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Abstract

Background: The PathOlogist is a new tool designed to transform large sets of gene expression data into

quantitative descriptors of pathway-level behavior. The tool aims to provide a robust alternative to the search for

single-gene-to-phenotype associations by accounting for the complexity of molecular interactions.

Results: Molecular abundance data is used to calculate two metrics - ‘activity’ and ‘consistency’ - for each pathway

in a set of more than 500 canonical molecular pathways (source: Pathway Interaction Database, http://pid.nci.nih.

gov). The tool then allows a detailed exploration of these metrics through integrated visualization of pathway

components and structure, hierarchical clustering of pathways and samples, and statistical analyses designed to

detect associations between pathway behavior and clinical features.

Conclusions: The PathOlogist provides a straightforward means to identify the functional processes, rather than

individual molecules, that are altered in disease. The statistical power and biologic significance of this approach are

made easily accessible to laboratory researchers and informatics analysts alike. Here we show as an example, how

the PathOlogist can be used to establish pathway signatures that robustly differentiate breast cancer cell lines

based on response to treatment.

Background
Recent biomedical research has made great strides in

unveiling the complexity of human disease. Technological

breakthroughs and innovative methodologies now allow a

much more detailed account of molecular behavior. Fre-

quently however, such studies yield a plethora of data,

with results too complex for traditional analyses designed

to identify single genes associated with disease.

Accordingly, many researchers are employing new fra-

meworks to understand disease. One such framework is

the concept of pathways - sets of molecular interactions

that progress towards a given function. Analysis at the

pathway level accounts for some of the data complexity

by integrating information from across the entire genome

while mirroring real biological processes. Central to path-

way analysis is the idea that disruption of the benign

behavior of a pathway as a whole, not necessarily a single

gene component of the pathway, could be the basis for

disease.

The potential benefits of molecular analysis at the path-

way level have gained increasing recognition recently,

and consequently a number of tools have been developed

to visualize pathway structures (Cytoscape [1], Ariadne

Pathway Studio [2], PathVisio [3]) and predict novel

pathways from experimental data (SRI Pathway Tools [4],

GenePath [5]). However, tools to facilitate quantitative

informatics-level analyses of established pathways are

much less prevalent. To fully explore this promising

mode of investigation, a resource is needed that provides

a robust and straightforward means to transform large-

scale molecular data into meaningful metrics that

account for gene relationships at the pathway level.

The PathOlogist is designed to automatically analyze

genetic data within the context of molecular pathways.

The tool aims to facilitate both a quantitative and quali-

tative analysis of pathway behavior in a format accessible

to both laboratory researchers and informatics analysts.

The PathOlogist uses RNA expression data to calculate

2 descriptive metrics - ‘activity’ and ‘consistency’ (see

Efroni et al. [6] for motivation and more detailed explana-

tion) - for each pathway in a set of more than 500 canoni-

cal pathways (source: Pathway Interaction Database [7])
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on a sample-by-sample basis. These two metrics have been

shown to be more efficient than individual gene expres-

sion at distinguishing samples of different tumor grades

and predicting disease outcome in cancer samples [6]. The

metrics make use of the structure of gene relationships

within in the pathway, rather than treating the genes as

simply a uniform set of entities. A pathway is defined as a

network of molecular interactions; each interaction con-

sists of one or more input genes, promoters and inhibitors,

and one or more output genes. An activity score and a

consistency score is calculated for each interaction based

on the expression of all input and output genes. Activity

scores provide a measure of how likely the interactions are

to occur while consistency scores determine whether these

interactions follow the logic of the defined network struc-

ture. Depending on the nature of the samples, these scores

can reveal various types of information. For example, one

may compare activity scores calculated from expression

data collected at different timepoints to identify functional

processes that have been activated or de-activated over

time. Comparing consistency scores calculated from sets

of tumor and matched normal samples can reveal path-

ways whose ordinary behavior has been altered by disease.

