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Most physiological processes in the brain and body exhibit daily (circadian) rhythms coordinated by an endog-

enous master clock located in the suprachiasmatic nucleus of the hypothalamus that are essential for normal

health and functioning. Exposure to sunlight during the day and darkness at night optimally entrains biological

rhythms to promote homeostasis and human health. Unfortunately, a major consequence of the modern

lifestyle is increased exposure to sun-free environments during the day and artificial lighting at night. Addi-

tionally, behavioral disruptions to circadian rhythms (ie, repeated transmeridian flights, night or rotating shift

work, or sleep disturbances) have a profound influence on health and have been linked to a number of path-

ological conditions, including endocrine-dependent cancers. Specifically, night shift work has been identified

as a significant risk factor for breast cancer in industrialized countries. Several mechanisms have been proposed

by which shift work-induced circadian disruptions promote cancer. In this review, we examine the importance

of the brain-body link through which circadian disruptions contribute to endocrine-dependent diseases, in-

cluding breast carcinogenesis, by negatively impacting neuroendocrine and neuroimmune cells, and we con-

sider preventive measures directed at maximizing circadian health. (Endocrine Reviews 37: 450–466, 2016)

I. Introduction
II. Epidemiological Studies Linking Circadian Disruption

and Breast Cancer
III. Laboratory Models Linking Circadian Disruption and

Breast Cancer
IV. Neuroendocrine Mechanisms of Circadian Mediated

Carcinogenesis
A. Glucocorticoids
B. Gonadal steroids
C. Melatonin

V. Neuroimmune Mechanisms
VI. Clock Genes and Carcinogenesis

VII. Preventive Measures
VIII. Conclusions and Considerations

I. Introduction

Breast cancer is the most prevalent cancer among

women worldwide (1), with the highest rates found

in the most industrialized countries of Europe, North

America, and Australia (Figure 1A). There is a 5- to 10-

fold difference in risk between these high-risk areas rela-

tive to low-risk populations, including developing coun-

tries in Africa and in parts of Asia (2–4). The incidence of

breast cancer has been increasing worldwide for the last

several decades, with the most pronounced increases seen

in regions that, until recently, had a low risk of breast

cancer. This is possibly due to the adoption of a more

modern lifestyle and consequent exposure to artificial

lighting (5). Migrational studies examining changes in

breast cancer risk among women emigrating from low-

risk areas, such as Asia, to high-risk areas, including the

United States, report significant increases in breast cancer

incidence after migration (6–8). Furthermore, studies

comparing the risks of migrants (particularly from Asia to

the United States) to the risks of their offspring report

major increases in risk between first, second, and third

generations, pointing to changes in lifestyle and environ-

mental exposure rather than genetics (9). Exposure to

nighttime light co-distributes with this rise in breast cancer

incidence in women worldwide (10–13) with the excep-

tion of women with visual impairments (14–16), provid-
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ing further evidence that artificial light exposure nega-

tively impacts human physiology and contributes to

disease progression (Figure 1B).

Most physiological processes exhibit circadian (daily)

rhythms that are essential for normal health and function-

ing. Circadian rhythms are coordinated by an endogenous

master clock located in the suprachiasmatic nucleus (SCN)

of the hypothalamus (17, 18). Despite the critical role of

the SCN in circadian functioning, it is more appropriate to

conceptualize the “circadian system” as an assembly com-

Figure 1.

Figure 1. A, Estimated breast cancer incidence worldwide 2012. Rates are age-standardized (per 100 000 ). GLOBOCAN 2012, International

Agency for Research on Cancer, World Health Organization. (From Ref. 203.) B, World light pollution at night. National Oceanic and Atmospheric

Administration (NOAA) National Geophysical Data Center. Data were collected by the U.S. Air Force Weather Agency under the Defense

Meteorological Satellite Program, 1994–1995. Data courtesy Marc Imhoff of NASA Goddard Space Flight Center and Christopher Elvidge of

National Oceanic Atmospheric Administration, National Geophysical Data Center. Image by Craig Mayhew and Robert Simmon, NASA Goddard

Space Flight Center.
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prised of not only a master clock, but also a series of sub-

ordinate clocks whose phase and coordinated activity are

set by the SCN. Individual cells in the SCN and subordi-

nate systems maintain circadian timing at the cellular level

through interlocking transcriptional-translational feed-

back loops (TTFLs) composed of clock genes and their

protein products (Figure 2A) (19). In nearly every periph-

eral tissue examined thus far, the core clock genes are

expressed in a rhythmic fashion (20). Clock genes confer

circadian rhythmicity by regulating cellular functions ei-

ther directly or by gating expression of other genes in local

tissues. The SCN has direct access to environmental time

via specialized retinal ganglion cells that transmit light

information to the SCN via a direct retino-hypothalamic

tract independent from the visual system (21, 22). In turn,

because subordinate central and peripheral clocks do not

have access to such time cues, the SCN communicates

environmental information throughout the central ner-

vous system and periphery. This communication sets ex-

tra-SCN clocks to environmental time and also synchro-

nizes ensembles of individual cellular oscillators within a

system. At the cellular, organ, and systemic levels, normal

circadian rhythms are critical for appropriately guiding

innumerable cellularprocesses, includinggene expression,

cell proliferation, apoptosis, hormone secretion, and im-

mune modulation (Figure 2B).

