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The immune system maintains a critically organized network to defend against foreign 

particles, while evading self-reactivity simultaneously. T lymphocytes function as effectors 

and play an important regulatory role to orchestrate the immune signals. Although central 

tolerance mechanism results in the removal of the most of the autoreactive T cells during 

thymic selection, a fraction of self-reactive lymphocytes escapes to the periphery and 

pose a threat to cause autoimmunity. The immune system evolved various mechanisms 

to constrain such autoreactive T cells and maintain peripheral tolerance, including 

T cell anergy, deletion, and suppression by regulatory T cells (TRegs). These effects are 

regulated by a complex network of stimulatory and inhibitory receptors expressed on 

T cells and their ligands, which deliver cell-to-cell signals that dictate the outcome of 

T cell encountering with cognate antigens. Among the inhibitory immune mediators, 

the pathway consisting of the programed cell death 1 (PD-1) receptor (CD279) and its 

ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273) plays an important role 

in the induction and maintenance of peripheral tolerance and for the maintenance of 

the stability and the integrity of T cells. However, the PD-1:PD-L1/L2 pathway also 

mediates potent inhibitory signals to hinder the proliferation and function of T effector 

cells and have inimical effects on antiviral and antitumor immunity. Therapeutic targeting 

of this pathway has resulted in successful enhancement of T cell immunity against viral 

pathogens and tumors. Here, we will provide a brief overview on the properties of the 

components of the PD-1 pathway, the signaling events regulated by PD-1 engagement, 

and their consequences on the function of T effector cells.

Keywords: PD-1, PD-L1, T cell responses, T cell tolerance, T cell exhaustion, cancer immunology, cancer 

immunotherapy

iNTRODUCTiON

�e �eld of T-cell costimulation started with the “two-signal” theory of lymphocyte activation 
that was originally pro�ered to distinguish self from non-self. �is model explains the process 
of activation or anergy when a naive T cell confronts an antigen (1, 2). As per this model, two 
signals from antigen-presenting cells (APCs) are required for e�ective activation of a naive T cell. 
�e �rst signal confers speci�city to the immune response and involves antigen recognition, 
provided by the interaction of antigenic peptide/major histocompatibility complex (MHC) with 
the T cell receptor (TCR). �e second antigen-independent signal is the “costimulatory signal,” 
delivered by costimulatory molecules expressed on APCs to receptors expressed on T cells. If a T cell 
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receives only antigen-speci�c TCR stimulation in the absence of 
costimulation, it will become unresponsive (anergic) to subse-
quent antigenic challenge (3, 4). Later, negative costimulatory 
(i.e., coinhibitory) signals were also found to exist. Receptors 
delivering coinhibitory signals function as immune checkpoints 
and play a decisive role in maintaining peripheral tolerance and 
impeding autoimmunity (5–8).

�e best-studied pathway for T cell costimulation includes 
B7-1/B7-2–CD28/CTLA-4 superfamily, which is essential for 
T cell activation and tolerance (9–13). While both the receptors 
and ligands of this superfamily are structurally type I transmem-
brane protein with a single IgV extracellular domain that pre-
dominantly mediates the receptor–ligand interaction, the ligands 
also contain an IgC domain on their outer surface. �e immune 
system functions by maintaining an intricate balance between 
CD28/costimulation-mediated T cell activation and CTLA-4/
immune checkpoint-mediated inhibition. Identi�cation of the 
programed cell death 1 (PD-1) as another inhibitory recep-
tor and inclusion of its ligands as additional members of the 
B7-1/B7-2–CD28/CTLA-4 family (14, 15) re-established the 
importance of immune checkpoints to safeguard the mainte-
nance of T cell tolerance. Since the beginning of its discovery, 
costimulation had been of therapeutic interest because it was 
thought to provide a way to promote T cell activation to enhance 
antitumor responses. But with the discovery of CTLA-4 as a 
potent inhibitory immune checkpoint, the notion about cancer 
immunotherapy was modi�ed and the preferred approach was 
understood as not to activate the immune system to attack can-
cer but to remove the coinhibitory signals that block antitumor 
T cell responses. Based on the same concept, the PD-1/PD-L1 
coinhibitory pathway was exploited therapeutically resulting in 
remarkable outcomes with 20–90% response rates in multiple 
clinical trials and various types of cancer (16–19).

