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Abstract

Campylobacter concisus has garnered increasing attention due to its association with intestinal disease, thus, the pathogenic
potential of strains isolated from different intestinal diseases was investigated. A method to isolate C. concisus was
developed and the ability of eight strains from chronic and acute intestinal diseases to adhere to and invade intestinal
epithelial cells was determined. Features associated with bacterial invasion were investigated using comparative genomic
analyses and the effect of C. concisus on host protein expression was examined using proteomics. Our isolation method
from intestinal biopsies resulted in the isolation of three C. concisus strains from children with Crohn’s disease or chronic
gastroenteritis. Four C. concisus strains from patients with chronic intestinal diseases can attach to and invade host cells
using mechanisms such as chemoattraction to mucin, aggregation, flagellum-mediated attachment, ‘‘membrane ruffling’’,
cell penetration and damage. C. concisus strains isolated from patients with chronic intestinal diseases have significantly
higher invasive potential than those from acute intestinal diseases. Investigation of the cause of this increased pathogenic
potential revealed a plasmid to be responsible. 78 and 47 proteins were upregulated and downregulated in cells infected
with C. concisus, respectively. Functional analysis of these proteins showed that C. concisus infection regulated processes
related to interleukin-12 production, proteasome activation and NF-kB activation. Infection with all eight C. concisus strains
resulted in host cells producing high levels of interleukin-12, however, only strains capable of invading host cells resulted in
interferon-c production as confirmed by ELISA. These findings considerably support the emergence of C. concisus as an
intestinal pathogen, but more significantly, provide novel insights into the host immune response and an explanation for
the heterogeneity observed in the outcome of C. concisus infection. Moreover, response to infection with invasive strains
has substantial similarities to that observed in the inflamed mucosa of Crohn’s disease patients.
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Introduction

The human host first comes in contact with a rich array of

intestinal bacteria, both non-pathogenic and potentially patho-

genic, at the surface of the thick mucus layer that covers the

mucosal surface of the intestine. Under specific conditions, some of

these bacteria can penetrate the mucus layer, adhere to and invade

the mucosa, and subsequently cause chronic intestinal diseases.

Crohn’s disease (CD) is one of two major types of inflammatory

bowel diseases. It is a chronic, relapsing active inflammatory

disease affecting any part of the human gastrointestinal tract.

Currently, the major differential diagnosis of CD from acute and

self-limited gastroenteritis relies upon the presence of particular

pathological findings including acute and chronic inflammatory

cell infiltrates, the branching of intestinal crypts, granulomata and

remodelling of the epithelial layer as well as the presence of

symptoms for several weeks and recurrent symptomatic bouts of

disease [1,2]. Despite much research over many decades, no

consensus has been reached regarding its etiology, however, there

is strong evidence to support the role of bacteria in this disease [3].

It has been postulated that mucosa-associated bacteria (MAB)

due to their morphological and motility features may penetrate

and break the mucus barrier, thus allowing them to adhere to,

invade, and subsequently colonize the intestinal mucosa layer [4].

These MAB include the spiral-shaped Campylobacter species, many

of which are equipped with corkscrew-like motion that allows

them by means of their flagella to move through the mucus layer

to the epithelial surface [5].

In 2009, Zhang et al [6] reported the molecular detection of

Campylobacter species in biopsy samples of children with newly

diagnosed CD and controls. Interestingly, C. concisus DNA was

found to be significantly more prevalent in children with CD

(51%) than in controls (2%). Importantly in this study, C. concisus

UNSWCD was isolated from a child with CD, providing evidence
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that in the early stages of CD, viable C. concisus species are present

in the intestinal tracts of CD children. In 2010, further support for

the possible role of C. concisus in CD was provided in a study by

Man et al who reported the prevalence of C. concisus to be

significantly higher in fecal samples of CD children as compared

with that in non-CD inflammatory and healthy control groups [7].

Studies on C. concisus UNSWCD showed that this strain had an

increased ability to invade the intestinal cell line Caco-2 as

compared with strains isolated from patients with acute gastroen-

teritis and healthy controls [8]. In addition, a range of virulence

factors have been identified to be secreted by C. concisus

UNSWCD, including a RTX toxin and an outer membrane

fibronectin binding protein [9].

Given that the current literature suggests that C. concisus is

genetically and taxonomically diverse [4,10], further studies

investigating whether other isolates from chronic intestinal diseases

have similar invasive abilities as the UNSWCD strain were

required. In this study, a method to isolate MAB from intestinal

biopsies of patients with chronic intestinal diseases and healthy

controls was developed and, the ability of eight C. concisus strains

isolated from patients with chronic intestinal diseases (three of

which were isolated in this study) to adhere to and invade intestinal

epithelial cells was investigated. The feature that likely confers the

invasive phenotype of C. concisus was elucidated. Furthermore, we

examined the effect of C. concisus UNSWCD on the protein

expression in the human intestinal epithelial cell-line, Caco-2,

using two dimensional (2D) gel electrophoresis coupled with

tandem mass spectrometry. The regulation of inflammatory

pathways identified through proteomics were confirmed with

ELISA.

Materials and Methods

Isolation of mucosa-associated bacteria from intestinal
biopsies
A method to isolate MAB from intestinal biopsies based on a

two-step enrichment-filtration procedure was developed. For the

enrichment step, Ham’s F-12 was employed as an enrichment

broth as this medium had been reported to have the unique

property of providing stable growth of Helicobacter pylori even

without the addition of serum [11]. The second step involved

filtration of the complex growth mixtures from the enrichment

broth through size-specific porous membranes that allowed for the

separation of highly motile MAB from other non-motile or less

motile bacteria [12]. Mucosal biopsy specimens from symptomatic

children undergoing colonoscopy at the Sydney Children’s

Hospital (Randwick, Australia) were collected from an area

adjacent to areas of inflammation within the ileo-colonic region

of the intestine. Biopsy specimens were enriched in 3 ml Ham’s F-

12 media (Invitrogen) containing 5% fetal bovine serum (FBS) and

vancomycin (10 mg ml21) for 48 h at 37uC after which 200 ml of

the growth mixture was filtered through a 0.6 mm Whatman filter

(Interpath Services) onto Horse Blood Agar containing vancomy-

cin (10 mg ml21) and incubated at 37uC under microaerobic

conditions generated by a Campylobacter gas generating system

(Oxoid) for a further 48 h. Colonies were visualized under phase

contrast microscopy and near complete 16S rRNA gene

sequencing using the primers F27 and R1494 [13] was performed

on all colonies of interest (spiral morphology).

Ethics approval
This study was approved by the Research Ethics Committees of

the University of New South Wales and the South East Sydney

Area Health Service-Eastern Section, Sydney (Ethics No.: 06/

164). Written consent was obtained from all subjects, or their

guardians, participating in this study.

Bacterial species and strains, and growth conditions
Campylobacter concisus strains UNSWCD, UNSW1, UNSW2,

UNSW3, ATCC 51561, ATCC 51562, UNSWCS and BAA-1457

were used in this study. All strains were grown on Horse Blood

Agar (HBA) plates [Blood Agar Base No. 2 supplemented with 6%

defibrinated horse blood (Oxoid)], and incubated at 37uC under

microaerobic conditions for 48 h. Salmonella Typhimurium LT2

and Escherichia coli K-12 were grown on Nutrient agar (Oxoid)

under atmospheric conditions at 37uC for 24 h.

Cell culture
Three cell lines were used in this study, the human intestinal

epithelial cell line Caco-2 (American Type Culture Collection;

HTB-37), the human mucin producing intestinal cell line

LS174T (American Type Culture Collection; CL-188) and the

human monocytic leukemia THP-1 cell line (ATCC No.: TIB-

202).

