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THE PATH-PARTITION PROBLEM IN BIPARTITE
DISTANCE-HEREDITARY GRAPHS

Hong-Gwa Yeh∗ and Gerard J. Chang∗

Abstract. A path partition of a graph is a collection of vertex-disjoint
paths that cover all vertices of the graph. The path-partition problem is
to find a path partition of minimum size. This paper gives a linear-time
algorithm for the path-partition problem in bipartite distance-hereditary
graphs.

1. Introduction

A path partition of a graph is a collection of vertex-disjoint paths that
cover all vertices of the graph. The path-partition problem is finding the
path-partition number p(G) that is the minimum size of a path partition of
G. Note that G has a Hamiltonian path if and only if p(G) = 1. Since
the Hamiltonian path problem is NP-complete for planar graphs [7], bipar-
tite graphs [8], chordal graphs [8], chordal bipartite graphs [12], and strongly
chordal graphs [12], so is the path-partition problem. On the other hand,
the path-partition problem is polynomially solvable for trees [11, 14], inter-
val graphs [1, 3], cographs [4, 5], and block graphs [15, 16]. In this paper we
present a linear-time algorithm for the path-partition problem in bipartite
distance-hereditary graphs. For technical reasons, we consider the following
generalization of the path-partition problem. For a set S of vertices in a graph
G = (V,E), an S-path partition is a path partition P in which every vertex of
S is an endpoint of a path in P. The S-path-partition problem is to determine
the S-path-partition number p(G,S) that is the minimum size of an S-path
partition of G. Note that the path-partition problem is a special case of the
S-path-partition problem, since p(G) = p(G, ∅).
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We now review distance-hereditary graphs. Suppose A and B are two sets
of vertices in a graph G = (V,E). G[A] denotes the subgraph of G induced by
A. The deletion of A from G, denoted by G−A, is the graph G[V −A]. The
neighborhood NA(B) of B in A is the set of vertices in A that are adjacent to
some vertex in B. The closed neighborhood NA[B] of B in A is NA(B)

⋃
B.

For simplicity, NA(v), NA[v], N(B), and N [B] stand for NA({v}), NA[{v}],
NV (B), and NV [B], respectively. The degree of a vertex v is deg(v) = |N(v)|.
A vertex x is called a leaf of G if deg(x) = 1. The distance dG(x, y) between
two vertices x and y in G is the minimum length of an x-y path in G. The
hanging hu of a connected graph G = (V,E) at a vertex u ∈ V is the collection
of sets L0(u), L1(u), . . . , Lt(u) (or L0, L1, . . . , Lt if there is no ambiguity),
where t = maxv∈V dG(u, v) and Li(u) = {v ∈ V : dG(u, v) = i} for 0 ≤ i ≤ t.
For any 1 ≤ i ≤ t and any v ∈ Li, let N ′(v) = N(v)

⋂
Li−1. Note that the

notion N ′(v) depends on the hanging hu. A vertex v ∈ Li with 1 ≤ i ≤ t has
a minimal neighborhood in Li−1 if N ′(v) ⊆ N ′(w) or N ′(v) ∩ N ′(w) = ∅ for
any w ∈ Li.

A graph is distance-hereditary if every two vertices in a connected induced
subgraph have the same distance as in the original graph. Distance-hereditary
graphs were introduced by Howorka [10]. Characterizations and recognition
of distance-hereditary graphs were studied in [2, 6, 9]. The following theorem
contains some useful properties used in this paper.

Theorem 1. ([2, 9]) Suppose hu = (L0, L1, . . . , Lt) is a hanging of a
connected distance-hereditary graph G at u. For each 1 ≤ i ≤ t and any two
vertices x, y ∈ Li, N ′(x) ∩ N ′(y) = ∅ or N ′(x) ⊆ N ′(y) or N ′(y) ⊆ N ′(x).
Consequently, for each 1 ≤ i ≤ t, Li contains a vertex v having a minimal
neighborhood in Li−1. In addition, for such a vertex v, we have NV−N ′(v)(x) =
NV−N ′(v)(y) for every pair of vertices x and y in N ′(v).