The PathOlogist facilitates such analyses through a num-

ber of features. A clustered heatmap of pathway scores can

be generated to provide an overview of the metrics and

quickly identify any inherent groupings of samples or sets

of pathways that act in concert. The network structure of a

pathway and metrics for individual interactions can be

viewed as a color-coded graphic, which proves useful for

direct comparison of samples and identification of specific

areas within the pathway that deviate from normal beha-

vior. Finally, the tool provides an interface for conducting a

number of statistical tests to detect associations between

pathway scores and additional sample information (for

example, disease grade or response to treatment).

Implementation
The PathOlogist is a MATLAB-based application, which

can be run as a GUI in the MATLAB environment or as a

standalone executable (with slightly more limited function-

ality). The objective of the PathOlogist is to transform stan-

dard gene or molecule-based data into meaningful,

quantifiable information at the pathway level. Our method

accomplishes this efficiently using a short sequence of ana-

lytic steps designed to maximize fidelity to the original data

as well as comparability across studies. The PathOlogist

then provides for in-depth analysis of the calculated metrics,

through data visualization and statistical tests of association.

Input

The PathOlogist is designed to analyze normalized abun-

dance data from any gene-based microarray platform, how-

ever special features are included to accept Affymetrix data

in its raw state as well. The user may upload a set of .cel

files reporting probe-level hybridization readings in an

arrangement specific to the microarray chip used in the

experiment. These .cel files as well as a chip-specific map-

ping file (easily obtainable from the microarray’s commer-

cial website), are the sole input to the PathOlogist

necessary to carry out the process of pathway analysis.

Once loaded, raw data can be summarized into probesets

and normalized using the robust-multichip averaging

(RMA) method developed by Irizarry et al [8]. This method

is widely used and has been validated as an effective

approach in a number of studies [9]. (Note that the RMA-

normalization feature is not available in the standalone

version.)

Data can also be summarized before input to the tool

using RMAexpress http://rmaexpress.bmbolstad.com/).

If raw files are not available or if other platforms were

used, normalized probeset-based abundance data can be

loaded in the form of a textfile.

Up-Down Normalization

Once the data is defined at the probeset level, a unique

algorithm is applied which calculates the probability that

each sample is in an ‘up’ (highly expressive) or ‘down’

(minimally expressive) state, by fitting the set of intensity

readings for a probeset to a mixture of two gamma distri-

butions [6]. The value of this technique is two-fold. First,

it effectively places all expression values on a unit scale,

allowing direct comparison between different probes, sam-

ples, and experiments. This is important for down-stream

analysis in which the expression of multiple interacting

genes is evaluated in combination. Additionally, this extra

normalization tends to significantly reduce noise in highly

variable intensity readings, while retaining much more

information than a simple ‘presence/absence’ call.

Pathway Metrics Calculations

The PathOlogist uses normalized expression data to cal-

culate two descriptive metrics for each pathway selected.

For this purpose, a pathway is defined as a connected

set of interactions, each consisting of one or more input

molecules and one or more output molecules.

Source of pathway data

Currently, the PathOlogist uses the PID (Pathway Inter-

action Database) [7] as the source of pathway structure

data. This database is a collection of over 500 canonical

pathways, including pathways curated by Nature Publish-

ing Group editors and pathways imported from BioCarta

and Kegg. The network structure for each pathway is

contained within the tool, and can be updated as new

pathways are added to the database.

Mapping probes to genes

Mapping probe-level intensity values to molecules within

a pathway is accomplished using a platform-specific text
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file listing the Entrez gene ID associated with each probe.

This data is contained within the tool for a number of

commonly used platforms. An option also exists allowing

the addition of new user-created mapping files, extending

the tool’s capabilities to virtually any platform.

Calculations

Users can select any subset of samples and pathways to

include in metrics calculations. ‘Activity’ and ‘consistency’

metrics are calculated for each pathway selected, based on

the normalized expression of input and output elements

for each sample. Calculations are first performed at the

interaction level and then averaged over all the interac-

tions in a pathway to generate a final pathway score. For

each interaction, the metrics are calculated as defined in

Figure 1, where p(A) indicates the probability of gene A

being in the ‘up’ (highly expressive) state. Note that for

inhibitory molecules, 1-p(A) is used instead.