Caco-2 cells
Cells were grown in 10 ml cell culture media comprised of

Minimum Essential Medium (MEM), (Invitrogen) supplemented

with 10% FBS, 1 mM sodium pyruvate, 0.1 mM non-essential

amino acids, 2.25 mg 121 sodium bicarbonate and 100 mg ml21

penicillin and streptomycin (Invitrogen) in 25 cm2 tissue culture

flasks (In Vitro Technologies; Noble Park, VIC, Australia) at 37uC

with 5% CO2. After 1 week of culture, cells were harvested by

trypsinization. Cells were either passaged at a concentration of

16105 cells ml21 into 25 cm2 tissue culture flasks and maintained

for a week or seeded at a concentration of 56105 cells ml21 into

24-well plates and kept for 2 days at 37uC with 5% CO2 in order

to form a confluent monolayer for the adherence and invasion

assays. Prior to seeding, the wells were coated with 1 ml collagen

(0.338 mg ml21) and incubated for 20 min at 37uC with 5% CO2.

Intestinal cell line LS174T
Cells were grown in 10 ml cell culture media comprising

Roswell Park Memorial Institute (RPMI)-1640 medium (Invitro-

gen) supplemented with 10% FBS and 100 mg ml21 penicillin and

streptomycin in 25 cm2 tissue culture flasks at 37uC with 5% CO2.

After 2 days of culture, cells were harvested by trypsinization. Cells

were then either passaged at a concentration of 56105 cells ml21

into 25 cm2 tissue culture flasks and kept for 2 days or seeded at a

concentration of 56105 cells ml21 into 24-well plates and kept for

2 days to form a confluent monolayer. The confluent monolayer

was incubated at 37uC with 5% CO2 for an extra 3 days to allow

the development of a mucin layer for the adherence and invasion

assays. The medium was changed daily until the development of a

mucin layer.

THP-1 cells
Cells were cultured in RPMI 1640 medium containing 2 mM

L-glutamine (Invitrogen) supplemented with 10% FBS, 1 mM

sodium pyruvate, 2.25 mg l21 sodium bicarbonate and

100 U ml21 penicillin and streptomycin. After 1 week of culture,

cells were harvested by centrifugation. Cells were either passaged

at a concentration of 26105 cells ml21 into 25 cm2 tissue culture

flasks and maintained for a week or seeded at a concentration of

26105 cells ml21 with 250 nM phorbol 12-myristate 13-acetate

(PMA) into 96-well plates to differentiate into macrophages.

Following incubation for 2 days, the media with 250 nM PMA
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was replaced and the cells were used for ELISA assays the

following day.

Gentamicin protection (invasion) and adherence assays
Monolayers were infected with the bacteria at a Multiplicity of

Infection (MOI) of 200. Following the addition of the bacteria, the

24-well plates were centrifuged at 2326 g for 5 min to promote

bacterial-human cell contact. Infected monolayers were then co-

incubated with the bacteria for 6 h at 37uC with 5% CO2 to allow

adherence and invasion to occur.

Invasion assays were performed as previously described by Man

et al [8]. As C. concisus UNSW1 exhibited decreased sensitivity to

gentamicin a modification was made where monolayers were

treated with cell culture media containing 100 mg ml21 penicillin

and streptomycin plus 200 mg ml21 gentamicin during the 1 h

incubation to kill any extracellular bacteria.

For the adherence assays, the monolayers were washed four

times with antibiotic-free cell culture media to remove extracel-

lular bacteria, and were lysed with 0.5 ml 1% Triton X-100 for

5 min to release internalized bacteria. The lysate solutions from

each monolayer were plated in quadruplicate on suitable media.

All adherence assays were performed in duplicate and all

experiments were repeated three times. Bacterial adherence was

calculated by subtracting the internalized bacteria determined

using the gentamicin protection assay from the bacterial counts

obtained using the adherence assay, and expressed as a relative

percentage of inoculated bacteria.

The statistical significance of the differences between the levels

of adherence and invasion (mean 6 standard deviation) achieved

by the different strains of C. concisus was determined using the

unpaired t-test using Prism GraphPad version 5.0 (GraphPad

Software; San Diego, CA, USA).

Antibiotic susceptibility testing
As gentamicin failed to kill all extracellular C. concisus UNSW1,

the susceptibility of C. concisus UNSW1 to gentamicin was

examined using the Epsilometer (E)-test system according to the

manufacturer’s instructions (AB Biodisk; Solna, Sweden). Based on

the E-test, the minimum inhibitory concentration (MIC) of

gentamicin required to inhibit C. concisus UNSW1 was

1.5 mg ml21. Unfortunately, no adequate standard for gentamicin

susceptibility testing for Campylobacter strains are available [14], and

thus, we were unable to determine if C. concisus UNSW1 fell into

the susceptible, intermediate or resistant category. Despite this, the

MIC value for UNSW1 is considerably higher than that previously

reported for other C. concisus strains (,0.03 mg ml21) examined by

Vandenberg et al [15]. This reduced susceptibility is likely to

explain the failure of gentamicin to successfully kill the

extracellular C. concisus UNSW1.

Scanning Electron Microscopy
Caco-2 or LS174T cells were grown at 37uC with 5% CO2 on

poly-L-lysine coated glass cover slips in 24-well plates at a

concentration of 56105 cells per well for 2 and 5 days,

respectively. Cells were then infected with bacteria at a MOI of

200 and samples were visualized on a Hitachi S3400-X Scanning

Electron Microscope (Hitachi High-Technologies Corporation;

Tokyo, Japan) as previously described [8].

Plasmid purification and PCR
Plasmid DNA was extracted and purified using the low copy

number protocol from the HiYield Plasmid mini kit (Real Biotech

Corporation; Banqiao City, Taipei County, Taiwan). Circular

plasmid visualization was performed using the CGView web-

server. The exotoxin 9 PCR was performed using the primer pair

exotox-F (GAGACAAAGCTGCTTTAT) and exotox-R (CTAT-

CAAGATTAAAGCCG), which amplifies a 291 bp region. The

thermal cycling conditions for this reaction was: 94uC for 5 min,

30 cycles of 94uC for 20 s, 53uC for 20 s, and 72uC for 30 s,

followed by 72uC for 5 min.

Preparation of cell-free protein extracts for two-
dimensional electrophoresis
To study the effects of C. concisus UNSWCD on the human

proteome, Caco-2 cells were grown with and without bacteria

(MOI 200) at a density of 26105 cfu ml21. Cyclohexamide was

added to human cell cultures after 48 h of co-incubation with C.

concisus. Cultures were detached and centrifuged at 3006 g for

10 min at 4uC, and the pellet was washed three times with 0.2 M

ice cold sucrose. After the final wash, the cell pellet was disrupted

by twice freeze-thawing, sonication with a Branson sonifier for five

cycles of 30 s at an amplitude of 30% keeping the cell suspension

in ice, and resuspended in 1 ml TSU buffer (50 mM Tris pH 8.0,

0.1% SDS, 2.5 M urea). Estimation of the protein content of the

samples was performed using the bicinchoninic acid method

employing a microtitre protocol (Pierce; Rockford, ILL, USA).

Absorbances were measured using a Beckman Du 7500

spectrophotometer.

Two-dimensional polyacrylamide gel electrophoresis and
mass spectrometry
Strip rehydration, isoelectric focusing and SDS-PAGE were

carried out according to the protocol supplied with the ReadyStrip

IPG strips (Bio-Rad). For each strip, protein aliquots (200 mg) were

suspended in 245 ml of a rehydration buffer consisting of 8 M

urea, 100 mM DTT, 65 mM CHAPS, 40 mM Tris-HCl pH 8.0,

10 ml pH 4–7 and IPG buffer. Nuclease buffer (5 ml) was added,

and the mixture was incubated at 4uC for 20 min. The sample was

then centrifuged at 72306 g for 15 min at 4uC, and the

supernatant loaded for the first dimension chromatography onto

an 11 cm ReadyStrip IPG (Bio-Rad) of the appropriate pI range,

and left to incubate sealed for 24 h at room temperature.

