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The progressive growth of neoplasms and the production of
metastasis depend on the development of adequate vascula-
ture, i.e., angiogenesis. The extent of angiogenesis is deter-
mined by the balance between positive- and negative-
regulating molecules that are released by tumor and host
cells in the microenvironment. The growth of many neo-
plasms is associated with the absence of the endogenous in-
hibitor of angiogenesis, interferon beta (IFN �). A survey of
multiple mouse and human tumors shows a lack of IFN �
associated with extensive angiogenesis. Therapy with IFN �
or � either by subcutaneous injection of the protein or by
introduction of viral vectors that contain the IFN � gene
inhibit angiogenesis and, hence, progressive tumor growth.
[J Natl Cancer Inst Monogr 2000;28:10–4]

CANCER METASTASIS

The major cause of death from cancer is metastases that are
resistant to conventional therapy. One major obstacle to the
treatment of metastasis is the biologic heterogeneity of neo-
plasms (1). A second obstacle is the ability of different organ
environments to modify a metastatic tumor cell’s response to
therapy (2,3). A better understanding of the mechanisms that
regulate the process by which tumor cells invade local tissues
and spread to distant organs should lead to the design of more
effective therapy.

The process of cancer metastasis consists of a series of se-
quential steps, each of which can be rate limiting (1). After the
initial transforming event, growth of neoplastic cells must be
progressive. Extensive vascularization must occur if a tumor
mass is to exceed 1 mm in diameter (4). The next step is local
invasion of the host stroma that occurs by several mechanisms
(5). Small tumor cell aggregates then detach and embolize next
and some tumor cells that survive the trauma of the circulatory
system arrest in the capillary beds of organs extravasate into the
organ parenchyma, proliferate, and induce angiogenesis to allow
expansion of the lesion (1).

The outcome of metastasis depends on the interactions of
tumor cells with various host factors (1,6,7). The pattern of
metastasis is not random but rather is determined by factors that
are independent of vascular anatomy, rate of blood flow, and the
number of tumor cells delivered to each organ (1). The search
for factors that regulate metastasis began in 1889 when Paget
analyzed postmortem data of women who died of cancer and
noticed the high frequency of metastasis to the ovaries and the
different incidence of skeletal metastases associated with differ-
ent primary tumors. Paget concluded that the organ distribution
of metastases is not a matter of chance and suggested that me-
tastases develop only when the “seed” (certain tumor cells with
metastatic ability) and the “soil” (colonized organs providing
growth advantage to the seeds) are compatible (8). In recent
years, Paget’s hypothesis has received considerable experimen-
tal and clinical support (1,9–11). Site-specific metastasis has
been demonstrated with many transplantable tumors and has

also been documented in autochthonous human tumors in pa-
tients with peritoneovenous shunts (12,13).

A current definition of the “seed and soil” hypothesis encom-
passes three principles. First, neoplasms are biologically hetero-
geneous (1,14). Second, the process of metastasis is highly
selective, favoring the survival and growth of a small subpopu-
lation of cells that pre-exist in the heterogeneous parent neo-
plasm (6). Third, the outcome of metastasis depends on multiple
interactions of metastatic cells (seed) with homeostatic mecha-
nisms (soil) (2). The majority of malignant neoplasms actually
usurp homeostatic mechanisms to gain growth advantage
(1,6,7). Neoplastic angiogenesis is an excellent example.

TUMOR ANGIOGENESIS

The survival and growth of cells depend on an adequate sup-
ply of oxygen and nutrients and on the removal of toxic mol-
ecules. Oxygen can diffuse from capillaries for only 150–200
mm. When distances of cells from a blood supply exceed this,
cell death follows (15). Thus, the expansion of tumor masses
beyond 1 mm in diameter depends on neovascularization, i.e.,
angiogenesis (4,16). The formation of new vasculature consists
of multiple, interdependent steps. It begins with local degrada-
tion of the basement membrane surrounding capillaries, fol-
lowed by invasion of the surrounding stroma and migration of
endothelial cells in the direction of the angiogenic stimulus.
Proliferation of endothelial cells occurs at the leading edge of the
migrating column and the endothelial cells begin to organize
into three-dimensional structures to form new capillary tubes
(4,17). Differences in cellular composition, vascular permeabil-
ity, blood vessel stability, and growth regulation distinguish ves-
sels in neoplasms from those in normal tissue (18).