DiSCOveRY OF THe PD-1:PD-L1 PATHwAY

While studies have shown that PD-1–PD-L interaction is 
important to maintain a balance between peripheral tolerance 
and autoimmunity, it also impairs viral and tumor immunity, 
promoting chronic infection and tumor progression. PD-1 is 
a 288 amino acid protein mostly expressed on the surface of 
activated T cells (20–23). In 1992, PD-1 was identi�ed as an 
apoptosis-associated molecule (24). In an attempt to identify 
gene(s) important for apoptosis, Tasuku Honjo and colleagues 
at Kyoto University performed subtractive-hybridization assay 
and PD-1 cDNA was found to be encoded by all of the isolated 
clones. However, its overexpression had no e�ect on apoptosis in 
the studied cell lines (23). In 1999, the same group demonstrated 
PD-1 to be a negative regulator of immune responses by studying 
PD-1-de�cient mice, which developed an autoimmune pheno-
type with delayed onset, organ-speci�c e�ects and incomplete 
penetrance. While CTLA-4 de�ciency caused the rapid-onset of 
systemic autoimmunity, PD-1 de�ciency resulted in spontaneous 
development of lupus like arthritis, splenomegaly, glomerulone-
phritis, increased number of B-lymphocytes and myeloid cells, 
and increased serum IgA, IgG2b and IgG3 in C57BL/6 mice. 
Interestingly, PD-1 deletion in Balb/c background resulted in a 

distinct autoimmune phenotype as early as of 5 weeks of age, with 
dilated cardiomyopathy, gastritis, and high circulating level of 
troponin reactive IgG1. PD-1 de�ciency induced subacute type I 
diabetes in non-obese diabetic (NOD) mice whereas lethal myo-
carditis was observed in mice with MRL background (8, 25–27). 
Introduction of the lpr mutation, which causes absence of Fas-
mediated apoptosis pathway (B6-lpr/lpr-PD-1−/−), expedited the 
commencement and severity of the disease. However, no disease 
was developed in Balb/c-PD-1−/− RAG−/− mice, showing the 
importance of lymphocytes for disease development. To study 
the response to autoantigens, PD-1-de�cient 2C TCR transgenic 
mice were bred to the autoreactive background (H−2b/d) and the 
o�spring displayed splenomegaly, growth retardation, and lethal 
gra� versus host disease (GVHD) (7). �e group collaborated 
with Genetics Institute at Cambridge, MA, USA, in an attempt 
to identify the ligand of PD-1.

Almost in parallel, Lieping Chen’s group, then at Mayo Clinic, 
identi�ed PD-L1, which was named B7-H1, as a molecule with 
homology to B7-1 and B7-2 (28). �e group did not discover that 
B7-H1 is a ligand for PD-1 but reported that B7-H1 costimulates 
T cells via a receptor di�erent from CD28, CTLA4, or ICOS and 
delivers an activation signal to T cells, which leads to IL-10 pro-
duction, but not to detectable levels of IL-2. A third, independent 
research group led by Gordon Freeman at Dana–Farber Cancer 
Institute identi�ed by database search a B7-like molecule that did 
not interact with CD28, CTLA4 or ICOS. �e group collaborated 
with Genetics Institute at Cambridge, MA, USA, in order to 
identify its receptor. �rough these interactions with the two 
independent groups, the researchers at Genetics Institute found 
that this B7-1 like molecule was a ligand for PD-1, and was then 
named PD-L1 (Pdcd1lg1, CD274) for PD-1 ligand 1 (14). �e 
collaboration further identi�ed the second PD-1 ligand, named 
PD-L2 (Pdcd1lg2, CD273) (15).

