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Abstract

The Pauli algebra for any Minkowski vector space is constructed and applied to
the study of isometries of 2 Minkowski vector space. where it is shown that a subset of
the Pauli algebra is the universal covering group of the restricted Lorentz group. The
Pauli algebra theory of spacetime connections and curvature is developed and used to
calculate the connection and curvature for spherically symmetric spacetimes. Spinors
for Minkowski spacetime are shown to reside naturally in the Pauli algebra and other

geometrical objects are built up from these spinors.
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1 Introduction

The Pauli algebra approach to relativity uses an algebra constructed from and
including 4-vectors to elegantly formulate concepts and applications in relativity. It
originated (Baylis 1980 and references therein) with the recognition that the set of all
2X2 hermitian complex matrices can be associated with Minkowski spacetime: the
square of the Minkowski norm of any 4-vector is just the determinant of the corre-
sponding zuatrix and Lorentz transformations are effected by using unimodular 2X2
matrices. When this method is studied in detail it becomes apparent that the matrices
themselves are not really needed: the algebraic multiplication properies of the
matrices are all that is required. Thus, the Pauli 2lgebra approach takes as its basic
structure an abstract algebra of 4-vectors having these properties.

The goals of this dissertation are: to construct the Pauli algebra from the vector
space of 4-vectors in a fairly rigorous mathematical manner; to show how fundamental
concepts in special relativity are implemented in this algebraic approach; and to extend
this approach to the domain of general relativity. In other words this dissertation hopes
to show that the Pauli algebra is applicable to a wide variety of problems in relativity,
from kinematical concepts in special relativity to Einstein’s equations in general rel-
ativity. It is also hoped that the efficiency and ease of use of the Pauli algebra is amply
demonstraféd here.

The Pauli algebra deals in a fundamental way with observers in spacetime, in fact
it can’t even be constructed without taking into account an observer. This might lead
one to believe that the Pauli algebra formulation of relativity is not covariant, but this
is erroneous because the observer used is initially left arbitrary. The notion of an
observer is not adequately dealt with in most elementary treatments of general rela-
tivity. Itisonly advanced expositions on general relativity such as De Felice and Clarke
(1990), that present detailed consideration of observers. Therefore, the role of

observers in the Pauli aigebra is actually a benefit, not a detriment.



The methods developed here have some similarities with other work. For a
treatment of the connection and curvatere using the Clifford algebra for spacetime.
see Hestenes (1966). Hestenes (1986). and Hestenes and Sobczyk (1983). For a pre-
sentation using differential forms and the Clifford algebra of differential forms, sce
Benn and Tucker (1988). For an elementary but systematic treatment of the connection
and curvature using differential forms. see Hughston and Tod (1990). Finally.the work
with which this dissertation has the most in common is Rastall (1964). which uses the
complex quaternions to study relativity. The Pauli algebra is isomorphic to the algebra
of complex quaternions. but the construction of the Pauli algebra developed in this
thesis is far different than Rastall’s approach using quadruples of complex numbers.
Also Rastall stops at the conrection and does not consider curvature and Einstein's

equations.
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2 The Pauli Algebra of a Minkowski Vector Space

2.1 Minkowski Vector Spaces

A Minkowski vector space (Geroch 1985) 17 is a four dimensional real vector

space along with a symmetric non-degenerate bilinear form g (i.e. an element of
L’"@ 1" ") that satisfies the conditions 1) and 2) below. A vector v el is called
timelike. lightlike, or spacelike if g (V. V) is positive, zero, or negative respectively.
For each Minkowski vector space:

1) timelike vectors exist:

2) v timelike., g(v.w)=0 = w spacelike.
The elements of 2 Minkowski vector space are called 4-vectors. These conditions are
just a basis independent way of saying that there exists a basis {ec.e,.ez.e3} of I
with

l=g(eq.e0)=-d(e,.e;)=—g(e,.e;)=-g(ez.c3). @.1

Such a basis is termed orthonormal.

Let u.v be timelike 4-vectors and write u~v if g(u.v)>0. Assume, for

now. that ~ is an equivalence relation on the set of all timelike 4-vectors. Select an
arbitrary timelike 4-vector w and note that w and —w are in different equivalence
classes. Any other timelike 4-vector v iseither equivalent to w or —w ,and so there
are exactly two equivalence classes of timelike 4-vectors. Because there are only two
equivalence classes. clearly

sgr(g(u.w)l=sgn[g(u.v)lsgr(g(v.w}] 2.2)
for all timelike u.v.and w. Choosing the 4-vectors in one of these classes to be

future pointing and the 4-vectors in the other class to be past pointing is called a time

orientation for 7.



It remains to verify that ~ is an equivalence relation. Let u, v.and w bhe
timelike 4-vectors. Triviallv. ~ is reflexive and symmetric. thar is  u-u. and
u~\v=v~u. To show that it is also transitive assume that u~w and w -\, and

let r=g{w.v)u-g(u.w)v. From this,

g(w.r)=0
=2g(r.r)<o,.
because w is timelike. But
g(r.r)=g(w.v)*g(u.u)~-2g(w.v)g(u.w)g(u.v) (2.3}

-g(u.w)’g(v.v)
and hence g(u.v)<0 would imply g(r.r)>0, a contradiction. Therefore
g(u.v)>0 and u~v.

Two other types of orientation can be defined on a Minkowski vector space. An
equivalence relation can be defined on the set of all bases for 1" by saying that two
bases are equivalent ifthe determinant of the change of basis transformation is positive.
A spacetime orientation is a choice of one of the two resulting equivalence classes as
the proper bases for 1. Lastly, a spatial orientation resuits by calling a tetrad right
handed if:the tetrad is proper, and its timelike element is furre pointing; or the tetrad
is improper, and its timelike element is past pointing.

As will be seen below, the tangent space at each point of any spacetime manifold
isa Minkowski vector space, and every observer isrepresented bya curve whose tangent
vector is a future directed, timelike unit 4-vector field. Thus, in a Minkowski vector
space, future directed. unit timelike 4-vectors have particular physical significance. Fix
a future directed, unit timelike 4-vector, e, and use this 4-vector to decompose |/
into

V=TeS (2.4)



where [ is the subspace of 4-vectors proportionzal to e, and S is the subspace of

4-vectors ¢ orthogonal to e,. Denote the vectors in S by an " and call them
spatial vectors. Which 4-vectors are spatial clearly depends on the e, used to effect
the spacetime split: all spatial vectors are necessarily spacelike. but not all spacelike
vectors are spatial. Hence for any 4-vector v

vi=1le,+t. (2.5)
The "dot product” on S is defined as the negative of g restricted to S.

If {eqg.e,.e,.¢5) is a basis for |V then the set of linear functions on

{w? w' . w?. w?’} defined by

w*(e,):=8" (2.6)
isa basis for 1" * .the algebraic dual of . Anisomorphism can be established between
I¥ and I * by identifying each w* and e, , but this isomorphism is not natural since
it is basis dependent. The metric gives rise t0 a natural (basis independent)
isomorphism ~ between I~ and its algebraic dual defined by

T(w)=g(v.w) 2.7

forevery v. wel”. The inverse of this isomorphism is also denoted by ", so context
is used to indicate which is being used. Applying this to the dual basis gives a new
basis. {e®=w . e'=®'. e2=w?.e>=w3},for V. Each clement of this new basis
can be expressed as a linear combination e" = g"“e, of the original basis elements.
The coefficients g"” are related to the coffecients g,.:=g(e,.e,) by

8" = w"(e,) 2.8

=c*(e,)

-g"%g
awv*
If v=v*e, and v =v,w" then

v=vte 2.9

=V g,.c



Thus. ¢, =:"g,...and in index notation corresponds 1o index lowering (of
components) and its inverse corresponds 1o index raising (of components).

2.2 The Pauli Algebra

It is well known (Baylis 1980 and references therein) that 2X2 complex matrices
can be used to represent 4-vectors, Lorentz transformations. and the electromagnetic
field tensor. If an abstract algebra T is constructed that contains these objects. and
that has a faithful irreducible 2X2 marrix representation. then the need for the matrices
is eliminated and amention can be focused on the properties of the algebra. This
dissertation does this. and shows also that this algebra is quite useful in the study of
Zeneral relativity.