Although circadian rhythms are generated endoge-

nously, exposure to sunlight during the day and darkness

at night optimally entrains (synchronizes) circadian

rhythms to environmental time to promote homeostasis

on a temporal schedule and to maximize human health.

Unfortunately, a major consequence of the modern life-

style is increased exposure to sun-free environments dur-

ing the day and artificial lighting at night (23–25) (Figure

1B), which collectively and adversely impacts circadian

health. Disruptions in circadian rhythms have been linked

to a number of pathological conditions, including obesity

(26), ulcers (27), heart disease (28), diabetes (29), sleep

disturbances (30), cognitive impairment (31), and depres-

sion (32) (Figure 3).

The increased incidence of these pathologies is associ-

ated with disruptions to endocrine timing. For example,

metabolic hormones such as growth hormone, melatonin,

cortisol, leptin, and ghrelin are affected and governed by

circadian rhythms and sleep quality. Associated with these

altered patterns of hormone secretion, shift workers have

an increased prevalence of obesity and a 40% increased

risk of cardiovascular disease relative to daytime workers

(33–36). Importantly, the observed effects of shift work on

obesity may be more pronounced in female shift workers

of all ages compared to men, according to a population-

based study by Karlsson et al (37). Furthermore, female

nurses who worked rotating night shifts for 6 years or

more exhibit an increased risk of coronary heart disease

after correcting for smoking, among other risk factors

(38). Finally, night workers experience lower insulin sen-

sitivity, increased triglycerides, and blunted postmeal

ghrelin suppression (39).

Most relevant to the present overview, disruptions in

circadian rhythms are associated with increased incidence

and susceptibility to cancer. Specifically, shift work is as-

sociated with a significant increase in the incidence of solid

cancers, including breast, prostate, endometrial, and co-

lon cancers, as well as dispersed cancers including lym-

phomas and leukemia (40–52). In animal models, both

altered light environments and targeted disruption of

genes generating circadian rhythms accelerate cancer pro-

gression relative to controls (3, 53–55), providing a direct

causal link between circadian biology and cancer. Collec-

tively, these findings and others have led to the recent

classification of shift work as a probable carcinogen in

humans by the International Agency for Research on Can-

cer (56). Several mechanisms have been proposed by

which shift work-induced circadian disruption promotes

cancer. In this review, we examine the importance of the

brain-body link through which circadian disruptions neg-

atively impact neuroendocrine and neuroimmune func-

tioning to promote breast carcinogenesis. Finally, we de-

scribe mitigating strategies to maximize sleep and

circadian health in at-risk individuals.

II. Epidemiological Studies Linking Circadian
Disruption and Breast Cancer

Whereas a woman’s lifetime exposure to estrogen is be-

lieved to be a major risk factor for breast cancer develop-

ment (57, 58), a number of environmental factors associ-

ated with the modern lifestyle have also been attributed to

increased breast cancer prevalence. Technical advances

that allow operation as a 24-hour society and convenient

travel across time zones also promote prolonged and ir-

regular exposure to light and represent potentially impor-

tant and often overlooked lifestyle factors that contribute

to breast cancer risk (11, 59). This exposure is particularly

true in industrialized countries where shift work and night

work are estimated to involve about 15–20% of the work-

ing population and in some professions, such as health

workers, 30% or higher (60). Shift work, defined as any

employment after 7 PM and before 9 AM, is seen in services

such as healthcare, the military, and protection (eg, fire-

fighters, police, medical personnel). Whereas some shift

workers may have sleep-wake rhythms and hormonal

rhythms that are out of phase with the environment, the

452 Ball et al Circadian Disruption and Breast Carcinogenesis Endocrine Reviews, October 2016, 37(5):450–466
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Figure 2.

Figure 2. A, Circadian rhythm generation at the cellular level. Circadian rhythms are generated by TTFLs of the core circadian genes. CLOCK and

BMAL1 increase the transcription of Period (Per), Cryptochrome (Cry), and other clock-controlled genes during the day. In the classic view, the

levels of Per and Cry proteins increase during the night, after which they dimerize and translocate to the nucleus to repress CLOCK–BMAL1-

mediated transcription. Per and Cry proteins are then ubiquitylated and degraded to initiate a new circadian cycle. Conversely, REV-ERB� (encoded

by Nr1d1) protein levels are high during the day and inhibit BMAL1 transcription at this time. At night, REV-ERB� protein levels are low, allowing

BMAL1 transcription to take place. P, Phosphorylation; RRE, REV-ERB/ROR response elements; Ub, ubiquitylation. (From Ref. 84.) B, Circadian

organization at the systems level. A contemporary view of circadian organization in which a hypothalamic pacemaker, in the SCN, communicates

through various neural and endocrine links to drive and/or synchronize rhythms in peripheral physiology and behavior. This ensures that as

individuals progress through the regular 24-hour cycle of sleep (gray shading) and wakefulness, their metabolism is adjusted accordingly to

anticipate the demands and opportunities of the solar day. ANS, Autonomic nervous system. (From Ref. 25).

doi: 10.1210/er.2015-1133 press.endocrine.org/journal/edrv 453
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majority do not display alignment of physiological

rhythms with the day/night cycle different from day-work-

ing controls (61). In fact, most shift workers maintain

circadian rhythms that promote sleep during the dark

hours and wakefulness during the day hours, despite meet-

ing work-related behavioral demands at night. This in-

congruence between physiological rhythms and behav-

ioral demands in shift workers is believed to contribute to

a myriad of health disorders (62) (Figure 3).