The onset of angiogenesis involves a change in the local
equilibrium between proangiogenic and antiangiogenic mol-
ecules (19). The major proangiogenic molecules include fibro-
blast growth factor (FGF) family members, vascular endothelial
cell growth factor or vascular permeability factor (VEGF/VPF),
interleukin 8 (IL-8), angiogenin, platelet-derived endothelial cell
growth factor, platelet-derived growth factor, and matrix metal-
loproteinases (4,20,21). Many different proangiogenic or anti-
angiogenic molecules are present in different tissues (4,22). In
normal tissues, factors that inhibit angiogenesis predominate
(e.g., interferon beta [IFN �], tissue inhibitor of metalloprotein-
ases) (4,23), whereas, in rapidly dividing tissues, factors that
stimulate angiogenesis predominate. Our laboratory has inves-
tigated the role of cell density in the regulation of bFGF expres-
sion in human renal cell carcinoma cells or human endothelial
cells. Dividing cells expressed higher levels of bFGF (both at
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messenger RNA [mRNA] and protein levels) than nondividing
cells (24). In contrast, nondividing cells express higher levels of
VEGF/VPF than dividing cells (25).

REGULATION OF ANGIOGENESIS BY THE

MICROENVIRONMENT

The production of bFGF and IL-8 by tumor or host cells or
the release of angiogenic molecules from the extracellular ma-
trix induces the growth of endothelial cells and the formation of
blood vessels. Data from our laboratory have demonstrated that
the organ microenvironment can directly contribute to the in-
duction and maintenance of the angiogenic factors bFGF (26,27)
and IL-8 (28). For example, in patients with renal cell carci-
noma, the level of bFGF in the serum or urine inversely asso-
ciated with survival (29,30). Human renal cancer cells implanted
into different organs of nude mice had different metastatic po-
tentials: Those implanted into the kidney produced a high inci-
dence of lung metastasis, whereas those implanted subcutane-
ously were not metastatic (26). Histopathologic examination of
the tumors revealed that subcutaneous tumors had few blood
vessels, whereas the tumors in the kidney had many (26). The
subcutaneous (or intramuscular) tumors had a lower level of
mRNA transcripts for bFGF than did continuously cultured
cells, whereas tumors in the kidney of nude mice had 20-fold the
levels of bFGF mRNA and protein level (26,27).

Constitutive expression of IL-8 directly associates with the
metastatic potential of the human melanoma cells (28). IL-8
contributes to angiogenesis by inducing proliferation, migration,
and invasion of endothelial cells (31). Several organ-derived
cytokines (produced by inflammatory cells) can increase expres-
sion of IL-8 in normal and tumorigenic cells (32). IL-8 expres-
sion was increased in co-culture of melanoma cells with kera-
tinocytes (skin), whereas it was inhibited in cells co-cultured
with hepatocytes (liver). Similar results obtained with condi-
tioned media from keratinocyte and hepatocyte cultures sug-
gested that organ-derived factors, e.g., IL-1 and transforming
growth factor-�, can modulate the expression of IL-8 in human
melanoma cells (32).

The influence of the microenvironment on the expression of
VEGF/VPF, angiogenesis, tumor cell proliferation, and metas-
tasis was investigated with the use of human gastric cancer cells
implanted in orthotopic (stomach) and ectopic (subcutaneous)
sites in nude mice. Tumors in the stomach were highly vascu-
larized and expressed higher levels of VEGF/VPF than did sub-
cutaneous tumors (33). Moreover, only tumors implanted in the
stomach produced metastasis, suggesting that the expression of
VEGF/VPF vascularization and metastasis of human gastric
cancer cells are regulated by the organ microenvironment.

