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R
heumatoid arthritis is a common autoimmune disease that is 

associated with progressive disability, systemic complications, early death, 

and socioeconomic costs.1 The cause of rheumatoid arthritis is unknown, 

and the prognosis is guarded. However, advances in understanding the pathogen-

esis of the disease have fostered the development of new therapeutics, with im-

proved outcomes. The current treatment strategy, which reflects this progress, is to 

initiate aggressive therapy soon after diagnosis and to escalate the therapy, guided 

by an assessment of disease activity, in pursuit of clinical remission.

However, several unmet needs remain. Current conventional and biologic disease-

modifying therapies sometimes fail or produce only partial responses. Reliable pre-

dictive biomarkers of prognosis, therapeutic response, and toxicity are lacking. 

Sustained remission is rarely achieved and requires ongoing pharmacologic therapy. 

The mortality rate is higher among patients with rheumatoid arthritis than among 

healthy persons, and cardiovascular and other systemic complications remain a 

major challenge. Molecular remission and the capacity to reestablish immunologic 

tolerance remain elusive. Elucidation of the pathogenic mechanisms that initiate 

and perpetuate rheumatoid arthritis offers the promise of progress in each of 

these domains. Rheumatoid arthritis is predominantly classified on the basis of 

the clinical phenotype.2 We believe it is important to make the transition to a new 

molecular taxonomy that defines discrete disease subgroups with distinct prog-

nostic and therapeutic significance.3

Rheumatoid arthritis is characterized by synovial inflammation and hyperpla-

sia (“swelling”), autoantibody production (rheumatoid factor and anti–citrullinated 

protein antibody [ACPA]), cartilage and bone destruction (“deformity”), and sys-

temic features, including cardiovascular, pulmonary, psychological, and skeletal 

disorders. These clinical features pose critical mechanistic questions: What genetic–

environmental interactions must occur to facilitate autoimmunity a priori, and why 

does this beget articular localization? Why does synovial inflammation perpetu-

ate? What drives local destruction leading to joint dysfunction? Why does rheuma-

toid arthritis cause systemic illness? We herein summarize key pathogenetic ad-

vances informing these issues.

Gene tic a nd En v ironmen ta l Fac t or s

Rheumatoid arthritis involves a complex interplay among genotype, environmental 

triggers, and chance. Twin studies implicate genetic factors in rheumatoid arthritis, 

with concordance rates of 15 to 30% among monozygotic twins and 5% among 

dizygotic twins.4 Genomewide analyses make it clear that immune regulatory fac-

tors underlie the disease.5 The long-established association with the human leuko-

cyte antigen (HLA)–DRB1 locus has been confirmed in patients who are positive for 

rheumatoid factor or ACPA; alleles that contain a common amino acid motif 
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(QKRAA) in the HLA-DRB1 region, termed the 

shared epitope, confer particular susceptibility.6 

These findings suggest that some predisposing 

T-cell repertoire selection, antigen presentation, 

or alteration in peptide affinity has a role in pro-

moting autoreactive adaptive immune responses. 

Other possible explanations for the link between 

rheumatoid arthritis and the shared epitope in-

clude molecular mimicry of the shared epitope by 

microbial proteins, increased T-cell senescence in-

duced by shared epitope–containing HLA mole-

cules, and a potential proinflammatory signaling 

function that is unrelated to the role of the shared 

epitope in antigen recognition.7,8

Many other identified risk alleles in ACPA-

positive rheumatoid arthritis consistently aggre-

gate functionally with immune regulation (Ta ble 

1), implicating nuclear factor κB (NF-κB)–depen-

dent signaling (e.g., TRAF1–C5 and c-REL) and 

T-cell stimulation, activation, and functional dif-

ferentiation (e.g., PTPN22 and CTLA4).9-12 More-

over, gene–gene interactions that increase disease 

risk, as described between HLA-DRB1 and PTPN22, 

exemplify the complexity of the net risk con-

ferred by any given gene.13 Genetic risk factors 

for ACPA-negative disease appear to be no less 

important than those for ACPA-positive disease. 

However, they are less well established and in-

volve different HLA alleles (e.g., HLA-DRB1*03), 

interferon regulatory factors (e.g., interferon re-

sponse factor 5), and lectin-binding proteins (e.g., 

C-type lectin domain family 4 member A).3 This 

fundamental dichotomy in genetic risk on the ba-

sis of ACPA expression provides the first clear evi-

dence that a molecular taxonomy for “the rheu-

matoid arthritis syndrome” is feasible. Patients 

with ACPA-positive disease have a less favorable 

prognosis than those with ACPA-negative disease, 

which suggests that such molecular subsets are 

clinically useful.

Findings from studies of gene–environment 

interactions complement these observations. Smok-

ing and other forms of bronchial stress (e.g., ex-

posure to silica) increase the risk of rheumatoid 

arthritis among persons with susceptibility HLA–

DR4 alleles.14 Moreover, smoking and HLA-DRB1 

alleles synergistically increase one’s risk of hav-

ing ACPA.15 Unifying these observations is the 

finding that environmental stressors of pulmo-

nary and other barrier tissues may promote post-

translational modifications, through peptidyl ar-

ginine deiminase, type IV (PADI4), that result in 

quantitative or qualitative alteration in citrullina-

tion of mucosal proteins.

Loss of tolerance to such neoepitopes elicits an 

ACPA response (which can be detected with a diag-

nostic anti–cyclic citrullinated peptide [CCP] assay) 

(Fig. 1).16,17 Several citrullinated self-proteins are 

recognized in anti-CCP assays, including α-enolase, 

keratin, fibrinogen, fibronectin, collagen, and vi-

mentin. Characterization of subsets of seroposi-

tive patients to elicit true disease autoantigens is 

ongoing. An estimated 43 to 63% of patients with 

ACPA-positive rheumatoid arthritis are seroposi-

tive for citrullinated α-enolase, which is strongly 

associated with HLA-DRB1*04, PTPN22, and smok-

ing.18 Similar interactions are reported for citrul-

linated vimentin and fibrinogen epitopes.19

Infectious agents (e.g., Epstein–Barr virus, cyto-

megalovirus, proteus species, and Escherichia coli) 

and their products (e.g., heat-shock proteins) have 

long been linked with rheumatoid arthritis, and 

although unifying mechanisms remain elusive, 

some form of molecular mimicry is postulat-

ed.20,21 The formation of immune complexes dur-

ing infection may trigger the induction of rheu-

matoid factor, a high-affinity autoantibody against 

the Fc portion of immunoglobulin, which has 

long served as a diagnostic marker of rheumatoid 

arthritis and is implicated in its pathogenesis. 

Furthermore, rheumatoid arthritis appears to be 

associated with periodontal disease: Porphyromo-

nas gingivalis expresses PADI4, which is capable 

of promoting citrullination of mammalian pro-

teins.22 Finally, the gastrointestinal microbiome 

is now recognized to influence the development 

of autoimmunity in articular models, and specific 

(and potentially tractable) clinical bacterial sig-

natures that are associated with autoantibody-

positive rheumatoid arthritis are emerging.23

The greater risk of rheumatoid arthritis among 

women than among men has long been recog-

nized. The onset of rheumatoid arthritis is also 

associated with adverse life events. Molecular 

explanations for such phenomena are emerging 

from animal models of inflammation, which show 

a link between the hypothalamic–pituitary–adre-

nal axis and cytokine production.24 The central 

nervous system is normally involved in immune 

regulation and homeostasis, and neuroimmuno-

logic interactions regulate disease development in 

rodent models of arthritis. Such effects may oper-

ate locally (several neurotransmitters are expressed 

in synovitis in rheumatoid arthritis) or centrally 
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(cytokines are rapidly up-regulated in the hypo-

thalamus during peripheral inflammation). Trans-

lation of these observations to effective treatment 

of rheumatoid arthritis is challenging.

Critical issues remain unresolved. Autoanti-

bodies, such as rheumatoid factor and ACPA, are 

often (but not always) detected in patients before 

the development of arthritis (prearticular phase 

of rheumatoid arthritis); in some series, auto-

antibody levels have increased and there has been 

evidence of epitope spreading as the onset of dis-

ease approaches.25 Why the systemic loss of toler-

Table 1. Candidate Genes with Single-Nucleotide Polymorphisms (SNPs) Linked to Rheumatoid Arthritis and Their Potential Function 

in Pathogenesis.*

Candidate Gene  
and Pathway SNP Locus Function Relevant to Pathogenesis

T-cell activation

HLA-DRB1† 6p21 HLA DRB1 allele (also known as the shared epitope) involved in MHC molecule–based antigen 
presentation and responsible for self-peptide selection and T-cell repertoire; first discovered 
and still by far the strongest genetic link to rheumatoid arthritis

PTPN22 1p13.2 Lymphocyte-specific nonreceptor tyrosine phosphatase involved in regulation of activation 
threshold of lymphocytes; second genetic link described in rheumatoid arthritis

AFF3 2q11.2 Transcription factor for lymphoid development

CD28 2q33.2 Costimulatory molecule for T-cell activation

CD40 20q13.12 Costimulatory molecule that enhances interactions between T and B cells and increases auto-
antibody production

CTLA4 2q33.2 Costimulation suppressor that regulates interactions between T cells and antigen-presenting 
cells

IL2RA 10p15.1 High-affinity receptor for interleukin-2 on lymphocyte subsets

IL2 4q27 Cytokine that regulates activation of T cells, particularly regulatory T cells

IL-21 4q27 Cytokine that regulates differentiation of T cells, particularly Th17, and activation of B cells

PRKCQ 10p15.1 Member of the protein kinase C family that regulates T-cell and macrophage activation

STAT4 2q32.3 Transducer of cytokine signals that regulate proliferation, survival, and differentiation  
of lymphocytes

TAGAP 6q25.3 Rho-GTPase enzyme involved in T-cell activation

NF-κB pathway

REL 2p16.1 Proto-oncogene member of the NF-κB family that regulates leukocyte activation and survival

TNFAIP3 6q23.3 Signaling protein and negative regulator of TNF-α–induced NF-κB activation

TRAF1 9q33.1 Regulator of TNF-α–receptor superfamily signaling (e.g., to NF-κB and JNK)

Other pathways

BLK 8p23.1 B-lymphoid tyrosine kinase involved in B-cell receptor signaling and B-cell development

CCL21 9q13.3 Chemokine implicated in germinal-center formation

FCGR2A 1q23.2 Low-affinity IgG Fc receptor that regulates macrophage and neutrophil activation and 
immune-complex clearance

PADI4 1p36.2 Enzyme that converts arginine to citrulline, creating autoantigens in rheumatoid arthritis

PRDM1 6q21 Protein that acts as a repressor of β-interferon gene expression

TNFRSF14 1p36.32 TNF-α–receptor superfamily member with proinflammatory activity

* GTPase denotes guanosine triphosphatase, JNK Jun N-terminal kinase, MHC major histocompatibility complex, NF-κB nuclear factor κB, 
Th17 type 17 helper T cells, and TNF-α tumor necrosis factor α.

† Different HLA-DRB1 alleles, not only the shared epitope, are associated with rheumatoid arthritis and with distinct immune responses 
to citrullinated antigens. In addition, HLA-DP and HLA-DQ loci (outside the HLA-DRB1 region) have been associated with rheumatoid 
 arthritis.
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Figure 1. Multistep Progression to the Development of Rheumatoid Arthritis.

Environment–gene interactions described in the text promote loss of tolerance to self-proteins that contain a citrulline residue, which is 

generated by post-translational modification. This anticitrulline response can be detected in T-cell and B-cell compartments and is prob-

ably initiated in secondary lymphoid tissues or bone marrow. Thereafter, localization of the inflammatory response occurs in the joint by 

virtue of poorly understood mechanisms that probably involve microvascular, neurologic, biomechanical, or other tissue-specific path-

ways. Synovitis is initiated and perpetuated by positive feedback loops and in turn promotes systemic disorders that make up the syn-

drome of rheumatoid arthritis. ACPA denotes anti–citrullinated protein antibody, and RF rheumatoid factor.
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ance is linked to a localized onset of inflammation 

in the joint is still unclear (transitional phase of 

rheumatoid arthritis). It is possible that biologic 

features of the targeted autoantigen (e.g., regula-

tion of cellular metabolism in the case of α-enolase 

and glucose-6-phosphatase) may contribute. Other 

possible factors include local microvascular, neu-

rologic, biomechanical, and microtrauma-related 

mechanisms (Fig. 1).

S y nov i a l Immunol o gic Pro cesses 

a nd Infl a mm ation

Synovitis occurs when leukocytes infiltrate the sy-

novial compartment. Leukocyte accumulation pri-

marily reflects migration rather than local prolif-

eration. Cell migration is enabled by endothelial 

activation in synovial microvessels, which increases 

the expression of adhesion molecules (including 

integrins, selectins, and members of the immu-

noglobulin superfamily) and chemokines. Accord-

ingly, neoangiogenesis, which is induced by local 

hypoxic conditions and cytokines, and insufficient 

lymphangiogenesis, which limits cellular egress, 

are characteristic features of early and established 

synovitis.26,27 These microenvironmental changes, 

combined with profound synovial architectural 

reorganization and local fibroblast activation, per-

mit the buildup of synovial inflammatory tissue in 

rheumatoid arthritis (Fig. 2).

Adaptive Immune Pathways

The genetics of rheumatoid arthritis and the pres-

ence of autoantibodies clearly place adaptive immu-

nity at the center of early pathogenesis. However, 

even though T cells are abundant in the synovial 

milieu, the functional role of T cells remains in-

sufficiently understood. Direct targeting of T cells 

by cyclosporine or T-cell–depleting therapeutics has 

shown limited or no efficacy.28 This finding may 

reflect “broad spectrum” deletion of regulatory as 

well as effector T cells and suggests the need to 

target T-cell subsets. The synovium in rheumatoid 

arthritis contains abundant myeloid cells and plas-

macytoid dendritic cells that express cytokines 

(interleukin-12, 15, 18, and 23), HLA class II mol-

ecules, and costimulatory molecules that are 

necessary for T-cell activation and antigen pre-

sentation.29,30 Moreover, the use of abatacept (a fu-

sion protein containing cytotoxic T-lymph ocyte–

associated antigen 4 and the FC fragment of 

IgG1) to disrupt antigen presentation by blocking 

T-cell costimulation (through the interaction of 

CD28 with CD80 or CD86) is efficacious in rheu-

matoid arthritis. Autoreactive T cells against citrul-

linated self-proteins have been identified. Syno-

vial T-cell oligoclonality, germinal-center reactions, 

and B-cell hypermutation suggest ongoing local 

antigen-specific, T-cell–mediated B-cell help.31,32

Although rheumatoid arthritis is conventional-

ly considered to be a disease that is mediated by 

type 1 helper T cells, attention has increasingly 

focused on the role of type 17 helper T cells (Th17), 

a subset that produces interleukin-17A, 17F, 21, 

and 22 and tumor necrosis factor α (TNF-α)33,34 

(Table 2 and the Supplementary Appendix, avail-

able with the full text of this article at NEJM.org). 

