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In most natural habitats, calorie availability is scarce and unpre-

dictable, necessitating the evolution of systems for the efficient 

storage and utilization of energy. But in our modern, mecha-

nized society, caloric demands are minimized, while highly pal-

atable, calorie-dense foods and beverages are readily available. 

These changes have fostered the current pandemic of obesity and 

comorbid conditions of nonalcoholic fatty liver disease (NAFLD), 

atherosclerosis, and type 2 diabetes (T2D). Insulin resistance is a 

common feature of all these diseases, and much effort has been 

invested in delineating the pathogenesis of insulin resistance. We 

will first review the role of insulin and nutrients (specifically glu-

cose and fatty acids) in nutrient storage (Figure 1) and then use 

this framework to explore the various defects that give rise to insu-

lin resistance and T2D (Figure 2).

Postprandial hepatic glucose and lipid 
metabolism
The simple act of eating rapidly shifts hepatic glucose metabolism 

from glucose production to glucose storage, a complex transition 

regulated by multiple factors including nutrients, alterations in 

pancreatic and enteric hormones, and neural regulation. Insulin is 

a crucial regulator of this transition, primarily by activating glyco-

gen synthase (1). The importance of insulin is seen in patients with 

type 1 diabetes (T1D), who only synthesize one-third the amount 

of hepatic glycogen as control subjects after a mixed meal (2). Yet, 

hyperinsulinemia, in the absence of hyperglycemia, promotes 

hepatic glycogen cycling with minimal net hepatic glycogen syn-

thesis (1). And hyperglycemia, without hyperinsulinemia, inhibits 

hepatic glycogenolysis via glucose-mediated inhibition of glyco-

gen phosphorylase (3), with minimal net hepatic glycogen synthe-

sis (1). The combination of hyperinsulinemia and hyperglycemia 

maximizes net hepatic glycogen synthesis (1). Other nutrients fur-

ther optimize net hepatic glycogen synthesis, such as activation of 

glucokinase by catalytic quantities of fructose (4).

Hepatic insulin action requires a coordinated relay of intracel-

lular signals (Figure 1 and ref. 5). Insulin activates the insulin recep-

tor tyrosine kinase (IRTK), with subsequent activation of kinases 

including 3-phosphoinositide-dependent kinase-1 (PDK1) and 

mTORC2 (6), which converge on Akt phosphorylation (6–8). The 

pattern of insulin delivery may also impact Akt phosphorylation, 

with pulsatile portal delivery (which better mimics physiology) 

leading to greater activation than continuous, fixed insulin deliv-

ery (9). Activation of Akt is the integral result of multiple inputs 

to regulate hepatic glucose and lipid metabolism. This model has 

been used to explain how insulin suppresses hepatic glucose pro-

duction via (i) lowering expression of gluconeogenic enzymes via 

phosphorylation and nuclear exclusion of FOXO1 and (ii) inacti-

vation of glycogen synthase kinase 3β (GSK3β), which permits the 

activation of glycogen synthase.

Recent studies challenge the primacy of the Akt/GSK3β/

glycogen synthase branch in the regulation of glycogen synthe-

sis (10). Hepatic insulin resistance in mice lacking both hepatic 

Akt1 and Akt2 (double liver KO; DLKO) was essentially normal-

ized by the additional deletion of FOXO1, in a triple KO (TLKO) 

mouse model (11). Remarkably, the TLKO mice exhibited rela-

tively normal fasting and postprandial glucose tolerance (10). 

This suggests that FOXO1 deletion enables other mechanisms to 

normalize hepatic glucose metabolism. Finally, Akt2-mediated 
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suppression of hepatic glucose produc-

tion after meals (12, 13). In a canine study, 

raising portal insulin eight-fold — while 

keeping plasma glucose and glucagon 

concentrations fixed — lowered hepatic 

glucose production within 30 minutes but 

did not reduce protein expression of glu-

coneogenic enzymes. Two hours of sus-

tained hyperinsulinemia were required 

to detect a modest decline in protein (14). 

More than 50 years ago, Levine and Fritz 

proposed that insulin inhibited hepatic 

glucose production through an indirect 

mechanism (15). Bergman and others pos-

tulated that insulin’s ability to suppress 

hepatic glucose production was linked to 

the suppression of adipose lipolysis (16). 

Recent studies by Perry et al. provide a 

molecular mechanism linking insulin 

action in white adipose tissue (WAT) to 

the regulation of hepatic gluconeogenesis 

(Figure 3). First, insulin suppressed adi-

pose lipolysis, lowered hepatic acetyl-CoA 

content (an allosteric activator of pyruvate carboxylase [PC]), 

and reduced PC activity and PC flux (17). Second, by inhibit-

ing lipolysis, insulin curtailed glycerol delivery to the liver and 

reduced conversion of glycerol to glucose (18, 19). Hepatic insu-

lin signaling may establish the transcriptional tone of gluconeo-

genic enzymes and determine the gluconeogenic capacity of the 

liver, but the ability of insulin to acutely regulate hepatic glu-

phosphorylation of GSK3 appears dispensable for normal hepatic 

glucose metabolism (10). Thus, Akt activation is not a linchpin 

for coordinating hepatic glucose metabolism, and other path-

ways also regulate this process.