Note that for any bipartite distance-hereditary graph G with a hanging
hu = (L0, L1, . . . , Lt), each G[Li] contains no edges. Consequently, N(x) =
N ′(x) for any x ∈ Lt. We shall frequently use this fact in Sections 2 and 3.

In this paper, we use the following notation. For a graph G and vertices
w, x, y, we use G−x for G−{x}, G−x−y for (G−{x})−{y} ∼= G−{x, y}, and
G−w−x−y for G−{w, x, y} ... etc. For a set A and elements x and y, we use
A−x for A−{x}, A+x for A∪{x}, A−x−y for (A−{x})−{y} = A−{x, y},
A− x+ y for (A− {x}) ∪ {y} ... etc.

2. Path Partition in Bipartite Distance-hereditary Graphs

To give a linear-time algorithm for the path-partition problem in bipartite
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distance-hereditary graphs, we first establish three basic lemmas that are used
later.

Lemma 2. If x is a leaf of G, then p(G,S) = p(G,S + x).

In the following two lemmas, suppose G = (V,E) is a connected bipartite
distance-hereditary graph with a hanging hu = (L0, . . . , Lt) at u and t ≥ 1.
According to Lemma 2, for each vertex x in G, we may assume that either
x ∈ S or x 6∈ S with |N(x)| ≥ 2.

Lemma 3. Suppose x ∈ Lt has a minimal neighborhood in Lt−1 and
N(x) ⊆ S.

(1) If x ∈ S, then p(G,S) = p(G− x− y, S − x− y) + 1 for any y ∈ N(x).
(2) If x 6∈ S and |N(x)| ≥ 2, then p(G,S) = p(G−w−x−y, S−w−y)+1

for any two distinct vertices w, y ∈ N(x).

Proof. (1) Since an (S−x−y)-path partition of G−x−y, together with the
path xy, forms an S-path partition of G, p(G,S) ≤ p(G−x−y, S−x−y)+1.
On the other hand, suppose P is an optimal S-path partition of G. Since
N [x] ⊆ S, for any optimal S-path partition P of G either x ∈ P or xy′ ∈ P
for some y′ ∈ N(x). For the case in which x ∈ P, let y be an endpoint of some
P ∈ P. Then, P ′ = P−x−P+xy+(P−y) is another optimal S-path partition
of G. So, in any case, we may assume that xy′ ∈ P for some y′ ∈ N(x). Since
x has a minimal neighborhood in Lt−1, by Theorem 1, N(y′) = N(y) and
thus we may interchange the roles of y′ and y to assume that xy ∈ P. Hence,
P − xy is an (S − x − y)-path partition of G − x − y. Thus, p(G,S) − 1 ≥
p(G− x− y, S − x− y). Therefore, p(G,S) = p(G− x− y, S − x− y) + 1.

(2) Since an (S − w − y)-path partition of G − w − x − y, together with
the path wxy, forms an S-path partition of G, p(G,S) ≤ p(G−w−x− y, S−
w − y) + 1. On the other hand, suppose P is an optimal S-path partition of
G. Let P be the path of P that contains x. By N(x) ⊆ S, |N(x)| ≥ 2, and
x 6∈ S, we have that P is x or xy′ or w′xy′. By an argument similar to that
for (1), we may assume that wxy ∈ P. Hence, P −wxy is an (S−w− y)-path
partition of G−w − x− y. Thus, p(G,S)− 1 ≥ p(G−w − x− y, S −w − y).
Therefore, p(G,S) = p(G− w − x− y, S − w − y) + 1.

Lemma 4. Suppose x ∈ Lt has a minimal neighborhood in Lt−1 and
N(x) 6⊆ S.

