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The pathogenic exon 1 HTT protein 
is produced by incomplete splicing 
in Huntington’s disease patients
Andreas Neueder1, Christian Landles1, Rhia Ghosh2, David Howland3, Richard H. Myers  4, 

Richard L. M. Faull5, Sarah J. Tabrizi2 & Gillian P. Bates  1

We have previously shown that exon 1 of the huntingtin gene does not always splice to exon 2 resulting 
in the production of a small polyadenylated mRNA (HTTexon1) that encodes the highly pathogenic 
exon 1 HTT protein. The level of this read-through product is proportional to CAG repeat length and is 
present in all knock-in mouse models of Huntington’s disease (HD) with CAG lengths of 50 and above 
and in the YAC128 and BACHD mouse models, both of which express a copy of the human HTT gene. We 
have now developed specific protocols for the quantitative analysis of the transcript levels of HTTexon1 

in human tissue and applied these to a series of fibroblast lines and post-mortem brain samples from 
individuals with either adult-onset or juvenile-onset HD. We found that the HTTexon1 mRNA is present 
in fibroblasts from juvenile HD patients and can also be readily detected in the sensory motor cortex, 
hippocampus and cerebellum of post-mortem brains from HD individuals, particularly in those with early 
onset disease. This finding will have important implications for strategies to lower mutant HTT levels in 
patients and the design of future therapeutics.

Huntington’s disease (HD) is a devastating neurodegenerative disease caused by a CAG repeat expansion in the 
huntingtin gene (HTT)1. Repeat expansions of 40 and above cause adult onset of the disease, with a mean age of 
onset of 40 years. Repeat expansions above 60–70 CAGs lead to a juvenile, much more aggressively progressive 
form of the disease2. HD presents with motor, cognitive and psychiatric symptoms, the underlying molecular 
basis of which is incompletely understood2. Model systems of HD, in particular mouse models, have been of 
invaluable use for researchers to study pathogenic mechanisms3. We recently found that in all HD knock-in 
mouse models, the messenger RNA of Htt is incompletely spliced4, generating a short HTTexon1 mRNA com-
prised of Htt exon 1 and the 5′ part of intron 1, leading to the production of the exon 1 HTT protein. �e R6/2 
mouse line5, expressing precisely this fragment, is the fastest progressing HD mouse model. Furthermore, a recent 
study comparing the toxicity of various HTT fragments6 concluded that the exon 1 HTT protein is the most 
pathogenic HTT fragment. Interestingly, aggregates in human post-mortem tissue are predominantly stained with 
antibodies against small N-terminal fragments of HTT7–9. Inhibiting the production of exon 1 HTT is therefore 
of clinical interest and might pose a very promising strategy in treating HD.

We also found that SRSF6, a general splicing factor, tightly binds to the CAG repeat expansion4. �is might 
lead to dysregulation of general splicing through local sequestration and hence depletion of this factor. Similar 
mechanisms lead to the molecular phenotypes of non-coding repeat expansion diseases, for example the myo-
tonic dystrophies type 1 and 210, 11. Secondary e�ects of dysregulation of the general splicing machinery could 
contribute to the extensive transcriptional dysregulation in HD patients and model systems12–17. Some of these, 
like the mis-splicing of Tau18, or HTT itself13, 19–21 might directly contribute to the pathogenesis of HD.

Initially, we had only limited evidence that the same HTTexon1 mRNA was present in HD patients4. �e 
extreme pathogenicity of the exon 1 HTT protein makes it a prime target for clinical intervention, and therefore, 
it is of uttermost importance to clarify whether this short transcript is present in patient tissue. In this study we 
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analyzed patient derived �broblast lines, as well as human post-mortem brain tissue with a wide range of CAG 
repeat expansions to answer this question. We developed speci�c protocols to quantify human HTTexon1 tran-
script levels and showed that this small mRNA is indeed produced in HD patients. �e levels in patient samples 
with juvenile onset CAG repeat ranges were highly elevated as compared to those with adult onset CAG repeat 
ranges and controls. We therefore conclude that the extremely pathogenic exon 1 HTT fragment is generated by 
incomplete splicing in a polyglutamine-length dependent manner in HD patients. �is �nding will have impor-
tant implications for strategies to lower mutant HTT levels in patients.