Isoelectric focusing was performed using an IsoeletrIQTM

Focusing System (Proteome Systems; Sydney, NSW, Australia).

The machine was programmed to run at 300 V for 4 h, 10,000 V

for 8 h, and 10,000 V for 22 h or until 80,000 Vh was reached.

After focusing, strips were equilibrated sequentially in two buffers

of 6 M urea, 20% (w/w) glycerol, 2% (w/v) SDS, 375 mM Tris-

HCl, the first one contained 130 mM DTT, and the second one

contained 135 mM IA. Strips were rinsed briefly with 25% 1.5 M

pH 8.0 Tris before SDS-PAGE was performed using Criterion

12.5% Tris-HCl Precast gels (Bio-Rad), run at 200 V for

approximately 45 min. Gels were fixed individually in 0.1 l fixing

solution (50% (v/v) methanol, 10% (v/v) acetic acid) for a

minimum of 1 h, and were subsequently stained using a sensitive

ammoniacal silver method based on silver nitrate.

For comparative gel-image analysis, statistical data were

acquired and analyzed using PDQuest 2-D (Bio-Rad). Statistical

analyses (Student t test, 95% confidence interval) were performed

on three gels from each condition to determine the differential spot

intensities between both conditions. Protein spots showing two-fold

or more differences in intensity between both experimental

conditions (with and without bacteria) were washed twice for

10 min in 100 mM NH4HCO3, reduced at 37uC for 1 h with

10 mM DTT, alkylated for 1 h in 10 mM iodoacetamide, washed

for 10 min in 10 mM NH4HCO3, dehydrated in acetonitrile, and
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trypsin-digested with 10 ng/ml of trypsin. After digestion for 14 h

at 37uC, peptides were extracted by washing the gel slice for

15 min with 25 ml 1% formic acid, followed by dehydration in

acetonitrile. Digests were then dried in vacuo, resuspended in 10 ml

1% formic acid. Proteins were separated by nano-LC using an

Ultimate/Famos/Switchos system (LC Packings, Dionex). Sam-

ples (5 ml) were loaded on to a C18 precolumn (Micron;

500 mm62 mm) with buffer A (98% H2O, 2% CH3CN, 0.1%

formic acid) and eluted at 25 ml/min. After a 4 min wash, the flow

was switched into line with a C18 RP analytical column

(PEPMAP; 75 mm615 cm) and eluted for 30 min using buffer A

at 200 nl/min. Liquid chromatography–tandem mass spectrom-

etry (LC-MS/MS) analysis was performed using a Quadrupole-

TOF (Q-TOF) Ultima mass spectrometer. The Q-TOF instru-

ment was operated in data-dependent acquisition mode. A time-

of-flight mass spectrometry survey scan was acquired (1 s), and the

most intense ions present in the spectrum were selected

sequentially by Q1 for tandem MS analysis. Database searches

with the Mascot search engine (Matrix Science Ltd.; Boston, MA,

USA) were performed and proteins were identified with high

confidence according to the matching scores and p-values.

Pathway analysis on the regulated proteins was performed using

IPAH (Ingenuity Systems; Redwood City, CA, USA).

ELISA
To study the effects of C. concisus strains isolated from subjects

with CD, acute gastroenteritis and a healthy control and E. coli on

the secretion of cytokines, THP-1 cells were grown with and

without bacteria (MOI 200) at a density of 26105 cfu ml21. The

supernatants were collected, and the levels of interleukin-12 (IL-

12) +p40 and interferon-c (IFN-c) secreted into the supernatant by

differentiated THP-1 cells (these monocyte-derived macrophages

were employed as IL-12 is produced by macrophages) were

measured using the human IL-12 ELISA kit (Invitrogen) and the

human IFN-c ELISA kit (Invitrogen) according to the manufac-

turer’s instructions.

Results and Discussion

Previous epidemiological studies have shown a significant

association between C. concisus and newly diagnosed CD [6,7].

Preliminary investigations of a C. concisus strain isolated from an

intestinal biopsy of a child with CD have shown this strain to have

the ability to invade Caco-2 cells [8]. While this preliminary study

would suggest that C. concisus from CD patients can invade

epithelial cells, further studies on additional clinical isolates were

essential to confirm this finding.

Isolation of Campylobacter concisus from intestinal
biopsies of patients
Our novel two-step enrichment-filtration procedure was used in

an attempt to isolate MAB from 11 intestinal biopsies collected

from children undergoing colonoscopy (Table 1). This resulted in

the isolation of three C. concisus strains from three individual

children (Table 1). Upon further examination, only 6 of the 11

patients were found to be Campylobacter-positive using a previously

validated Campylobacter-specific PCR [6], thus the isolation rate for

C. concisus in this study was 50%. This isolation rate is higher than

that reported by Zhang et al who isolated C. concisus from only 1 of

18 biopsies (5.5%), all of which were C. concisus-PCR positive [6].

In addition to C. concisus, a further MAB was isolated, namely

Desulfovibrio fairfieldensis (Table 1), which has been implicated in

bacteremia and gastrointestinal diseases [16,17]. This latter isolate

was not investigated in the current study.

Investigation of the invasive and adherence potential of
Campylobacter concisus
It has been recognized that host cell invasion represents a major

virulence factor of C. jejuni, a clear correlation between the

invasiveness and the pathogenic potential of specific strains having

been reported [18]. Adherence of C. jejuni to host cells has also

been shown to be a critical step for host cell invasion [19,20].

Given this, we evaluated the ability of eight strains of C. concisus

isolated from children with chronic intestinal diseases (UNSWCD,

UNSW2, UNSW3 and UNSW1), acute intestinal diseases (BAA-

1457, UNSWCS and ATCC 51562) and a health control (ATCC

51562) to adhere to and invade the intestinal epithelial cell line

Caco-2.

At a MOI of 200 C. concisus UNSWCD was observed to be the

most efficient among the 3 CD strains, followed by C. concisus

UNSW3, and then C. concisus UNSW2 (Table 2). Interestingly, the

level of invasion observed for C. concisus UNSW1 at a MOI of 200

was similar to that of C. concisus UNSWCD (Table 2). The levels of

invasion quantified for the ATCC 51562 and UNSWCS isolated

from a patients with acute gastroenteritis were negligible as

compared with the chronic strains, whereas no invasion was

observed for BAA-1457 and ATCC 51561 (Table 2).

Table 1. Mucosa-associated bacteria isolated from child intestinal biopsies using the Ham’s F-12 enrichment-filtration method.

Child Diagnosis Age Gender Campylobacter detection Bacterial species Strain

1 Normal 8 M 2 2 2

2 Normal 16 F + 2 2

3 Chronic gastroenteritis 13 M + C. concisus UNSW1

4 H. pylori infection 15 F 2 2 2

5 Crohn’s disease 3 M + C. concisus UNSW2

6 Crohn’s disease 5 M 2 2 2

7 Crohn’s disease 12 F + D. fairfieldensis UNSW1

8 Crohn’s disease 8 M 2 2 2

9 Crohn’s disease 12 F + 2 2

10 Crohn’s disease 12 M + C. concisus UNSW3

11 Ulcerative colitis 15 M 2 2 2

doi:10.1371/journal.pone.0029045.t001
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The results of the adherence assays at a MOI of 200 showed

that the percentage adherence for six of the C. concisus strains

was very similar (Table 2). The level of adherence observed in

C. concisus UNSW2, C. concisus UNSW3, C. concisus UNSW1, C.

concisus BAA-1457 and C. concisus UNSWCS were not

significantly different to that in C. concisus UNSWCD.