Essentially, activity is a measurement of an interac-

tion’s potential to occur, as determined by the expres-

sion of input molecules. An activity score of ‘1’ for an

interaction indicates that all positively regulating ele-

ments are being highly expressed, while inhibitory ele-

ments are unexpressed. Consistency scores compare this

potential with the actual presence of output molecules,

providing an account of deviations from expected path-

way logic. Since these two metrics are averaged over all

the interactions within a pathway to generate scores for

the pathway as a whole, alterations anywhere within the

pathway will have the same overall effect.

At the end of the process, each sample will have two

scores describing the behavior of each pathway. These

scores can then replace individual gene expression

values in any desired informatics or statistical analysis.

Metrics Visualizations

After pathway metrics have been calculated, the PathOl-

ogist facilitates a detailed investigation of the results.

Heatmap

A heatmap feature displays activity and/or consistency

scores as a bi-dimensionally clustered heatmap. This can

be used as a summary view, to quickly identify subgroups

within the data. Specific subsets of pathways and samples

can be selected for a more directed view as well.

Network Graphic

For a specific pathway of interest, a pathway-drawing fea-

ture generates a directed network graphic for each of the

samples selected, detailing the structure and behavior of

the pathway. In the graphic, metrics for individual inter-

actions are displayed visually using node color and size. If

desired, the drawing may overlay gene-specific data such

as copy number alterations or methylation status. An

option also exists to extend the network to include all

interactions from other pathways that involve genes

within the pathway of interest. Graphics for multiple

samples can be compared to identify specific points of

differentiation within the pathway. Clicking on any gene

within the pathway will link to more detailed informa-

tion, courtesy of the CGAP Gene database [10]. The net-

work structure and individual interaction metrics can

also be generated in text format. (Graphic format not

available in standalone version).

Identifying Important Pathways

The PathOlogist performs statistical analyses to deter-

mine the relationship between pathway behavior and

sample features such as class, survival, etc. Sample data

is entered through a simple copy-paste procedure or by

uploading a two-column text file. Four types of analysis

are possible:

Binary classification

finds pathways whose scores can be used to differentiate

two classes of samples (eg. cancer v. normal). For each

pathway, a two-sample ranksum test is performed to eval-

uate the null hypothesis that pathway scores of class A

and class B are samples from normal distributions with

equal means and variances. Significant pathways are those

for which the null hypothesis is highly unlikely, indicating

that the pathway behaves differently in these two groups

of samples.

Linear correlation

finds pathways whose scores correlate well with a con-

tinuous variable (eg. response to treatment, measured as

concentration of drug required to initiate cell death).

For each pathway, the Pearson’s correlation coefficient is

calculated for the linear relationship between the set of

pathway scores and the set of sample data. A p-value is

then calculated for each pathway, using a Student’s t

distribution to evaluate the null hypothesis that the cor-

relation coefficient is zero. Significant pathways are

those which show either highly positive or highly nega-

tive correlation with the associated variable.

Survival

finds pathways that influence sample survival. The set of

scores for each pathway are partitioned into two groups

using kmeans clustering to minimize the squared

Activity = p(A) * p(B)

Consistency = [Activity * p(C)]

+ [(1 Activity) * (1 p(C))]

gene C

gene A gene B

interaction

Figure 1 Activity and consistency scores are calculated for

each interaction within a pathway.
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Euclidean distance between group centroids. (A mini-

mum group size can be set by the user.) Cumulative

survival distributions are calculated separately for these

two groups of samples using the Kaplan-Meier algo-

rithm, and a logrank test is performed to evaluate the

null hypothesis that the two sample groups are drawn

from the same population. Significant pathways are

those for which pathway behavior can be used as a mar-

ker dividing samples into groups with highly differen-

tiated survival curves.