Insulin-mediated suppression of hepatic glucose produc-

tion is often attributed to reduced transcription of gluconeo-

genic enzymes; however, this model fails to explain the rapid 

Figure 1. Insulin action promotes nutrient 

storage. In the liver, nutrient flux (blue arrows) 

is optimized by the coordinated action of 

hormonal and nutrient signals. Insulin signaling 

through Akt2 activates glycogen synthase and 

decreases the transcription of gluconeogenic 

enzymes via inactivation of FOXO1. Insulin sig-

naling also promotes activation and expression 

of SREBP1. Glucose inhibits glycogenolysis 

and, when metabolized, can activate ChREBP. 

SREBP1 and ChREBP both promote DNL. Liver 

uptake of fatty acids (FAs) from chylomicron 

remnants or FAs that spill over from peripheral 

lipolysis also contributes to hepatic lipid syn-

thesis via reesterification. In skeletal muscle, 

insulin activates the movement of GSVs to the 

plasma membrane, enhancing glucose uptake 

and glycogen synthesis. GSV translocation can 

also be activated by exercise. Skeletal muscle 

will also take up FAs for oxidation. In adipose 

tissue, insulin acts to inhibit lipolysis and pro-

mote glucose uptake. Adipose tissue is the pri-

mary storage location for lipids, with a coordi-

nate uptake of fats from chylomicrons and very 

low–density lipoprotein (VLDL). βAR, β-adrener-

gic receptor; CM-TG, chylomicron-triglycergides; 

IR, insulin receptor; HL, hepatic lipase; CM-R, 

chylomicron remnants; CAM-KII, calmodulin 

kinase II; GS, glycogen synthase; GP; glycogen 

phosphorylase; Ac-Coa, Acetyl-CoA.
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skeletal muscle activates Akt2 (Figure 1). 

Akt2 activation leads to phosphorylation  

and inactivation of two RabGTPases,  

Akt substrate of 160 kDa (AS160, also 

known as TBC1D4; refs. 20, 21) and 

TBC1D1 (22), which increase glucose 

transporter type 4–containing (GLUT4-

containing) storage vesicles (GSVs) traf-

ficking to the plasma membrane, cellular 

glucose transport, and glycogen synthe-

sis. Some recent studies also suggest the 

presence of a PI3K-independent arm 

that can promote cleavage of tether con-

taining UBX domain for GLUT4 (TUG), 

a protein that sequesters GSVs in a per-

inuclear storage compartment (23–26). 

Insulin-independent mechanisms also 

activate muscle glucose uptake. Mice with 

targeted deletion of the insulin receptor 

in skeletal muscle have impaired insulin- 

induced muscle glucose uptake (27) but 

have normal exercise-induced muscle 

glucose uptake (28). Muscle contraction 

activates AMPK, which phosphorylates 

proteins that regulate GSV translocation 

(29). AMPK activation is one of many fac-

tors that comprise a network of signals 

that promote glucose uptake in response 

to exercise but independently of insulin 

action (recently reviewed in ref. 30).

WAT glucose uptake is largely insulin dependent and regu-

lated by pathways similar to those in skeletal muscle (Figure 1).  

WAT glucose uptake, quantitatively, is relatively minor, 

accounting for only 5%–10% of whole body glucose uptake (31, 

coneogenesis occurs mostly by an indirect mechanism through 

inhibition of WAT lipolysis.

Muscle glycogen synthesis accounts for the majority of post-

prandial glucose disposal (14). As in the liver, insulin action in the 

Figure 2. Mechanisms of insulin resistance. 

In the liver, DAG-mediated activation of PKCε 
impairs hepatic insulin signaling, constraining 

insulin-stimulated hepatic glycogen synthesis. 

Hepatic lipid synthesis continues unabated. In 

the skelatal muscle, DAG-mediated activa-

tion of PKCθ impairs muscle insulin signaling, 

impeding insulin-stimulated muscle glucose 

uptake and leading to increased glucose 

delivery to the liver. Exercise can still function 

to promote glucose uptake. In adipose tissue, 

cytokine release from ATMs promotes adipose 

lipolysis and leads to increased release of fatty 

acids (FAs). This will further drive hepatic lipid 

synthesis and activate hepatic gluconeogenesis 

via acetyl-CoA–mediated (Ac-CoA–mediated)  

activation of PC and glycerol, increasing 

glucose production via substrate push. IR, 

insulin receptor; GP; glycogen phosphorylase; 

GS, glycogen synthase; LPA, lysophosphatidic 

acid; HL, hepatic lipase; CM-R, chylomicron 

remnants; VLDL, very low–density lipoprotein; 