Interestingly, the levels of adherence for ATCC 51562 and

ATCC 51561 were significantly different to the other six strains

(Table 2).

These results would suggest that although all four C. concisus

strains isolated from chronic intestinal diseases have similar

abilities to adhere to Caco-2 cells, the percentage invasion into

the Caco-2 cell line remained strain-dependent. While significant

differences were observed in the percentage invasion of the four

chronic strains examined, they all showed significantly increased

adherence and invasion as compared with the percentages

observed for the acute gastroenteritis strain (ATCC 51562) and

a non-invasive healthy control strain (ATCC 51561). Indeed, the

percentages of invasion observed for C. concisus UNSW2, C.

concisus UNSW3, C. concisus UNSWCD, and C. concisus UNSW1

were 500, 708, 979 and 1021 times higher than that found for C.

concisus ATCC 51562, respectively. Interestingly, C. concisus BAA-

1457 had similar adherence levels to the chronic strains yet did

not invade host cells, suggesting this strain could have a unique

mechanism of pathogenesis. These results indicate that the

pathogenic potential of C. concisus strains isolated from patients

with chronic intestinal diseases is higher than those of strains

isolated from patients with acute intestinal diseases and healthy

controls. Based on these findings it could be postulated that C.

concisus strains associated with chronic intestinal diseases may

belong to the same genomospecies, while those strains associated

with acute gastroenteritis and healthy controls may belong to

different genomospecies.

Visualization of Campylobacter concisus adherence and
invasion to host cells
Scanning electron microscopy (ScEM) was used to further

investigate the mechanisms employed by the four highly invasive

C. concisus strains (UNSWCD, UNSW1, UNSW2, UNSW3) to

adhere to and invade the human intestinal cell lines Caco-2 and

LS174T. The typical morphologies of C. concisus strains UNSW2,

UNSW3, UNSW1 and UNSWCD are shown in Figures 1A, B, C

and D, respectively.

ScEM clearly illustrated that the four C. concisus strains

investigated had similar host epithelial cell-bacterial interactions.

Given this, representative ScEM images have been used to portray

the interactions between C. concisus and Caco-2 cells (Figure 2). An

overview of uninfected Caco-2 cells (Figure 2A) showed the

expression of intact differentiating and differentiated microvilli on

the surface of Caco-2 monolayers (Figures 2A1, 2A2). C. concisus

tended to aggregate upon interaction with the host cells

(Figures 2B, 2B1, 2B2). C. concisus mediated initial contact with

host cells via flagellum-microvilli interactions, their polar flagellum

binding to the tips of different host cell microvilli (indicated by

arrows in Figure 2C). Unlike areas where no C. concisus infection

was found (indicated by an asterisk in Figure 2D), abnormalities in

the microvilli and host cell structures were observed in areas where

bacterial infection was present (indicated by a ring in Figure 2D

and arrows in Figure 2E). Following adherence, C. concisus

appeared to induce a ‘‘membrane ruffling’’-like effect on the host

cell membrane (indicated by an asterisk in Figure 2F) with

penetration of the host cell membrane occurring from the non-

flagellated end (indicated by arrows in Figures 2G, 2H, 2I).

Table 2. Comparison of the percentage invasion and adherence into Caco-2 cells of eight Campylobacter concisus strains.

Bacteria Sample type Disease

Invasion ± SEM

at MOI 200 (%)

Adherence ± SEM

at MOI 200 (%)

C. concisus UNSWCD Intestinal biopsy Crohn’s disease 0.4760.04 4.5160.81

C. concisus UNSW2 Intestinal biopsy Crohn’s disease 0.2460.04, P=0.01 4.2761.31, P= 0.87

C. concisus UNSW3 Intestinal biopsy Crohn’s disease 0.3460.01, P=0.03 4.5060.83, P= 0.99

C. concisus UNSW1 Intestinal biopsy Chronic gastroenteritis 0.4960.04, P=0.80 2.2760.81, P= 0.08

C. concisus ATCC 51561 Feces None 0, P,0.01 0.1160.03, P,0.01

C. concisus ATCC 51562 Feces Acute gastroenteritis 0.0004860.00016, P,0.01 0.1660.02, P,0.01

C. concisus UNSWCS Feces Acute gastroenteritis 0.0005960.00015, P,0.01 4.661.5, P=0.89

C. concisus BAA-1457 Feces Acute gastroenteritis 0, P,0.01 3.661.2, P=0.48

S. Typhimurium LT2 - - 1.4160.16 11.3960.92

The data shown are representative of viable invading or adhering bacteria relative to the viable initial inoculum of three independent experiments 6 Standard Error of
the Mean (SEM), with each experiments being performed in duplicate. P,0.05 was considered significant.
doi:10.1371/journal.pone.0029045.t002

Figure 1. Scanning electron microscopy of four Campylobacter
concisus strains. C. concisus UNSW2 was observed as spiral curved-
shaped bacteria with rounded ends and a single polar flagellum as
shown in Panel A (bar = 3 mm). In Panel B (bar = 1.5 mm) C. concisus
UNSW3 was observed to be curved-shaped bacteria with rounded ends
and a single polar flagellum, while in Panels C (bar = 2 mm) and D
(bar = 2.5 mm) C. concisus strains UNSW1 and UNSWCD were shown to
be spiral curved-shaped bacterium with rounded ends and a single
flagellum.
doi:10.1371/journal.pone.0029045.g001
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Invasion of bacteria into the host cell was associated with irregular

shaped membrane protrusions (indicated by asterisks in

Figures 2G, 2H, 2I) with the uptake of C. concisus, resulting in

bacteria inducing host cell damage (indicated by ‘‘#’’ in

Figures 2G, 2H, 2I).

The cell line LS174T exhibits characteristics of enterocyte-

morphology and is able to produce a mucin layer in in vitro culture,

thus, more closely mimicking the human gastrointestinal tract

[21]. Further investigation of these C. concisus strains using the cell

line LS174T was considered to be important as this novel model

provides the opportunity to study in vitro the role of mucus on the

pathogenic behavior of C. concisus strains. ScEM clearly revealed

that all four C. concisus strains had very similar host epithelial cell-

bacterium interactions on LS174T cells (Figure 3). An overview of

uninfected LS174T cells (Figure 3A) showed the expression of

differentiated goblet cells (indicated by an arrow in Figure 3B) with

sparse microvilli (indicated by a ring in Figure 3B) being observed

on the apical surface of LS174T monolayers. The mucus layer

(indicated by an ‘‘#’’ in Figure 3C) was observed on the

monolayer surface of LS174T cells. C. concisus appeared to be

attracted to the intestinal mucus layer (indicated by arrows in

Figure 3D) using their single polar flagellum (indicated by arrows

in Figure 3E). The bacteria aggregated upon interaction with the

mucus layer of the LS174T cells (more bacterial aggregation was

observed for LS174T cells than Caco-2 cells) (Figure 3F). C.

concisus used its flagellum (indicated by an arrow in Figure 3G) to

adhere to the microvilli (indicated by a ring in Figure 3G) and

goblet cells (indicated by an arrow in Figure 3H) of the LS174T

monolayers which appeared to mediate initial contact with host

cells. Following adherence, C. concisus induced a ‘‘membrane

ruffling’’-like effect (indicated by an asterisk in Figure 3I) on the

host cell membrane and appeared to penetrate host cell membrane

from the non-flagellated end (indicated by an arrow in Figure 3I),

leading to host cell damage (indicated by ‘‘#’’ in Figure 3I).