Macrophage-derived and dendritic-cell–derived 

transforming growth factor β and inter leukin-1β, 

6, 21, and 23 provide a milieu that supports 

Th17 differentiation and suppresses differentiation 

of regulatory T cells, thus shifting T-cell homeosta-

sis toward inflammation. Interleukin-17A, which 

synergizes with TNF-α to promote activation of 

fibroblasts and chondrocytes, is currently being 

targeted in clinical trials.35 Regulatory (forkhead 

box P3 [Foxp3+]) T cells that are detected in tissues 

from patients with rheumatoid arthritis appear 

to have limited functional capability.36 This im-

balance between Th17 and regulatory T cells may 

also reflect local TNF-α, which blocks the activ-

ity of regulatory T cells.37 An additional pathogen-

ic pathway comprises antigen-nonspecific, T-cell 

contact–mediated activation of macrophages and 

fibroblasts, operating through interactions be-

tween CD40 and CD40 ligand, CD200 and CD200 

ligand, and intracellular adhesion molecule 1 and 

leukocyte-function–associated antigen 1.38

Humoral adaptive immunity is integral to rheu-

matoid arthritis. Synovial B cells are mainly lo-

calized in T-cell–B-cell aggregates — indeed, some 

tissues have ectopic lymphoid follicles39 — that 

are supported by the expression of factors that 

include a proliferation-inducing ligand (APRIL), 

B-lymphocyte stimulator (BLyS), and CC and CXC 

chemokines (e.g., CXC chemokine ligand 14 and 

CC chemokine ligand 21).40 Plasmablasts and 

plasma cells are more widely distributed in the 

synovium and also in juxta-articular bone mar-

row. A pathogenic role for CD20+ B cells is con-

firmed by the efficacy of rituximab in rheumatoid 

arthritis.41 Because plasma cells are not targeted 

by anti-CD20 antibodies, and autoantibody levels 

are variably altered after treatment, these clini-

cal observations suggest that the role of B cells 

and their progeny in the pathogenesis of rheuma-
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Figure 2. Adaptive and Innate Immune Processes within the Joint in Rheumatoid Arthritis.

The costimulation-dependent interactions among dendritic cells, T cells, and B cells are shown as occurring primarily in the lymph node; these events 
generate an autoimmune response to citrulline-containing self-proteins. In the synovial membrane and adjacent bone marrow, adaptive and innate 
immune pathways integrate to promote tissue remodeling and damage. Positive feedback loops mediated by the interactions shown among leuko-
cytes, synovial fibroblasts, chondrocytes, and osteoclasts, together with the molecular products of damage, drive the chronic phase in the patho-
genesis of rheumatoid arthritis. ADAMTS denotes a disintegrin and metalloprotease with thrombospondin-1–like domains, DAMP damage-associated 
molecular pattern, Dkk-1 dickkopf-1, FcR Fc receptor, FcεRI high-affinity IgE receptor, FGF fibroblast growth factor, GM-CSF granulocyte–macrophage 
colony-stimulating factor, HA hyaluronan, HSP heat-shock protein, IFN-α/β interferon-α/β, MMP matrix metalloproteinase, NLR nucleotide-binding 
oligomerization domain–like receptor, PAMP pathogen-associated molecular pattern, PAR2 protease-activated receptor 2, PDGF platelet-derived 
growth factor, RANKL receptor activator of nuclear factor κB ligand, TGF-β transforming growth factor β, Th0 type 0 helper T cell, Th1 type 1 
helper T cell, Th17 type 17 helper T cell, TLR toll-like receptor, TNF-α tumor necrosis factor α, and VEGF vascular endothelial growth factor.
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toid arthritis goes beyond autoantibody produc-

tion to include autoantigen presentation and cy-

tokine production (e.g., interleukin-6, TNF-α, and 

lymphotoxin-β).

Activation of the Innate Immune System

A variety of innate effector cells, including mac-

rophages, mast cells, and natural killer cells, are 

found in the synovial membrane, whereas neutro-

Table 2. Key Molecules and Signal Mediators Implicated in the Pathogenesis of Rheumatoid Arthritis.*

Molecule or Signal 
Mediator Key Disease-Relevant Functions Status†

Cytokines

TNF-α Activates leukocytes, endothelial cells, and synovial fibroblasts, inducing production 
of cytokines, chemokines, adhesion molecules, and matrix enzymes; suppression 
of regulatory T-cell function; activation of osteoclasts; and resorption of cartilage 
and bone; mediates metabolic and cognitive dysfunction

Approved drug

Interleukin-1α  
and 1β

Activate leukocytes, endothelial cells, and synovial fibroblasts; induce matrix-enzyme 
production by chondrocytes; activate osteoclasts; mediate fever; enhance glucose 
metabolism; and reduce cognitive function

Approved drug

Interleukin-6 Activates leukocytes and osteoclasts; is involved in B-lymphocyte differentiation;  
regulates lipid metabolism, acute-phase response, and anemia of chronic  
disease; and is implicated in hypothalamic–pituitary–adrenal axis dysfunction and 
fatigue

Approved drug

Interleukin-7 and 15 Promote and maintain T-cell and natural killer–cell activation and T-cell memory, 
block apoptosis, and maintain T-cell–macrophage cognate interactions

Phase 2 trial completed

Interleukin-17A  
and 17F

Act synergistically to enhance activation of synovial fibroblasts, chondrocytes,  
and osteoclasts

More than one phase 2 trial 
with positive results

Interleukin-18 Promotes activation of Th1, neutrophils, and natural killer cells

Interleukin-21 Activates Th17 and B-cell subsets

Interleukin-23 Expands Th17

Interleukin-32 Activates cytokine production by several leukocytes and promotes osteoclast  
differentiation