(1) If x ∈ S, then p(G,S) = p(G− x, S − x+ y) for any y ∈ N(x)− S.
(2) If x 6∈ S and |N(x)| ≥ 2, then p(G,S) = p(G − x − y, S) for any

y ∈ N(x)− S.
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Proof. (1) Suppose P is an optimal (S − x + y)-path partition of G − x
such that y is an endpoint of some path P ∈ P. Then, P − P + Px is an
S-path partition of G and so, p(G,S) ≤ p(G − x, S − x + y). On the other
hand, suppose P is an optimal S-path partition of G. Suppose the path P in
P containing x is xv1v2 . . . vr, where r ≥ 0. For the case of r = 0, let P1yP2 be
the path of P that contains y. Then P−x−P1yP2 +P1y+P2 is an (S−x+y)-
path partition of G − x. For the case of r ≥ 1, we have y, v1 ∈ N(x). Since
x has a minimal neighborhood in Lt−1, by Theorem 1, N(y) = N(v1). Thus,
we may interchange the roles of y and v1 and assume that xyv2 . . . vr ∈ P.
Then, P −P +yv2 . . . vr is an (S−x+y)-path partition of G−x. In any case,
p(G,S) ≥ p(G− x, S − x+ y). Therefore, p(G,S) = p(G− x, S − x+ y).

(2) Suppose P is an optimal S-path partition of G−x−y. Since |NG(x)| ≥
2, without loss of generality, we may assume that P has a path P = v0v1 . . .
vivi+1 . . . vk such that vi ∈ NG(x). Since x has a minimal neighborhood in
Lt−1, by Theorem 1, N(vi) = N(y). Thus, P ′ = v0v1 . . . vixyvi+1 . . . vk is
a path of G. Therefore, P − P + P ′ is an S-path partition of G and so
p(G,S) ≤ p(G−x−y, S). On the other hand, suppose P is an optimal S-path
partition of G. Consider first the case in which x and y lie on path

P = v0v1 . . . vixvi+1 . . . vjyvj+1 . . . vk ∈ P.

By Theorem 1, vi is adjacent to vj and vi+1 is adjacent to vj+1. Hence,

P ′ = v0v1 . . . vi−1vivjvj−1vj−2 . . . vi+2vi+1vj+1vj+2 . . . vk

is a path in G− x− y containing all vertices of P except x and y. Therefore,
P − P + P ′ is an S-path partition of G − x − y. Next consider the case in
which x and y lie on two distinct paths

P1 = v0v1 . . . vixvi+1 . . . vk−1vk ∈ P and P2 = u0u1 . . .ujyuj+1 . . .uk′−1uk′ ∈ P.

By Theorem 1, vi is adjacent to uj+1 and uj is adjacent to vi+1. Hence,

P ′1 = v0v1 . . . vi−1viuj+1uj+2 . . .uk′−1uk′

and
P ′2 = u0u1 . . .uj−1ujvi+1vi+2 . . . vk−1vk

are paths in G − x − y containing all vertices of P1 and P2 except x and y.
Therefore, P−P1−P2+P ′1+P ′2 is an S-path partition of G−x−y. In any case,
we have that p(G,S) ≥ p(G− x− y, S). Therefore, p(G,S) = p(G− x− y, S).
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Based on Lemmas 2 to 4, we have the following algorithm for the S-path
partition problem in bipartite distance-hereditary graphs.

Algorithm PP-dh. Find the S-path partition number of a connected
bipartite distance-hereditary graph.

Input: A connected bipartite distance-hereditary graph G = (V,E) and
S ⊆ V .
Output: The S-path partition number p(G,S).
Method:

P (G,S)←− 0;
determine the hanging hu = (L0, L1, . . . , Lt) of G at a vertex u;
for i = t to 1 step −1 do
{ let Li = {x1, x2, . . . , xj};

sort Li such that |N ′(xi1)| ≤ |N ′(xi2)| ≤ . . . ≤ |N ′(xij )|;
for k = 1 to j do
{ x←− xik ;

if deg(x) = 1 then S ←− S + x;
if N(x) ⊆ S
then {P (G,S)←− P (G,S) + 1;