Results and Discussion
HTTexon1 mRNA is produced in patient derived fibroblast lines with large CAG repeat expan-
sions. In order to determine whether HTTexon1 mRNA is produced in human samples, we developed a series 
of quantitative PCR assays (qPCR) (Fig. 1A). �ese were �rst established in a series of �broblast lines: 5 lines 
without CAG expansion (control), 4 lines in the adult to low juvenile repeat range (HD Q40-Q70) and 2 lines with 
very large expansions (HD Q170) (Fig. 1B and C). We could readily detect the presence of the HTTexon1 mRNA 
in lines with the large, juvenile onset repeat range expansions (Fig. 1B). �e assays did not discriminate between 
the adult onset lines and controls. It is unlikely that these signals originated from heteronuclear RNA, as this 
would have required the oligo-dT priming to the polyA tail of the full-length HTT transcript and reverse tran-
scription through the entire pre-mRNA. Alternatively, incomplete splicing may have occurred in lines from both 
adult onset HD and controls. �ese qPCR data were also re�ected in the 3′RACE (rapid ampli�cation of cDNA 

Figure 1. HTTexon1 mRNA is produced in patient derived �broblast. (A) Schematic representation showing 
the human HTT gene with positions and names of the qPCR assays used in this study. �e cryptic polyA site 
at 2710 bp (◆) was only found in the YAC128 HD mouse model. �e cryptic polyA site at 7327 bp (•) is the site 
utilized in patient samples. *�e stop codon within the donor slice site. (B and C) qPCR analysis of patient 
derived �broblasts. qPCR assays are detailed in Table S2. Data were grouped into control (no CAG expansion, 
n = 5), adult to low juvenile repeat range (HD Q40-Q70, n = 4) and large expansions (HD Q170, n = 2). For 
details see Table S1. Data are mean ± SEM relative to the geometrical mean of three housekeeping (HK) genes 
(ATP5B, SDHA, YWHAZ). Statistical test: ANOVA with Bonferroni post-hoc test; *p < 0.05; **p < 0.01; 
***p < 0.001. (B) �e expression level of the HTTexon1 transcript is shown. All assays detect retention of HTT 
intron 1 sequences, for details see (A). UAPqPCR is homologous to the arti�cial sequence introduced through 
the reverse transcription with primer UAPdT18 (see Table S2 for primer sequences). (C) �e expression levels 
of mature HTT mRNA transcripts are shown: exon 1 (ex1 f, ex1r), exon 2 (ex2 f, ex2r) and spliced exon 1 to 
exon 2 (−19f, ex2r). (D) A 3′RACE product (◀) was generated in �broblast lines with large expansions of CAG 
repeat. low mol. = low molecular weight marker (New England Biolabs).

http://S2
http://S1
http://S2


www.nature.com/scientificreports/

3Scientific RepoRts | 7: 1307  | DOI:10.1038/s41598-017-01510-z

ends) analysis that utilized the cryptic polyA site located 7327 bp into HTT intron 1 (7327 site) (Fig. 1D). In line 
with previous results, we could not detect a 3′RACE signal for the cryptic polyA site at 2710 bp into intron 1 (2710 
site), which we had found to be used exclusively in the YAC128 HD mouse model4. �e qPCR assay, which detects 
HTT intronic sequences close to the 2710 site, located about 5 kb 5′ from the polyA tail, did not discriminate 
between the groups (Fig. 1B, 2181 f/2262r, see also the same assay in Fig. 2). �is is consistent with the fact that 
the 5′ sequences of the huntingtin gene have proven to be extremely hard to analyze on numerous occasions. Next 
generation sequencing, as well as conventional approaches need dedicated optimization strategies to be able to 
detect these sequences, most probably due to the very high GC content and very stable secondary structures of 
the RNA22. In addition, the priming of the reverse transcriptase reaction from the polyA tail (UAPdT18 primer) 
at the 7327 site would have introduced a 3′ bias to the transcription e�ciency due to the reverse transcriptases 
being not very processive23. �e full-length mature mRNA was consistently expressed at a lower level in all lines 
carrying a CAG repeat expansion as compared to controls, independent of the length of the expansion (Fig. 1C). 
�is phenomenon has previously been observed in HD mouse models4 and HD patient brains24. Taken together, 
we were able to develop quantitative assays that could detect the presence of the HTTexon1 mRNA in �broblast 
lines and furthermore, we could con�rm its presence with 3′RACE analysis.