The importance of circadian disruption in human

breast cancer was brought to public attention through

several large-scale epidemiological studies demonstrating

that breast cancer incidence increases significantly in

women working night shifts, with greater risk the more

years and hours per week worked (43, 44, 46). In one

landmark prospective study, Schernhammer et al (43) un-

covered a pronounced association between night work

and breast cancer among 78, 562 women participating in

the Nurses’ Health Study. In this 10-year follow-up study,

postmenopausal women who worked rotating night shifts

for 30 or more years exhibited a significant increase in

breast cancer risk (relative risk [RR]

� 1.36) compared to nurses who

never worked rotating night shifts.

In the Nurses’ Health Study II (46),

premenopausal nurses who reported

more than 20 years of rotating night

shift work experienced an elevated

risk of breast cancer (RR � 1.79)

compared with nurses who did not

report any rotating night shift work.

In a related study by Davis et al (44),

night work was associated with a

60% increase in breast cancer risk

(RR � 1.6), with a trend toward in-

creased risk with more hours of night

work per week. Similar trends have

been reported in other parts of the

world, including Norway (63, 64),

Germany (65), Canada (66), France

(67, 68), Sweden (69), and Denmark

(45, 70–72). Together, these find-

ings point to a strong, positive asso-

ciation between shift work and/or

nighttime light exposure and breast

cancer across cultures. Risk is in-

creased with the number of consec-

utive night shifts worked in addition

to the number of years employed as a

night-shift worker.

III. Laboratory Models Linking Circadian
Disruption and Breast Cancer

Rodent models of breast cancer have provided invaluable

advances in our understanding of this complex disease,

affording the opportunity to test hypotheses not suitable

or ethically possible in human research. Several different

experimental models of breast cancer have been applied to

examine the effects of circadian disruption on breast tu-

morigenesis, including human xenograft models, chemi-

cally induced models, and genetically engineered mouse

models (ie, transgenic/knockout mice). Whereas no model

can fully recapitulate human breast cancer, each has offered

important insights at the molecular, cellular, and systemic

levels of circadian-mediated breast tumorigenesis.

The first evidence that nocturnal illumination can affect

the growth of human breast cancer cells was presented in

2003 with the finding that constant light exposure mark-

edly increased tumor growth in MCF-7 xenografts (73).

Similarly, rats exposed to constant light experience in-

creases in 7,12-Dimethylbenz[a]anthracene (DMBA)-in-

Figure 3.

Figure 3. The pleiotropic effects of circadian disruption. Circadian disruption affects multiple

organ systems. The diagram provides examples of how circadian disruption negatively impacts

the brain and the digestive, cardiovascular, and reproductive systems. Although the diagram

displays unidirectional effects, there are various feedback loops that exist within the system and

interactions that occur between these systems. (From Ref. 204.)

454 Ball et al Circadian Disruption and Breast Carcinogenesis Endocrine Reviews, October 2016, 37(5):450–466
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duced mammary tumor formation and growth (74, 75).

Likewise, an increase in tumor multiplicity is observed

under constant light and in chronically alternating light

cycles in transgenic mouse models of breast cancer includ-

ing mice overexpressing the c-neu/Human Epidermal

Growth Factor Receptor-2 (Her-2) oncogene that is over-

expressed in 15–20% of human breast cancers (76, 77).

Altered light environments can modify the daily rhythmic

expression patterns of circadian and cancer-related gene

transcripts in mouse mammary tumors, pointing to a po-

tential mechanism driving circadian-mediated carcino-

genesis (78). Finally, circadian disruption also exerts tu-

mor-promoting effects in other cancer models, with

experimental jet lag or SCN ablation accelerating malig-

nant growth and shortening survival in two transplantable

tumor models, Glasgow osteosarcoma and pancreatic ad-

enocarcinoma (79–82).

IV. Neuroendocrine Mechanisms of Circadian
Mediated Carcinogenesis

A. Glucocorticoids

Whereas numerous epidemiological (41–44) and ex-

perimental (79, 80, 83) studies point to an association

between temporal disruptions and cancer, the specific

mechanisms linking these events remain less well specified.

