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THE PATH-PARTITION PROBLEM IN BIPARTITE
DISTANCE-HEREDITARY GRAPHS

Hong-Gwa Yeh* and Gerard J. Chang*

Abstract. A path partition of a graph is a collection of vertex-disjoint
paths that cover all vertices of the graph. The path-partition problem is
to find a path partition of minimum size. This paper gives a linear-time
algorithm for the path-partition problem in bipartite distance-hereditary
graphs.

1. INTRODUCTION

A path partition of a graph is a collection of vertex-disjoint paths that
cover all vertices of the graph. The path-partition problem is finding the
path-partition number p(G) that is the minimum size of a path partition of
G. Note that G has a Hamiltonian path if and only if p(G) = 1. Since
the Hamiltonian path problem is NP-complete for planar graphs [7], bipar-
tite graphs [8], chordal graphs [8], chordal bipartite graphs [12], and strongly
chordal graphs [12], so is the path-partition problem. On the other hand,
the path-partition problem is polynomially solvable for trees [11,14], inter-
val graphs [1, 3], cographs [4,5], and block graphs [15,16]. In this paper we
present a linear-time algorithm for the path-partition problem in bipartite
distance-hereditary graphs. For technical reasons, we consider the following
generalization of the path-partition problem. For a set S of vertices in a graph
G = (V, E), an S-path partition is a path partition P in which every vertex of
S is an endpoint of a path in P. The S-path-partition problem is to determine
the S-path-partition number p(G,S) that is the minimum size of an S-path
partition of G. Note that the path-partition problem is a special case of the
S-path-partition problem, since p(G) = p(G, ).
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We now review distance-hereditary graphs. Suppose A and B are two sets
of vertices in a graph G = (V, E). G[A] denotes the subgraph of G induced by
A. The deletion of A from G, denoted by G — A, is the graph G[V — A]. The
neighborhood N4(B) of B in A is the set of vertices in A that are adjacent to
some vertex in B. The closed neighborhood N4[B] of B in A is Na(B)U B.
For simplicity, N4(v), Na[v], N(B), and N[B] stand for Na({v}), Na[{v}],
Ny (B), and Ny [B], respectively. The degree of a vertex v is deg(v) = |N(v)|.
A vertex x is called a leaf of G if deg(z) = 1. The distance dg(x,y) between
two vertices z and y in G is the minimum length of an z-y path in G. The
hanging h, of a connected graph G = (V, E) at a vertex u € V is the collection
of sets Lo(u), Li(u), ..., Ly(u) (or Ly, Ly, ..., L if there is no ambiguity),
where t = max,cy dg(u,v) and Li(u) = {v € V : dg(u,v) =i} for 0 < i <t.
For any 1 < i <t and any v € L;, let N'(v) = N(v)(Li—1. Note that the
notion N’(v) depends on the hanging h,. A vertex v € L; with 1 < i <t has
a minimal neighborhood in L;_1 if N'(v) C N'(w) or N'(v) N N'(w) = 0 for
any w € Lj;.

A graph is distance-hereditary if every two vertices in a connected induced
subgraph have the same distance as in the original graph. Distance-hereditary
graphs were introduced by Howorka [10]. Characterizations and recognition
of distance-hereditary graphs were studied in [2,6,9]. The following theorem
contains some useful properties used in this paper.

Theorem 1. ([2, 9]) Suppose h, = (Lo, L1,...,Lt) is a hanging of a
connected distance-hereditary graph G at uw. For each 1 < i <t and any two
vertices x,y € L;, N'(x) " N'(y) =0 or N'(z) € N'(y) or N'(y) € N'(x).
Consequently, for each 1 < i < t, L; contains a vertex v having a minimal
neighborhood in L;—1. In addition, for such a vertex v, we have Ny _ i (7) =
Ny _niw)(y) for every pair of vertices x and y in N'(v).

Note that for any bipartite distance-hereditary graph G with a hanging
hy = (Lo, L1,...,Lt), each G[L;] contains no edges. Consequently, N(x) =
N'(z) for any x € L;. We shall frequently use this fact in Sections 2 and 3.

In this paper, we use the following notation. For a graph G and vertices
w, z,y, weuse G—x for G—{z}, G—x—y for (G—{z})—{y} = G—{z,y}, and
G—w—xz—yfor G—{w,x,y} ... etc. For a set A and elements = and y, we use
A—xfor A—{z}, A4z for AU{x}, A—x—yfor (A—{x})—{y} = A—{z,y},
A—z+yfor (A—{z})U{y} ... etc.

2. PATH PARTITION IN BIPARTITE DISTANCE-HEREDITARY GRAPHS

To give a linear-time algorithm for the path-partition problem in bipartite
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distance-hereditary graphs, we first establish three basic lemmas that are used
later.

Lemma 2. If z is a leaf of G, then p(G,S) = p(G, S + ).