HTTexon1 mRNA is produced in brain tissue of HD patients. We next set out to investigate whether 
the HTTexon1 transcript could be detected in post-mortem brains from juvenile and adult-onset HD patients and 
controls. To con�rm the size of the large CAG repeat expansions in the juvenile onset patient samples and �bro-
blast lines, we performed CAG repeat sizing (Fig. S1). All samples were heterozygous for the mutated HTT allele. 
�e repeat size of the non-expanded allele was in all cases between 14 and 23 CAGs as indicated by the green lines 
in the panels. �e expanded allele for the two �broblast lines showed maximum peak intensity at about 180 CAGs 
(Fig. S1, patient �broblast lines). �e expansion for the post-mortem brain samples varied from 67 to 136 CAGs 
(Fig. S1, patient brains and Table S1), con�rming the juvenile onset repeat range. Interestingly, in H_0694 and 
H_0878, both having very large CAG repeat expansions, the peaks appeared spread out for the DNA extracted 

Figure 2. HTTexon1 mRNA is produced in brain regions of HD patients. (A) 3′RACE of cerebellar extracts 
of post-mortem brain tissue from HD patients and controls. A 3′RACE product (site 7327, ◀) was generated 
from all samples with an expanded CAG repeat, but not from control samples. low mol. = low molecular 
weight marker (New England Biolabs). (B–D) qPCR analysis of cerebellum (B), sensory motor cortex (C) 
and hippocampus (D) from HD patient post-mortem brains. qPCR assays are detailed in Table S2. Data were 
grouped into control (no CAG expansion, n = 4), adult repeat range (HD adult, Q39–Q51, n = 12) and large 
expansions (HD juvenile, Q67-Q136, n = 6). For details see Table S1. Data are mean ± SEM relative to the 
geometrical mean of four housekeeping (HK) genes (ACTB, ATP5B, SDHA, EIF4A2). Statistical test: ANOVA 
with Bonferroni post-hoc test; *p < 0.05; **p < 0.01. qPCR assays were as described in Fig. 1.
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from cerebellum and sensory motor cortex (Fig. S1, H_0694 and H_0878), which could be indicative of somatic 
instability/expansion.

Most brain regions from HD patients, including cerebellum, show a common transcriptional signature15. We 
used cerebellar tissue to con�rm the presence of the HTTexon1 mRNA by 3′RACE (site 7327). A product was 
only visible in samples with an expanded CAG repeat and not in control tissue (Fig. 2A, arrowhead). �e slight 
di�erence in length of the 3′RACE products is due to the heterogeneity of oligo-dT primer binding to the polyA 
tail and the ambiguity of the �nal 3′end processing site during polyA tail synthesis25, combined with the very 
high resolution of the agarose gel. As for the �broblast lines, we were unable to detect a 3′RACE product for site 
2710. We then used our novel quantitative assays to determine the level of HTTexon1 production in cerebellum 
(Fig. 2B). We could detect higher levels of HTT intron 1 sequences in RNA from the juvenile samples as com-
pared to the control brains (Fig. 2B, assays 7279 f/UAPqPCR, 7138 f/7220r, 6867 f/6955r). For some samples we 
could detect the presence of HTTexon1 mRNA in adult onset brain tissue, however this was more heterogeneous 
(Fig. 2B). To further con�rm our results, we performed the same analysis on the hippocampus (Fig. 2C) and 
sensory motor cortex (Fig. 2D). As seen for the cerebellum, HTTexon1 transcripts were readily detectable in the 
juvenile brain samples (Fig. 2C and D, HD juvenile). However, in both, hippocampus and sensory motor cortex, 
there was only a slightly higher signal of HTTexon1 in the adult onset group compared to control samples (Fig. 2C 
and D, HD adult). Our data suggest that the HTTexon1 transcript may be present in control as well as HD patient 
brains, which would be consistent with the proposed mechanism of SRSF6 binding, and lead to the production 
of exon 1 HTT in both cases. However, the exon 1 HTT protein with a polyglutamine tract in the normal range is 
not pathogenic. Analysis of full length spliced HTT transcripts in the cerebellum and sensory motor cortex of HD 
patients revealed no major di�erences between control and HD samples (Fig. 3A and B). In contrast, full length 
HTT mRNA was downregulated in the hippocampus (Fig. 3C), as observed in the patient derived �broblast lines 
(Fig. 1C). In summary, our data clearly show the presence of the HTTexon1 mRNA in post-mortem HD patient 
brains, largely in a CAG repeat expansion dependent manner.

Analysis of HTT exon 1 protein levels in patient tissue and the zQ175 HD mouse model. We 
have previously shown that a range of N-terminal HTT fragments are present in HD patient tissue26. In knock-in 
mice, whilst the majority of these N-terminal HTT fragments are most likely generated by proteolysis, we have 
demonstrated that the smallest exon 1 HTT protein is the consequence of incomplete splicing. Here, we demon-
strate that HTTexon1 transcripts are also present in patient derived �broblast lines with long CAG repeats (Fig. 1) 
and in the cerebellum, hippocampus and sensory motor cortex (Fig. 2) of HD patient brains. Next, we investi-
gated whether the HTTexon1 transcripts were translated into the exon 1 HTT protein. To this end, we immuno-
precipitated HTT proteins from cerebellar extracts (Fig. 4A) and detected the precipitated proteins with S830 
(detects exon 1 HTT, full length HTT, as well as other HTT fragments) and MW8 (detects only exon 1 HTT) 
antibodies. Cerebellar extracts with CAG repeats in the normal range were used as negative controls (Fig. 4A, 
HC130) and an HdhQ150 heterozygous brain as a positive control, which gave a good signal for exon 1 HTT, as 
detected by MW8 (Fig. 4A, −/Q150). In cerebellar extracts from HD patients, we could detect HTT fragments 
whose intensity decreased with the increase in CAG repeat length (Fig. 4A, HC82 to H_0878, S830). However, 
we could not detect a clear signal for exon 1 HTT by MW8 immunoprobing (Fig. 4A, HC82 to H_0878, MW8). 
Given that the exon 1 HTT protein aggregates rapidly27, 28, we wondered whether the lack of a monomeric exon 1 
HTT signal in the post-mortem brains was due to the fact that the exon 1 HTT protein had aggregated. �erefore, 

Figure 3. Full length HTT mRNA levels in brain regions of HD patients. (A–C) qPCR analysis of cerebellum 
(A), sensory motor cortex (B) and hippocampus (C) from HD patient post-mortem brains. qPCR assays are 
detailed in Table S2. Data were grouped into control (no CAG expansion, n = 4), adult repeat range (HD 
adult, Q39–Q51, n = 12) and large expansions (HD juvenile, Q67–Q136, n = 6). For details see Table S1. Data 
are mean ± SEM relative to the geometrical mean of four housekeeping (HK) genes (ACTB, ATP5B, SDHA, 
EIF4A2). Statistical test: ANOVA with Bonferroni post-hoc test; *p < 0.05; **p < 0.01; ***p < 0.001. qPCR 
assays were as described in Fig. 1.
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we immunoprecipitated HTT and HTT fragments at di�erent stages of disease from the brains of zQ175 knock-in 
HD mice (Fig. 4B). Immunoblotting with S830 clearly showed soluble HTT fragments in the heterozygous ani-
mals but not in control brains (Fig. 4B, S830). Interestingly, the signal intensity of the overall HTT fragments 
decreased quite dramatically over the course of disease progression (Fig. 4A). �is decrease was more pro-
nounced for smaller fragments, with some of the larger ones still being visible at approximately the same intensity 
at earlier and later stages. �e most dramatic decrease in signal intensity occurred for exon 1 HTT, as visualized 
by immunoprobing with MW8 (Fig. 4B, MW8). In summary, we found that soluble levels of exon 1 HTT dimin-
ish to a great extent during disease progression, which is consistent with the lack of signal in the human patient 
brains, if the exon 1 HTT protein had been recruited into insoluble aggregates.