Let 17 be a Minkowski vector space. The properties (2.5)and (2.7) of a Minkowski
vector space hint at the desired properties for the abstract algebra referred to above.
Specifically the algebra # is required to:

1) contain |7 (i.e..there is an injection from | into F);
2) contain I/ * . the dual space of 17;

3) contain elements of T as scalars;

4) have vv=v(v) foreveryvel .

F is now constructed as follows: find the "freest”algebra that contains both | and

V'*,use 3) and 4) to generate an ideal of that algebra, and then form the quotient
algebra. The freest algebra containing ” and I* is the full tensor algebra for
spacetime

T=RelVeV e(reV*)o(Ver*)a - (2.10)
and the ideal generated by 3) and 4) is

I={linear combinations of (2.11)
1,®8d@1t,|t,.t, €7 and dcD}

where

D={vov-g(v.v)Ivel}u{e,-1}. 2.12)



Thus

P=7/1. 2-13)
The canonical projection 1 from ¥ onto 7
n(t)=t~1I (2.14)
has [ as its kernel. Since Inl ={0) and Inl"*={0}. n is injective both when
restricted to 1~ and when restricted to IV *. Therefore no distinction is made between

a 4-vector i |/ and its image in £. If ¥el/* then its image in £ is denoted v.

2.3 Properties of the Pauli Algebra

Suppose v.wel/, {eq.e;.cz.e3) isa proper orthonormal basis for I/, and

¢, isused to split I into space and time. Thus {e,.e,,e;)} isa basis for S. Asis
shown below, ¥ has the roliowing properties:
I) ep=1;
2) vv=g(v.v):
3) v=0leo+02 v=0vo-v;
4 vv=vv;
5) i=eo0,e,C5= ¢, C,C5 is independent of proper orthonormal basis;
6) i=-1 and i is in the centre of ¥;
7 vw=v-w+ivxw.
Properties 1) and 2) follow immediately from the definition of #£. From 2)

2.15
g(\'-W)=%(9((\’+W)-(\’*W))'g(\’-V)-g(W-W)) @19

((V=W)(V+W)-VV-ww)

-

1 — —
= AW WV,
2(\\\ vV

Property 3) follows from the fact that



l=g(ea.cy) 2.16)

=c,
and
O=g(ey~c,.ep-e) 2.17
=(ep*e,)(ey+e)

=eoCyTC,C*Cyl, ~C,€,

=e¢,*+¢,.

t

Since
Vv = (u°+5)(u°—5) (2.18)
= (v°-3)(v°-?)
=g(v°eo-v.2%¢y-v)
=g(v°eo+v.0%,+ 1)
=vv,
property 4) is true in the Pauli algebra.

Suppose {eq.e,.ez.e3} and {e"',.e",.c",.¢" ;) are two proper orthonor-
mal bases for |/. Then there is a unique restricted Lorentz transformation, L, such
that e, =L(e,).Ifi=cqe 0,65and i"=e"o¢ ;0 ,C 5,then because €0, .0,
is antisymmetric under the interchange of any two indices, i*=det(L)i. But any

linear transformation relating two proper has a determinant of plus one. Thus i” =i

and property 5) is demonstated.

Let i=eqe,e.65. Then



s

1 =coc—zcz 3009_1020_3 (2.19)
=(-1)’eqeqc eze50, e,¢,

=(-1 )Scoe—oclc_lez_é;ezc—a
=(-1)%eseqc,e e 050,50,

=-1
Because ie, =e¢,i. i isinthe centre of . Thus property 6) holds in £ and willbe

used to define a compiex structure on # .

To establish 7) it suffices to show that v proportional to w implies
vw=u-w
and v orthogonal t0 w gives
vw=ivXw.

Using properties 2) and 3),

U =-00 (2.20)
=-g(v.v)
=y-7.

Let v and w be orthogonal unit vectors. Hence {e,.v.w.vXw) is a proper
orthonormal basis for /. Therefore
Tw(rXw)=idvw=ivXw
and vw=-wv.
2.4 Isomorphism of ¥ with the Algebra of the Pauli Spin Matrices

The algebra, F°.generated by the Pauli spin matrices

o 1 {0 =i 1 03
%71 0)°%7\i 0/)% o —1)



is a four dimensional complex vector space having {1.0,.0..0,) as a basis. It is

easily verified that the Pauli spin matrices obey
a.0,=95,,~1€,,0,. (1.1
Any complex vector space | can be considered to be a real vector space (Geroch
1985) by "forgetting” that for v € 1", v and i\ are linearly dependent. Thus & is
also a real vector space with
Br={1.0,.0,.05.0,0,=i03.0,0,=-i0,.0,0,=i0,.0,0,0,=i} (2.21)
as a basis.
The proof that the Pauli algebra of a Minkowski vector space and the algebra of
the Pauli spin matrices are isomorphic is presented in two stages. First, using a
homomorphism B, from 7 onto ¥°, a homomorphism «. from € onto ¥ is
established. This homomorphism is then utilized to find a linearly independent subset
of £ which has the same cardinality as a basis for - . Next, this set is shown to span
P . This demonstrates that ¥ and ¥ have the same dimension, which together with
the fact that « isonto gives that « is an isomorphism.
Define the homomorphism R:7 = F° by:
1) B is linear;
2) B(L) =R(eo)=PR(Eo)=1:
3) B(e)=-B(E)=0,;
4 Bt @) =R(L,)B(L2).
Now
B{co-1)=0 (2.22)
and
B(VOv-g(v.v))=B(¥IRB(V)-g(v.V) (2.23)

=~ (v°)* -B()BB)I-g(V. V)
=0,

Since these elements generate I, I Cker(R).

10



Define a:®=7/1-=7"by
a(t=1)Y=R(t). (2.24)
It must be checked that the action of « is independent of the element of 7 used to
pick out a particular coset and that & is 2 homomorphism. Therefore. assume
Lty +I=ty+/;
St,-t,el/Cker(B)
=Bt ) =B(12)
Sa(t,+/)=a(t,+71).
Also
a((t,+I)(t,+I))=a(t,®t,+I) (2.25)
=B(t,®t;)
=B(t;)B(12)

=a(t,*Ia(t,+I).
Thus « isa well defined homomorphism.

Let
B,={1l.e¢,.e,.2;5.2,e,,€,e;,€,€;,€,€,€,} (2.26)
and assume
0=3 c,e,: c,e€R. e, eB, distinct. 2.27)
A
=;O=Q(Zc,,e,,) (2.28)
A
= ZCAGA
A

Therefore. since the o, are linearly independent, the e, are as well.
Because {l.00.01.92.03.60.61.62.63} generates 'T,

{l.eo.cl.02.03.60.51.62.63} genera[es Z . But 1=e°=go=efand E,;g-el-

11



Thus {e,.e..c;) generates . Since ¢, commuics with itselt’ and anticommutes
with e, for i = ;.the ¢, ’sin any product of the e, scan be arbitrarily permuted at
the expense of at most a factor of - 1. Hence any product of the e, "scan be written
Iy s ! Yy
c“c::-..c=‘,=(-—1)"c“c:‘c33 (-‘-9)

modlYy  da(medlY  I{mod)

=(-1)e; e: :
where {, is the number of times each e, occurs in the product and k¢ {0.1)}. The

last equality follows from the property that ey = | . Therefore any product of the e, s
can be expressed as a product of three or fewer e,’s with the subscripts increasing
from left to right, B spans ¥ .and thus F and ¥~ are isomorphic. Because such

an isomorphism exists, ¥ is called the Pauli algebra.
Let Py=span{l}, F,=span{ec,.c;.e;},
F,=span{e,e,.e,e3.eze3},and Fy=span{c,e,c;} . Then, from the above,
P=F,0F 8F,0F,. (2.30)
The elements of o, F,, F2,and F; are called scalars, vectors, pseudovectors, and

pseudoscalars respectively.
2.5 The Complex Structure and the Main Involutions of 7

The real Pauli algebra possesses a complex structure (Geroch 1985) i given by
i(p)=ip 2.31)

for every p in #. This allows the Pauli algebra to be viewed as a complex vector
space by defining the product of a complex scalar a + ib with the Pauli algebra element

p as

(a+ib)yp=ap+bi(p). (2.32)

ie., rqplace i with the imaginary scalar {. Thus a2 complex basis for P is .

{l.e,.e,.es} and an arbitrary element of the Pauli algebra is

P=po+P (2.33)



with ., and B both complex.

There are two important involutions on the Pauli algebra: hermitian conjugation.
"dagger”: and spatial reversal , "bar”. Under hermitian conjugation elements of
P, € 7, remain unchanged while elements of ¥, © T, change sign. Elements of the
"dagger " invariant subspace F,& ¥, are called real and is identified with the space
of 4-vectors, or the space of covectors depending on the context. Two other useful

operations on 7 are defined from "dagger”;the real part of pe & is

Re{p}=é(p+p’) (2.34)
and
Im{p}:%(p_pj (2.35)
is the imaginary part of p. Under spatal reversal p goes o
p=po-P- (2.36)

These involutions are both anti-homomorphisms (when 2 isconsidered a real vector

space), i.e., they reverse the order of algebraic products, and they commute with each
other. The action of "bar”on a 4-vector is to take it to the corresponding dual vector,
hence dual vectors are (usually) denoted by "bars”instead of "tildes”. The compostition
of "bar” with "dagger"is the grade involution for ¥ . This involution is the identity on
Fo® F, (even elements of F) and minus the identity on ¥, & ¥; (odd elements of
F).
Two other products. the dot product and the wedge product, are defined between
Pauli algebra elements using "bar"and the algebraic product: the dot product between
pand qis
p-q==%(pq+ﬁ): @30

and wedge product between p and q is

13



. i —
p q:=5(pq-pq).

This dot product. when restricted to0 spatial vectors. corresponds to the dot product

defined above. The Lorentz "inner product” of two +-vectors is given by
g(u.\v)=u-v (2.39)
and the scalar part of any Pauli element is givenby p- 1.
2.6 Valence Two Antisymmetric Tensors and the Pauli Algebra
A valence two (element of I"®17) tensor F is said to be antisymmetric if
F(a.v)=-F(Vv.0) 4 (2.40)
forevery u, v in V. Clearly the set of all valence two antisymmetric tensors is a
subspace of I¥ ® 1. This subspace of I ® I can be identified with a subspace A of
IV ® IV* by using the metric induced map
uv-=ud®v, (2.41)
The space A is in tumn mapped into the Pauli algebra by n (2.14). Assume
{ey.e,.e,,c3} isan orthonormal basis for | and
F=F""¢,®¢, (2.42)
isin A ,that is F*Y=-F"_If
0=n(F) (2.43)
=F"e, e,
=2F"e,e,. p<v
then, since {e,c, | <v}isa basis for P, ®P,,every
F*™=0 (2.44)

and 71 restricted to A is a bijective map onto ¥, F,. Elements of P, &P, are

called 6-vectors, under "bar”every 6-vector changes sign, and every 6-vector can be

written in the form a +ib where @ and b are both real.
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If #=u(lF) then for any 4-vector u. v given by

(2.45)

N —

v=—=(Fu=~uf’)

Re{Fu}
is real and hence a candidate for a 4-vector. To find out what v represents calculate

— —_ 2.46
vie =1F“”u°‘2c{c e.e.,~e.e.e .} (2.46)
[F§ 2 n -3 b un [+

a

F* u*®e{2n,,e,~e,e.e,—e.e.e.}

1
2

%F“"u“‘zc{aneu -2n,.8,*€.e.e,-€e.,e,e.)
=2F%u.e,.
Thus. v is twice the contraction of F with u.
An identity that will be used on a number of occasions in what rollows in this
dissertation is
e Fe =0 (2.47)

for any 6-vector £ . This is shown by the fact that for pu# v,

It

c.e .0 =(2n,,-¢,e.)(26]-ee,) 2.43)

4Ny, 2cue—v - Zc“-e:+ 4%?\;
0.

1]

This implies that

c.pe=4p-1 (1.2)
forevery pe?®.
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3 Lorentz Transformations on a Minkowski Vector Space
3.1 Restricted Lorentz Transformations

A Lorentz transformation on a Minkowski vector space. (1°.q).is a (linear)
isomorphism. {.that preserves g:i.e..forevery v and win |°

g(v.w)=g(L(v).L{w)) 3.D

or in the Pauli algebra

(T LW~ TWI L (V). .2)

N —

1 —~ —_
E(\'w wyv)s

Clearly, a Lorentz transformation acting on an (orthonormai) basis for 17 will give

another (orthonormal) basis for I”. Under composition the set of all Lorentz
transformations forms a group, the Lorentz group L. The Lorentz group contains
more transformations than are needed in this work: the most physically important
Lorentz transformations are the ones that preserve the orientations of | defined in
the previous chapter.

Because the product of the determinant of two linear operators isthe determinant
of the product of the operators, a Lorentz transformation £ either takes all proper
bases to proper bases, and all improper bases to improper bases (preserves the
orientation of 1/); or it takes all proper bases to improper bases, and all improper
bases to proper ones {changes the orientation of |"). Therefore, it is sufficient to know
the action of [ with respect to the orientation of any basis, to find its action on all

bases. Define

L. =m{lecLl|L doesn't change spacetime orientation}:
L. isa subgroup of L called the proper Lorentz group.
Let v, w be arbitrary timelike vectors, and . be a Lorentz transformation.

Combining (3.1) and (2.2) gives

sgrlg(v.L(v))Isgr[g(w,L(w))]=1 (3.3)



Thus either /. changes the class of every timelike vector, or L preserves the class of

every timelike vector: so the action of L on one timelike vector gives its action on all

timelike vectors with respect to time orientation. Define

L' = {LeL|L doesn't change time orientation}.

L iscalled the orthochronous Lorentz group.
Define the restricted Lorentz group, L. .asthe group of Lorentz transformations

that are both proper and orthochronous, i.e.
tiar nct. G.4)
The physical significance of elements of the restricted Lorentz group is discussed in

the next chapter.

.2 Reflections and Restricted Lorentz transformations

Any non-lightlike vector u can be used to determine a reflection ®, through

the hyperplane orthogonal to u

3.5
R -v-228y vyer )
=_u?u
uu
If ®, is an arbitrary reflection then
avouv 3.6
G(R (V) Ry (V)) = = G0
uuuu
=vv
=qg{v.v).

Thus every reflection isa Lorentz transformation. In fact, any Lorentz transformation

can be written as the product of four or fewer reflections (Harvey 1990).

Assume %, isany reflection and choose an orthogonal basis for I/ that includes

u. Then under ®,. u - -u, while the other members of the crthogonal basis are

17



left unchanged. Therefore the determinant of every reflection is - | and hence the
spacetime orientation of every basis changes under a reflection. Thus the clements of
L _ have to be the product of an even number of reflections.

Now consider the effect of a reflection <€, on the time orientation of 1. If ¢,

is used for the spacetime decomposition (2.4) then

G(Co-Ru(Co)) =~ 2 (uu~ua)
2uu

1 o - -
a-—(ug+u-u)
uu
Thus if u isspacelike, £, doesn’t alter the time orientation, but if u is timelike, ¥,

changes the time orientation. Hence every Le L' when expressed as the product of
reflections has to contain an even number of (or zero) timelike reflections.

From the above, it follows that every restricted Lorentz transformation / is the
compositon of an even number of reflections, an even number of these being timelike.
Thus for any Lorentz transformation L there exist unit! 4-vectors u,, u,. u,.and
u, such that

L(v)=R, (R, (R, (R0, (VIN) (3.8)
U, T4U,0, VT, u, U,
=LvLl™: L=u,uju,u,. LL=1.

Conversely, suppose v isa4-vector and Le® with LL= 1. Then

(LvL™) =LvL~ (3.9)
shows that Lv L™ isa 4-vector, and
g(LvL ,LvL )=(LvL )LVL" (3.10)
-vvV

=g(v.v)

1 u is said to be a unit 4-vector if uu==1.

18



establishes that [ defines a Lorentz transformation L(v)=LvL". Thus the set of

all ¢ ® with L.L =1 isclosely related to the group of restricted Lorenz transfor-

mations. This relationship is explored more fully in §3.4.

Since, under a restricted Lorentz transformation, v =*LvL~ forany 4-vector v .

under the same Lorentz transformation a barred 4-vector transforms as

voLve =0"VvL. G.11)
Hence, alternating products of 4-vectors and barred 4-vectors have particularly simple
transformation properties, e.g..
uvw=Lul" L vViLwL =LuvwiL~ (3-12)

transforms in the same way as a 4-vector. Because {eue_v | L <+wv} is a basis for the

space of 6-vectors, a 6-vector F transforms like

F-LFL. (3.13)
Now, in the Pauli algebra, it is easily seen that since under any Lorentz transformation
L.,i=cge, 0 cy goes to

i=Lil=i. (3.14)
and since for any two orthonormal bases there is a unique Lorentz transformation
connecting the bases. i is independent of the orthonormal basis used to define it.

For any finite dimensional abstract algebra A there exists an exponential

operator

exp:A- A (3.15)
defined by
1 (3.16)

exp(a)= m

s

~
1
[~]
e

y
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where the implied limit in the above infinite sum is with respect to the usual topolog
of a finite dimensional vector space. Because. for any 6-vector .\ such that
AT=N-N=0,
c\'p(.\)e.\'p(x)=cxp(.__<)0\p(\) G.1D
=]
and
o=, (3.18)
exp(\)=Lim } —N\°
kem TH
A A 23 k \(21-11
= Lim [ ey
k== | (27 (271N
A& A

- ——
N S22 1A

= cosh A + w_\

the exponential operator for the Pauli algebra is useful for working with restricted

Lorentz transformations.
A pertinent question, then, is whether or not every L. with LL=1 can be

expressed as the exponential of some 6-vector. To answer this, suppose such an L# 1
is given. Choose a 6-vector A such that 22X =T, This 1mphcs that
(sinhA)2=L-L, which together with LL=1 gives that If
coshA=Lythen L e\p(f_\') ;if cosh A =-L, then L=~-exp{(~A). However,
L and -L define the same Lorentz transformation and therefore only elements of
the form exp(A) need be considered when dealing with restricted Lorentz trans-

cosh A =z,

formations.

2 For any finite dimensional vector space, there is a unique topology such that the
vector space together with the topology form a topological vector space (Geroch

1985, chap. 41).
20



3.3 Rotations and Boosts

The two main involutions of the Pauli algebra, "bar”and "dagger”,are used to
single out particularly meaningful Lorentz transformations. First, consider Lorentz
transformations, defiried by B, of the form (3.18) and with B=B". Such a transfor-
mation, called a boost, can thus be written in the form

E) (3.19)

B=ex
e\p(2

=cosh(w/2)+wsinh(w/2).
where w is real. Let v be an arbitrary 4-vector and define v, =v°+uv-ww,

v, = v-v, . Then, under B.an arbitrary 4-vector v goes to

BvB =B(v,+V,)B (3-20)

= v, exp(@)+ v, .
Thus, only 4-vectors in

U=span{eq,w) (.21
are altered by B. Because this space is two dimensional, this means that B can be
expressed as the product of two reflections. Consider the product of two timelike
reflections,

[=u,u;. Dyu, =uzu,=1, (3.22)

with u, and u, both in . Since U has only one spatial dimension orthogonal to

¢, . the spatial parts of u, and u, are parallel and therefore L=L",thatis L isa
boost. Conversely, for any boost B,choose u; =e, and u, = B. Therefore, any boost
can be expressed as the product of two timelike reflections.

It might seem logical to next consider Lorentz transformations defined by Pauli
elements that are invariant under "bar”,but it is easily seen that the only such trans-

formation is the identity. There are nontrivial Pauli elements, R, with RR=1



(unimodular) and that are invariant under the compostition of "bar"and "dagger”. Such
elements. called rotations. can be written as the exponentials of imaginary 6-vectors,

ie.,

—iB 3 2"
R:exp(;e) (3.23)
2

=¢0s(0/2)-ifsin(8/2).
with 8 real. A 4-vector v Junder R transforms to

RvR =R(v,+Vv )R’ 3.2
=v,* v,_exp(ié').
Now, only vectors in the two dimensional purely spatial subspace
W=span{&.ax8}, (3.25)

where & issuch that &-8=0,are changed by the transformation. Therefore, like

the boosts, rotations can be expressed as the product of two reflections. The product
of two spatial reflections,

L=@,0,. (3.26)
1s invariant under the compositon of "bar"and "dagger”and hence is a rotation. Also,
any L of the form (3.26) has

—L=w, - Wy —iw, Xw,. (3.27)
Thus, any rotation can be written as the product of two spatial reflections. The physical
significance of rotations and boosts is studied in the next chapter.

For a givendecomposition of spacetime into space and time, the set of all rotations
isa subgroup of the group of restricted Lorentz transformations, :I'he set of all boosts,
however, is not closed under group multiplication and therefore is not a subgroup; this
accounts for the physical phenomenon of Thomas precession. As is shown next, any
unimodular Pauli element (in particular the product of two boosts) can be expressed

as the product of a boost and a rotation.



i
Let L be a unimodular Pauii element and define B=(LL")®, R=BL Wit

1

these definitions, B=B", BB= (L_L:L L')2 = | ,which shows that B isa boost. Also.
B%=LL" implies that

1=BLL'B (3.28)

and RR = LBBL = 1. This completes the proof that any Lorentz transformation can

be expressed as the compositon of a boost and a rotation. More specific results
pertaining to the product of two boosts is found in Baylis and Jones [1988].

3.4 The Universal Covering Group of the Restricted Lorentz Group

The universal covering manifold (Naber 1992) of £ is a connected, simply

connected topological group, Spin+(V'), together with a covering map from
Spin+(V)onto L!. Asshown below, the universal covering group of the restricted
Lorentz group is just the set of unimodular Pauli elements that have been used thus
far to effect Lorentz transformations. The mathematical and physical importance of
this group, and its relevance to other Pauli algebra elements isanalyzed in some detail
in the last chapter of this work.
Define

Spin+(VV)={LeP|LL=1}. , (3.29)
Clearly, Spin+ (V) together with the algebraic multiplication of # is a group.
Spin+ (V) is isomorphic t0 SL(2.C), the group of unimodular 2X2 complex
matrices, and inherits a natral topology via this isomorphism. (SL(2.C) isa
topological subspace of C*.) Define the surjective map

n:Spin+(V)=>L! (3.30)

by



D

LY

ROV =Ly’ (
for every 4-vector v . Suppose L isin the kernel of p.ie..pu(l)=1. Then. v = |
gives L”=L. Hence [ =:¢Q with Q" =0. Now choose ¢ such thar (-7 = 0. This
givesthat L°=1 .and thus L ==1. Therefore the kernel ofptis{l.-1)and jt isa
2to 1 homomorphism of groups that for every L ¢ Spin+ (1 )maps t.and - Lonto the
same eclement of £ .. i.e..

32)

(9]

Spin=(1)y/{1.-1y=¢", (

The nawral topology for L. is therefore the quotient topology (Geroch 1985). What

follows in the rest of this section shows that Spir+ (1") is the universal covering
manifold of the restricted Lorentz group.

First, it must be demonstrated that p is a covering map. Let L be an arbitrary

element of £! and N, be an open neighbourhood of L. If Le Spin+ (1) issuch
that p(L)=L,then =LeN,=u"'(N,). Because Spin+(l) is Hausdorff, N .
contains disjoint N; and N ., which are open neighbourhoods of -L and L
respectively. Therefore, Ns=p(Nz)Np(X ) isan open (from the properties of the
quotient topology) neighbourhood of £ . Then, p™' (N 5) isthe union of disjoint open
subsets of Spin~+ (1), each of which is mapped homeomorphically onto X ., an
open neighbourhood of L. Itisshown below that Spin+ (V') isconnected and siraply

connected. Thus, y is a covering map.

Next, it must be shown that Spin+ (V) isconnected. Let L, and L, be arbitrary

elements of Spin+(1). Any L in Spin+ (V) can be written uniquely in the form

L=ex (a)e\: (ﬁ) 3.33)
Xp > Xp 12 .

Jouo{2)

n| £t

where w and Q) are real 3-dimensional vectors. Thus, write L, = exp(

oo

). Let

Sp.§]
O

and L, = e.\'p(



F:0.1]=8Spin-(1") (3.34)
be given by

. (I-t)z_:f,—u:z\ [ a-na,-@,) (3.35)
() 0--p( 5 jcxp(ai 5 }J

This defines a path running from L, to L.: therefore. S pin=(1") is (path)
connected.
Let L be an arbitrary loop in Spin+(17).i.e.
L:[0.1]=Spin=(1"). (3.36)
L. is continuous, and L(0)=L(1). Define a new loop, L°, that starts and ends at

the identity, by

L ()=L0) 'L(t) (3.37)
Now,
L'(0)=1=2w"(0)=0. Q°(0)=4nn. neZ (3.38)
and
L'()=12w(1)=0. Q' (1)=4nm. meZ. (3.39)
Next. define a family of loops
L, [0.1]=Spin+ (V). 0<a<] (3.40)
by
L'q(t)=e.\'p{(1-Q)E'z(t)>exp{—ir’f_§-t—)} ©G-41)

{ -itas — -
exp{~§(e 30 gy )},
where ©(¢) varies continuously with ¢ and is orthogonal to ﬁ'(t) . Since n odd gives

. _..Q'(())\_ nd _H <itas0y— ifascoy)\ _ _ (3.42)




and n even implies

. i ﬁ'(o)\l._. . i_i‘“ -l;&f(o}-—. ‘;Qf(O) \_ (3'43)
e.\p\—z——%—‘!—e.\p\\ 4(0 : G (0)e" )I-i'

L7 (0)=1 for every «. Similarly. L",(1)=1 for every a. Thus. every [.7, isa
loop in Spin=(1") that begins and ends at the identity. Also note that 1. o= L. and
L (t)=1.
Finally. a family of loops at L(Q) is defined by
La(£)=L(0)L".(1). (3.44)

The first member (a = 0) of this family is the original loop L.,and the last member
(@ = 1)isthe trivial loop at L(0). The existence of this family of loops shows that L
is homotopic ("continuously deformable™) to the trivial loop at L(0O) and hence
Spin+ (1) is simply connected. This concludes the demonstration that the group

of unimodular Pauli elements isthe universal covering group of the restricted Lorentz

group.



4 Spacetime

4.1 Spacetime Manifolds

Classical physics requires that spacetime, the set of all possible event, occurring
in space and time, possesses various types of structure. Firstly, spacetime appears to
be a four dimensional continuum, that is,any event is contained in a region (possibly
quite "small") of spacetime that can be continuously labelled by four coordinates.
(These coordinates may or may not have physical significance.) Thus spacetime has
the structure of a topological manifold. Many physical laws are formulated in terms
of differential equations, hence spacetime must possess a differential structure, i.e.,
spacetime is a differentiable manifold. It seems fundamental that there should exist
a continuous curve between any two points in spacetime, otherwise the two points
would be in totally distinct universes. Therefore spacetime is connected. Spacetime
also appears to have a natural light cone structure. This is given by a metric tensor
field which has the property that the metric tensor for any event in spacetime together
with the tangent space at that event forms a Minkowski vector space.

In addition, a spacetime manifold must satisfy a causality condition. If closed
timelike curves exist, then a person would be able to traverse one, and after a non-zero
amount of time run into herself. Such situations must surely be excluded. Since the
metric, a physical quantity established by measurements, determines the causal
structure of spacetime, curves that can be made timelike and closed by "small per-
turbations” of the metric must also be excluded. A spacetime satisfying these
requirements is said to be stably causal (Naber 1988). It- is interesting to note that any
compact manifold allows closed timelike curves (Naber 1988), so it seems that as a
four dimensional manifold our universe cannot be compact. However, compact three
dimensional submanifolds are not ruled out, i.e.,our universe might be "closed”.

Since, as seen in the previous chapter, any Minkoswki vector space admits a time

orientation and a spatial orientation, the tangent space at each event in spacetime



admits these orientations. The physical observations that there isa preferred direction
of time and a preferred handedness for space requires that the orientations for =ach
tangent space be chosen in a continuous manner. i.c..there is no discontinuous
switching of the direction of time or the handedness of space as one moves from event
o event.

Apparently spinor phenomena are observable at macroscopic levels (Aharonov
and Suskind 1967); therefore the final requirement (in this thesis) for a spacetime
manifold is that it admit global spinor structure. A necessary and sufficient condition
for a non-compact spacetime manifold to admit global spinor structure is that there
exists a global tetrad (Geroch 1968, Penrose and Rindler 1984), i.e.. four smooth
orthonormal vector fields. The causality condition above excludes compact spacetime

manifolds, thus spacetime is required to possess a global tetrad.

4.2 The Pauli Algebra and Spacetime Manifolds

Since each tangent space is 2 Minkowski vector space, a Pauli algebra can be
constructed from each tangent space. and the existence of a global tetrad allows for
the continuous tying together of these algebras. Therefore, the existence of a global
spinor structure for the spacetime manifold means that smooth fields of Pauli algebra
elements exist. Using the concept of observers in spacetime (defined below), this
contruction can now be given a physical interpretation.

Observers and particles in spacetime are represented by future directed timelike
curves that are parametrized by proper time, i.e.,an observer isa map

cila.b]=M @4.1)

that has a fure directed unit timelike tangent vector. Physically, ¢ maps the time
on the observer’s (ideal) wristwatch into the spacetime event which correspnds to that
reading of his watch. It should be emphasized that because two different curves can
have the same image, the mathematical model of the observer is the map c, not its

image. If two observers are coincidental at an event, then their tangent vectors are
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clearly related by a (nonunique) Lorentz transformation. Using the tangent vector of
the observer, the tangent space at each event on an observer curve is decomposed as
in §1.1, splitting spacetime into time and space for the observer. This spliming of

spacetime gives a clear physical basis for the construction of the Pauli algebra.

4.3 Minkowski Spacetime
The spacetime of special relativity is Minkowski spacetime, M. In Minkowski

spacetime any pair of spacetime events, p and g say,has (independent of coordinates)
2 unique 4-vector connecting them, the 4-position of g with respect 10 p; thus M
has the structure of an affine space (Dodson and Poston 1991, Kopczynski and
Trautman 1992) that has as its associated vector space a Minkowski vector space
(V.g). The 4-vector between any pair of spacetime events is given by
d:MXM=V. “4.2)

The square of the interval between any p,q e M is defined to be

*(P.q)=g(d(p.q).d(p.q)). #.3)
Any affine space is a differentiable manifold (Dodson and Poston 1991); thus any

event in spacetime is contained in a local coordinate system. Minkowski spacetime,
however, aiso has a preferred set of global coordinate systems, the inertial coordinate
systems. An inertial coordinate system is induced by the choice of an event p of
spacetime and a proper orthonormal basis {e,} of (17,g) as follows. For any event

¢q there existsa v ¢ I such that

d{p.g)=v 4.4
=vge,
Now define inertial coordinates
x*":M=R: pu=0,1,2.3 4.5)
by -
x4(q) =", @.6)

This coordinate system has the event p at its origin.



Suppose (p. {e,})and (" .{e, }) are used to define two inertial coordinate

systems, and suppose q isany arbitary event. Let: v be the 4-vector of (7 with respect
10 D v’ be the 4-vector of ¢ with respect to P71 U be the 4-vector of p» with respect
to p’:iand L be the unique restricted Lorentz transformation that takes the primed
basis into the unprimed basis. Then

vist-v +.7
or n terms of the bases

+rte (+.8)

- k7 By ov’
=tte,. v L7 e,..

Thus the relationship between the two inertial coordinate systems is
)=t e (YL 4.9
Any coordinate system for a patch of a manifold induces a coordinate basis for
the tangent space at each point in the patch. Since any inertial coordinate system
{x*} isglobal, it induces a coordinate basis {ﬁ} for the tangent space at each event
in spacetime. If (p.{e,}) isused to construct the inertial coordinate system. then
the identification

(4.10)

>
S C,.

gives an isomorphism between the tangent space at each event and the Minkowski
vector space, . From the above, these isomorphisms are independent of the inertial
coordinate system used for their formulation and therefore the inertial structure of
spacetime allows for the comparison of vectors and tensors at different points of
spacetime. Hence, vector fields can be thought of as mapping from spacetime into I/
(instead of the tangent bundle) and it is possible to talk about constant vector and
tensor fields. Also Pauli element fields can be defined as mappings from M into 7,

the Pauli algebra constructed from /.
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An incrtial observer is a map that has as its tangent vector a constant future
directed unit timelike vector, i.e.,an inertial observer moves in a straight line in any
inertial coordinate system. This constant tangent vector iscalled the inertial reference
frame associated with the observer. Physically, inertial observers in special relativity
correspond to observers that are under the influence of no external forces. An inertial
observer a with tangent vector u can at any event o on its worldline choose an
orthonormal basis {e,} for 1V with time axis e, = u and from this can construct an
inertial coordinate system for all of spacetime. This is how any observer labels events

in spacetime with space and time coordinates.