MOLeCULAR STRUCTURe

Programed cell death 1 is composed of a single N-terminal IgV-
like domain sharing 21–33% sequence identity with CTLA-4, 
CD28, and ICOS, about 20-amino acid stalk separating the IgV 
domain from the plasma membrane, a transmembrane domain, 
and a cytoplasmic tail containing two tyrosine-based signal-
ing motifs. Since PD-1 lacks the membrane proximal cysteine 
residue, which is essential for homodimerization, it is believed 
to exist as monomer on the cell surface (29). Unlike CD28 and 
CTLA-4, PD-1 tail does not contain any SH2- or SH3-binding 
motifs. Instead, it contains an N-terminal sequence VDYGEL, 
forming an immunoreceptor tyrosine-based inhibitory motif 
(ITIM), which is required for recruiting SH2 domain-containing 
phosphatases (30) and a C-terminal sequence TEYATI, form-
ing an immunoreceptor tyrosine-based switch motif (ITSM), 
essential for the inhibitory function of PD-1 (31, 32). �e 
ligands of PD-1 (PD-L1 and PD-L2) are type I transmembrane 
glycoproteins, containing IgC and IgV domains. �e amino 
acid identity between PD-L1 and PD-L2 is about 40%, while 
PD-Ls and B7s have about 20% similarity. Human and murine 
orthologs of PD-Ls display about 70% identity. �e crystal 
structure analysis shows that PD-1 utilizes its front β-face 
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(AGFCC’ β-strands) to bind to the β-face of PD-L1 (AGFCC’ 
β-face) or PD-L2 (AGFC) (29, 33, 34).

eXPReSSiON AND DiSTRiBUTiON OF 
PD-1 AND iTS LiGANDS

Programed cell death 1 is expressed on activated CD4 and CD8 T 
cells, B cells, monocytes, natural killer (NK) cells, and dendritic 
cells (DCs) (23, 35, 36). PD-1 expression can also be induced 
on APCs, myeloid CD11c+ DCs, and monocytes (37, 38). �e 
common γ chain cytokines interleukin-2 (IL-2), IL-7, IL-15, 
and IL-21 can induce PD-1 expression on T cells (21). PD-1 is 
expressed on CD4−CD8− double-negative (DN) thymocytes and 
is essential for their selection during TCRβ rearrangement (25, 
39). NFATc1 is an important transcription factor that promotes 
the induction of PD-1 expression following activation of T cells 
(40). PD-1 expression is signi�cantly reduced by calcineurin 
inhibitor cyclosporine A and the NFAT-speci�c inhibitor VIVIT. 
Also mutation of an NFATc1 consensus-binding site causes 
complete loss of PD-1 expression in T cells. �e other estab-
lished transcriptional activators of PD-1 are Foxo1, Notch, and 
IRF9, while T-bet functions as a transcriptional repressor (20, 
41–43). In macrophages, interferon (IFN)-sensitive responsive 
element (ISRE) and STAT1/2 regulate the constitutive and IFN-
α-mediated PD-1 expression (44). PD-1 can also be selectively 
induced on myeloid DCs by Listeria monocytogenes infection or 
by Toll-like receptor 2 (TLR2), TLR3, TLR4, or NOD ligation, 
but is inhibited by IL-4 and TLR9 (45). PD-1 expression is also 
upregulated and sustained on “exhausted” virus-speci�c T cells 
during chronic viral infection preventing their proliferation and 
function in clearing the virus (46, 47).