Previous studies have shown that C. jejuni expresses the

fibronectin-binding outer membrane protein (CadF) that mediates

adherence by binding to the cell matrix protein fibronectin located

on epithelial cells [22,23]. CadF is involved in the ‘‘membrane

ruffling’’ observed prior to C. jejuni invasion [24]. Moreover, ScEM

studies have shown that C. jejuni enters intestinal cells with its tip

followed by the flagellar end [24]. Our findings that C. concisus

secretes the outer membrane fibronectin binding protein [9], is

associated with a ‘‘membrane ruffling’’-like effect on the intestinal

cell membrane prior to invasion, and that invasion occurred from

Figure 2. Scanning electron microscopy of human intestinal cell line Caco-2 infected with Campylobacter concisus strains for six
hours. Panel A shows an overview of uninfected Caco-2 monolayer. The Caco-2 cells expressed differentiating microvilli (Panel A1) and differentiated
microvilli (Panel A2). C. concisus was shown to aggregate upon interaction with host cells as shown in Panel B (Panel B1, bar = 1.5 mm and Panel B2,
bar = 2 mm). In Panel C, the polar flagellum of C. concisus is shown binding to the tips of host cell microvilli which mediated initial contact with host
cells (as indicated by the arrows). Abnormalities in the epithelial host cell structure and microvilli were observed following infection with C. concisus
(indicated by a ring in Panel D and arrows in Panel E). Panel F shows the flagellum of C. concisus appeared to wrap itself around the microvilli (as
indicated by arrows). Following adherence, C. concisus induced a ‘‘membrane ruffling’’-like effect on the host cell membrane (indicated by an asterisk
in Panel F), and penetrated the host cell membrane from the non-flagellated end (indicated by an arrow in Panel G). C. concisus was observed
invading the host cell (indicated by arrows in Panels G, H and I) resulting in irregular shaped membrane protrusions (indicated by asterisks in Panels
G, H and I), leading to host cell damage (indicated by ‘‘#’’ in Panels G, H and I).
doi:10.1371/journal.pone.0029045.g002
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the non-flagellated end would suggest that C. concisus has a very

similar mechanism of invasion to C. jejuni. Interestingly, as

aggregation of C. concisus strains upon interaction with the

intestinal mucus layer was observed, it is possible that this

aggregation of C. concisus may involve biofilm formation. Such

aggregation is similar to that previously reported in C. concisus

ATCC 33237, which was shown to form biofilms on glass [25].

Investigation of the invasive phenotype of
Campylobacter concisus
Investigation of the invasive phenotype of C. concisus was

undertaken due to the observed differences in invasive potential

among strains isolated from chronic and acute intestinal diseases.

One feature of interest was a 30 kb plasmid that we had recently

detected in UNSWCD and that was different to the two plasmids

found in BAA-1457 [26]. Assembly of the C. concisus UNSWCD

plasmid sequence was performed in this study using sequencing

data generated in a previously published study [26]. The plasmid

contained several virulence determinants from various organisms

not closely related to C. concisus (Figure 4). Genes within this

plasmid encoded the toxin-antitoxin (TA) replicon stabilization

system StbD and StbE, mobilization protein MobA, exotoxin 9,

restriction endonuclease R.Ecl19kI, DNA-cytosine methyltrans-

ferase, two site-specific recombinases, TonB-dependent receptor,

mature parasite-infected erythrocyte surface antigen (MESA), a

sodium/solute symporter, choline kinase, glycosyl transferase, a

membrane spanning protein, 3 stress-related proteins and 10

hypothetical proteins. Importantly, analysis of C. concisus

UNSWCD whole lysate expression data generated in a previously

published study [26] revealed several of the proteins encoded by

these genes were expressed under normal growth conditions.

The plasmid contains a TA system that is composed of two

components, a stable toxin and an unstable antitoxin that

interferes with the lethal action of the toxin. StbD and StbE

homologues are commonly found in other pathogenic bacteria

such as Vibrio cholerae and Haemophilus influenzae, a finding that

suggests that they may have a function in virulence [27]. Of

particular interest, were two genes encoding a Gram-positive

exotoxin 9 and MESA. Exotoxin 9 has very high homology with

exotoxins in Gram-positive bacteria, and contains a CYCLIN

domain within its sequence. Cyclin homologues have been found

in various viruses, where these viral homologues differ from their

cellular counterparts in that the viral proteins are modified to

harness the cell and benefit the virus [28]. MESA has been found

to play a major role in intra-erythrocytic malarial viability [29]. It

competes with P55 for the erythrocyte skeletal muscle protein, and

hence regulates stability and mechanical properties of the

erythrocyte plasma membrane [30]. Although the ubiquitously

expressed P55 has been identified as a scaffolding protein in

erythrocytes that stabilizes the actin cytoskeleton to the plasma

membrane, its function in non-erythroid cells remains poorly

understood [30]. Recently, P55 has been found to regulate

neutrophil polarity, and function as a positive upstream effector of

Akt phosphorylation [31]. Thus, the competition of MESA with

Figure 3. Scanning electron microscopy of human mucin producing intestinal cell line LS174T infected with Campylobacter concisus
strains for six hours. Panel A shows uninfected LS174T monolayers. LS174T cells expressing microvilli (indicated by a ring) and goblet cells
(indicated by a arrow) are shown in Panel B. The mucus layer was found on the monolayer surface of LS174T cells as indicated by an ‘‘#’’ in Panel C. C.
concisus appeared to be attracted to the mucus layer of host cells (indicated by ‘‘#’’ in Panel D) using their single polar flagellum (indicated by arrows
in Panel E) and upon the interaction with host cells tended to aggregate (Panel F). Panel G shows the polar flagellum (as indicated by an arrow) of C.
concisus binding to the tips of host cell microvilli (as indicated by a ring) and goblet cells (as indicated by an arrow in Panel H) which appeared to
mediate initial contact with host cells. Following adherence, C. concisus induced a ‘‘membrane ruffling’’-like effect on the host cell membrane
(indicated by an asterisk in Panel I) and penetrated the host cell membrane from the non-flagellated end (indicated by an arrow in Panel I) resulting in
cell damage (indicated by ‘‘#’’ in Panel I).
doi:10.1371/journal.pone.0029045.g003
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P55, and the functional role of P55 in the host may imply that C.

concisus UNSWCD employs this protein to modulate the host

innate immune response.

The presence of this plasmid was investigated in the other seven

strains through a PCR targeting the gene encoding the exotoxin 9,

and significantly, the four highly invasive strains from chronic

intestinal diseases (UNSWCD, UNSW1, UNSW2 and UNSW3)

were the only strains to contain this gene (Figure 5). Four further

plasmid genes (encoding: DNA-cytosine methyltransferase, mobi-

lization protein MobA, site-specific recombinase and restriction

endonuclease R.Ecl18kl) were confirmed to be present in the

chronic strains and absent in the other four strains (data not

shown). This provides further evidence that this plasmid, with the

possibility of some minor modifications, may be responsible for the

heterogeneity in the invasive potential of C. concisus.