Interleukin-33 Activates mast cells and neutrophils

Growth and differentiation factors

BLyS and APRIL Activate B cells and have a role in the maturation of B cells and enhancement  
of autoantibody production

In phase 2 trial

GM-CSF and M-CSF Enhance differentiation of granulocyte and myeloid-lineage cells in the bone marrow 
and synovium

In phase 1 trial

RANKL Promotes maturation and activation of osteoclasts Phase 2 trial completed

Intracellular signaling molecules and transcription factors

JAK Tyrosine kinase that regulates cytokine-mediated leukocyte maturation and activa-
tion, cytokine production, and immunoglobulin production

More than one phase 2 trial 
with positive results

Syk Tyrosine kinase that regulates immune-complex–mediated and antigen-mediated 
 activation of B and T cells and other Fc receptor–bearing leukocytes

More than one phase 2 trial 
with positive results

PI3K Mediates signals that drive proliferation and cell survival Phase 1 trial planned

BTK Plays important role in the activation of B cells, macrophages, mast cells, and neutrophils, 
through regulation of B-cell receptor and Fc receptor signaling as appropriate

Phase 1 trial planned

NF-κB Helps integrate inflammatory signaling and is important for cell survival

* APRIL denotes a proliferation-inducing ligand, BLyS B-lymphocyte stimulator, BTK Bruton’s tyrosine kinase, GM-CSF granulocyte–macro-
phage colony-stimulating factor, JAK Janus kinase, M-CSF macrophage colony-stimulating factor, PI3K phosphatidylinositol 3-kinase, RANKL 
receptor activator of NF-κB ligand, Syk spleen tyrosine kinase, and Th1 type 1 helper T cells.

† Status indicates the investigational status of agents targeting the molecule or signal mediator. Approved drugs have been approved by the 
Food and Drug Administration and European Medicines Agency for use in patients with rheumatoid arthritis. Trials are clinical trials that 
are ongoing or have been completed; more information on the trials is provided in the Supplementary Appendix.
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phils reside mainly in synovial fluid. Macrophage 

colony-stimulating factor, granulocyte colony-stim-

ulating factor, and granulocyte–macrophage colony-

stimulating factor (GM-CSF) enhance maturation 

of these cells, their efflux from the bone marrow, 

and trafficking to the synovium.42 In particular, 

macrophages are central effectors of synovitis; clin-

ically effective biologic agents consistently reduce 

macrophage infiltration in the synovium.43 Macro-

phages act through release of cytokines (e.g., TNF-α 

and interleukin-1, 6, 12, 15, 18, and 23), reactive 

oxygen intermediates, nitrogen intermediates, pro-

duction of prostanoids and matrix-degrading en-

zymes, phagocytosis, and antigen presentation.

This pattern of expression of proinflammatory 

cytokines and inducible nitric oxide synthase sug-

gests a predominant M1 macrophage phenotype. 

Macrophages are activated by toll-like receptors 

(TLRs) (e.g., TLR 2/6, 3, 4, and 8) and nucleo-

tide-binding oligomerization domain (NOD)–like 

receptors (NLRs) that recognize a range of patho-

gen-associated molecular patterns and damage-

associated molecular patterns that potentially in-

clude bacterial, viral, and putative endogenous 

ligands.44 Macrophage activation is also driven by 

cytokines, cognate interactions with T cells, im-

mune complexes, lipoprotein particles and liver 

X–receptor agonists (e.g., oxysterols, oxidized low-

density lipoprotein [LDL], and serum amyloid 

A–rich high-density lipoprotein [HDL]), and the 

protease-rich microenvironment through protease-

activated receptor 2.45 Moreover, microRNA spe-

cies (e.g., microRNA-155) have been implicated in 

the regulation of synovial cytokine expression.46,47

Neutrophils contribute to synovitis by synthe-

sizing prostaglandins, proteases, and reactive oxy-

gen intermediates.48 Mast cells that produce high 

levels of vasoactive amines, cytokines, chemokines, 

and proteases, through ligation of TLR, suppres-

sion of tumorigenicity 2 (ST2), Fc receptor γ, and 

Fc receptor ε, also play a role.49,50 A fraction of 

ACPA belongs to the IgE class, which may elicit 

mast-cell activation through Fc receptor ε.51 These 

findings, which provide evidence that activation of 

the innate immune pathway contributes to syno-

vitis, could lead to the development of treatments 

that modulate TLR-dependent, NLR-dependent, 

and inflammasome-dependent pathways.

Cytokines and Intracellular Signaling 

Pathways

Cytokine production that arises from numerous 

synovial cell populations is central to the patho-

genesis of rheumatoid arthritis. Cytokine patterns 

may shift over time; early rheumatoid arthritis has 

an apparently distinct cytokine profile, involving the 

expression of interleukin-4, 13, and 15,52 that sub-

sequently evolves in chronic disease. TNF-α plays 

a fundamental role through activation of cytokine 

and chemokine expression, expression of endo-

thelial-cell adhesion molecules, protection of sy-

novial fibroblasts, promotion of angiogenesis, sup-

pression of regulatory T cells, and induction of 

pain.53,54 Similarly, interleukin-6 drives local leu-

kocyte activation and autoantibody production 

but mediates systemic effects that promote acute-

phase responses, anemia, cognitive dysfunction, 

and lipid-metabolism dysregulation. The central 

role of these two cytokines has been confirmed 

by successful therapeutic blockade of membrane 

and soluble TNF-α and the interleukin-6 receptor 

in patients with rheumatoid arthritis (Table 3).

Interleukin-1 family cytokines (e.g., interleukin-

1α, 1β, 18, and 33) are abundantly expressed in 

rheumatoid arthritis. They promote activation of 

leukocytes, endothelial cells, chondrocytes, and 

osteoclasts.55,56 However, clinical benefits after 

interleukin-1 inhibition have been modest. Al-

though this paradox is not fully understood, it may 

reflect functional redundancy in the canonical TLR 

and interleukin-1–receptor signaling pathways. 

Other efforts to target cytokines (e.g., interleukin-17 

and 17 receptor, BLyS, APRIL, and GM-CSF) with 

the use of biologic approaches are ongoing.55,56 

The range of available therapeutics based on the 

biologic characteristics of synovial cytokines will 

probably expand (Table 2).

Elucidation of the complex intracellular signal-

ing molecules (particularly kinases) that regulate 

cytokine-receptor–mediated functions may facili-

tate the development of specific small-molecule 

inhibitors. Although many intracellular signaling 

pathways are active in the synovium, clues to those 

with hierarchical importance have been provided 

by clinical trials. Positive clinical outcomes in 

phase 2 studies of the Janus kinase (JAK) 1 and 3 

inhibitor tofacitinib implicate JAK pathways that 

mediate the function of several cytokines, inter-

ferons, and growth factors in the pathogenesis 

of rheumatoid arthritis57,58 (Table 2). Moreover, 

inhibition of spleen tyrosine kinase by fostama-

tinib, which is effective in some subgroups of 

patients, is commensurate with its role in the 

function of B-cell and Fc receptors.59,60 Other in-

tracellular targets, including phosphatidylinositol 

3-kinase, Bruton’s tyrosine kinase, and other com-
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ponents of the NF-κB pathway, offer intriguing 

possibilities for therapeutic strategies. In con-

trast, despite a strong preclinical rationale, the 

targeting of p38 mitogen-activated protein ki-

nase has been disappointing in clinical set-

tings, which probably indicates that the molecu-

lar signaling network in rheumatoid arthritis 

has functional redundancy.

Mesenchymal Tissue Responses

The normal synovium contains mesenchymal-de-

rived, fibroblast-like synoviocytes (FLSs) and resi-

dent macrophages. In rheumatoid arthritis, the 

membrane lining is expanded, and FLSs assume 

a semiautonomous phenotype characterized by 

anchorage independence, loss of contact inhibi-

tion, and the expression of high levels of disease-

relevant cytokines and chemokines, adhesion mol-

ecules, matrix metalloproteinases (MMPs), and 

tissue inhibitors of metalloproteinases (TIMPs).61 

FLSs thereby contribute directly to local cartilage 

destruction and the chronicity of synovial inflam-

mation, and they promote a permissive micro-

environment that sustains T-cell and B-cell sur-

vival and adaptive immune organization.62

The molecular mechanisms that sustain syno-

vial hyperplasia are incompletely understood. The 

increased proliferative capacity of FLSs is not 

explanatory. A more likely possibility is altered re-

sistance to apoptosis, which is mediated by di-

verse pathways, including mutations of the tu-

mor-suppressor gene p5363; expression of stress 

proteins (e.g., heat-shock protein 70), which fos-

ter the survival of FLSs64; and modulation of the 

function of the endoplasmatic reticulum by syn-

oviolin, an E3 ubiquitin ligase that regulates the 

balance of cell proliferation and apoptosis.65 Syn-

oviolin negatively regulates p53 expression and its 

biologic functions. In addition, cytokine-induced 

activation of the NF-κB pathway in FLSs favors 

survival after ligation of TNF-α receptor. Methyla-

tion and acetylation of cell-cycle regulatory genes 

and expression of microRNAs may be critical 

factors.66

Table 3. Approved Immune-Targeted Therapies in Rheumatoid Arthritis.*

Agent Class Target Structure Comments

Adalimumab Cytokine inhibitor TNF-α Human monoclonal 
 antibody

TNF-α blockers were the first biologic agents 
 approved for the treatment of rheumatoid 
 arthritis; TNF-α blockade has become a 
 central strategy of targeted antiinflammatory 
therapy in the disease.

Certolizumab  
pegol

Cytokine inhibitor TNF-α Pegylated humanized  
Fab́ fragment of an 
anti–TNF-α mono-
clonal antibody

Etanercept Cytokine inhibitor TNF-α TNF-α receptor–Fc fusion

Golimumab Cytokine inhibitor TNF-α Human monoclonal 
 antibody

Infliximab Cytokine inhibitor TNF-α Chimeric monoclonal 
 antibody

Tocilizumab Cytokine inhibitor Interleukin-6  
receptor

Humanized monoclonal 
 antibody

This agent is considered the second major advance 
in cytokine blockade in rheumatoid arthritis; it 
has profound effects on systemic features, acute-
phase response, and synovitis.

Anakinra Cytokine inhibitor Interleukin-1 Interleukin-1 receptor 
 antagonist

Despite good antiinflammatory activity in inflam-
masome-driven disease (e.g., the Muckle–
Wells syndrome, Still’s disease, and gout), 
this agent has had only limited efficacy in 
rheumatoid arthritis.