PD-Ls have distinct expression patterns: PD-L1 is constitutively 
expressed on T and B cells, DCs, macrophages, mesenchymal 
stem cells and bone marrow-derived mast cells (35). In addition, 
PD-L1 is expressed on a wide variety of non-hematopoietic cells 
including lung, vascular endothelium, �broblastic reticular cells, 
liver non-parenchymal cells, mesenchymal stem cells, pancreatic 
islets, astrocytes, neurons, and keratinocytes (36). It has also been 
shown to be expressed on placental syncytiotrophoblasts and 
functions in the placenta to induce fetal–maternal tolerance (48, 
49). PD-L1 is expressed constitutively in the cornea and retinal 
pigmented epithelium (RPE) and PD-1–PD-L1 interaction pro-
tects the eye from activated T cells (50–53). In contrast, PD-L2 
expression is restricted to activated DCs, macrophages, bone 
marrow derived mast cells, and more than 50% of peritoneal B1 
cells (54). In the thymus, PD-L1 is expressed mostly in the cortex, 
while PD-L2 expression is con�ned in medullary stromal cells 
(55, 56). PD-L1 expression on human T cells are induced by com-
mon γ chain cytokines IL-2, IL-7, and IL-15, whereas IL-21 can 
stimulate PD-L1 expression on B (CD19+) cells from peripheral 
blood mononuclear cells (PBMCs). LPS or BCR activation also 
result in induction of PD-L1 and PD-L2 in human B cells (14, 
15, 28). IFN-γ, but not tumor necrosis factor (TNF)-α, treatment 
results in the expression of both ligands in human monocytes. 
IL-10 can also induce the expression of PD-L1 on monocytes, 
while IL-4 and granulocyte macrophage colony-stimulating 
factor (GM-CSF) stimulate PD-L2 expression on DCs (57). 

IFN-γ can also regulate PD-L1 expression in non-lymphoid cells. 
Endothelial cells constitutively express PD-L1 on their surface and 
in vitro treatment with IFN-γ causes its rapid upregulation (58). 
In addition, MyD88, TRAF6, MEK, and JAK2 are also known 
to play important role in signaling pathways involved in PD-L1 
expression (59–61). PD-Ls are also expressed on various tumor 
cells. PD-Ls mediate potent inhibitory signals a�er ligation with 
PD-1, causing a detrimental e�ect on antitumor immunity by 
allowing the tumor cells to escape immunosurveillance (62–64).

eFFeCTS OF PD-1 ON SiGNALiNG 
PATHwAYS

Identi�cation of PD-Ls and con�rmation of their interaction 
with PD-1 established PD-1 as a negative regulator of immune 
responses (14, 15). Unlike other members of CD28 family, 
PD-1 transduces signal only when cross-linked together with 
B- or T-cell antigen receptor. PD-1-mediated signaling inhibits 
T lymphocyte glucose consumption, cytokine production, prolif-
eration, and survival. CD28 costimulation (14) or IL-2 (65) can 
override PD-1-mediated inhibition. PD-1 engagement prevents 
the expression of transcription factors associated with e�ector 
cell function, including GATA-3, T-bet, and Eomes (66). Upon 
TCR stimulation, the tyrosine residues in the ITIM and ITSM 
motifs on the cytoplasmic tail of PD-1 become phosphorylated, 
recruiting SHP-1 and SHP-2, which in turn, dephosphorylate 
proximal signaling molecules downstream of the TCR and CD28. 
Positional mutagenesis studies have shown that the ITSM motif 
is critical for the inhibitory function of PD-1 (22, 67). Speci�cally 
the ITSM tyrosine (Y248) of PD-1 associates with SHP-2 and is 
mandatory for PD-1-mediated inhibition of PI3K/Akt activa-
tion (22, 68). PD-1 ligation causes diminished phosphorylation 
of CD3, ZAP70, and protein kinase Cθ (69). It can also inhibit 
Erk activation, which can be overcome through IL-2, IL-7, and 
IL-15 signaling (70). In B cells, PD-1 engagement inhibited B cell 
receptor-mediated Ca2+ mobilization and phosphorylation of Igβ, 
Syk, PLC-γ2, and Erk1/2, and these e�ects were dependent on 
SHP-2 recruitment to the ITSM tyrosine of PD-1 (67).

A puzzling question has been surfaced about the role of SHP-2 
versus SHP-1 in the inhibitory function of PD-1. Recruitment of 
SHP-2 to the cytoplasmic tail of PD-1 has been well documented 
in B cell line (67), Jurkat T cells (15), and primary human T cells 
(22, 71). SHP-1 may also be a potential candidate for interaction 
with PD-1 cytoplasmic tail, as found by yeast two-hybrid screen-
ing. SHP-1 functions as a negative regulator of cell activation 
and its expression is largely con�ned to hematopoietic cells (72). 
SHP-1-de�cient mice display prolonged phosphorylation of the 
TCR/CD3 complex and increased activation of Lck, