }G\mathrm{ has a Hamiltonian cycle"; stop;
(n) print "G has no Hamiltonian cycle";
```

Theorem 7. Algorithm HC-dh determines whether or not a connected bipartite distance-hereditary graph has a Hamiltonian cycle in linear time.

Proof. The correctness of the algorithm follows from Lemma 6. In order to make the running time of the algorithm linear, we can use a bucket-sort to sort L_{i}.

Acknowledgment

The authors thank the referee for useful suggestions on the revision of this paper.

References

1. S. R. Arikati and C. Pandu Rangan, Linear algorithm for optimal path cover problem on interval graphs, Inform. Process. Lett. 35 (1990), 149-153.
2. H. J. Bandelt and H. M. Mulder, Distance-hereditary graphs, J. Combin. Theory Ser. B 41 (1986), 182-208.
3. M. A. Bonuccelli and D. P. Bovet, Minimum node disjoint path covering for circular-arc graphs, Inform. Process. Lett. 8 (1979), 159-161.
4. G. J. Chang and D. Kuo, The $L(2,1)$-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996), 309-316.
5. D. G. Corneil, H. Lerchs and L. Stewart, Complement reducible graphs, Discrete Appl. Math. 3 (1981), 163-174.
6. A. D'Atri and M. Moscarini, Distance-hereditary graphs, Steiner trees, and connected domination, SIAM J. Comput. 17 (1988), 521-538.
7. M. R. Garey, D. S. Johnson and R. E. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Comput. 5 (1976), 704-714.
8. M. C. Golumbic, Algorithmic Graph Theorem and Perfect Graphs, Academic Press, New York, 1980.
9. P. H. Hammer and F. Maffray, Completely separable graphs, Discrete Appl. Math. 27 (1990), 85-99.
10. E. Howorka, A characterization of distance-hereditary graphs, Quart. J. Math. Oxford Ser. (2) 28 (1977), 417-420.
11. H. A. Jung, On a class of posets and the corresponding comparability graphs, J. Combin. Theory Ser. B 35 (1978), 125-133.
12. H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math. 156 (1996), 291-298.
13. H. Müller and F. Nicolai, Polynomial time algorithms for Hamiltonian problems on bipartite distance-hereditary graphs, Inform. Process. Lett. 46 (1993), 225230.
14. Z. Skupien, Path partitions of vertices and Hamiltonicity of graphs, in Proceedings of the Second Czechoslovakian Symposium on Graph Theory, Prague, 1974.
15. R. Strikant, Ravi Sundaram, Karan Sher Singh and C. Pandu Rangan, Optimal path cover problem on block graphs and bipartite permutation graphs, Theoret. Comput. Sci. 115 (1993), 351-357.
16. J.-H. Yan and G. J. Chang, The path-partition problem in block graphs, Inform. Process. Lett. 52 (1994), 317-322.
17. J.-H. Yan, G. J. Chang, S. M. Hedetniemi and S. T. Hedetniemi, k-Path partition in trees, Discrete Appl. Math. 78 (1997), 227-233.

Gerard J. Chang
Department of Applied Mathematics, National Chiao Tung University
Hsinchu 30050, Taiwan
E-mail: gjchang@math.nctu.edu.tw

[^0]: Received December 27 1996; revised November 25, 1997. Communicated by S.-Y. Shaw. 1991 Mathematics Subject Classification: 05C85, 05C38.
 Key words and phrases: Path partition, distance-hereditary graph, Hamiltonian path. *Supported in part by the National Science Council under grant NSC84-2121-M009-023.