Rituximab Cell-depleting agent CD20 Chimeric monoclonal 
 antibody

This is the only approved cell-depleting agent for 
rheumatoid arthritis; its use has reinforced 
the role of adaptive immunity, particularly 
 humoral immune responses, in the disease.

Abatacept Costimulation blocker CD80 and  
CD86

CTLA4–Ig fusion protein This agent disrupts the interaction of antigen- 
presenting cells with T cells, an effect that 
confirms the link between innate and adaptive 
immune responses in rheumatoid arthritis.

* CTLA-4–Ig denotes cytotoxic T-lymphocyte–associated antigen 4 and the Fc fragment of IgG1.
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Synovial hyperplasia could also reflect in-

creased influx of mesenchymal cells. In a mouse 

model of arthritis with severe combined immu-

nodeficiency, FLSs were shown to migrate and 

thereby promote articular involvement.67 A crucial 

advance has been the elucidation of the molecu-

lar pathways that sustain integral membrane 

structure in rheumatoid arthritis. Cadherin-11 and 

β-catenin mediate FLS-homotypic interactions that 

are essential for membrane formation and for sub-

sequent inflammation.68

S truc t ur a l Da m age

Cartilage Damage

A hyperplastic synovium is the major contributor 

to cartilage damage in rheumatoid arthritis. Loss 

of the normally protective effects of synovium 

(e.g., reduced expression of lubricin)69 alter the 

protein-binding characteristics of the cartilage 

surface, promoting FLS adhesion and invasion. 

FLS synthesis of MMPs (particularly MMP-1, 3, 8, 

13, 14, and 16) promotes disassembly of the type 

II collagen network, a process that alters glycos-

aminoglycan content and water retention and leads 

directly to biomechanical dysfunction. MMP-14 

appears to be the predominant MMP expressed 

by FLSs to degrade the collagenous cartilage ma-

trix.70 Other matrix enzymes (e.g., ADAMTS 5) 

degrade aggrecan and thus further diminish car-

tilage integrity.

Endogenous enzyme inhibitors, such as TIMPs, 

fail to reverse this destructive cascade. More-

over, articular cartilage itself has limited regen-

erative potential. Chondrocytes physiologically 

regulate matrix formation and cleavage: under 

the influence of synovial cytokines (particularly 

interleukin-1 and 17A) and reactive nitrogen in-

termediates, cartilage is progressively deprived of 

chondrocytes, which undergo apoptosis. These 

processes ultimately lead to the destruction of the 

surface cartilage and the radiographic appearance 

of joint-space narrowing.

Bone Erosion

Bone erosion occurs rapidly (affecting 80% of pa-

tients within 1 year after diagnosis71) and is asso-

ciated with prolonged, increased inflammation.72 

Synovial cytokines, particularly macrophage col-

ony-stimulating factor and receptor activator of 

NF-κB ligand (RANKL), promote osteoclast dif-

ferentiation and invasion of the periosteal surface 

adjacent to articular cartilage.73 TNF-α and inter-

leukin-1, 6, and potentially 17 amplify osteoclast 

differentiation and activation.74 Moreover, clinical 

inhibition of TNF-α, interleukin-6, and RANKL 

retards erosion in rheumatoid arthritis. Notably, 

blockade of RANKL acts only on bone, with no 

effect on inflammation or cartilage degradation.75 

Osteoclasts have the acidic enzymatic machinery 

necessary to destroy mineralized tissues, includ-

ing mineralized cartilage and subchondral bone; 

destruction of these tissues leads to deep resorp-

tion pits, which are filled by inflammatory tissue.

Mechanical factors predispose particular sites 

to erosion. Thus, “mechanically vulnerable” sites 

such as the second and third metacarpals are 

prone to erosive changes.76 Breach of cortical bone 

permits synovial access to the bone marrow, which 

causes inflammation of the bone marrow (oste-

itis as observed on magnetic resonance imaging), 

in which T-cell and B-cell aggregates gradually 

replace marrow fat.77 It is unclear whether these 

lesions occur in conjunction with synovium-

induced erosions or whether osteitis necessarily 

or independently precedes erosion.78 It is con-

ceivable that rheumatoid arthritis starts in the 

bone marrow and subsequently involves the sy-

novial membrane.

Eroded periarticular bone shows little evidence 

of repair in rheumatoid arthritis, unlike bone in 

other inflammatory arthropathies. Cytokine-

induced mediators, such as dickkopf-1 and friz-

zled-related protein 1, potently inhibit the dif-

ferentiation of mesenchymal precursors into 

chondroblasts and osteoblasts (CD271+).79 Mes-

enchymal stem cells, which have the potential to 

differentiate into adipocytes, chondrocytes, and 

osteoblasts, can be detected in the synovium.80,81 

However, the biologic characteristics of synovial 

mesenchymal stem cells, their relationship to FLSs 

and other stromal cells, and the effect of local 

inflammation on their activities remain unknown, 

and an understanding of these factors will cru-

cially inform reparative therapeutic strategies.