Let a and b be inertial observers having tangent vectors e, and u respectively
and suppose a constructs an inertial coordinate system as above. Then, from the
identification (4.10),

¥ 4.11)

where T3 is the curve parameter (proper time) for b. Because e, and u are both

future-directed timelike vectors.

. dx® 4.12)
0<g(u.c0)=?c-.

Since u isa unit timelike vector,
1 (d.\'c\g (d.\")z (d.\‘z)z cix:’)2 (4.13)
| — - —ee | — | —
dr) dat dt dt
_(d.\'°)2/[_ (d.\")2+ aiz)zﬁh dxa)z
dt \ ax’® dx?® dx® ’

which together with (4.12) gives

dx®

3 Here a common abuse of notation has been used: —= is really ‘f—t(x“o b).
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[+ [ 4 1Y« . n\;j } INS i (4.14)
Y1=d'\ = I‘[L—dl ) +Ld'\ ,'i +15L) J\ .

dt \ dx®/) \ax®/ \axo) |f
Thus, if ¢, isused to construct the Pauli algebra for 1,

u=y(l*;). 4.15

= _dx' . . - . . . .
where v = d—‘oe, is the spatial velocity with which b moves through < s coordinate
X

system. Hence. the tangent vector of any observer curve (not just an inertial observer
and not just in Minkowski spacetime) is called the observer’s 4-velocity. If the two
inertial observers have the same 4-velocity, i.e. they share the same inertial reference
frame, then (3.11) shows that time passes at the same rate for both of them. and that
their relative spatial velociry is zero.

Suppose the two inertial observers are as above and that they have a common
event o on their worldlines which they both choose as the origin of their global inertial
coordinate systems. Suppose further that the proper orthonormal tetrads that they use
to set up their coordinate axes are related by the Pauli algebra rotation R =cx p( '—") .

This means that
u=Reg,R" 4.16)
=¢,RR™

and so they have no relative spatial velocity with respect to each other. Now let » be
any one of a 'sspatial axes and v~ be the corresponding spatial axis for o . Equation
(3.24) gives

v =uv,+v, (cosB+ifsin0) (4.17)

=y, ~v, cos8-0xuy, .
This shows that the spatial axes of b are obuained by rotating each of « 'sspatial axes

about the axis 8 by an angle of 0,



Now suppose that the proper orthonormal tetrads that they use to set up their
coordinate axes are related by the Pauli algebra boost B= e.\'p(g). Then
u=Be,B” (4.18)
= e, B?

=coshw=-wsinhw.
With (4.14) and (4.15) this demonstrates that the rates at which time passes for the

observers differ by a factor of co:~hw and that the spatial velocity of & with respect
o ais

v=wtanhw. (4.19)
Thus b ‘sreference frame is obtained by "boosting™ a’s.

For ¢ an arbitrary observer in Minkowski spacetime, the tangent vector u of ¢

is not necessarily constant. Therefore define the 4-acceleration a of c as
du 4.20)
a=—.
dt
Differentiating ! = uu shows that

O=u-a. @4.21)
50 an ohserver’s 4-acceleration isalways a spacelike vector orthogonal to its 4-velocity.
The theory of electromagnetism in Minkowski spacetime is particularly elegant
when expressed in the Pauli algebra. Only the fundamental formalism is presented
here: for more details and applications see Baylis and Jones (1989 a,b) and (Baylis et.
al. 1993).

First, define the Pauli algebra differential operator ¢ by

8 4.22)

where {x,} is global inertial coordinate system. This definition is independent of

the choice of inertial coordinate system. This operator maps Pauli element fields into

Pauli element fields (in general of different types) and partial derivatives are



understood only to act on the scalar coetficients of a given basis element when expressed
interms of a tetrad. Using this differential operator. the electromagnetic field 6-vector

£ isgiven in terms of the vector potential A\ byv

F=é(£?—ﬁ) (4.23)
=E-18.
Maxwell's equation(s) is (are) then just
3F =4nj .29
Finally the Lorentz force equation is
=R {u) @29

dt

for a charge @ with 4-momentum p=mu. This Pauli algebra equation has the

advantage over the conventional approach in that it offers coordinate free solutions

to the mouon of charged particles.

4.4 The Spacetime Connection

Because in general (unlike Minkowski spacetime) there is no natural way to
compare vectors in tangent spaces of distinct events, the structures defined thus far on
the spacetime manifold do not allow for an adequate generalization of the concept of
a directional derivative. Thus a new structure on spacetime, called a connection, is
required. The properties of the connection are abstracted from the properties of the
directional derivative in flat spacetime. Therefore, a connection is a map that maps
any ordered pair of vector fields into a vector field,

(u.v)=>9,v, (4.26)

which has the following properties:

7 w= 7, w+7 ,w 4.27)

fu~v

T fv+w)=u(f)v-f7, v+7, w (4.28)



where f is a scalar field and u., v,and w are vector fields. 7,v is called the
covariant derivative of v inthe direction of u. If {e,} isaset oflinearly independent
vector fields, the connection coefficients, ['®,, .are given by*

7.e,.=l% e,. (4.29)

Covariant differentiation is extended to arbitrary tensor fields by requiring that

T f=ulf) (4.30)
7,(AGBY=(7,4)®B+A®(7,B) (4.31)
T, (C(A))=C(V A) 4.32)

where f isa scalar field, - and B are arbitrary tensor fields, and C is a contraction
map. The spacetime connection is required to satisfy two more conditions. Firstly,
the connection is metric compatible, i.e.,
v,9=0. (4.33)
and secondly the connection is torsion free, i.e.,
T,Vv=-V, u=[u,v] (4.34)
for all vector fields u and v . From these properties it is easily shown that
7, 9=V, V. (4.35)

When expressed with respect to a tetrad {e;}, the connection coefficients have the

antisymmetry property

raa;‘, = —FB&;, . (4°36)
which is shown by differentiating
Nga=g(ep.e;z) (4.37)
=CoC{g®cy®e;].

where C isa contraction map.

4 In this dissertation V,:=V, . In particular, if {eu=;‘:—“} and v=v"e, then

v Y
Vuv -ﬁ.
N
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Using the connection it is possible to define the parallel transport of a vector
along a curve v. A vector field v issaid 10 be parallel transported along v if
v, v=0 4.38
along y.Given events p and q in the image of y and v e 7T ,(M).then there is
exactly one v "€ T () with v~ equal to the paraliel transport of v . Hence, paraliel
transport gives a namural curve dependent isomorphism between tangent spaces that
can be used to define the covariant derivative as a limit analogously to the definition
of the normal derivative. A geodesic isa curve vy that, with suitable parameterization,
parallel transports its own tangent vector, that is
7,y=0. (4.39)
with dot denoting differentiation with respect to the curve parameter. As stated in the
previous chapter, an observer is a curve vy that is parameterized by proper time with
g(v.vy)=1;a freely falling (or locally inertial} observer is any such curve that is also
a geodesic.
4.5 The Connection 6-vectors
Covariant differentiation is defined on Pauli algebra elements by noting that any

Pauli element can be expressed in a covariant way as a linear combination of products

of 4-vectors and barred 4-vectors and then requiring that, e.g.

Vailegegeg) = (7 ep)eses+eqa(Vaei)e +eqes(Vaes) (4.40)

for products of the members of the tetrad {e;}. From this it is easily shown that for

any two Pauli elements a and &,
V(a-b)=(7;a)-b+a-(Vz0) 4.41)
Vi(aAB)=(7;a)Ab+a A (VD). (4.42)

For any tetrad {e;} and any 4-vector v define the connection 6-vector

5 The hat notation is used from now on to refer to tetrads as opposed to the coordi-
nate bases frequently used in general relativity.
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(4.43)

Then from (4.43) and (2.46).
VVcQ-é(I".c;*cﬁF;) (4.44)
=Re{l,e;}.
It remains to show that each I, isactually a 6-vector. Differentiating 4= e“‘?,; gives
0=(7,e;)e" +e (T ¢3) (4.45)

=2(I,~T,)
and therefore T, isa 6-vector.