CAM-KII, calmodulin kinase II; IRS1/2,insulin 

receptor substrate 1/2; βAR, β-adrenergic 

receptor; CM-TG, chylomicron- triglycergides.
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B48–containing (ApoB48-containing) 

triglyceride-rich chylomicrons that are 

rapidly cleared. The hydrolysis of triglyc-

eride into fatty acids by lipoprotein lipase 

(LpL, Figure 1) is a rate-controlling step 

for cellular lipid uptake from plasma and 

is highly regulated (recently reviewed in 

ref. 33). The release of triglyceride from 

intracellular stores is similarly highly con-

trolled by intracellular lipases (reviewed 

in ref. 34). While a full discussion of the 

uptake and release of lipids is beyond the 

scope of the present review, we review 

some studies to illustrate how the regu-

lation of LpL activity fits into the broader 

coordination of energy metabolism. For 

example, insulin increases expression of 

LpL in s.c. adipose tissues (35), while insu-

lin resistance in humans is associated with 

a decrease in s.c. adipose LpL expression 

(36, 37). Whereas insulin regulates basal 

LpL expression, a number of other pro-

teins regulate LpL activity (38). As one 

example, when exercising muscle is com-

pared with nonexercising muscle (e.g., 

single-leg cycling), there is a PPARδ-reg-

ulated induction of angiopoietin like-4 

(ANGPLT4, an inhibitor of LpL) in the 

nonexercising muscle matched with a con-

current AMPK-mediated suppression of 

ANGPLT4 in the exercising muscle (39).  

Thus, coordination of LpL activity chan-

nels lipids to metabolically active sites.

Ectopic lipid accumulation and 
insulin resistance
The association between obesity, insulin 

resistance, and T2D has long been appre-

ciated. 1H MRS studies have demonstrated 

that intramyocellular lipid (IMCL) con-

tent is a much better predictor of muscle 

insulin resistance than fat mass in healthy, 

young, sedentary, lean individuals (40) 

and nonobese, nondiabetic but insulin- 

resistant adults (41) and children (42), 

suggesting a potential causal role for 

IMCL mediator(s) in this process.

Over a half century ago, Randle and 

colleagues concluded that muscle insulin 

resistance associated with obesity could be 

attributed to increased fatty acid oxidation 

that limits insulin-stimulated glucose uti-

lization (43). The essential tenet of this model was that increased 

delivery and oxidation of fatty acids leads to accumulation of cit-

rate that inhibits phosphofructokinase, a key enzyme in glycoly-

sis, leading to increases in intramyocellular glucose-6-phosphate 

and glucose, which thereby impairs glucose utilization (43).  

32). Thus, while glucose can be taken up by WAT, these tissues 

likely do not have a major quantitative role in postprandial glu-

cose metabolism.

Lipids are a second major fuel source. Dietary lipids pre-

dominantly enter the systemic circulation as apolipoprotein 

Figure 3. Insulin regulates hepatic glucose metabolism directly via hepatic insulin action and indi-

rectly via adipose insulin action. (A) Insulin regulates hepatic glucose metabolism through both a 

direct mechanism and an indirect mechanism. The direct mechanism is mediated through activation 

of hepatocyte insulin receptors, which decreases hepatic glucose production acutely by activating 

hepatic glycogen synthesis and chronically through transcriptional downregulation of gluconeogenic 

enzymes, predominately by FOXO1 phosphorylation. Insulin also suppresses hepatic glucose metab-

olism by an indirect mechanism mediated by insulin action on WAT. Insulin inhibition of lipolysis 

suppresses fatty acid and glycerol turnover. This decreases fatty acid (FA) delivery to the liver, leading 

to reductions in hepatic acetyl-CoA (Ac-CoA) content, which in turn leads to allosteric reductions in 

hepatic PC activity and flux. Additionally, insulin suppression of lipolysis decreases glycerol delivery 

to liver and decreases conversion of glycerol to glucose. PEPCK, phosphoenolpyruvate carboxykinase; 

G6Pase, glucose 6-phosphatase. (B) In T2D, dysregulation of hepatic and adipose insulin action both 

contribute to hyperglycemia. Impaired hepatic insulin signaling, mediated by DAG/PKCε inhibition 

of insulin receptor kinase activity, results in reduced insulin activation of hepatic glycogen synthesis 

and postprandial hyperglycemia. Adipose tissue inflammation and adipose insulin resistance results 

in increased rates of lipolysis and increased rates of FA and glycerol delivery to the liver. Increased FA 

delivery to the liver increases hepatic Ac-CoA content, leading to allosteric activation of PC activity 

and PC flux that increases hepatic gluconeogenesis. Additionally, increased glycerol delivery to the 

liver further increases hepatic gluconeogenesis through a substrate push mechanism. Dotted lines 

represent decreased action or flux. DHAP, dihydroxyacetone phosphate.
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The development of muscle insulin resistance can lead to 

metabolic disease. This has been observed in genetic mouse mod-

els of selective muscle insulin resistance due to muscle-specific 

deletions of the IRTK (27) and GLUT4 (60), which are prone to 

hepatic steatosis (61) and increased adiposity (27). In young, lean, 

otherwise healthy humans with skeletal muscle insulin resis-

tance, ingested glucose is not taken up by muscle and instead 

gets diverted to the liver, where it becomes substrate for hepatic 

de novo lipogenesis (DNL), increasing liver triglyceride synthe-

sis and plasma triglyceride concentrations, and reducing plasma 

HDL concentrations (ref. 62 and Figure 4).