Because the SCN communicates to the periphery via neu-

ral and hormonal pathways to coordinate peripheral

clocks (84, 85), alterations in neuroendocrine pathways

induced by circadian insults likely contribute to tumor

development (Figure 4). Circulating levels of glucocorti-

coids, for example, display circadian rhythmicity and are

potent mediators of circadian clock entrainment in pe-

ripheral tissues (86). Likewise, insults to the circadian sys-

tem (eg, jet lag, shift work) result in activation of the stress

axis and increased plasma glucocorticoid concentrations

(87–89). Numerous studies link stress hormones to a

higher incidence, progression, and recurrence of breast

cancer (90, 91), pointing to a likely link between circadian

disruption and carcinogenesis. For example, a meta-anal-

ysis of primary breast tumor gene expression demon-

strated that high levels of glucocorticoid receptor (GR)

expression in estrogen receptor (ER)-negative tumors sig-

nificantly correlate with shorter, relapse-free survival

(92). Furthermore, gene expression analysis in these tu-

mors revealed a direct transcriptional role for GR through

differential activation of GR target genes involved in sev-

eral cancer-related pathways, including epithelial-to-mes-

enchymal transition, cell adhesion, and cell survival. Anal-

ogous findings are observed in animal studies in which

increased endogenous glucocorticoid exposure is associ-

ated with increased tumor growth in ER-negative breast

tumors, whereas pretreatment with a synthetic glucocor-

ticoid (dexamethasone) inhibits tumor cell apoptosis in-

duced by the chemotherapeutic agent paclitaxel (92–94).

With regard to human breast cancer treatment, glucocor-

ticoids have also been shown to contribute to a decrease in

tumor cell apoptosis while increasing tumor cell survival

and chemotherapeutic resistance (95, 96).

Cancer patients sometimes exhibit attenuated (low am-

plitude or flattened) circadian rhythms (84, 97, 98) asso-

Figure 4.

Figure 4. Circadian control of cell proliferation and apoptosis at the

systemic level. Light and other environmental cues reach the SCN

through various input pathways. The SCN clock synchronizes with the

environment to generate endogenous rhythms, which are transmitted

through output pathways to peripheral tissues. Representative output

pathways, such as the autonomic nervous system (ANS) and the

hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary

adrenal (HPA) axes, are shown. The pineal gland and peripheral tissues

can also feed back to SCN or HPA axes through the production of

melatonin to regulate homeostasis. Melatonin binds to receptors on

SCN neurons to induce phase shifts (202, 205). The adrenal glands

produce glucocorticoids, which have negative feedback on the

hypothalamus to terminate the release of corticotropin-releasing

hormone (CRH) (205). The products of immune activity, such as

interferon-� and -� and interleukin-1, can also modulate the activity of

SCN, as well as the HPA axis (206, 207). Feedback pathways are

indicated by dashed lines. (From Ref. 85.)
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ciated with cancer-related distress (99) and the quality of

circadian rhythms among cancer patients has been shown

to be a predictor of patient survival in some studies (100–

102). Specifically, abnormal cortisol rhythms are associ-

ated with a 2-fold risk of mortality in patients with met-

astatic breast cancer compared to patients with a normal

cortisol pattern (90). This interaction between the circa-

dian system and cancer may lead to a self-perpetuating

feedback loop where disruptions in circadian function in-

duce alterations in endocrine functioning that promote

cancer development, and in turn, the development of can-

cer may promote disruptions in circadian function leading

to further progression of the disease. As a result, develop-

ing pharmacological, behavioral, and environmental

strategies (described below) to maximize circadian health

represents an important variable to considerwhen treating

cancer patients.

B. Gonadal steroids

In addition to glucocorticoids, gonadal hormones also

participate in this circadian feedback loop, with altered

daily patterns in estrogen signaling being a common fea-

ture in breast cancer patients. Circulating estradiol and the

ER expression exhibit a circadian pattern (103, 104), and

estrogen signaling differentially regulates the circadian

clock in the brain, breast, and other peripheral tissues

(105). Specifically, estrogen regulates the expression of

several core clock genes, including Bmal1 (106), Per1

(105, 107), Per2 (105, 106, 108), and Clock (109). Im-

portantly, these genes are differentially affected by estro-

gen signaling in both ER�-positive and ER�-negative

breast cancer cells (106, 108, 109), implicating canonical

ER pathways as well as alternative mechanisms for estro-

gen-induced regulation of clock genes. These findings also

provide mechanistic insights at the molecular level

whereby the mammary circadian clock is linked to estro-

gen activity.

C. Melatonin

Melatonin disruption was first suggested to play a role

in human breast cancer in 1978 when it was hypothesized

that reduced pineal function and resulting decreased mel-

atonin secretion lead to the development of breast tumors

(110). Since that time, numerous studies have explored the

association between melatonin disruption, estrogen sig-

naling, and breast cancer (111–116), although clinical in-

vestigations clarifying the protective role of melatonin in

women are lacking.