Suppose {e;) isa tetrad, a second tetrad is

{e; =LezL"}, (4.46)

and v isa 4-vector. Then each tetrad can be used to define a conmection 6-vector.

ie.,
r,= %(vveﬁ)? (4.47)

and
M =57 500 - 4.48)

To find the transformation properties of the connection 6-vectors, use (4.40) in (4.48)
to give

4.49)

M o==[(7,L)e e L+L(V e;)e L+ Ley(V L)L e L)

NI —

=Lr L+2(v L)L.

Therefore, if ', = O then one has the spinor like equation
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(+.5M

which has particular physical relevance when L relates the frame of an arbitrary
observer to the frames of a set of freely falling observers coincidental to him. Note
that | =LL implies that
0=(7 . LHYL-L(V. D) +.5D
and thus 2(7 L)L is a 6-vector.
In practice, the metric is given in terms of a coordinate chart, i.e..

g=g,. dx*edx", (4.52)

and functions h;" are found such that

) (4.53)

is a tetrad. The structure coefficients of the tetrad are then found via

[e;.e;]=C% ce.. (4.54)
which are in turn used to calculate the connection 6-vectors
1 P (4.55)

1 -
=g(‘Caaﬁ‘Caﬁa*Caaa)e?-

All the information about the connection is contained in the twenty-four components
of these four 6-vectors, as contrasted to the forty components calculated by the

traditional coordinate based approach.

4.6 The Spacetime Curvature and Einstein’s Equation

Associated with any two vector fields u and v there is a curvature operator

(Misner, Thorne, and Wheeler 1973) ®£(u. v) that maps the set of all vector fields
into itself and is defined by

B(UNVIW:= (7,7, =7 7, =Ty o)W (4.56)
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for \w an arbitrary vector field. Applying this to a member of a tetrad one obtains
'E(U.V)(?;:=("7“7‘,_7\.7u—7[u_\,1)0& (457)

=Re{7,(I,es)-7 (I,es)-T, . eq)

1 -
=££{(7ur‘,)05+§(rvru05_"' rve&ru)_(vvru)e&
| -
—é(l'ul'vc&*- Fueal",)—l‘[u_v]e&}

{ 1
= zc\ Vul‘\.-'\?vfu—é(l‘ul‘\, I T T les
Therefore, all the information about the curvature of spacetime is contained in the

curvature 6-vectors

4.58
I‘eu.v:=vur\.’--'\7\.rru-%(rur‘v-r\'rrn.t)-r[u.v]' ( )

The components of the curvature tensor are defined by
Rﬁ&ﬁ-eﬁ:=£(eﬁ.e;)e& (4.59)

=Re{®ic05)-

Multiplying this equation by et gives the curvature 6-vectors in terms of the

components of the curvawure tensor:

1 - (4.60)
.Eﬁir = éRﬂéa.}eﬁ;..
In order to express Einstein's equation in the Pauli algebra, Pauli algebra
equivalents of the Ricci tensor and the curvature scalar must be found. Define the

Ricei 4-vectors

B =Re{Ruce’) (4.61)

v a
=R i

=R an ea
(use 1.45 for the penultimate equality3 and the curvature scalar
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R:=%.-c" 4.62)

o i
=N hC

From these form the Einstein 4-vectors

- .1 (4.63)
Gat=%;- ERcﬁ:
thus Einstein's equations are
gﬁ - 811'7& (4.64)

where 7.:=T::e% are the enerey-momentum 4-vectors.
[ ap -

4.7 Example: Spherically Symmetric Static Spacetime
To illustrate the techniques involved without getting bogged down in the technical
details, choose as an example one of the simplest physically relevant metrics. the metric
for spherically symmetric static spacetime as given in Schutz (1990). Spherically
symmetric static metrics have the general form
g=e**diodt-e* drodr+r?(dé®do+sin?0do®de), (4.65)
where ¢ and A are functions of r only. Choose the orthonormal frame

e 0 Y- (4.66)
Cy=¢ at. el [¢] ar-
- d oo 2

2 ro8" 3 rsinfa¢’

Now, let prime denote differentiation with respect to r and calculate the six
commutators [e;.e;] for p<v.
One finds that the only independent non-zero structure constants are

-A
. - e cot® (4.67)
Coor=®"e™", C212=C313=—'r ‘ Caza=—'—r .

Then, from (4.55) the connection 6-vectors are

Fe=¢"ee%e’, I,=0, (4.68)

=A -A
e e cot®
i PR

r



It simplifies the calculation of the curvature 6-vectors to notice that for i1 # v

— S — 4.69
7i(e’e")= (F&c“c"+c“F;e"+e“e”1"&+e“rge") (3.69)

a

Nl -

N —

(Fac“c"— C‘TF&)

-c“c”)-l.

a

Eamme

r

Also, for any two 6-vectors A and B,

| 4.70)

I —_—
~ - =—(AB-BA

(AB-AB),

N1~

so just calculate the product A28 and forget about the scalar part. With these shortcuts

it is fairly straight forward to calculate the curvature 6-vectors

oo o @.70)
c

Ror= (b +d A -d e 2e%T, Ry,=- -

~$re2h o3 Ae™%h s
foa=_r ee’. Bi=- - ¢e

Ace 3

Bi3=-

The components of the curvature iensor can be read off the curvature 6-vectors and

1, -
J?.£n=;wzhwm§?

since these are components with respect to a tetrad these give the tidal forces that an
(not necessarily freely falling) observer feels. If one wants the tidal forces for some
other observer, then all that needs to be done is to Lorentz tranform the curvature
6-vectors to the correct frame.

Finally, calculating the Einstein 4-vectors results in
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4.72)
A TN 1 o (‘
go=|i2—'\_..0_-¢-_2(1—e \)]CO'

r r
= =2 9'2'\—“-@-2‘)}01
g1 = = =
."\‘ «2A
- oy v 2 Ty .
gz=(-¢ +P"AN -0 +r r‘) ¢
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5 Spinors for Minkowski Spacetime in the Pauli Algebra

5.1 Motivation
Tensors have a physically natural role as geometrical objects as well as a math-
ematical role as elements of carrier spaces of representations of the restricted Lorentz

group, L.. Essentially, the transformation rule for tensors of a given valence is

-
i

equivalent (Naber 1992) to a representation of L. on the space of ali tensors of that
valence. A possible question is, then, whether or not all geometrical objects are
realizable as representation spaces for the restricted Lorentz group. Much to the
surprise and possible chagrin of the physics community, Dirac, in 1528 proposed a
fundamental physical law that employed mathematical objects found not in repre-
sentation spaces of L., but in representation spaces of the universal covering group
of Spin+ (1), of the restricted Lorentz group. Since then, these objects, called
spinors, have been directly observed at the microscopic level in neutron inteferometry
experiments, and at the macroscopic level, a gedanken experiment has been devised
by Aharonov and Susskind (1967). Thus, spinors have fundamental physical signifi-
cance.,

Mathematically, spinors are also more fundamental than tensors. This is because
the compositon of any representation of L} with the covering map from Spin+ (V)
to L. nawraily induces a representation of Spin+(V); however, not all repre-
sentations of Spin+ (") arise in this way. Representations of Spin~+ (/) not
induced by representations of L. are called "spinor"or double valued representations
of the restricted Lorentz group. For an excellent, more detailed and slightly different
motivational account (both physical and mathematicai) of this, see Wald (1984).

In the literature there are seemingly different ways of realizing spinor spaces
(Figueiredo et. al. 1990), and recently there has been some controversy over what types
of spaces can be used as carrier spaces of representations of Spin+ (/) [Piazesse

1993]. The concern is that if the representation space is a subspace of a geometrical
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algebra generated by 4-vectors. then the transformation law for spinors is incompatible
with the transformartion law for 4-vectors. The rest of this chapter shows that an
algebraic definition of spinors (Chevalley 1954, Riesz 1958) allows for the construction

from spinors of geometrical objects having various tyvpes of transtormation laws Jones

and Baylis 1993).