MOLECULAR DETERMINANTS OF ANGIOGENESIS IN

CUTANEOUS HEMANGIOMAS

Infantile cutaneous hemangiomas represent a unique form of
pathologic angiogenesis in which endothelial cell tumors grow
rapidly in the first year of life (proliferative phase), followed by
a slow regression during the next 5 years (involuting phase) and
eventual involution or complete regression (involuted phase) by
the age of 10–15 years (34). Long-term daily systemic treatment
with IFN � has been shown to accelerate the involution of fatal
hemangiomas (34–39). To determine whether the progression
and involution of infantile cutaneous hemangiomas were asso-

ciated with overexpression of proangiogenic molecules or the
lack of antiangiogenic molecules, a large number of hemangio-
ma specimens by immunohistochemistry was analyzed. The re-
sults showed that proliferating hemangiomas expressed bFGF
and VEGF/VGF but not IFN � (mRNA and protein) (40). A
surprising finding was that the epidermis directly overlying pro-
liferating hemangiomas was hyperplastic, whereas the epidermis
overlying involuted hemangiomas or the epidermis from an un-
affected site was not (40). The hyperplastic epidermis expressed
bFGF, VEGF/VPF, and IL-8 but not IFN �, whereas the normal
epidermis expressed both positive- and negative-angiogenic
molecules (40). These data raised the possibility that the prolif-
erating hemangiomas induced hyperplasia in the surrounding
normal tissues (epidermis), leading to production of bFGF and
VEGF/VPF but not IFN � (40), supporting the concept that
neoplastic cells subvert and usurp host homeostatic mechanisms
for their growth advantage (1,2).

To study the relationship between hemangiomas and the mi-
croenvironment, an in vivo model was developed for epidermal
hyperplasia and angiogenesis, using UVB irradiation of mice
(41). Mice exposed to 10 kJ/m2 UVB developed epidermal hy-
perplasia accompanied by angiogenesis and telangiectasia dur-
ing the first week after irradiation, but these conditions slowly
subsided over the following weeks. The first striking event after
UVB irradiation was the increase in production of bFGF in the
keratinocytes of the epidermis (41). The increase in bFGF pre-
ceded or at least coincided with the division of epidermal cells
recognized by immunohistochemical staining with antibodies to
proliferating cell nuclear antigen. Marked hyperplasia and an-
giogenesis followed immediately. The expression of VEGF/VPF
was slightly increased by day 5. Of interest, the expression of
IFN � in the epithelium decreased with epidermal hyperplasia
but was re-expressed as the hyperplasia and angiogenesis sub-
sided (42).

Systemic therapy with the use of recombinant IFNs produces
antiangiogenic effects in vascular tumors, including hemangio-
ma (34–39), Kaposi’s sarcoma (43–46), melanoma (47), basal
cell and squamous cell carcinomas (48), and bladder carcinoma
(49). These tumors have also been documented as producing the
high levels of bFGF often detectable in the urine or serum of
these patients (29,30,50). These findings, along with our in vivo
observations, prompted us to investigate whether IFNs could
modulate the expression of the angiogenic molecule bFGF. We
found that IFN � and IFN � but not IFN � decreased the ex-
pression of bFGF mRNA and protein in human renal cell cancer
(HRCC) as well as in human bladder, prostate, colon, and breast
carcinoma cells (51). The inhibitory effect of IFN � and � on
bFGF expression was cell-density dependent and independent of
the antiproliferative effects of IFNs (51,52). We also confirmed
that IFN can inhibit bFGF production in an in vivo model sys-
tem. Systemic administration of human IFN � decreased the in
vivo expression of bFGF, decreased blood vessel density, and
inhibited tumor growth of a human bladder carcinoma implanted
orthotopically in nude mice (53).