S ys temic Consequences  

of R heum at oid A rthr i tis

Rheumatoid arthritis is associated with increased 

rates of cardiovascular illness (standardized mor-

tality rate, approximately 1.5), including myocar-
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dial infarction, cerebrovascular events, and heart 

failure (Fig. 3).82-84 These increased rates are not 

explained by traditional risk factors,85,86 use of 

glucocorticoids or nonsteroidal antiinflammato-

ry drugs, or shared genetic features. Circulating 

inflammatory pathways that are implicated in-

clude cytokines (interleukin-6 and TNF-α), acute-

phase reactants, immune complexes, and altered 

lipid particles (e.g., serum amyloid A–rich HDL) 

that increase endothelial activation and poten-

tially render atheromatous plaques unstable.87 In-

creased levels of acute-phase reactants are an 

independent cardiovascular risk factor in the 

general population.88 Cytokines also make mus-

cle and adipose tissues insulin-resistant, result-

ing in an “inflammatory metabolic” syndrome. 

Moreover, vascular risk is increased early in the 

course of rheumatoid arthritis, perhaps reflect-

ing subclinical inflammation in the prearticular 

phase.89,90

Lipid biochemical features are intimately, and 

reciprocally, linked to inflammation to ensure 

metabolically efficient host defense. In conse-

quence, active rheumatoid arthritis is associated 

with reduced serum levels of total, HDL, and LDL 

cholesterol, which may then be paradoxically el-

Liver

Fat

Muscle

Bone

Brain

Blood vessels
Lipid particles altered

Proinflammatory HDL phenotype
Total cholesterol decreased

Small LDL increased

Interleukin-6

Complement immune complexes
Interleukin-6

TNF-α

TNF-α
Interleukin-6
Interleukin-1

TNF-α
Interleukin-6

TNF-α
Interleukin-1

TNF-α
RANKL
Dkk-1

Atherogenesis
Myocardial infarction

Stroke

Acute-phase response (CRP)
Iron redistribution (hepcidin)

Free fatty acid
Adipocytokines

Insulin resistance

Low bone mineral density
Fractures

Low stress tolerance
Depression

SERT
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Figure 3. Mechanisms That Contribute to Clinically Observed Long-Term Complications in Patients with Rheumatoid Arthritis.

Inflammatory mediators, including cytokines, immune complexes, and altered lipid metabolism, circulate to promote several coexisting 

conditions in patients with rheumatoid arthritis. CRP denotes C-reactive protein, HDL high-density lipoprotein, HPA hypothalamic–pitu-

itary–adrenal, LDL low-density lipoprotein, and SERT serotonin transporter.
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evated by effective therapy.91 Nevertheless, effec-

tive therapeutics decrease cardiovascular risk and 

favorably modify vascular physiology.92-94 Statin 

drugs also reduce surrogates of vascular risk and 

inflammatory factors in patients with rheuma-

toid arthritis, and risk adjustment for statin use 

in patients with rheumatoid arthritis is now ad-

vocated.95

Inflammation in rheumatoid arthritis also af-

fects the brain (fatigue and reduced cognitive 

function), liver (elevated acute-phase response and 

anemia of chronic disease), lungs (inflammatory 

and fibrotic disease), exocrine glands (secondary 

Sjögren’s syndrome), muscles (sarcopenia), and 

bones (osteoporosis). Osteoporosis affects the axi-

al and appendicular skeleton, with only a modest 

elevation of the acute-phase response or subclini-

cal inflammation, and probably occurs before 

the onset of articular disease.96-98 Effective anti-

inflammatory treatment retards bone loss and 

suppresses the high rate of systemic bone resorp-

tion, as measured with the use of bone-turnover 

biomarkers.

The risk of lymphoma is increased among pa-

tients with rheumatoid arthritis99 and is strong-

ly associated with inflammatory disease activity; 

sustained disease activity confers the highest 

risk.100 Clonal selection of B cells, disturbed im-

mune surveillance due to impaired activity of regu-

latory T cells, and impaired function of natural 

killer cells are postulated mechanisms.

The higher rates of lung cancer among pa-

tients with rheumatoid arthritis than among other 

persons may be explained in part by the associa-

tion between smoking and rheumatoid arthritis. 

However, inflammation increases the risk of lung 

cancer independently of smoking, perhaps be-

cause of the long-known extraarticular effects of 

rheumatoid arthritis on fibrotic remodeling of 

interstitial lung tissue.

Conclusions

The pathogenetic advances described herein have 

paralleled the introduction of new, effective ther-

apies and remarkable improvement in clinical 

outcomes. Severe disease manifestations, such as 

vasculitis, nodule formation, scleritis, and amy-

loidosis, that are associated with persistent, uncon-

trolled inflammation have become rare. A rich 

pipeline of biologic and small-molecule agents, 

and of potential clinical biomarkers, exists that 

will add to our therapeutic armamentarium. In 

time, this should render remission achievable in 

increasing numbers of patients.

However, much remains to be resolved. We 

need to understand the factors that lead to loss 

of tolerance and that cause localization of inflam-

mation in the joint. We need to find ways to pro-

mote immunologic resolution or homeostasis and 

repair of damaged joints. We must elucidate the 

mechanisms driving the various systemic disor-

ders that contribute substantially to reductions 

in the quality and length of life. Ultimately, we 

must strive to develop curative and preventive 

therapeutics that will transform the notion of 

rheumatoid arthritis as a chronic disease.

Disclosure forms provided by the authors are available with 

the full text of this article at NEJM.org.
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