In the following two lemmas, suppose G = (V, E) is a connected bipartite
distance-hereditary graph with a hanging h, = (Lg,...,L;) at v and ¢ > 1.
According to Lemma 2, for each vertex x in GG, we may assume that either
x € Sorax ¢S with |[N(z)| > 2.

Lemma 3. Suppose x € L; has a minimal neighborhood in Li_1 and
N(z)CS.

(1) If x € S, then p(G,S) =p(G—xz—y,S—x—y)+1 for any y € N(x).

(2) If £ ¢ S and |[N(x)| > 2, then p(G,S) =p(G—w—z—y,S—w—y)+1
for any two distinct vertices w, y € N(x).

Proof. (1) Since an (S —x—y)-path partition of G —x —y, together with the
path zy, forms an S-path partition of G, p(G,S) < p(G—z—y,S—x—y)+1.
On the other hand, suppose P is an optimal S-path partition of G. Since
N[z] C S, for any optimal S-path partition P of G either z € P or xy/ € P
for some y' € N(z). For the case in which x € P, let y be an endpoint of some
P € P. Then, P! = P—x— P+xy+(P—y) is another optimal S-path partition
of G. So, in any case, we may assume that zy’ € P for some 3y’ € N(x). Since
x has a minimal neighborhood in L;_1, by Theorem 1, N(y') = N(y) and
thus we may interchange the roles of 3y’ and y to assume that xy € P. Hence,
P —zy is an (S — x — y)-path partition of G — x — y. Thus, p(G,S) — 1 >
p(G—z —y,S —x —vy). Therefore, p(G,S) =p(G—z—y,S —z—y)+ 1.

(2) Since an (S — w — y)-path partition of G — w — x — y, together with
the path wzxy, forms an S-path partition of G, p(G,S) < p(G—w—x—y,S —
w —y) + 1. On the other hand, suppose P is an optimal S-path partition of
G. Let P be the path of P that contains x. By N(z) C S, |[N(z)| > 2, and
x ¢ S, we have that P is x or xyy or w'zy’. By an argument similar to that
for (1), we may assume that wxy € P. Hence, P —wzy is an (S —w — y)-path
partition of G —w —x —y. Thus, p(G,S) —1>p(G—w—2x—y,S —w—1y).
Therefore, p(G,S) =p(G—w—z—y,S —w—y)+ 1. [

Lemma 4. Suppose x € L; has a minimal neighborhood in L1 and
N(z) € S.

(1) If x € S, then p(G,S) =p(G —z,S —x+y) for anyy € N(z) — S.

(2) If = ¢ S and |N(x)| > 2, then p(G,S) = p(G — x —y,S) for any
ye N(z)—S.
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Proof. (1) Suppose P is an optimal (S — x + y)-path partition of G — z
such that y is an endpoint of some path P € P. Then, P — P + Px is an
S-path partition of G and so, p(G,S) < p(G — x,S — z 4+ y). On the other
hand, suppose P is an optimal S-path partition of G. Suppose the path P in
‘P containing x is xv1vs ... v., where r > 0. For the case of r = 0, let Py P» be
the path of P that contains y. Then P —z— PyyPao+ Piy+ Py is an (S —x+y)-
path partition of G — x. For the case of r > 1, we have y,v; € N(z). Since
2 has a minimal neighborhood in L;_;, by Theorem 1, N(y) = N(v;). Thus,
we may interchange the roles of y and vy and assume that zyvs...v,. € P.
Then, P — P+yvy...v, is an (S — z + y)-path partition of G —z. In any case,
p(G,S) > p(G — 2,5 —x +vy). Therefore, p(G,S) =p(G —x,5S —x+y).

(2) Suppose P is an optimal S-path partition of G —xz —y. Since |[Ng(z)| >
2, without loss of generality, we may assume that P has a path P = vgv; . ..
ViVi41 - - - g such that v; € Ng(x). Since x has a minimal neighborhood in
Li—1, by Theorem 1, N(v;) = N(y). Thus, P = vovy...0;xyvi41 ... 0% 1S
a path of G. Therefore, P — P + P’ is an S-path partition of G and so
p(G,S) < p(G—x—1y,S). On the other hand, suppose P is an optimal S-path
partition of G. Consider first the case in which z and y lie on path

P =gy ... ViZVi41 - .- VjYVj41 ... Vg € P.
By Theorem 1, v; is adjacent to v; and v;41 is adjacent to v,;+1. Hence
y ) j + i+ )
/
P = Vo1 - . . Vi—1UVVj—1V5j—-2 . . . Vi42Vi4+1Vj41Vj42 - . . Uk

is a path in G — & — y containing all vertices of P except x and y. Therefore,
P — P+ P’ is an S-path partition of G — 2 — y. Next consider the case in
which z and y lie on two distinct paths

P =vov1 ... vjxviqr .. V10 € P and P = uguy . .. UjYUjyl - - Uk —1UE € P.
By Theorem 1, v; is adjacent to w41 and u; is adjacent to v; 1. Hence,
/
Pl = v9U1 ... Uiflvin+1uj+2 e U U

and

/
P2 = UoUL -+ - Uj—1U;Vj+1Vi42 - . - Vp—1VE

are paths in G — z — y containing all vertices of P; and P» except x and y.
Therefore, P— P; — Po+ P{+ P} is an S-path partition of G—x—y. In any case,
we have that p(G, S) > p(G —z —y, S). Therefore, p(G,S) = p(G—z—y,S).

|
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Based on Lemmas 2 to 4, we have the following algorithm for the S-path
partition problem in bipartite distance-hereditary graphs.