Gene hits targeting

finds pathways whose molecules are the target of some

alteration (eg. copy number, mutations). Gene-specific

alterations are uploaded as a matrix of logical values

describing which of the assayed genes were altered in

each sample. For each pathway, a hypergeometric cumu-

lative distribution function is computed for each sample

to estimate the probability that genes within the path-

way are altered more often than would be expected,

given the overall distribution of gene alterations for that

sample. An overall p-value for the pathway is calculated

by applying a Fisher’s Omnibus test to the set of prob-

abilities across all samples. Pathways with a significant

p-value are those which comprise a set of genes that are

disproportionately altered in multiple samples (although

the specific genes altered are not necessarily the same in

different samples).

Each test can be performed on all samples or specific

classes of samples, and returns a list of all pathways

ordered by significance, along with corresponding p-

values. These results can be plotted for visual confirma-

tion of association, and then written to text files.

Results
The power of pathway-level molecular analysis, and the

value of the PathOlogist in facilitating such analysis, has

been explored using a number of datasets with various

features; the results of two such analyses are reported

here, using 1) expression and copy number data from a

set of 28 cancer cell lines treated with an anti-cancer

drug, and 2) expression and survival data obtained from

377 glioblastoma multiforme (GBM) tumor samples,

and 10 unmatched normal samples from the publicly

accessible TCGA database.

Pathway Behavior and Drug Sensitivity in Cancer Cell

Lines

A recently-analyzed data set assessed the expression

profile and drug sensitivity of 28 cell lines maintained

by the NCI60 Human Tumor Cell Line Screen [11] as

part of NCI’s Developmental Therapeutics program.

These cell lines were derived from tumors with a variety

of cancers and genotypic subtypes. After measuring

basal gene expression, each of the cell lines was treated

with an anti-cancer drug, and the GI50 concentration

(the concentration of drug that causes 50% growth inhi-

bition) was recorded for each. The goal was to identify

molecular signatures in the cell lines that would help

predict a patient’s response to treatment. Additionally,

copy number data and other clinical information was

available for each cell line.

The set of .cel files for the 28 lines were loaded into

the PathOlogist for RMA normalization. Up-Down

Probability normalization was then applied to the RMA

data, and the results were used to calculate activity and

consistency scores for each pathway in the database. A

bi-dimensionally-clustered heatmap of the scores is

shown in Figure 2a.

From the heatmap, it appears that the samples do not

cluster naturally into separate groups when taking all

pathway scores into account. Further analysis is needed

to identify specific pathways that influence response to

treatment. Thus, GI50 scores (entered as -log[GI50],

where GI50 is the drug concentration in moles/liter) for

each of the cell lines were loaded into the PathOlogist,

and a Pearson linear correlation coefficient was calcu-

lated for the set of activity or consistency scores asso-

ciated with each pathway. An ordered list of pathways

and Bonferroni-corrected p-values is shown in Table 1.

From this list we can see that a small set of pathways

(n = 7) are significantly correlated with drug sensitivity

at the 0.05 level. By contrast, when we shuffled the sam-

ple labels and re-performed the correlation analysis 10

times, none of these shuffled distributions produced a

single significant correlation after Bonferroni adjust-

ment. Additionally, the PathOlogist was used to depict

these relationships in scatterplot form for a few of the

top pathways in order to visually confirm the correlation

(Figure 3).

When these pathways are used in a heatmap (as in

Figure 4), most of the samples cluster into tight groups

based on sensitivity. After correcting for multiple com-

parison testing (using a Bonferroni adjustment), the

most significant pathways are more highly correlated to

GI50 than any one probeset.

In addition to identifying pathways whose behavior is

differentially altered, it may be useful to gain more

insight into what drives these alterations. In order to

explore this further, copy number data for each of the

cell lines was loaded into the tool, and the PathOlogist

was used to find pathways whose components were

altered by copy number changes.

We find that one of these pathways, the ‘Toll-like

receptor signaling pathway’ was also one of the path-

ways most predictive of drug response. We therefore

assessed whether copy number alterations in this path-

way are associated with changes in pathway behavior,

and consequently, variations in response to treatment.
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The PathOlogist was used to ‘draw’ the network struc-

ture for each of the samples, depicting molecular

expression and copy number, as well as interaction

activity and consistency visually in context. Whole net-

works and zoomed-in views of the network structure

for a few representative samples are shown in Figures 5

and 6.