Implications of HTTexon1 production in HD patients. Our �nding that exon 1 HTT is produced via 
incomplete splicing of the HTT message in both HD patient tissue, as well as mouse models of HD, has several 
important implications for our understanding of disease pathogenesis and the design of clinical interventions 
(Fig. 5). �e production of the HTTexon1 message is clearly CAG repeat length dependent with longer CAG 
repeats resulting in higher levels of this small transcript. �e HTTexon1 mRNA is readily detectable in �broblast 
cell lines (Fig. 1) and post mortem brain samples (Fig. 2) from patients with juvenile CAG repeat lengths. In 
samples with repeat lengths in the adult onset range, the levels of the HTTexon1 mRNA were lower than in the 
juvenile range, and in some cases comparable to levels in control brains. �e CAG repeat is unstable in vivo29, 30 
and can dramatically increase in length through somatic repeat expansion31. Certain tissues or cell types are more 

Figure 4. Analysis of exon 1 HTT protein in patient tissue and the zQ175 HD mouse model. (A) HTT proteins 
were immunoprecipitated with 3B5H10-dynabeads from human post-mortem cerebellar tissue with a wide 
range of CAG expansions (Q22 to Q136). Immunoprecipitation of HTT proteins from a heterozygous HdhQ150 
mouse brain (−/Q150) was used as a control for successful precipitation of HTT proteins. Western blots were 
immunoprobed with S830 (detects exon 1 HTT and larger HTT fragments) and MW8 (detects only the HTT 
exon 1 protein). IgG = IgG immunoprecipitation control; 3B5 = 3B5H10. (B) Age-dependent analysis of HTT 
fragments in the zQ175 mouse brains. HTT proteins from half brains of zQ175 mice at di�erent ages (2 to 16 
months (mth)) were immunoprecipitated with 3B5H10-dynabeads and western blots were immunoprobed 
with S830 and MW8. �e observed shi� in the running behavior of fragments is due to the di�erent polyQ 
expansions in the individual mice. WT = wild type control with no repeat expansion.
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prone to somatic expansion than others and thus might have a higher disease burden31–34. Intriguingly, somatic 
repeat instability is also a good predictor of age of disease onset35. Although the level of HTTexon1 transcript in 
tissue from adult onset brains was comparatively modest in these bulk tissue assays, this may mask higher levels 
in neurons in which CAG repeat expansion has occurred. We know from mouse models, that the exon 1 HTT 
protein is highly pathogenic and very aggregation prone. �erefore, it may only be present at relatively low levels 
in the tissues from HD patients with adult onset disease. It is possible that somatic expansion is required to initi-
ate this process (Fig. 5).

Lowering the levels of HTT is a rational therapeutic strategy for HD and is being pursued though a variety of 
approaches36, 37. Lowering HTT levels through the administration of antisense oligonucleotides was well tolerated 
for at least 6 months in non-human primate38 and lowering HTT levels has improved many phenotypical symp-
toms in preclinical trials in various HD models39–42. Consequently, the �rst clinical trial to lower full length HTT 
levels in HD patients using antisense oligonucleotides was initiated in 2015 (Ionis Pharmaceuticals in collabora-
tion with Roche; https://clinicaltrials.gov/ct2/show/NCT02519036). However, strategies that lower the levels of 
HTTexon1, as well as the full length HTT transcript, and thereby target the probable source of aggregate nuclea-
tion, might be expected to have an even greater therapeutic value.

Material and Methods
Cell line maintenance and RNA extraction. Patient derived �broblasts were obtained from the Coriell 
Institute for Medical Research (lines labeled with GMO), were established in the laboratory of Prof. Sarah 
Tabrizi (UCL, UK) (lines labeled with FB), or were as previously described (lines Da.R. and Ka.Ja.)43. Lines 
were maintained in DMEM (high glucose, �ermo Fisher, 11960) supplemented with 20 mM L-glutamine 
(�ermo Fisher, 25030), 10% fetal bovine serum (�ermo Fisher, 16000) and 100 U/ml penicillin/streptomycin 
(�ermo Fisher, 15140). Cells were grown to about 80% con�uency, detached with trypsin treatment (�ermo 
Fisher, 15140) for 5 min at 37 °C, pelleted for 5 min at 100 g and the pellets snap frozen in dry ice and stored 
at −80 °C. Cell pellets were resuspended in 100 µl DPBS (�ermo Fisher, 14190), 700 µl of QIAzol (QIAGEN, 
79306) was added and mixed for at least 30 seconds until a homogenous mixture was produced. 300 µl of chlo-
roform (VWR, 22711.244) was added, vortexed for 30 seconds and phases were separated by centrifugation at 
15000 g at 4 °C. An equal volume of 70% ethanol (v/v) was added to the aqueous phase and puri�ed with the 
RNeasy Mini Kit (QIAGEN, 74106). A 30 minutes genomic DNA digestion step (DNAse I, QIAGEN, 79254) 
was performed between the RW1 bu�er washes. RNA was eluted with water and concentration was measured 
on a nanodrop 1000 (NanoDrop).