Algorithm PP-dh. Find the S-path partition number of a connected
bipartite distance-hereditary graph.

Input: A connected bipartite distance-hereditary graph G = (V,E) and
SCV.

Output: The S-path partition number p(G, S).
Method:

P(G,S) — 0;
determine the hanging h,, = (Lo, L1, ..., L) of G at a vertex u;
for i=tto 1l step —1 do
{ let Li:{xl,xg,...,.ﬁj};
sort L; such that [N'(z)] < [N'(2i,)| < ... < [N'(2i;)|;
for k=1to jdo
[ o
if deg(z) =1 then S «— S + x;
if N(z) C S
then {P(G,S) — P(G,S) + 1;
if z € S then {pick y € N(z);
G—G—x—y;
S—S—z—uy;
Li oy« Li—1 —y}
else {pick w, y € N(x);
G—G—-—w—z—y;
S—S—w-—y;
Lioy— Liy —w—y;}
¥
else {pick y € N(z) — S;
ifxreS then {G «— G — x;
S«— S—z+y}
else {G— G—xz—y;
Liy «— Li-1 —y;}

Theorem 5. Algorithm PP-dh finds the S-path-partition number of a
bipartite distance-hereditary graph G = (V, E) with S C 'V in linear time.
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Proof. The correctness of the theorem follows from Lemmas 2 to 4. In
order to make the running time linear, we can use a bucket-sort to sort L;. B

3. DISCUSSION

This paper gives a linear-time algorithm for the path-partition problem in
bipartite distance-hereditary graphs by using the concepts of hanging and a
vertex with a minimal neighbor. The same idea also works for the Hamiltonian-
cycle problem in bipartite distance-hereditary graphs.

Lemma 6. Suppose G = (V, E) is a connected bipartite distance-hereditary
graph with a hanging h, = (Lo, L1, ..., L) at u such that t > 2 and |V| > 5.
If x € Ly has a minimal neighborhood in Ly—1 and deg(x) > 2, then for every
y € N(x), G has a Hamiltonian cycle if and only if G—x—y has a Hamiltonian
cycle.

Proof. Suppose G has a Hamiltonian cycle C' = v1vv3 ... vyv1 with z = vy.
We first consider the case in which y = v; with 3 < i < n—1. Since x has a min-
imal neighbor in L;_;, by Theorem 1, N(v2) = N(v;). Therefore, we may in-
terchange the roles of vy and v; and assume that viv;vgvy . .. V;—1VV41 . . . UpU1
is a Hamiltonian cycle of G. So, without loss of generality, we may assume that
vg =y in C'. Now consider the Hamiltonian cycle C of G. Since vy, v2 € N(z),
by Theorem 1, N(v,) = N(v2) and so v, is adjacent to vs3. Therefore, G—{z,y}
has a Hamiltonian cycle vsvqvs . . . v,vs3.

Conversely, suppose G — x — y has a Hamiltonian cycle vivavs ... vn_2v1.
Since deg(z) > 2, we may assume v; € N(z). Since y,v; € N(z), by The-
orem 1, N(y) = N(v1) and so y is adjacent to v2 in G. Therefore, G has a
Hamiltonian cycle vixyvovs ... vp—101. ]

Based on Lemma 6, we have the following algorithm for the Hamiltonian
cycle problem in bipartite distance-hereditary graphs.

Algorithm HC-dh. Determine whether or not a connected bipartite
distance-hereditary graph has a Hamiltonian cycle.

Input: A connected bipartite distance-hereditary graph G = (V, E).
Output: “G has a Hamiltonian cycle” or “G has no Hamiltonian cycle.”
Method:

determine the hanging h, = (Lo, L1,...,L;) of G at a vertex u;
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for i =tto 1 step —1 do
{ let Ly ={z1,22,...,2;};
sort L; such that [N'(z)| < [N'(23,)] < ... < [N'(2i;)|;
for k=1to j do
{ if |V(G)| <4 then if G = C4 then goto (y) else goto (n);
if deg(z;,) <1 then goto (n);
choose y € N(z;,);
G— G-z —y;
Liy «— Li—1 —y;

(y) print “G has a Hamiltonian cycle”; stop;

(n) print “G has no Hamiltonian cycle”;

Theorem 7. Algorithm HC-dh determines whether or not a connected

bipartite distance-hereditary graph has a Hamiltonian cycle in linear time.

Proof. The correctness of the algorithm follows from Lemma 6. In order
to make the running time of the algorithm linear, we can use a bucket-sort to
sort L;. |
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