This detailed graphical view is informative in a num-

ber of ways. It appears from Figure 5 that the resistant

lines are more frequently the target of copy number

alterations to molecules in this pathway. Notably

though, the same molecules are not altered in each line,

although their alteration may lead to the same end

result - disruption of pathway function. The pathway-

based analysis is able to capture this differentiation in

ways that a single-molecule based analysis could not. In

addition, a closer look at the network reveals the effect

these copy number alterations may have on molecular

expression, as well as other specific places in the path-

way where expression is differentiated.

Pathway Behavior and Patient Survival in Glioblastoma

Tumors

Publicly available normalized expression data [12] for

377 GBM tumor and 10 normal samples generated

using both the Affymetrix U133a platform and the Agi-

lent G4502A platform was downloaded from the TCGA

online database.

RMA-normalized data was loaded into the PathOlogist

as a text file. Up-Down Probability normalization was

then applied to the RMA data, and the results were

used to calculate activity and consistency scores for each

pathway in the database. A bi-dimensionally-clustered

heatmap of the scores for the 150 pathways with the

highest sample-wide variance in scores is shown in

Figure 2b.

Table 1 Ordered list of pathways with significant linear correlation between pathway metrics (either activity or

consistency) and GI50

Pathways Rho p value*

consistency: il2-mediated signaling events(NCI/Nature) 0.8049 2.18E-04

consistency: trk receptor signaling mediated by pi3k and plc-gamma(NCI/Nature) 0.791 4.91E-04

consistency: cadmium induces dna synthesis and proliferation in macrophages(Biocarta) 0.7511 3.71E-03

activity: toll-like receptor signaling pathway(Kegg) 0.7392 6.32E-03

activity: role of egf receptor transactivation by gpcrs in cardiac hypertrophy(Biocarta) 0.7042 2.60E-02

activity: agrin in postsynaptic differentiation(Biocarta) 0.694 3.80E-02

activity: downstream signaling in naïve cd8+ t cells(NCI/Nature) 0.6869 4.88E-02

*after Bonferroni correction.
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Figure 2 Bi-dimensionally clustered heatmap of pathway metrics, with separate rows for activity and consistency scores, for a) 28

cancer cell lines, and b) 368 GBM and 10 normal samples. In b), all 10 normal samples cluster together, as indicated by the colored bars to

the right.
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From the heatmap, it appears that the 10 normal sam-

ples cluster naturally into a separate group, suggesting

that overall pathway-level behavior has been altered in

the tumor samples, and that our approach is able to

capture these alterations. Further analysis identified spe-

cific pathways that are most altered, including many

that have been previously implicated in GBM [13] such

as ERBB2 signaling (p < 8 × 10-8), and TNF-alpha and

FAS signaling (p < 7 × 10-8). Other pathway-based ana-

lyses (Paradigm [14], SPIA [15]) published 15 NCI/Nat-

ure pathways with the highest differential behavior

between tumor and normal samples. For direct compari-

son we compiled a list of the 15 top-ranked NCI/Nature

pathways from our analysis (Table 2), and find a num-

ber of similarities to previously reported pathways, parti-

cularly with regard to activity scores. Similarities include

pathways involved in Pi3k signaling (p < 9 × 10-5) his-

tone deacytelase (HDAC) signaling (p < 9 × 10-5), LPA-

receptor mediated events (p < 3 × 10-4), p38 MAPK

signaling (p < 1 × 10-4), and hif-1-alpha-mediated regu-

lation (p < 2 × 10-4). This overlap suggests that our

method is able to find the important features in the

data, and identify pathways that are strongly correlated

with disease. Furthermore, when we consider the most

significantly altered pathways according to consistency

scores, many of the pathways we find have extensive

experimental evidence [16,17] for involvement in GBM

but have not yet been identified by other pathway-

centric tools. The RAC1, CDC42, FAS, and PDGFR sig-

naling pathways all appear in the top 15 pathways with

altered consistency (yet appear lower in our list accord-

ing to activity) and have been shown to play a large role

Figure 3 Scatterplots depicting relationship between GI50 and pathway metrics for two highly correlated pathways.