5.2 Spinors as Elements of the Pauli Algebra

The left regular representation [Budinich and Trautman 1988] of the Pauli

algebra,

p:F = End (F). 5.1

defined by
p(a)o=ab (5.2)

is itself reducible because the Pauli algebra contains left ideals that are invariant under
this representation. These reduced representations are themselves irreducible if the
left ideal is minimal, i.e.,if it does not contain any other left ideal as a proper subset.
The representations of Spin+(l") considered here are constructed by restricting
irreducible representations of P to Spin+(V)CF.

Let 9 be a unit spatial vector and define the left ideal of 7

ol (5.3)
S-?é(l U).

The reduced left regular represention of ? on S, when restricted to Spin+ (/) has
__the natural action
o n-=1Ln (5.4)
for neS and Le Spin+ (V). Let

1 5.5)
a°=§(l+ﬁ) (

and

o, =ida,. (5.6)

1/



where & isany spatial vector orthogonal to o. It iseasily shown that «, isidempotent,

ie.. (@)% =a,, a, isnilpotent, i.e., (@,)*=0,and that a,a,=0. Any element
. . -1 - - .

of S can be written in the form (a°+a)5(i-v) for some a®°+a in ¥. But

(5.7

(a"«&)%(l~a)=(a°+&';~+5-a)é(1*zs)
=(a-a,~i(axa,) o),
+(a®+a-d)a,.

where E,_=c—z-&'-0z}. Therefore, {a,.a,} spans S. Suppose c°, c'eC and

0=c%aq+c'a,. (-8

Multilplying this equation by a, on the right gives that ¢, is zero, which in turn gives

that ¢, isalso zero. Thus, {aq.a,} isa basis for S.

Any left ideal of £ constructed as above is a two dimensional complex vector

space: therefore, if S contains a left ideal L as a proper subspace, £ must have
dimension one. Suppose £ =C. There are Pauli elements that when multilplied by
a complex scalar give a nonscalar: hence, C is not a left ideal of the Pauli algebra.
Now suppose L =spanc{a}.where a isanonscalar Pauli element. If a isinvertible
then a'a=1isnotin £.and if a is not invertible then @a =0 isalso not in L.
These considerations demonstrate that it is not possible to have a one dimensional left
ideal of ¥ :thus S isa minimal left ideal of # and the representation of Z defined
on S isirreducible. As seems plausible, the representation of Spin+(V)on S is
also irreducible. but this will not be shown here.

Elements of the space S are traditionaly referred to in the physics literature as
two component contravariant undotted spinors. The product of a barred spinor with
a spinor is invariant under the action of Spin+(V), aeaps=a,a,=0, and
@, @ = —aoa,. This allows the definition ofa Spirn+ (V) invariant skew-symmetric

inner product,
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< >SxXS-C 3.9
by
I_]E=<:}_S,TOQI_ (5.1

The basis {a,.a,} has the property that < a,.a, >= | ;any basis for & that has this

characteristic is called a spin frame.

-

When restricted to . "bar”is an isomorphism onto the minimal right ideal of

S*:i="q,F (5.1

=é(1—5)~:~*.

the space of undotted covariant spinors. If ne & .then under L¢ Spin+ (1), ne &*
transforms like

n-=nL. (5.12)
This defines a representation of Spir+ (") that is equivalent (Isham 1989) to the

representation defined on S with bar playing the role of the intertwining operator.
The dual space of S, that is the space of linear functionals on & is identified with $
by defining,

n(g)y =<n.g> (5.13)

for every nmeS* and every £¢S. The basis for S* dual to {a,.a,) is

{a®=-a,.a'=ap},ie.,

a’(ag)=a'(a,)=1 (5.14)
and
a’(a,)=a'(a,)=0. (5.15)

If n~n'a, then n=1n,a", where

T_],,=T[BGB,,. (5.16)
The space of dotted contravariant spinors is the minimal right ideal



(1-0)2.

DN

S and S° are mapped bijectivelv but anti-linearly by "dagger”. The action of
I« Spn~(1")on S is

n =n’L". (3.18)
Because “dagger” is anti-linear. the representation of Spin~+ (") on §7 is inequi-
valent to the representations defined on § and S *. The basis for §~ that corresponds

with the {a,.a,} basis of Sis {ag.;} and n‘=n"‘a; with

A_ e (3.19)
nl=n’*.
The space of dotied covariant spinors is the minimat left ideal
§T=x1=Fa, (5-20)
= ?%( 1-9).
The left action of Le Spin~(l")on S$™* is
N (5.21)

Since the compostion of "bar”with "dagger™is an anti-linear bijection from St §°*,

the representation thus defined isequivalent to the one defined on §™ and inequivalent
to the ones defined on § and S$*. The basis for S that corresponds with the
{ay.a,} basis of $is {a® .a'"} and -ﬁ'-n'.‘a'" with

no=1,*. (5.22)

A

The space of dotted covariant spinors is associated with the dual space of $™ via

n(E)=<n.g>* (5.23)

and {a® .a'") isthe basis dual to {ag.a7).



5.3 Minkowski Vector Space from Spinor Spaces

As outlined in the first section of this chapter. spinors seem to be more funda-
menial. both physically and mathematically than tensors. so now 4-vectors will be built
up from spinors. From the first chapter. the space of 4-vectors. Minkowski vector
space, is just the subspace of the Pauli algebra that is tnvariamt under "dagger”.and
from the second chapter. an element v of this space transforms like

Ry
avt)

w

v=LvLl” 0©.
under Le Spin-~(1"). Under L.the product of any n¢ & withany £ ¢ &7 clearly
transforms like
ngT-Lng’L (5.25)
which is just the transformation law required of 4-vectors. Not all such products are
candidates for 4-vectors. however, because they are not necessarily invariant under
"dagger”. In fact. as shown next, every Pauli element can be expressed as sums of spinor
products.
Form the products
l=a,0,. R=0,0], M=q,a;, M =a,d, (5.26)
of spinor basis elements that transform like this. Set
c,l~c,m~cyn+c,m =0, (5.27)

with every ¢, a complex scalar. Multiplying this by a, on both sides and using (5.6)
gives that
O=c,qoliagia, (5.28)

=Calg.

i.e., c3=0. By other similar such manipulations, every c. is seen to be zero and

hence {{.m.n.m™} isa linearly independent set and therefore a basis for the Pauli

algebra. This set is called a null tetrad (De Felice and Clarke 1990), because



(5.29)

l-il=m-m=n-n=0.

{-n=-m-m =1,

[-m=1[-m =n-m=n-m =0.
A real tetrad is formed from the null tetrad by choosing

e,=l+n. e,=m+m", (5.30)
e,=i(m -m), ez=Il—-n,
and spang{e,.e,.¢2.c5} is a Minkowski vector space. Thus, the Pauli algebra
can be thought of as a complexified Minkowski vector space. Since {eg.e,;.ez.e3}
and {{.m.n,m"} are both bases (over C) for 7 ,they are related by 2 change of
basis marrix, i.e.,
e, =0, a,. (3.31)

The elements of this matrix are called the Infeld-van der Waerden symbols (Penrose
and Rindler 19%4).

Other geometrical objects such as 6-vectors can be constructed as before from

the products of 4-vactors and barred 4-vectors, but now the 4-vectors themselves are

built up from spinors.
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6 Conclusions

This dissertation has demonstrated the utility and effectiveness of the Pauli
algebra approach to relativity. including the calculation of spacetime curvature.
Observers were found 10 have a natrai role in the Pauli algebra formalism and
additonal work needs to be done on more general spacetimes, e.g.axially symmetric
spacetimes, using this aspect of the Pauli algebra. The method derived here for cal-
culating spacetime connections and curvatures is very algorithmic and should be
implementable on symbolic computer systems such as MAPLE. Geometrical objects
in Minkowski spacetime having various transformation properties. including 4-vectors.
were found to be constructible in the Pauli algebra from spinors. This algebraic
treatment of spinors should be extended to the realm of general relativity, where a
spinorial treatment of the connection 6-vectors should show an association with the

Newman-Penrose formalism.
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