Effect of Campylobacter concisus on host cell protein
expression
The effect of C. concisus UNSWCD on host cells was examined

by determining the change in protein expression upon infection

Figure 4. Graphical representation of the genes encoded by the plasmid purified from Campylobacter concisus UNSWCD. Outer circle
(blue) represents the coding sequences within the plasmid; inner circle (black) represents the GC content; inner circle (purple/green) represents the
GC skew.
doi:10.1371/journal.pone.0029045.g004
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with the bacterium. The response of Caco-2 cells to C. concisus

UNSWCD infection was analyzed using 2D gel electrophoresis to

determine the changes in the proteome of the human cells

(Figure 6). 2D gel electrophoresis was performed on proteins

extracted from pairs of human cultures grown with and without C.

concisus; they included four independent biological repeats. The

four pairs of gels obtained from cultures under both conditions

were analyzed to identify, using tandem mass spectrometry, spots

corresponding to proteins whose expression was regulated upon

infection with bacteria. One hundred and twenty five proteins

were differentially expressed (6.71% of the total spots detected on

the gels), of which 78 were upregulated and 47 were downreg-

Figure 5. PCR analysis of the exotoxin 9 gene in the eight Campylobacter concisus strains. Lane 1: FN-1 marker, lane 2: UNSWCD, lane 3:
UNSW2, lane 4: UNSW3, lane 5: UNSW1, lane 6: BAA-1457, lane 7: UNSWCS, lane 8: ATCC 51562, lane 9: ATCC 51651 and lane 10: negative control.
doi:10.1371/journal.pone.0029045.g005

Figure 6. Two-dimensional proteomes of (A) non-infected Caco-2 cells (pI 4–7), (B) Caco-2 cells infected with C. concisus UNSWCD (pI
4–7), (C) non-infected Caco-2 cells (pI 7–10), and (D) Caco-2 cells infected with C. concisus UNSWCD (pI 7–10). Proteins differentially
expressed between the two growth conditions are listed in Table 3 and Table 4. Spot numbers correspond to numbers in Table S1 and Table S2.
doi:10.1371/journal.pone.0029045.g006
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Table 3. Caco-2 cell proteins whose expression is upregulated in the presence of Campylobacter concisus UNSWCD.

ID Symbol Gene Name Location Type*

28614 ALDOA Fructose-bisphosphate aldolase Cytoplasm Enzyme

521205 APOC3 Apolipoprotein C-III Extracellular Space Transporter

5031593 ARPC5 Actin related protein (16 kDa) Cytoplasm Other

32189394 ATP5B ATP synthase Cytoplasm Transporter

4757880 BUB3 Budding-related yeast homolog Nucleus Other

3355455 C19ORF10 Chromosome 19 ORF 10 Extracellular Space Cytokine

4757900 CALR Calreticulin Cytoplasm Transcription reg

2809324 CALU Calumenin Cytoplasm Other

119617636 CCT2 Chaperonin containing TCP1 Cytoplasm Kinase

180570 CKB Creatine kinase Cytoplasm Kinase

38201710 DDX17 DEAD box polypeptide 17 Nucleus Enzyme

4758138 DDX5 DEAD box polypeptide 5 Nucleus Enzyme

499719 DLST Dihydrolipoamide succinyltransferase Cytoplasm Enzyme

219588 DNAJA1 DnaJ (Hsp40) homolog Nucleus Other

181608 DSP Desmoplakin Plasma Membrane Other

1922287 ECHS1 Enoyl Coenzyme A hydratase Cytoplasm Enzyme

4503481 EEF1G Eukaryotic translation elongation factor Cytoplasm Translation reg

4503545 EIF5A Eukaryotic translation initiation factor Cytoplasm Translation reg

693933 ENO1 Enolase 1 Cytoplasm Transcription reg

52487191 ERP44 Endoplasmic reticulum protein 44 Cytoplasm Enzyme

19743875 FH Fumarate hydratase Cytoplasm Enzyme

17402900 FUBP1 FUSE binding protein 1 Nucleus Transcription reg

7669492 GAPDH GAP dehydrogenase Cytoplasm Enzyme

4504035 GMPS Guanine monophosphate synthetase Nucleus Enzyme

4504327 HADHB Enoyl-Coenzyme A hydratase Cytoplasm Enzyme

1568551 HIST1H2BE Histone cluster 1, H2be Nucleus Other

55956919 HNRNPAB Ribonucleoprotein A/B Nucleus Enzyme

14110414 HNRNPD Ribonucleoprotein D Nucleus Transcription reg

16876910 HNRNPF Ribonucleoprotein F Nucleus Other

14141157 HNRNPH3 Ribonucleoprotein H3 (2H9) Nucleus Other

14110407 HNRPDL Ribonucleoprotein D-like Nucleus Other

4507677 HSP90B1 Heat shock protein 90 kDa beta Cytoplasm Other

16507237 HSPA5 Heat shock 70 kDa protein 5 Cytoplasm Other

5729877 HSPA8 Heat shock 70 kDa protein 8 Cytoplasm Enzyme

12653415 HSPA9 Heat shock 70 kDa protein 9 Cytoplasm Other

3641398 IDH1 Isocitrate dehydrogenase 1 Cytoplasm Enzyme

55957496 LMNA Lamin A/C Nucleus Other

2906146 MDH2 Malate dehydrogenase 2 Cytoplasm Enzyme

4758756 NAP1L1 Nucleosome assembly protein 1-like 1 Nucleus Other

189306 NCL Nucleolin Nucleus Other

5729953 NUDC Nuclear distribution gene C homolog Cytoplasm Other

20070125 P4HB Prolyl 4-hydroxylase Cytoplasm Enzyme

2697005 PA2G4 Proliferation-associated 2G4 (38 kDa) Nucleus Transcription reg

460771 PCBP1 Poly(rC) binding protein 1 Nucleus Translation reg

14141166 PCBP2 Poly(rC) binding protein 2 Nucleus Other

387011 PDHA1 Pyruvate dehydrogenase Cytoplasm Enzyme

21361657 PDIA3 Protein disulfide isomerase family A Cytoplasm peptidase

1710248 PDIA6 Protein disulfide isomerase family A Cytoplasm Enzyme

4505763 PGK1 Phosphoglycerate kinase 1 Cytoplasm kinase

35505 PKM2 Pyruvate kinase Cytoplasm kinase
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ulated in the presence of C. concisus (Tables 3 and 4, respectively;

Table S1 and S2).

Analysis of the response of Caco-2 cells to C. concisus infection

revealed a significant impact on host cell metabolism, specifically,

the upregulation of creatine kinase (CK) and processes involved in

energy production, and inhibition of proteases (Tables 3, 4). CK

catalyzes the conversion of creatine to phosphocreatine (PCr)

through the consumption of adenosine triphosphate (ATP). PCr

serves as an energy reservoir for the rapid buffering and

regeneration of ATP in situ, as well as for intracellular energy

transport by the PCr shuttle [32]. The increase in energy

production through enzymes such as ATP synthase, dihydroli-

poamide succinyltransferase, enoyl coenzyme A hydratase,

enolase, fumarate dehydratase, GAP dehydrogenase, isocitrate

dehydrogenase, malate dehydrogenase, pyruvate dehydrogenase

and pyruvate kinase indicate that the cells are producing more

energy to combat the damage caused by bacterial infection. In

addition, it appears that the cells have downregulated the activity

of proteases either directly through the downregulation of

cathepsin D or indirectly through the upregulation of serpin

peptidase inhibitors. This may relate to the fact that during

infection bacteria produce proteases that target the innate immune

response and degrade host proteins [33].

One likely avenue for the increase in energy production is for

reinforcement of the structural integrity of the cell following

cellular damage by the bacteria. This is supported by the

upregulation of an actin-related protein and the downregulation

of Hsp27, a heat shock protein known to inhibit F-actin

polymerization [34]. Interestingly, we observed the downregula-

tion of cofilin, a protein that is known to promote rapid actin

filament turnover through severing actin filaments [35]. One

possible explanation for this downregulation is that following C.

concisus infection, host cells protect themselves against further

severing of actin filaments. Moreover, b-tubulin was upregulated

and stathmin was downregulated, a finding that further supports

the view that the cell was strengthening its structural integrity,

given that stathmin is known to promote microtubule disassembly

by sequestering b-tubulin into the tight ternary T2S complex

thereby rendering it non-polymerizable [36].

Another indication that C. concisus affected the structural

integrity of the cell monolayer was the upregulation of desmopla-

kin. This protein is an essential component of functional

ID Symbol Gene Name Location Type*

10863927 PPIA Cyclophilin A Cytoplasm Enzyme

6166493 PRDX5 Peroxiredoxin 5 Cytoplasm Enzyme

62896529 PSMC3 Proteasome 26S subunit, ATPase, 3 Nucleus Transcription reg

976227 PSMC5 Proteasome 26S subunit, ATPase, 5 Nucleus Transcription reg

1526426 PSMC6 Proteasome 26S subunit, ATPase, 6 Nucleus Peptidase

13477197 QPRT Quinolinate phosphoribosyltransferase Extracellular Space Enzyme

4506387 RAD23B RAD23 homolog B Nucleus Other

2078529 RBM4 RNA binding motif protein 4 Nucleus Other

3256007 RBMX RNA binding motif protein, X-linked Nucleus Other

4502801 RCC1 Reg of chromosome condensation 1 Nucleus Other

33150766 RPL22 Ribosomal protein L22 Nucleus Other

4506605 RPL23 Ribosomal protein L23 Cytoplasm Other

5032051 RPS14 Ribosomal protein S14 Cytoplasm Other

4506695 RPS19 Ribosomal protein S19 Cytoplasm Other

15080499 SERPINA1 Serpin peptidase inhibitor, clade A Extracellular Space Other

30130 SERPINH1 Serpin peptidase inhibitor, clade H Extracellular Space Other

119608226 SET SET nuclear oncogene Nucleus Phosphatase

25777713 SKP1 S-phase kinase-associated protein 1 Nucleus Transcription reg

5902090 SLC2A3 Solute carrier family 2 (glucose) Plasma Membrane Transporter

19923193 ST13 Suppression of tumorigenicity 13 Cytoplasm Other

7305503 STOML2 Stomatin (EPB72)-like 2 Plasma Membrane Other

3037013 SYNCRIP RNA interacting protein Nucleus Other

37267 TKT Transketolase Cytoplasm Enzyme

35959 TUBB4 b-Tubulin Cytoplasm Other

833999 TUFM Tu translation elongation factor Cytoplasm Translation reg

4507797 UBE2V2 Ubiquitin-conjugating enzyme E2 Cytoplasm Enzyme

46593007 UQCRC1 Ubiquinol-cytochrome c reductase Cytoplasm Enzyme

4507879 VDAC1 Voltage-dependent anion channel 1 Cytoplasm Ion channel

Statistical data were acquired and analyzed using PDQuest 2-D. Proteins with changes in their intensity $2-fold (P,0.05) were identified by tandem mass spectrometry
analyses. Spot numbers, mascot scores and number of identified peptides are listed in Table S1.
*Reg = Regulator.
doi:10.1371/journal.pone.0029045.t003
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Table 4. Caco-2 cell proteins whose expression is downregulated in the presence of Campylobacter concisus UNSWCD.

ID Symbol Gene Name Location Type*

33875631 ANP32A Nuclear phosphoprotein 32 family A Nucleus Other

4502101 ANXA1 Annexin A1 Plasma Membrane Other

4757756 ANXA2 Annexin A2 Plasma Membrane Other

1263196 ATIC IMP cyclohydrolase Unknown Enzyme

7706322 C14ORF166 Chromosome 14 ORF 166 Nucleus Other

37182312 C20ORF114 Chromosome 20 ORF 114 Extracellular Space Other

825635 CALM3 Calmodulin 3 Plasma Membrane Other

5031635 CFL1 Cofilin 1 Nucleus Other

4323622 CLIC3 Chloride intracellular channel 3 Nucleus Ion channel

14149734 CORO1B Coronin, actin binding protein, 1B Cytoplasm Other

4503143 CTSD Cathepsin D Cytoplasm Peptidase

7524354 DDAH2 Dimethylaminohydrolase 2 Unknown Enzyme

4755083 DENR Density-regulated protein Unknown Other

55770888 EEA1 Early endosome antigen 1 Cytoplasm Other

38522 EEF1D Translation elongation factor 1 delta Cytoplasm Translation reg

5803013 ERP29 Endoplasmic reticulum protein 29 Cytoplasm Transporter

340217 EZR Ezrin Plasma Membrane Other

8393638 F11R F11 receptor Plasma Membrane Other

4557581 FABP5 Fatty acid binding protein 5 Cytoplasm Transporter

14211923 HINT2 Nucleotide binding protein 2 Cytoplasm Other

4504425 HMGB1 High-mobility group box 1 Nucleus Other

306875 HNRNPC Ribonucleoprotein C (C1/C2) Nucleus Other

5031753 HNRNPH1 Ribonucleoprotein H1 (H) Nucleus Other

460789 HNRNPK Ribonucleoprotein K Nucleus Other

11527777 HNRNPL Ribonucleoprotein L Nucleus Other

662841 HSPB1 Heat shock 27 kDa protein 1 Cytoplasm Other

189502784 HSPD1 Heat shock 60 kDa protein 1 Cytoplasm Enzyme

16741061 IGK Immunoglobulin kappa locus Extracellular Space Other

35068 NME1 Non-metastatic cells 1 protein Nucleus Kinase

432654 NUP62 Nucleoporin (62 kDa) Nucleus Transporter

339647 P4HB Prolyl 4-hydroxylase Cytoplasm Enzyme

4505773 PHB Prohibitin Nucleus Transcription reg

238236 PIGR Polymeric immunoglobulin receptor Plasma Membrane Transporter

5737759 PMF1 Polyamine-modulated factor 1 Nucleus Transcription reg

4758638 PRDX6 Peroxiredoxin 6 Cytoplasm Enzyme

8051631 RALY RNA binding protein Nucleus Other

431422 RANBP1 RAN binding protein 1 Nucleus Other

14277700 RPS12 Ribosomal protein S12 Cytoplasm Other

62202489 SARNP SAP domain ribonucleoprotein Nucleus Other

34335134 SEC13 SEC13 homolog Cytoplasm Transporter

5454052 SFN Stratifin Cytoplasm Other

4506903 SFRS9 Splicing factor, arginine/serine-rich 9 Nucleus Enzyme

5031851 STMN1 Stathmin 1 Cytoplasm Other

2895085 TPD52L2 Tumor protein D52-like 2 Cytoplasm Other

4507645 TPI1 Triosephosphate isomerase 1 Cytoplasm Enzyme

4185720 UCHL1 Ubiquitin thiolesterase Cytoplasm Peptidase

37183160 ZG16B Zymogen granule protein 16 B Unknown Other

Statistical data were acquired and analyzed using PDQuest 2-D. Proteins with changes in their intensity #0.5-fold (P,0.05) were identified by tandem mass
spectrometry analyses. Spot numbers, mascot scores and number of identified peptides are listed in Table S2.
*Reg = Regulator.
doi:10.1371/journal.pone.0029045.t004
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desmosomes, intercellular junctions that tightly link adjacent cells,

and is responsible for anchoring intermediate filaments to

desmosomal plaques [37]. This finding is supported by our

previous study that showed C. concisus UNSWCD to preferentially

attach to intercellular junctional spaces, and that this spatial

distribution was concomitantly associated with a loss of mem-

brane-associated ZO-1 and occludin [8].

IPA analysis revealed that the pathway involved in the

production of IL-12 was upregulated in cells exposed to C. concisus

UNSWCD, 28 proteins directly or indirectly involved in the IL-12

pathway being found to be upregulated (Figure S1). Those

proteins directly involved in the production of IL-12 complex,

included fuse binding protein 1, nuclear distribution gene C

homolog, heat shock protein 90 kDa beta, endoplasmic reticulum

protein 44, serpin peptidase inhibitor clade A, apolipoprotein C-

III, voltage-dependent anion channel 1 and SET nuclear

oncogene (Figure S1). IL-12 is of particular interest due to its

induction of intestinal mucosal inflammation through an IFN-c-

dependent manner [38]. The significance of this cytokine is

discussed further below.