Figure 4 Heatmap of activity and consistency scores for the four pathways most highly correlated with sensitivity to treatment.

Samples were divided into four equal groups and labeled very sensitive, sensitive, resistant, or very resistant based on their response.
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in GBM tumor formation. Thus, through the combined

use of activity and consistency metrics, our method is

able to capture both well-established and previously

unreported pathway-level alterations.

Within the set of tumor samples, we were also able to

identify pathways associated with survival. For each

pathway, samples were clustered into two groups based

on activity or consistency scores, and a logrank test was

performed comparing the Kaplan-Meier survival curve

of the two groups. A number of pathways separate sam-

ples into groups with significantly different survival

curves. Previous analysis with Paradigm identified path-

ways separating GBM samples into four subgroups, one

of which had a significantly increased survival. This

group was primarily characterized by upregulation of

E2F. Our pathway-based analysis finds that the ‘e2f tran-

scription factor network’ pathway is the only NCI/Nat-

ure pathway for which both activity and consistency are

significantly associated with survival. Additionally, we

find pathways involving p53, colorectal cancer, and

prostate cancer among the most significant.

Discussion
We believe that the integrated analysis made possible by

this tool will prove useful for pathway-based study of

biological information. Many tools currently exist that

infer networks from expression data. By contrast, the

PathOlogist predicts expression based on network
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Figure 5 Network structure of the Toll-like Receptor Signaling’ pathway, for two sensitive (a, b) and two resistant (c, d) cell lines.

Molecules with copy number alterations are outlined in yellow.
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structure, and then assesses whether actual gene expres-

sion systematically deviates from this prediction. Activity

and consistency scores provide a simple yet informative

summary of biologically complex behavior in a manner

immediately suitable for further statistical analyses. The

metrics generated by the PathOlogist can be used to

generate pathway signatures associated with clinical

data, or identify specific pathways implicated in disease

for further insight into disease pathology.

There are however, some limitations to this type of

analysis. The PathOlogist can only analyze established

pathways, and assumes the accuracy of the pathways in

the Pathway Interaction Database. Although the PID is

carefully curated to contain only high-quality, well-

documented pathways, there is still a certain amount of

ambiguity inherent in each pathway’s components,

structure, and boundaries. On the other hand, the

PathOlogist offers a possible check for pathway validity,

as it stands to reason that a pathway returning consis-

tently low consistency scores, even for normal samples,

could be assumed to lack biologic fidelity. Additionally,

since pathway scores are averages of the metrics asso-

ciated with each interaction within the pathway, small

subsets of interactions that have real association to a

clinical feature may be overshadowed by other non-cor-

related interactions, especially in large pathways.

Availability and Requirements
Project name: PathOlogist

Project home page: ftp://ftp1.nci.nih.gov/pub/pathologist/

Operating system: Windows

Programming language: MATLAB
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Figure 6 Portion of the ‘Toll-like Receptor Signaling’ pathway for two representative cell lines. Rectangles represent molecules, circles

represent interactions. Molecular expression is represented by shading of molecule nodes: white = lowest expression, bright turquoise = highest

expression. Molecules with copy number alterations are outlined in yellow. Interaction activity is represented by circle size: large circle = high

activity, small circle = low activity. Interaction consistency is represented by arrow color: bright blue: high consistency, dark green: low

consistency.
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Other Requirements: The full version of the tool

requires a copy of MATLAB as well as MATLAB’s

Bioinformatics and Statistics Toolboxes. The tool is

most stable when using MATLAB version 2009b and

later. The standalone version does not require MATLAB

but the RMA normalization and single-pathway graphics

features are not currently available. A step-by-step man-

ual for use of the PathOlogist is located at ftp://ftp1.nci.

nih.gov/pub/pathologist/The%20PathOlogist%20over-

view.doc (additional file 1).

License: none

Restrictions: None
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