Human tissue collection and RNA extraction. �e use of post mortem brain samples from the New 
Zealand Brain Bank was approved by the St. �omas’ Hospital Research Ethics Committee (EC03/103). �e 
Boston University School of Medicine Institutional Review Board designated this study exempt (Protocol # 
H-28974), as no human subjects were studied and all data are derived from post-mortem human brain spec-
imens. All skin biopsies were performed in accordance with the Declaration of Helsinki and approved by the 
NRES London – Queen Square Research Ethics Committee (LREC 03/N008, amendment 16). �e subjects were 
recruited through the Huntington’s disease clinic at the National Hospital for Neurology and Neurosurgery, 

Figure 5. Schematic depicting incomplete HTT splicing and its implications for disease onset and progression. 
�e production of the incompletely spliced HTTexon1 message (①) is CAG repeat length dependent with longer 
CAG repeats resulting in higher levels of the transcript (②). �e CAG repeat is unstable in vivo resulting in an 
increase in CAG repeat length (③)31. Exon 1 HTT levels will eventually reach the concentration threshold for 
nucleation of aggregation over time (④). In tissues/cell types with larger CAG expansions, which lead to higher 
levels of exon 1 HTT, the concentration threshold will be reached more quickly and the disease will manifest 
earlier (⑤).
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London. All subjects provided fully informed written consent. �e CAG repeat sizes, postmortem delay and 
Vonsattel grade of the brains used in this study are summarized in Table S1.

Approximately 150 to 200 mg of human tissue was lysed in 750 µl of QIAzol (QIAGEN, 79306) in FastPrep-24 
Lysis Matrix D tubes (MP BIOMEDICALS, 116913500) with a MP FastPrep-24 5 G sample preparation system 
(MP BIOMEDICALS) at 4 °C. 3 cycles of the following program were used with 30 seconds break in between: 
7.5 m/sec speed, quickprep adapter, 60 sec, lysing matrix D, 150 mg quantity. A�er lysis, tubes were brie�y centri-
fuged at 4 °C and the supernatant was transferred to a new 1.5 ml reaction tube. 300 µl of chloroform was added 
and the subsequent puri�cation was performed as described above for �broblasts.

Reverse transcription and 3′RACE. 4 µg total RNA was reverse transcribed (MMLV, Invitrogen) using the 
UAPdt18 primer as follows. In at total volume of 9 µl, 4 µg of RNA were mixed with 2 µl of 0.1 M dithiothreitol and 
100 ng of UAPdt18 primer. �e mix was heated to 95 °C for 5 min and rapidly cooled to 4 °C. 8 µl of the following 
mix was added: 2 µl of 10 mM dNTPs, 4 µl of 5 × 1st Strand bu�er (Invitrogen, 28025-021), 0.25 µl of RNasin Plus 
(Promega, N261B) and 200 U of M-MLV (Invitrogen, 28025-021). �e reaction was incubated for 10 min at 23 °C, 
37 °C for 40 min, 94 °C for 5 min and cooled down to 15 °C. A�er the RT reaction, the mix was digested with 1 U 
of RNase H (Invitrogen) for 1 h at 37 °C. �e cDNA was subsequently diluted 1:10 in water and 2 µl were used as 
template for the RACE PCRs. All PCRs were carried out using the Promega GoTaq system. Each PCR contained 
5 µl of 5 × Green Flexi Bu�er, 2 µl 25 mM MgCl2, 0.5 µl 10 mM dNTPs, each 0.5 µl of 10 mM primers, 2 µl template 
(cDNA or previous RACE PCR), 0.125 µl GoTaq polymerase and water to 25 µl. PCR protocols for the 3′RACE 
were as follows: 1st and 2nd 3′RACE PCR: 1 cycle 94 °C for 2 min. 30 cycles 94 °C for 20 sec, 62 °C for 20 sec, 72 °C 
for 1 min. 1 cycle 72 °C for 3 min followed by cooling to 15 °C. Primers were 6867 f and UAPqPCR for the 1st PCR 
and 6987 f and UAPqPCR for the 2nd PCR. 3rd 3′RACE PCR: 1 cycle 94 °C for 2 min. 33 cycles 94 °C for 20 sec, 
62 °C for 20 sec, 72 °C for 20 sec. 1 cycle 72 °C for 2 min followed by cooling to 15 °C. Primers were 7138 f and 
UAPqPCR. Primer sequences are detailed in Table S2. 3′RACE products were con�rmed by sequencing to be the 
same as those previously described4.