if x ∈ S then {pick y ∈ N(x);
G←− G− x− y;
S ←− S − x− y;
Li−1 ←− Li−1 − y;}

else {pick w, y ∈ N(x);
G←− G− w − x− y;
S ←− S − w − y;
Li−1 ←− Li−1 − w − y;}

}
else {pick y ∈ N(x)− S;

if x ∈ S then {G←− G− x;
S ←− S − x+ y;}

else {G←− G− x− y;
Li−1 ←− Li−1 − y;}

}
}

}

Theorem 5. Algorithm PP-dh finds the S-path-partition number of a
bipartite distance-hereditary graph G = (V,E) with S ⊆ V in linear time.
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Proof. The correctness of the theorem follows from Lemmas 2 to 4. In
order to make the running time linear, we can use a bucket-sort to sort Li.

3. Discussion

This paper gives a linear-time algorithm for the path-partition problem in
bipartite distance-hereditary graphs by using the concepts of hanging and a
vertex with a minimal neighbor. The same idea also works for the Hamiltonian-
cycle problem in bipartite distance-hereditary graphs.

Lemma 6. Suppose G = (V,E) is a connected bipartite distance-hereditary
graph with a hanging hu = (L0, L1, . . . , Lt) at u such that t ≥ 2 and |V | ≥ 5.
If x ∈ Lt has a minimal neighborhood in Lt−1 and deg(x) ≥ 2, then for every
y ∈ N(x), G has a Hamiltonian cycle if and only if G−x−y has a Hamiltonian
cycle.

Proof. Suppose G has a Hamiltonian cycle C = v1v2v3 . . . vnv1 with x = v1.
We first consider the case in which y = vi with 3 ≤ i ≤ n−1. Since x has a min-
imal neighbor in Lt−1, by Theorem 1, N(v2) = N(vi). Therefore, we may in-
terchange the roles of v2 and vi and assume that v1viv3v4 . . . vi−1v2vi+1 . . . vnv1
is a Hamiltonian cycle of G. So, without loss of generality, we may assume that
v2 = y in C. Now consider the Hamiltonian cycle C of G. Since vn, v2 ∈ N(x),
by Theorem 1, N(vn) = N(v2) and so vn is adjacent to v3. Therefore, G−{x, y}
has a Hamiltonian cycle v3v4v5 . . . vnv3.

Conversely, suppose G − x − y has a Hamiltonian cycle v1v2v3 . . . vn−2v1.
Since deg(x) ≥ 2, we may assume v1 ∈ N(x). Since y, v1 ∈ N(x), by The-
orem 1, N(y) = N(v1) and so y is adjacent to v2 in G. Therefore, G has a
Hamiltonian cycle v1xyv2v3 . . . vn−1v1.

Based on Lemma 6, we have the following algorithm for the Hamiltonian
cycle problem in bipartite distance-hereditary graphs.

Algorithm HC-dh. Determine whether or not a connected bipartite
distance-hereditary graph has a Hamiltonian cycle.

Input: A connected bipartite distance-hereditary graph G = (V,E).
Output: “G has a Hamiltonian cycle” or “G has no Hamiltonian cycle.”
Method:

determine the hanging hu = (L0, L1, . . . , Lt) of G at a vertex u;
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for i = t to 1 step −1 do
{ let Li = {x1, x2, . . . , xj};

sort Li such that |N ′(xi1)| ≤ |N ′(xi2)| ≤ . . . ≤ |N ′(xij )|;
for k = 1 to j do
{ if |V (G)| ≤ 4 then if G ∼= C4 then goto (y) else goto (n);

if deg(xik) ≤ 1 then goto (n);
choose y ∈ N(xik);
G←− G− xik − y;
Li−1 ←− Li−1 − y;

}
}
(y) print “G has a Hamiltonian cycle”; stop;
(n) print “G has no Hamiltonian cycle”;

Theorem 7. Algorithm HC-dh determines whether or not a connected
bipartite distance-hereditary graph has a Hamiltonian cycle in linear time.

Proof. The correctness of the algorithm follows from Lemma 6. In order
to make the running time of the algorithm linear, we can use a bucket-sort to
sort Li.
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