Infection of Caco-2 cells with C. concisus resulted in the

upregulation of three proteins involved in the proteasome

complex, namely the proteasome 26S subunit ATPases 3, 5 and

6. In conjunction with this, ubiquitin-conjugating enzyme E2 and

ubiquinol-cytochrome c reductase, which are involved in protein

ubiquitination were upregulated, and ubiquitin thiolesterase,

which is involved in protein deubiquitination, was downregulated.

Proteasomes are part of the protein degradation machinery of the

cell that regulate the concentration of particular proteins and

degrade misfolded proteins [39]. In this process, proteins are

initially tagged for degradation with a small protein called

ubiquitin, which provides a signal to other ubiquitinating enzymes

to attach additional ubiquitin molecules, thus forming a poly-

ubiquitin chain that is bound by the proteasome, thereby allowing

it to degrade the tagged protein [40].

One indication that NF-kB might be activated upon infection

with C. concisus UNSWCD is the upregulation of the proteasome

and protein ubiquitination pathways that are involved in the

degradation of NF-kB inhibitors [41]. Direct evidence of NF-kB

activation upon infection comes from the finding that one pathway

leading to the ser/thr kinase Akt is upregulated, namely the

proteins ATPase, EEF1G, ATP5B, P4HB, PDIA3, CALR and

RPS14 (Figure S2). Akt functions through Ikb kinase (IKK) to

promote the transactivation potential and phosphorylation of NF-

kB [42,43]. More recently, Akt has been found to promote IKK-

dependent activation of NF-kB via mTOR and Raptor [44].

Further evidence includes the downregulation of NF-kB

inhibitors such as annexin 1 (ANXA1) and prohibitin (PHB).

Figure 7. Levels of interleukin-12 and interferon-c produced by the human monocytic leukemia cell line THP-1 following infection
with Campylobacter concisus strains and Escherichia coli K-12. * represents P,0.05; ** represents P,0.01. Data of three independent
experiments 6 standard error of the mean.
doi:10.1371/journal.pone.0029045.g007
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ANXA1 has been found to suppress the transcriptional activity of

NF-kB by preventing it from binding to DNA [45]. This inhibitory

activity has also been found in the intestinal mucosa of mice

treated with an agent that induces ANXA1 [45]. Furthermore,

PHB has been found to decrease TNF-a-induced nuclear

translocation of the NF-kB protein p65, NF-kB/DNA binding,

and NF-kB-mediated transcriptional activation in vitro and in vivo,

despite continual IkB-a phosphorylation and degradation and

increased cytosolic p65 [46]. The downregulation of polyamine-

modulated factor 1 (PMF1), a binding partner of NF-E2 related

factor-2 (Nrf2), was a further indication that NF-kB was activated.

PMF1 binds to Nrf2 to regulate gene transcription [47]. Nrf2 over-

expression has been shown to suppress NF-kB DNA binding

activity [48]. Furthermore, it has been suggested that Nrf2

activation induces intracellular events that concur with NF-kB
suppression [49].

Cytokine production in response to Campylobacter

concisus infection
Proteomics coupled with tandem mass spectrometry established

that the pathway leading to the production of IL-12 was

upregulated in cells infected with C. concisus UNSWCD. Thus,

we confirmed using ELISA the production of IL-12 in monocyte-

derived macrophages upon infection with the eight C. concisus

strains and E. coliK-12. Significantly increased levels of IL-12 were

found to be produced in cells exposed to C. concisus UNSWCD as

compared with controls (Figure 7), thereby validating the

expression results observed through proteomics. However, cells

exposed to any of the eight C. concisus strains were also found to

produce significantly increased levels of IL-12 as compared with

controls (Figure 7), indicating that production of IL-12 upon

exposure to C. concisus does not correlate with the pathogenic

potential of the bacterium. Cells exposed to E. coli K-12 or no

bacteria produced negligible amounts of IL-12 (Figure 7),

confirming that the production of IL-12 by cells exposed to C.

concisus was due to the bacterium. While it is possible that a small

amount of the measured IL-12 may have resulted from IL-23, due

to the two cytokines sharing the p40 subunit [50], our proteomics

findings and the high levels measured (.600 pg ml21) both

support the importance of IL-12 in C. concisus infection.

IL-12 is known to stimulate mouse peritoneal macrophages to

express and secrete IFN-c [51]. In addition, IFN-c promotes the

accumulation of immunoproteasomes [52], and both in vitro and in

vivo IFN-c is essential for upregulation of immunoproteasome

subunits in mice [53]. Together with the upregulation of the

proteasome in our study, these findings led us to investigate the

production of IFN-c in cells infected with C. concisus. This showed

that only C. concisus strains that were capable of invading into

human cells stimulated the production of IFN-c, with C. concisus

UNSWCD inducing the highest quantity of this cytokine (Figure 7).

This was of particular significance as although all strains of C.

concisus produced high amounts of IL-12, only the C. concisus strains

capable of internalizing into host cells induced a significantly

increased quantity of IFN-c with respect to both controls.

Overall our findings suggest that non-invasive C. concisus strains

can induce IL-12 upon adherence to human cells, however, this

Figure 8. Proposed immune response to Campylobacter concisus UNSWCD. (A) Non-invasive C. concisus strains adhere to the host cell and
induce the production of IL-12. (B) Invasive C. concisus strains adhere to and invade the host cell inducing both IL-12 and IFN-c, which in turn activate
the immunoproteosome. The bacterial insult upregulates ubiquitinating and downregulates de-ubiquitinating enzymes which leads to the
ubiquitination of NF-kB inhibitors. The immunoproteosome targets these inhibitors which activates NF-kB.
doi:10.1371/journal.pone.0029045.g008
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does not translate to the production of IFN-c (Figure 8). In

contrast, in human cells exposed to invasive C. concisus strains, the

production of IL-12 results in the induction of IFN-c, which in

turn activates the immunoproteasome (Figure 8). Concurrently,

the human cells exposed to the invasive C. concisus strains regulate

ubiquitination pathways and these enzymes tag NF-kB inhibitors

for degradation by the immunoproteasome, leading to the

activation of NF-kB (Figure 8). These findings are of great

significance when the association of C. concisus with pediatric CD

[6,7] is taken into consideration. The tissue damaging inflamma-

tory reaction in CD is driven by activated type 1 helper T-cells

(Th1), with IL-12 being a major Th1-inducing factor, a view that

is supported by the observation that an accumulation of

macrophages making IL-12 occurs in CD patients [54]. Further

evidence of the importance of IL-12 in CD is the finding that

administration of a monoclonal antibody blocking the IL-12/p40

subunit can induce and maintain clinical remission in CD patients

[55]. Significantly in relation to our findings, the 26S proteasome

has been shown to play an important role in the inflammatory

cascade and chronic gut inflammation in particular in CD [56].

Indeed, high expression of immunoproteasome subunits and

enhanced processing of the NF-kB precursor p105 and degrada-

tion of the NF-kB inhibitor, IkBa, by immunoproteasomes is a

characteristic of the inflamed mucosa of CD patients [57].

Enhanced NF-kB activity has also been shown to be involved in

the pathology of CD [57]. Furthermore, our finding that PHB, an

NF-kB inhibitor, was downregulated upon infection of cells with

C. concisus UNSWCD, is in line with the decreased expression of

PHB reported in subjects with CD [58].

Conclusions
This study has not only provided novel information on the

mechanisms by which C. concisus strains interact with host intestinal

cells, but has also provided important evidence that strains of C.

concisus isolated from patients with chronic intestinal diseases have

a significantly increased ability to invade intestinal cell lines as

compared with C. concisus strains isolated from patients with acute

gastroenteritis and healthy controls. Importantly, we have

elucidated the feature that may be responsible for the heteroge-

neity in invasive potential of C. concisus. Moreover, this study has

revealed novel information on the host immune response to C.

concisus infection, and has shown that this response has substantial

similarities with that observed in the mucosa of CD patients.
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