Human quantitative RT-PCR. 3 µl of the same diluted cDNA as detailed above was used for quantitative 
RT-PCR (qPCR) in a 15 µl reaction mix. qPCR was carried out using the SsoAdvanced™ Universal Probes 
Supermix (Biorad, 1725284) and probes for references genes (PrimerDesign, HK-DD-hu-900) or custom made 
primer/probe sets (euro�ns Genomics) as detailed in Table S2. qPCR program was as follows: 1 cycle 95 °C 
for 40 sec. 50 cycles 95 °C for 7 sec, 60 °C for 20 sec. Crossing thresholds (Ct) were in the range of 18 to 36 
cycles. qPCR assays were run as follows: not multiplexed: EIF4A2 (FAM), ATP5B (FAM), 7279f/UAPqPCR 
(TexasRed), −19f/ex2r (FAM), ex2f/ex2r (FAM); multiplexed: ACTB (FAM) & 7138f/7220r (TexasRed), SDHA 
(FAM) & 6867 f/6955r (Cy5.5), ex1f/ex1r (FAM) & 2181f/2262r (TexasRed). Evaluation was carried out with 
Microso� Excel, using the 2−∆∆Ct method44. �e qPCR reaction was routinely performed on RNA (that had not 
been reverse transcribed) to determine the level of any signal that could have originated from genomic DNA 
contamination.

Repeat sizing. A small amount (less than 10 mg) of human tissues was lyzed overnight in 300 µl of 10 mM 
Tris-Cl pH 8.0, 5 mM EDTA pH 8.0, 0.2% SDS, 200 mM NaCl and 0.1 mg/ml (w/v) trypsin at 50 °C. 500 µl of a 
isopropanol was added, brie�y vortexed and incubated at room temperature for 30 min. DNA was precipitated 
by centrifugation at 15000 g for 15 min. �e pellet was washed twice with 700 µl of 70% ethanol (v/v). A�er 
removal of residual ethanol, the pellet was resuspended in 10 mM Tris-Cl pH 8.0. Primers used were CAG1-FAM 
5′-ATGAAGGCCTTCGAGTCCCTCAAGTCCTTC (5′ end is 6-carboxyfluorescein labeled) and HU3rev 
5′-GGCGGCTGAGGAAGCTGAGGA. Repeat sizing PCR mix was as follows: 60 ng DNA, 1 µl of 2 mM dNTP 
mix, 7.2 µl of 5.5 M betaine, 2 µl of PCR bu�er (300 mM Tris-Cl pH 8.9, 160 mM ammonium sulfate, 25 mM mag-
nesium chloride, 1.5 mg/ml (w/v) bovine serum albumin, 1 mM β-mercaptoethanol), 2 µl of each 10 µM primer, 
0.2 µl Herculase (Agilent Technologies 600264). PCR program was as follows: 1 cycle 95 °C for 5 min. 32 cylces of 
94 °C for 30 sec, 60 °C for 30 sec and 72 °C for 3 min. 1 cycle of 72 °C for 5 min followed by cooling down to 15 °C. 
1 µl of the PCR product was denatured at 95 °C for 5 min followed by rapid cooling to 4 °C in 9 µl HiDi formamide 
(Applied Biosystems, 4311320) supplemented with MapMarker 1000 Rox 1000 size standard (BioVentures, 
MW-0195-80ROX). �e repeat sizes were run on a 3730xl DNA Analyzer (Applied Biosystems) and analyzed 
with the GeneMarker so�ware (So�Genetics).