Epidemiological studies indicate that women with vi-

sual impairments are less likely to develop breast cancer

(14, 16, 117, 118). The circadian synthesis of melatonin is

regulated by the SCN, with melatonin being secreted only

in darkness and nocturnal secretion being suppressed in

(sighted) individuals exposed to light at night (LAN). This

suppression occurs in a dose-dependent manner, with

brighter light resulting in greater suppression of melato-

nin. Furthermore, blue light (460–480 nm) is more dis-

ruptive than red light (620–750 nm) (119). Not surpris-

ingly, disruptions in the pattern of melatonin secretion are

observed in individuals with sleep disorders and chronic

jet lag (120). Similar alterations in circulating and urinary

melatonin levels have been observed in women working

night shifts, and these disruptions are associated with in-

creased breast cancer risk (120–126). Importantly, low

levels of melatonin secretion and excretion are observed in

women with breast cancer (127, 128). Specifically, the

nocturnal peak in melatonin is significantly reduced in

patients with breast cancer and is inversely correlated with

tumor size (128). Given the protective role of melatonin in

breast cancer development and progression (129–135), it

is important to develop strategies for maximizing daily

rhythms of this hormone in women from at-risk popula-

tions and those currently fighting the disease.

In experimental rodent models of breast cancer, light

exposure at night promotes tumor growth, and exogenous

melatonin reverses this effect, providing direct evidence

for correlational observations in women (136). Addition-

ally, early in vivo studies revealed that pinealectomy or

exposure to photoperiods that suppress melatonin results

in higher tumor incidence, growth rate, and multiplicity

(137–140). By the 21st century, the availability of xeno-

graft models of breast cancer allowed researchers to ex-

amine the inhibitory effects of physiological levels of mel-

atonin on the growth of human breast cancer in nude rats.

When nude rats bearing human breast cancer xenografts

were exposed to constant light, a dose-dependent reduc-

tion in blood melatonin levels was observed concomitant

with an increase in tumor growth (73, 134). To further

these studies, Blask et al (134) used an innovative ap-

proach to establish the inhibitory effects of human noc-

turnal melatonin on the growth of human breast cancer by

perfusing xenografts growing in situ with blood collected

from human female subjects at various times of day or

after LAN exposure. It was found that the melatonin-rich,

nocturnal blood collected at night significantly inhibited

the proliferative activity and the growth of human breast

cancer xenografts in rats compared to xenografts perfused

with melatonin-depleted blood collected during the day or

after LAN (134). These early mechanistic studies paved

the way for more recent investigations demonstrating that,

in addition to decreasing tumor cell proliferation and size,

melatonin also inhibits angiogenesis and increases tumor

cell sensitivity to tamoxifen therapy (132, 133) and doxo-

rubicin (141) in human xenograft models of breast cancer.
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These observations in xenografts are further supported by

studies involving transgenic and transplantable mouse

models of breast cancer where melatonin reduces the in-

cidence and size of spontaneous mammary tumors in

transgenic mice (76, 77, 130, 131, 135) and slows the

proliferation of 4T1 tumor transplants in BALB/c mice

(129).

Melatonin’s pleiotropic oncostatic effects on breast

cancer range from regulating the expression and transac-

tivation of nuclear receptors, transcription factors, and

coregulatory proteins to antioxidant activity, immuno-

modulation, and enzyme regulation. Specifically, melato-

nin inhibits the expression and/or phospho-activation of

numerous kinases, transcription factors, and coregula-

tors, which are known to drive breast cancer promotion

and/or progression (142, 143). Collectively, these mela-

tonin-mediated mechanisms result in suppression of cell

proliferation (144–147).

Melatonin also blocks the mitogenic effects of estradiol

in vitro by down-regulating ER� mRNA levels (142, 148)

and in vivo by decreasing phospho-activation of ER� pro-

tein. Together, these melatonin-mediated effects result in

the suppression of estrogen-induced transcriptional activ-

ity of ER� in human breast cancer cell lines. The down-

regulation of estrogen signaling exerted by physiological

concentrations of melatonin subsequently leads to alter-

ations in the transcriptional regulation of a number of

downstream ER gene targets, including antiapoptotic tar-

gets Bcl-2, TGF-�, and Bax (112, 114). Melatonin also

acts as a selective estrogen enzyme modulator by inhibit-

ing the aromatase pathway in ER-positive MCF-7 human

breast cancer cells and in 7,12-Dimethylbenz[a]anthra-

cene (DMBA)-induced rat mammary tumor tissue (113,

149).

Although some ER�-negative breast cancer cell lines

are unresponsive to the antiproliferative effects of mela-

tonin, a number of studies report inhibitory growth effects

in ER�-negative human breast tumors through immuno-

modulatory and alternative mechanisms involving cell cy-

cle arrest (112, 146). For example, melatonin suppresses

tumor cell cAMP formation, leading to a decrease in li-

noleic acid uptake and its metabolism to the mitogenic

signaling molecule 13-hydroxyoctadecadenoic acid (150).

Linoleic acid activates the epidermal growth factor recep-

tor pathway, resulting in activation of p38MAPK-induced

cell proliferation and cell survival pathways. Thus, mela-

tonin-induced inhibition of linoleic acid uptake and me-

tabolism attenuates the epidermal growth factor receptor

signaling pathway, diminishing tumor growth (147). In

vitro studies further demonstrate that melatonin inhibits

breast cancer cell invasion and metastasis by inhibiting

p38 MAPK signaling and subsequently inhibiting the ex-

pression of downstream gene targets involved in invasion

including the matrix metalloproteinases 2 and 9 (151).

In addition to its antitumor effects, melatonin has been

shown to have hypnotic effects under some circumstances

(152), although its efficacy in treating sleep disruption has

not been consistently supported (153, 154). These equiv-

ocal findings are likely due to the difficulty in estimating

the precise dosage and timing of melatonin, given the high

variability in concentrations of this hormone in humans

and animals. Likewise, melatonin is most effective if taken

at a time before endogenous melatonin production (152).

Given these findings, clinical trials are currently ongoing

to explore the efficacy of melatonin in the treatment of

sleep disturbances and other cancer-related conditions in

breast cancer patients (155–157).

Circadian disruption can lead to the temporal dysregu-

lation of the sleep-wake cycle that can lead to sleep dis-

turbances that, in turn, affect circadian rhythmicity. Not

surprisingly, there is a high prevalence of sleep disruption

in women diagnosed with breast cancer both during and

after treatment (158), with nearly 80% of women expe-

riencing insomnia, a particular sleep disruption associated

with difficulty falling and/or staying asleep, waking up

earlier than intended, and/or poor sleep continuity. Nu-

merous precipitating factors contribute to the develop-

ment of sleep disruption in cancer (eg, stress of the diag-

nosis, side effects of cancer treatments), with disruption of

circadian rhythmicity likely playing a role. Importantly,

recent research suggests that sleep quality, defined by sleep

efficiency (the ratio of time being asleep to total time spent

in bed�100%), is a significant prognostic factor in women

with breast cancer. Specifically, women with advanced

disease who experience better sleep efficiency (�85%) and

less sleep disruption have significantly lower mortality

compared to women with less efficient sleep (159).

V. Neuroimmune Mechanisms

Circadian-mediated alterations in circulating levels of

melatonin and cortisol are in a position to have direct

immunomodulatory effects impacting antitumor immu-

nity. The activation of lymphocytes and macrophages by

melatonin may provide one explanation for its anticancer

effects in ER�-negative and ER�-positive breast cancer

cell lines. Through its immune-enhancing properties, mel-

atonin supports T-helper cell responses by stimulation of

IL-2, IL-10, and interferon-� secretion (160). Not only can

the release of cytokines from T-helper cells activate anti-

gen-specific cytotoxic T-cell responses, but cytokines can

also directly kill tumor cells through activation of death

receptors on the tumor cell surface (161). Furthermore,
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exogenous melatonin administration increases nonspe-

cific immune responses by stimulating monocyte and nat-

ural killer (NK) cell production in both the spleen and

bone marrow (162). NK cells play an important role in

immunosurveillance, the process by which cancer cells are

detected and eliminated by the immune system.

The immunomodulatory activities of glucocorticoids

have been well established and exploited for many decades

in the treatment of inflammatory conditions. Glucocorti-

coids can inhibit both innate and adaptive immune re-

sponses through suppression of lymphocyte proliferation,

cytokine production, and NK cell cytotoxicity (87, 163,

164). Thus, important aspects of antitumor immunity may

be suppressed by circadian-mediated increases in hypo-

thalamo-pituitary-adrenal (HPA) axis activity, a hypoth-

esis worthy of further exploration.

In addition to affecting cancer indirectly through cir-

cadian hormonal regulation, the circadian system also

plays a direct role in the regulation of both the innate and

adaptive immune responses. Immune tissue and immune

cells, including splenocytes, lymph nodes, and macro-

phages, all rhythmically express circadian clock genes

(165–167). Furthermore, patterns of circadian rhythmic-

ity have been observed in circulating white blood cells, T

and B lymphocytes, and cytokines, as well as in NK cell

activity (60, 168). Not surprisingly, disruptions to the cir-

cadian clock result in deficits in immune functioning; the

immune response in mice lacking essential circadian clock

genes is severely suppressed, and these mice develop more

spontaneous and �-radiation-induced cancers than wild-

type mice (53, 169). These findings suggest that circadian

regulation may be an important prerequisite for the main-

tenance of host defenses against cancer.

VI. Clock Genes and Carcinogenesis

At the molecular level, dysregulation of circadian gene

targets involved in cell proliferation and apoptosis also

represents a potential means by which insults to the cir-

cadian timing system can influence tumorigenesis. For ex-

ample, the central clock synchronizes circadian rhythms of

TTFLs for both mitogenic signals (eg, hormones, growth

factors, neurotransmitters, cytokines) and cell cycle reg-

ulators (eg, cyclins, cyclin-dependent kinases, and cyclin-

dependent kinase inhibitors, tumor suppressors) in pe-

ripheral tissues, all of which serve to gate the timing of cell

division. The SCN controls cell proliferation and apopto-

sis in peripheral tissues by regulating both the release of

extracellular mitogenic signals and the expression of

clock-controlled genes (CCGs). CCGs are genes that are

rhythmically produced by the cellular clockwork but are

not part of the clock mechanism. Of all the CCG targets

identified to date, up to 7% have been estimated to reg-

ulate cell proliferation or apoptosis in rodents (20, 170–

172), including the cell cycle genes c-Myc (G0/G1 transi-

tion), cyclin D1 (G1/S transition), wee1 (G2/M transition),

P53 (G1 and G2 cell cycle arrest), Gadd45 (G1/S transi-

tion), transcription factors, caspases andcytokines, aswell

as genes involved in modulating signal transduction path-

ways and proteasomal degradation (20, 53, 170–172)

(Figure 5). Thus, circadian disruption may accelerate tu-

mor progression through dysregulation of tumor cell pro-

liferation and apoptosis.