Cellular mechanisms of hepatic insulin resistance
NAFLD is strongly associated with hepatic insulin resistance. 

Though different models have been proposed for the develop-

ment of hepatic insulin resistance (reviewed in ref. 5), a substan-

tial body of work also supports the role of DAG accumulation 

and PKCε activation in impairing hepatic insulin action. Briefly, 

studies in patients with generalized lipodystrophy demonstrated 

that ectopic lipid accumulation in liver and skeletal muscle was 

associated with severe hepatic and muscle insulin resistance, 

despite the absence of adipose tissue (63). Leptin therapy reduced 

calorie intake, resolved hepatic steatosis, and improved insulin 

action (63). Lipodystrophic mice have a similar phenotype, and 

fat transplantation rescued these mice by allowing a redistribution 

of lipids from ectopic sites to transplanted adipose tissue and nor-

malization of insulin action (64). Similarly, mice overexpressing 

LpL in the liver develop hepatic steatosis and liver-specific insulin 

resistance (65). In rats and mice, short-term, high-fat diets lead 

to hepatic steatosis and hepatic insulin resistance without muscle 

lipid accumulation or peripheral insulin resistance. Thus, these 

studies demonstrate that ectopic lipid in the liver is specifically 

associated with hepatic insulin resistance and disassociate hepatic 

insulin resistance from obesity and visceral adiposity.

In fat-fed rats, the increase in hepatic DAG content acti-

vates PKCε, the primary PKC isoform in liver (66, 67). These 

changes are associated with decreased activation of IRTK (ref. 

68 and Figure 2). Lowering PKCε expression protected rats 

from lipid-induced hepatic insulin resistance and preserved 

IRTK activity, though hepatic DAG and triglyceride content 

was unchanged (68). Similarly, Prkce–/– mice are protected from 

diet-induced insulin resistance following one week of high-fat 

feeding, despite increases in liver lipid content (69). These data 

support a model for hepatic insulin resistance where the accu-

mulation of hepatic DAG activates PKCε and impairs IRTK acti-

vation, and demonstrate that PKCε activation is necessary for 

lipid-induced hepatic insulin resistance.

This paradigm has been translated to humans. Kumashiro 

et al. studied determinants of insulin resistance in a cohort of 

patients undergoing bariatric surgery (70). Hepatic DAG content 

and PKCε activation were the strongest predictors of insulin sen-

sitivity. In contrast, there was no association between insulin sen-

sitivity and other factors implicated in the pathogenesis of hepatic 

insulin resistance (e.g., JNK1 activation, ceramide content, etc.). 

Magkos et al. also demonstrated that hepatic DAG content (but 

not hepatic ceramide content) was the best predictor of hepatic 

insulin resistance in obese humans (71).

Yet, noninvasive measurements of these metabolites by 13C and 
31P MRS studies found that the intramyocellular concentrations 

of these metabolites were decreased in human muscle during 

the acute induction of insulin resistance by a lipid infusion, 

demonstrating that fatty acids impair insulin-stimulated glucose 

metabolism in muscle by blocking glucose transport into the cell, 

not through inhibition of glycolysis (44, 45). Similar reductions 

in glucose transport were observed in insulin-resistant, obese 

individuals (46); patients with T2D (47); and lean, normoglyce-

mic but insulin-resistant offspring of T2D parents (48). Taken 

together, these data support the hypothesis that an IMCL metab-

olite induces insulin resistance by causing defects in insulin-

stimulated muscle glucose transport activity (45).

IMCL accumulates when there is a mismatch between lipid 

oxidation and lipid delivery to the myocyte (Figure 2 and refs. 

48, 49). In elderly subjects, skeletal muscle insulin resistance 

was associated with increased IMCL and a 35% reduction in 

both mitochondrial oxidative and phosphorylation activity. Age- 

associated reductions in mitochondrial function may be due to 

cumulative damage from ROS (50). Supporting this hypothesis, 

transgenic mice that overexpress a mitochondrial-targeted form 

of human catalase were protected from mitochondrial oxidative 

damage associated with aging and were able to maintain normal 

muscle mitochondrial function, muscle triglyceride/diacylglyc-

erol (DAG) content and insulin action (51). Muscle mitochon-

drial oxidative and phosphorylation activity were also reduced 

by approximately 40% in healthy, young, lean, insulin-resistant 

offspring of patients with T2DM (52, 53). In contrast to aging, 

these reductions in mitochondrial activity appear to be sec-

ondary to reduction in mitochondrial density (54) and may be 

due in part to diminished expression of LpL in skeletal muscle, 

which could limit PPARδ-mediated mitochondrial biogenesis 

(55). Together, these studies demonstrate the close association 

between ectopic lipid accumulation and insulin resistance in 

skeletal muscle, and they highlight the potential role of reduced 

mitochondrial function in promoting IMCL accumulation.

Cellular mechanisms of muscle insulin resistance
IMCL primarily reflects intramyocellular triglyceride content. 

While IMCL strongly correlates with muscle insulin resistance 

in sedentary individuals, triglycerides themselves have been 

disassociated from insulin resistance, suggesting that other 

lipid species (e.g., DAGs, ceramides, etc.) mediate insulin resis-

tance (56). Numerous studies have delineated the mechanistic 

links between DAG accumulation and muscle insulin resistance 

and point specifically to a proximal defect in insulin signaling.  

Insulin-stimulated tyrosine phosphorylation of IRS-1 and 

IRS-1–associated PI3K activation were acutely impaired in skel-

etal muscle of lipid-infused humans (45) and rodents (56, 57). 

In rodents, lipid infusion and high-fat feeding led to transient 

increases in muscle DAG content (56), resulting in sustained 

activation of PKCθ that limited phosphorylation of IRS-1 by IRTK 

(Figure 2). Lipid infusions in healthy human volunteers similarly 

increased skeletal muscle DAG and nPKC activation (PKCδ, ref. 

58; PKCθ, ref. 59) and caused muscle insulin resistance. These 

studies support a mechanistic model in which muscle DAG accu-

mulation activates PKCθ, which impairs insulin signaling.



The Journal of Clinical Investigation   R E V I EW

1 7jci.org   Volume 126   Number 1   January 2016

There are some circumstances in which hepatic steatosis 

appears disassociated from hepatic insulin resistance. Decreasing 

expression of comparative gene identification-58 (CGI-58), an acti-

vator of adipose triglyceride lipase (ATGL), led to marked hepatic 

steatosis and an increase in total DAG content without hepatic insu-

lin resistance (72). However, loss of CGI-58 altered the subcellular 

distribution of DAG and PKCε; specifically, CGI-58 knockdown pre-

vented DAG accumulation at the plasma membrane, PKCε activa-

tion, and the associated impairments in hepatic insulin action (73).

A common single nucleotide polymorphism (rs738409, I48M) 

in the lipid droplet protein patatin-like phospholipase domain-

containing protein 3 (PNPLA3, also called adiponutrin) has been 

associated with increased hepatic steatosis but not insulin resis-

tance (74). Mice expressing the knock-in mutation develop diet- 

induced steatosis with normal glucose tolerance (75). This mutation 

may increase PNPLA3 content on lipid droplets (75) and lead to an 

increase in triglyceride content, but not other bioactive lipids (i.e., 

DAG; ref. 76). Thus, instances of apparent disassociation of hepatic 

steatosis and hepatic insulin resistance may be explained by a better 

understanding of the subcellular distribution of DAG and nPKCs.

Finally, loss of insulin-mediated Akt activation may not be 

an absolute requisite for insulin resistance. Coate and colleagues 

demonstrated that dogs fed a high-fat diet or high-fructose diet for 

four weeks developed a similar degree of insulin resistance (77). 

High-fat feeding impaired insulin-stimulated Akt phosphoryla-

tion, but a high-fructose diet did not. Instead, high-fructose feed-

ing impaired glucokinase activity and glycogen synthesis. Thus, 

the typical high-calorie diets consumed by humans may impede 

hepatic insulin action via multiple pathways.

Ceramides are also bioactive lipid molecules that are impli-

cated in the development of insulin resistance. Increases in hepatic 

and muscle ceramide content have been associated with insulin 

Figure 4. Insulin regulates hepatic lipid metab-

olism directly via hepatic insulin signaling and 

indirectly via adipose and muscle insulin action. 

(A) Muscle insulin action promotes postprandial 

muscle glucose uptake, and adipose insulin 

action decreases hepatic fatty acid (FA) delivery 

and reesterification of hepatic FAs into triglyc-

erides. Direct hepatic insulin action will activate 

de novo lipogenesis and conversion of excess 

carbohydrate substrate into triglyceride and will 

promote export of hepatic triglyceride to adipose 

tissue as very low–density lipoprotein (VLDL). 

DNL, de novo lipogenesis. (B) Selective muscle 

insulin resistance in the prediabetic state, due to 

selective ectopic IMCL accumulation and DAG/

PKCθ-mediated inhibition of muscle insulin 

signaling, leads to decreased insulin-stimulated 

glucose transport activity. This diverts ingested 

glucose to the liver, where the combination of 

postprandial hyperinsulinemia and hypergly-

cemia stimulates hepatic de novo lipogenesis, 

resulting in increased VLDL production, hyper-

triglyceridemia, and reductions in plasma HDL. 

(C) With the progression to hepatic steatosis and 

impaired insulin signaling in all key insulin- 

responsive tissues (liver, skeletal muscle, and 

adipose tissue), rates of adipose tissue lipolysis 

are increased, resulting in increased FA delivery 

to liver, which results in increased hepatic esteri-

fication of fatty acids to triglyceride. This process 

is regulated predominately by a substrate 

push mechanism and is independent of insulin 

signaling in the hepatocyte. In contrast, hepatic 

de novo lipogenesis, which is dependent on 

hepatic insulin signaling, is reduced. Dotted lines 

represent decreased action or decreased flux.



The Journal of Clinical Investigation   R E V I EW

1 8 jci.org   Volume 126   Number 1   January 2016

resistance in rodents (78), and inhibitors of ceramide synthesis 

can prevent insulin resistance (79, 80). However, a disassociation 

between ceramide content and tissue insulin resistance has been 

reported in multiple studies (70, 71, 81), and the underlying mech-

anism linking ceramides to insulin resistance has not been fully 

resolved. Recently, two studies examined how a specific ceramide 

species, C16:0, impedes mitochondrial function, allowing triglyc-

eride accumulation and insulin resistance (82, 83). Though not 

examined in these studies, it is possible that the reciprocal relation-

ship between C16:0 ceramide and mitochondrial oxidation could 

also increase DAG, activate nPKCs, and impair insulin signaling.

Adipose insulin resistance
In part, adipose insulin resistance is the inability of insulin to acti-

vate adipose glucose transport, promote lipid uptake, and sup-

press lipolysis (Figure 3). While decreased adipose glucose uptake 

is demonstrated in both in vivo and in vitro models, the mecha-

nism and metabolic impact of impaired insulin-mediated glucose 

uptake in adipose tissue is unclear. Insulin-stimulated adipose 

glucose metabolism is quantitatively minor compared with whole 

body insulin-stimulated glucose metabolism; however, glucose 

metabolism within adipocytes exerts extra-adipose actions. For 

example, loss of adipose GLUT4 in mice does not alter adiposity 

or weight gain but leads to insulin resistance in skeletal muscle and 

liver (84). Glucose entry into adipose cells activates carbohydrate 

response element binding protein (ChREBP), which may impact 

adipose lipid metabolism (85). Intriguingly, adipose ChREBP 

expression appears directly related to insulin sensitivity in humans 

(85). Adipocytes release specific fatty acids that are associated 

with increased insulin sensitivity, like palmitoleate (86, 87) or 

monomethyl branched chain fatty acids (88). Recently, ChREBP 

was implicated in the synthesis of fatty acid esters of hydroxy 

fatty acids (FAHFAs), which improve glucose tolerance (89). Adi-

pocytokines (e.g., leptin, resistin, and adiponectin) also impact 

systemic insulin sensitivity (90). Increases in leptin and resistin 

are associated with insulin resistance, while adiponectin is asso-

ciated with increased insulin sensitivity. Mice lacking adiponectin 

are prone to hepatic steatosis and hepatic insulin resistance (91, 

92). While overexpression of adiponectin in ob/ob mice leads to 

increased adiposity, the improvement in adipose function lowered 

adipose inflammation, circulating lipids, and hepatic DAG con-

tent and improved hepatic insulin action (93). Thus, WAT exerts 

systemic effect via the release of substrates (fatty acids, glycerol) 

and signaling molecules (adipokines and lipokines).

Common genetic mutations impact ectopic lipid storage. 

Recently, polymorphisms in APOC3 were shown to predispose 

lean, male individuals to NAFLD and insulin resistance (94, 95). 

These polymorphisms led to approximately 30% higher plasma 

ApoC3 concentrations and postprandial hypertriglyceridemia 

through ApoC3’s inhibitory effect on LpL activity, which increased 

hepatic uptake of chylomicron remnants. Similarly, transgenic 

mice that overexpress human ApoC3 in the liver had increased 

hepatic triacylglycerol (TAG)/DAG accumulation when fed a 

high-fat diet with the activation of hepatic PKCε and the develop-

ment of hepatic insulin resistance (89).

Multiple factors impede the ability of insulin to suppress adi-

pose lipolysis, including inflammation. Activated adipose tissue 

macrophages (ATMs) are recruited via chemokine signaling (96, 

97) and release cytokines that promote lipolysis. TNFα lowers per-

ilipin expression, presumably enhancing lipolysis (98, 99). Addi-

tionally, TNFα, IL-1β, and IFNγ decrease expression of fat-specific 

protein 27 (FSP27) (100), which may stabilize lipid droplets by 

controlling lipase access to triglycerides. Adipose lipolysis is also 

regulated by other pathways. Some data suggest that hypotha-

lamic insulin may suppress sympathetic nervous system signaling 

and thereby reduces catecholamine-mediated lipolysis (101–103). 

Leptin may also regulate WAT lipolysis via the hypothalamic- 

pituitary-adrenal (HPA) axis (12). Leptin clearly has pleiotropic 

effects on glucose metabolism, including reduction in food intake, 

which reduces ectopic lipid accumulation and improves hepatic 

and muscle insulin action in lipodystrophic individuals (63); 

reduction of glucagon secretion (104); neural regulation of hepatic 

glucose production (105); and regulation of glucocorticoid secre-

tion (18, 106). Perry et al. demonstrated the latter, specifically 

that leptin treatment rescued streptozotocin-treated rats with 

ketoacidosis by suppressing adrenocorticotropic hormone–driven 

adrenal corticosterone production. Despite the near total absence 

of insulin, leptin normalized fasting rates of WAT lipolysis, 

decreased hepatic acetyl-CoA and PC flux, and lowered fasting 

rates of hepatic gluconeogenesis and ketogenesis (18). It bears 

noting that adipocytes are exquisitely sensitive to insulin and 

even low concentrations will trump the effect of hypercorticoster-

onemia (107). Insulin deficiency may also suppress adipose LpL 

expression (108), which could further compound the hypertriglyc-

eridemia seen in diabetic states. Consistent with this hypothesis, 

mice overexpressing skeletal muscle LpL were protected from the 

hypertriglyceridemia seen with streptozotocin treatment, demon-

strating that the creation of a tissue depot for lipids could alter 

lipid storage and prevent hyperlipidemia (108).

Regulation of hepatic triglyceride synthesis and 
selective hepatic insulin resistance
A central paradox in the pathogenesis of T2D is the apparent 

selective nature of hepatic insulin resistance wherein insulin 

fails to suppress hepatic glucose production, yet continues to 

stimulate lipogenesis, resulting in hyperglycemia, hyperlipi-

demia, and hepatic steatosis. Efforts to explain this paradox 

have focused on finding a branch point in insulin signaling 

where hepatic glucose and lipid metabolism diverge. Vatner 

et al. hypothesized that hepatic triglyceride synthesis could 

be driven by substrate (fatty acids), independent of changes in 

hepatic insulin signaling (109). They tested this in awake nor-

mal rats, high-fat–fed, insulin-resistant rats and insulin receptor 

2′-O-methoxyethyl chimeric antisense oligonucleotide-treated 

rats infused with varying concentrations of lipid and insulin. 

Rates of fatty acid esterification into hepatic triglyceride were 

found to be dependent on the rate of fatty acid delivery to the 

liver and independent of hepatocellular insulin signaling. In 

contrast, de novo hepatic lipogenesis was insulin dependent 

and was reduced in rats with defective hepatic insulin signaling. 

These studies offer a solution to this paradox. The major source 

of hepatic lipid synthesis, esterification of preformed fatty 

acids, is primarily dependent on substrate delivery and largely 

independent of hepatic insulin action (Figure 4).
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Decreasing ectopic lipid accumulation reverses 
insulin resistance and T2D
Weight loss addresses the root causes of insulin resistance and is 

an essential goal for all patients with ectopic lipid deposition, insu-

lin resistance, and T2D. Modest weight loss can reduce hepatic 

lipid content, normalize hepatic insulin sensitivity (119), and 

“reverse” T2D (119, 120). Aerobic exercise also improves insulin 

sensitivity. Skeletal muscle glucose transport is activated by insu-

lin-independent mechanisms in response to exercise and aerobic 

conditioning. Exercise is a potent therapy for patients with T2D, 

as it bypasses the block in insulin signaling to enhance muscle 

glucose uptake and potentially reestablish the normal disposal of 

dietary glucose into muscle glycogen. In insulin-resistant subjects, 

a single session of aerobic exercise augmented muscle glucose 

transport activity and insulin-stimulated muscle glycogen synthe-

sis (48). Even short (6-minute) bursts of exercise prior to meals 

can significantly improve the diurnal glucose excursion (121). Fur-

ther evidence in support of the key role of substrate in promoting 

increased hepatic DNL was demonstrated by a study that found 

that a single bout of elliptical training resulted in increased post-

prandial muscle glycogen synthesis and reduced hepatic DNL 

without altering plasma insulin concentrations in healthy, young, 

lean individuals with selective muscle insulin resistance (122).

Conclusions
Calorie imbalance, promoted by our modern, toxic environ-

ment, results in ectopic lipid accumulation in liver and skeletal 

muscle, which impedes insulin action in these tissues. Subse-

quent adipocyte dysfunction promotes macrophage infiltration 

and increases lipolysis, further impairing hepatic carbohydrate 

and lipid metabolism in several ways. First, increased fatty acid 

flux promotes fatty acid esterification and hepatic triglyceride 

synthesis, exacerbating hepatic steatosis, hepatic insulin resis-

tance, and hypertriglyceridemia (Figure 4). Fatty acid delivery 

also increases hepatic acetyl-CoA, which allosterically activates 

PC, while the increased delivery of glycerol further increases 

hepatic gluconeogenesis (Figure 3). These hepatic processes are 

all mostly substrate driven and independent of insulin signaling 

in the liver but dependent on insulin signaling in WAT. In con-

trast, hepatic glycogen synthesis and hepatic DNL are dependent 

on both substrate (glucose and fructose) delivery to liver and the 

direct effects of insulin signaling in liver and are reduced with 

hepatic insulin resistance and insulin deficiency. While increased 

β cell function and hyperinsulinemia initially try to compensate 

for these dysregulated processes, glucolipotoxicity and genetic 

factors lead to β cell failure and progression to T2D.

Our understanding of the molecular basis of insulin resis-

tance and increased hepatic gluconeogenesis will inform our 

approach to the global diabetes epidemic. Policies and education 

that encourage better nutrition and minimize sedentary behavior 

will promote default behaviors that could lower the prevalence of 

T2D (123). But new drugs are also required. In this regard, FGF-21  

has been shown to be effective in reducing hepatic steatosis and 

reversing insulin resistance in rodents (124) and is now in clin-

ical trials (125). Acetyl-CoA carboxylase inhibitors decrease 

hepatic lipogenesis, increase fatty acid oxidation, and show prom-

ise in reversing fatty liver in rodent models of NAFLD and T2D  

Monosaccharides act as both substrates for and nutrient 

regulators of hepatic DNL. In normal subjects, glucose is largely 

metabolized in skeletal muscle. However, muscle insulin resis-

tance, which occurs early in the course of T2D (47), increases 

glucose delivery to the liver, where the lipogenic machinery 

has been primed by chronic hyperinsulinemia (110). Fructose, 

which is consumed in nearly equal amounts as glucose, can 

also promote lipogenesis. Both glucose and fructose may also 

act to regulate hepatic lipogenesis independently of insulin 

action (Figure 1). Both increase SREBP1c expression even in the 

absence of insulin (111), though insulin action may be necessary 

for full SREBP1c processing to realize the maximal conversion 

of these sugars into lipids (112). But fructose, unlike glucose, is 

primarily funneled into the liver, providing a substantial car-

bon substrate for lipogenesis. Human subjects who consumed 

fructose-containing beverages, in comparison with those con-

suming isocaloric glucose-containing beverages, developed 

hyperlipidemia and insulin resistance despite gaining a similar 

amount of weight (113). Monosaccharides also enlist other tran-

scription factors, including ChREBP (114, 115), PPARγ coacti-

vator 1-β (116), and liver X receptor (117), to activate lipogene-

sis. In summary, though insulin potentiates DNL by activating 

SREBP1c, substrate flux into the liver also impacts hepatic lipid 

synthesis. Fatty acid flux promotes hepatic lipid synthesis by 

reesterification, while monosaccharide flux provides both the 

substrate and the stimulus for lipogenesis. Together, these alter-

nate pathways may promote hepatic lipid synthesis despite the 

presence of hepatic insulin resistance.

Increased WAT lipolysis also promotes hepatic insulin resis-

tance by increasing hepatic gluconeogenesis. First, lipolysis 

increases fatty acid delivery to the liver, leading to increased 

hepatic acetyl-CoA content, which activates PC activity and PC 

flux (17, 18). Second, WAT lipolysis also increases glycerol delivery 

to the liver which can promote glucose production by a substrate 

dependent push mechanism independently of hepatic insulin 

action (17–19). Both of these processes are independent of insulin 

signaling in the liver and are dependent on normal insulin signal-

ing in the adipocyte. Inhibiting lipolysis with an ATGL inhibitor 

lowered rates of hepatic gluconeogenesis in normal chow-fed 

rats, insulin-resistant high-fat–fed rats, and insulin-resistant rats 

treated with an antisense oligonucleotide to knock down hepatic 

and adipocyte IRTK. The importance of intrahepatic DAG and 

acetyl-CoA in promoting hepatic insulin resistance and increased 

hepatic gluconeogenesis was also demonstrated in rats treated with 

either a liver-targeted or controlled release formulation of a mito-

chondrial protonophore (81, 118). In both cases, subtle increases 

in hepatic mitochondrial inefficiency reduced hepatic DAG and 

acetyl-CoA content with marked improvement in hepatic insulin 

signaling and reductions in rates of hepatic gluconeogenesis and 

fasting hyperglycemia in diabetic animals. These studies inform a 

model that recognizes a plurality in insulin’s regulation of hepatic 

glucose and lipid metabolism. Insulin acts directly via hepatic 

insulin signaling to stimulate net hepatic glycogen synthesis and 

hepatic DNL, but insulin’s extrahepatic action to suppress lipolysis 

in WAT is critical for maintaining normal carbohydrate and lipid 

metabolism by inhibiting hepatic gluconeogenesis and curtailing 

hepatic esterification of fatty acids to triglyceride.
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(126–128). Proof-of-concept studies in rodent models of NALFD 

and T2D demonstrate that mildly increasing hepatic mitochon-

drial inefficiency can safely reverse hypertriglyceridemia, ectopic 

lipid-induced (DAG/nPKC) liver and muscle insulin resistance, 

steatohepatitis, liver fibrosis, and diabetes, offering a novel ther-

apeutic target for T2D and nonalcoholic steatohepatitis (NASH) 

(81, 118, 129). This knowledge and understanding gained over the 

past several decades into the pathogenesis of insulin resistance 

may avert the looming epidemics of diabetes and NAFLD/NASH 

and ensure a healthier future for subsequent generations (130).
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