Mouse maintenance, breeding and genotyping. HdhQ150/Q150 homozygous, Hdh+/Q150 heterozygous 
mice and wild type littermates on a (CBA × C57BL/6) F1 background were obtained by intercrossing Hdh+/Q150 
heterozygous CBA/Ca and C57BL/6 J congenic lines as described previously45. �e zQ17546 knock-in mice were 
supplied from CHDI colonies maintained at �e Jackson Laboratory (Bar Harbor, ME, USA). �e zQ175 lines 
were maintained by backcrossing to C57BL/6J (Charles River) and homozygotes, heterozygotes and wild type 
littermates were generated by intercrossing as required. All experimental procedures performed on mice were 
approved by the University College London Ethical Review Process Committee and carried out under a Home 
O�ce License. All animals had unlimited access to food and water, were subject to a 12-h light/dark cycle and 
housing conditions and environmental enrichment were as previously described47. Genomic DNA was isolated 
from an ear-punch. HdhQ150 mice were genotyped by PCR and the CAG repeat length was measured as pre-
viously described48. �e genotyping primers for zQ175 were as in ref. 46 using the R6/2 genotyping protocol48. 
Dissected tissues were snap frozen in liquid nitrogen and stored at −80 °C until further analysis.
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Mouse quantitative RT-PCR. RNA extraction, reverse transcription and quantitative RT-PCR (qPCR) for 
mouse samples were performed as previously described4. RNA was reverse transcribed from an oligo-dT primer 
(UAPdT18, Table S2) and qPCR was performed in the same way as for the human tissue samples as detailed 
above. Primers and probe sets are described in detail in ref. 4.

Antibodies, immunoprecipitation and western blotting. 3B5H10 is a monoclonal antibody that was 
raised against an N-terminal 171 amino acid fragment of HTT with 65Q and detects a polyQ tract49 (Sigma), S830 
is a sheep polyclonal antibody raised against exon 1 HTT with 53Q50 and MW8 is a monoclonal raised against 
the peptide AEEPLHRP at the C-terminus of exon 1 HTT51. 3B5H10 coupling to magnetic beads (Dynabeads 
M-270 Epoxy; Invitrogen) was performed as described in ref. 4. �e same 3B5H10-dynabeads conjugate was used 
to immunoprecipitate HTT from human tissue. 200 mg of human tissue was lyzed in 800 µl of 50 mM HEPES pH 
7.6, 160 mM NaCl, 10 mM EDTA pH 8.0, 1% (w/v) Triton X-100, 0.1% (w/v) SDS, 0.2% (w/v) sodium deoxycho-
late, 2 mM dithiothreitol, 0.1% (v/v) PMSF, protease inhibitors (Complete Mini, Roche, 11836170001) using the 
same lysis procedure as described above for RNA extraction of human tissue. Lysates were cleared by 2 consec-
utive centrifugation steps at 15000 g at 4 °C for 15 min each. 15 µl of pre-washed 3B5H10-dynabeads were added 
to 3 mg (BCA assay, �ermo Scienti�c, 23225) of cleared lysate and topped up to a �nal volume of 1 ml with lysis 
bu�er. �e immunoprecipitation (IP) was incubated overnight at 4 °C with constant motion on a rotating wheel. 
�e IP was washed four times with 0.5 ml of lysis bu�er at room temperature. Captured proteins were eluted in 
20 µl of 200 mM Tris-Cl pH 6.8, 1 mM EDTA pH 8.0, 5% (w/v) SDS, 215 mM β-mercaptoethanol, 8 M urea and 
incubated for 15 min at 65 °C. Western blotting and immunoprobing were performed as previously described52. 
Signals were visualized on an Odyssey Sa Imaging System (LI-COR Biosciences). Immunoprecipitation, western 
blotting and immunoprobing for mouse tissue were performed as previously described52.

Statistics. Statistical significance was calculated by one-way or two-way ANOVA with the Bonferroni 
post-hoc test.
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