Furthermore, in some tumor types, rhythms of cell di-

vision are autonomous to that of the host’s circadian

rhythms (173). For example, both in vitro and in vivo,

some cancers, including breast cancer, become unrespon-

sive to circadian regulation of cell proliferation through

alterations of peripheral clock gene expression (106, 174).

Genetic manipulations, including targeted gene mutations

and silencing, reveal that specific core clock genes have

important tumor suppressor activity; their genetic absence

allows cancer cells to grow twice as fast as genetically

intact tumor cells, both in vitro and in vivo (53, 55). Mice

deficient in the core circadian clock genes Bmal1, Cry1,

and Cry2 or Per1 and Per2, for example, exhibit increased

spontaneous and �-radiation-induced tumor development

compared to wild-type control mice (53, 55).

In peripheral tissues, the Period genes have been given

considerable attention for their putative tumor suppressor

Figure 5.

Figure 5. Circadian control of cell proliferation and apoptosis at

the cellular level. Circadian clock and the cell cycle. The

circadian clock is coupled to the cell cycle by clock-controlled

genes that have either E-box or RAR-related orphan receptor

elements in their promoters. Without detailing post-

transcriptional products and downstream pathways, this figure

indicates where clock-controlled genes and proteins may

potentially interact with the cell cycle. (From Ref. 208.)
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activity. Down-regulation of Per2 in mammary tumors

significantly accelerates proliferation rates and doubles

the daily amplitude of tumor growth rhythms in vivo (54).

Conversely, Per2 overexpression decreases cancer growth

rates and diminishes tumor numbers while increasing cell

cycle arrest and apoptosis (108, 175, 176). With regard to

human breast cancer, Per2 bears clinical significance; ge-

nome-wide searches for genetic alterations in breast can-

cer have revealed specific Per2 gene mutations that are

conserved across several different human breast cancers

(177). In culture, Per2 expression is reduced in human

breast cancer cell lines, an observation that is common

across other cancer cell types (54, 178). Likewise, in an-

other report examining human breast tumors, Per2 down-

regulation was found in 95% of cancerous tissue com-

pared to nearby, noncancerous breast cells (179).

Recent studies point to a negative downstream effect of

the MYC oncogene, and the related MYCN gene, on can-

cer cell proliferation through actions on the core molec-

ular clockwork. The MYC protein is a transcription factor

that binds to E-boxes, the same binding site as the

CLOCK-BMAL1 complex, providing the ability to regu-

late both the Per/Cry and Rev-Erb/ROR genes. MYC and

MYCN overexpression dampen BMAL1 expression

through an increase in Rev-Erb� (180). Significantly, neu-

roblastomas with the highest MYCN and Rev-Erb� ex-

pression are associated with the poorest prognosis (180),

pointing to a potential contributory role for MYC in can-

cer progression through dysregulated cellular clocks. In

contrast to findings obtained for neuroblastomas, treat-

ment of breast cancer cell lines with a REV-ERB agonist

led to cell cycle arrest and reduced cell proliferation, likely

through suppression of cyclin A (181).

In addition to alterations in clock gene expression

through the core TTFL, circadian gene expression can also

be modified through epigenetic mechanisms, where meth-

ylation of the Per gene promoters are positively correlated

with Her2 expression in breast cancers. This association is

not unique to the Per genes because case-controlled breast

cancer studies have identified alterations in the promoter

methylation of other clock genes (182, 183). Importantly,

gene-specific and genome-wide analyses have revealed

that long-term shift work leads to similar changes in the

promoter methylation of clock genes as well as in cancer-

relevant genes (184). These findings point to important

circadian-mediated mechanisms of epigenetic modifica-

tion in the promotion and progression of breast cancer

requiring further investigation.

Genetic manipulations have also implicated Per1 in tu-

mor suppression. Overexpression of Per1, in vitro, inhib-

its human cancer cell growth and increases cellular apo-

ptosis in response to genotoxic stress (3). In contrast,

down-regulation of Per1 decreases cellular apoptosis after

genotoxic stress. In a study by Yang et al (185) examining

the role of Per1 in breast cancer cell proliferation and

tumor growth, the authors established that Per1 regulates

the growth of breast tumors, with two daily growth peaks

that are coupled to the daily expression patterns of clock-

controlled cell cycle genes. Furthermore, down-regulation

of tumor Per1 gene expression increases tumor growth, in

vivo, by increasing the amplitude of these two daily tumor

growth peaks. Per1 and Per2 have also been implicated in

suppressing the proliferation of prostate (186), endome-

trial, and pancreatic tumorigenesis (187–189).

Whereas the Period genes have been reported to have

important tumor suppressor activities, induction of the

Clock gene promotes the proliferation of breast cancer

cells (109, 190). The Clock gene is expressed at higher

levels in cancerous breast tissue compared to adjacent,

normal breast tissue (182). Clock is thought to mediate

breast cancer proliferation through the regulation of ER

signaling and cell cycle gene targets (191). Likewise, Clock

promotes the proliferation of MCF-7 and T47D breast

cancer cells through enhancing the transcriptional activity

of ER� in these cells (190). The CRY clock gene also reg-

ulates cell cycleprogressionand inactivationmutations, or

gene knockdown studies of CRY exert a protective effect

in breast cancer cells (183, 192, 193). Finally, low expres-

sion levels of the core clock genes Bmal1 and Cry1 are

independent prognostic factors of epithelial ovarian can-

cer (194), and methylation of the Cry1 promoter is hy-

pothesized to be involved in the development of endome-

trial cancers (187).

VII. Preventive Measures

Given that lifestyle changes are unavoidable in today’s

society, it is of vital importance that researchers within the

basic, epidemiological, and applied sciences examine the

potential risks associated with circadian disruption. For

example, with regard to shift work, schedules that mini-

mize circadian disruption should be implemented. As a

step toward developing such approaches, a recent work-

shop in Copenhagen was held to examine evidence-based

preventive measures to decrease the effects of night work

on breast cancer (195). Several preventive recommenda-

tions for shift workers emerged from the workshop, in-

cluding organizing shift schedules to minimize the asso-

ciated risks. These strategies can be implemented by

reducing the number of consecutive night shifts and the

total number of years working night shifts. In support of

this recommendation, several studies examining shift

workers at a chemical site in Germany reported no in-
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crease in the rates of cancer or overall mortality with a shift

system that does not require more than one or two sub-

sequent night shifts in a row (196–198). Furthermore, it is

recommended that the shift system be forward-rotating,

with night work following a resting period of 24–48 hours

whenever possible. With regard to women workers with

previous or current breast cancer, it is strongly advised

that such individuals avoid working night shifts

altogether.

As mentioned previously, healthier sleep efficiency and

less sleep disruptions are significant prognostic factors in

women with advanced breast cancer (159, 199), under-

scoring the importance of diagnosing and treating sleep

disruption in women diagnosed with breast cancer.

Whereas there are a number of effective medications for

insomnia (eg, zolpidem), their long-term use in cancer pa-

tients has not been evaluated. Thus, behavioral ap-

proaches are recommended, particularly for longer dura-

tions (�6 months) of sleep disturbance. Cognitive

behavioral therapy for insomnia and modified versions of

this behavioral therapy have been effective in treating in-

somnia in women diagnosed with breast cancer during

and after cancer treatment (200–202). Given the findings

that report an association between poor sleep efficiency

and shorter survival, early diagnosis and treatment of

sleep disturbance are recommended in breast cancer

patients.

Recently, the American Medical Association (AMA)

also adopted a policy statement on nighttime lighting and

human health (209). The America Medical Association

acknowledges many of the health concerns (eg, sleep, met-

abolic, mood, and reproductive disorders) that are asso-

ciated with circadian disruption as well as the carcinogenic

potential of nighttime lighting, especially in breast cancer.

The AMA further recognizes that exposure to excessive

nighttime light through the extended use of electronics is

especially worrisome in children and adolescents. As a

result, the AMA recommends the use of dim red lighting

only in the nighttime bedroom environment. The AMA

also supports the need for advancements in lighting tech-

nologies both at home and at work that minimize circa-

dian disruption while maintaining visual efficiency.

VIII. Conclusions and Considerations

Circadian rhythms are essential for normal health and

functioning. Exposure to sunlight during the day and

darkness at night optimally entrains biological rhythms in

humans to promote homeostasis and human health. Be-

havioral disruptions in circadian rhythms have a profound

influence on health and have been linked to the accelera-

tion of cancer and poorer patient prognosis. Night shift

work has been identified as a significant risk factor for

hormone-sensitive cancers in industrialized countries,

with epidemiological and experimental studies pointing to

several mechanisms by which circadian disruption pro-

motes cancer, including alterations in cell cycle gene ex-

pression and dysregulation of neuroendocrine and neuro-

immune function. A greater understanding of the

connections between circadian functioning and central

and peripheral physiology has led to the recommendation

of several preventive measures to mitigate the deleterious

effects of circadian disruption on human health. These

measures include optimizing shift systems and lighting

technologies that allow for visual efficiency while mini-

mizing circadian resetting. In the home environment, it is

recommended to reduce unnecessary lighting and extend

the dark period at night by refraining from electronic me-

dia before bedtime and using only dim red lighting in the

nighttime bedroom environment (11, 26). Given the

strong association between circadian physiology and can-

cer development, implementing strategies to reduce circa-

dian disruption and improve sleep quality is paramount in

the prevention, treatment, and survivorship of hormone-

dependent cancers.
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