ANTIANGIOGENIC ACTIVITY OF IFN �

The IFN family consists of three major glycoproteins that
exhibit species specificity: leukocyte-derived IFN �, fibroblast-
derived IFN �, and immune cell-produced IFN �. Although
IFN � and IFN � share a common receptor (the type I IFN
receptor) and induce a similar pattern of cellular responses, cer-
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tain cellular reactions can be stimulated only by IFN �, probably
by the phosphorylation of a receptor-associated protein that is
uniquely responsive to IFN � (54). In addition to their well-
recognized activity as antiviral agents, IFNs regulate multiple
biologic activities, such as cell growth (55,56), differentiation
(57), oncogene expression (58,59), host immunity (60–62), and
tumorigenicity (63–68). IFNs can also inhibit a number of steps
in the angiogenic process. IFN has antiproliferative properties,
especially on tumor cells (69–71), an effect that has also been
demonstrated on endothelial cells in vitro. IFN � can inhibit
FGF-induced endothelial proliferation (72), and IFN � can in-
hibit endothelial proliferation (73). IFN � and IFN � have been
shown to be cytostatic to human dermal microvascular endothe-
lial cells (74) and to human capillary endothelial cells (75).

The antiangiogenic effect of IFNs cannot be explained solely
on the basis of inhibition of endothelial cell proliferation. For
example, IFN �/� can also inhibit the endothelial cell migration
step of angiogenesis (76,77). Subcutaneous injection of IFN �/�
adjacent to a wound delayed the healing process by inhibiting
the proliferation, migration, and invasion of capillary buds, fi-
broblasts, and epithelium (78,79). IFN �/� injected intratumor-
ally or peritumorally into tumor cells resistant to the antiprolif-
erative effects of IFN damages blood vessels, leading to
ischemia and necrosis (80). Moreover, we reported that IFN �/�
can affect the expression of several angiogenic factors, including
bFGF (52,53), IL-8 (81), and collagenase type IV (82,83).

Our laboratory recently demonstrated that IFN � gene
therapy can eradicate tumor cells of various histologic origins
and found that the sustained local production of murine IFN �
could inhibit the tumorigenicity and metastasis of human and
murine tumor cells implanted into nude mice (84,85). All human
tumor cell lines transfected with the murine IFN � gene grew
well in vitro, but none grew in vivo. IFN �-transfected cells
prevented the outgrowth of parental or control-transfected cells
when injected at the same site but not when injected at distant
sites, suggesting that IFN � promoted a local lysis of the by-
stander cells (84,85). Similar results were found when human
prostate cancer cells were infected with the murine IFN � gene
with the use of a retroviral vector. Of interest, the transduced
cells did not grow in nude mice when injected into the prostate.
The regression of the tumors was directly associated with infil-
tration by macrophages and activation of inducible nitric oxide
synthase (86). All transfected and transduced cells stimulated
a high level of nitric oxide in murine macrophages, which as-
sociated with the vigorous antitumor activities. Therefore, the
local production of IFN � can suppress tumorigenicity and me-
tastasis, in part because of the activation of host effector mecha-
nisms.

CONCLUSIONS

The angiogenesis within and surrounding neoplasms is due to
an imbalance between proangiogenic molecules, e.g., bFGF,
VEGF/VPF, IL-8, and antiangiogenic molecules (e.g., IFN). Tu-
mor cells, normal host cells, and leukocytes all contribute to
angiogenesis. The absence of IFN � from tumor beds is associ-
ated with robust angiogenesis. Restoring the balance between
proangiogenic and antiangiogenic molecules provides an ap-
proach to the control of angiogenesis in neoplasms. Frequent
systemic administrations of low-dose IFN � or � or the intro-
duction of the IFN � gene to the tumor bed show great thera-
peutic promise in several animal models. Clinical trials should

determine whether this approach is useful for therapy of human
neoplasms.
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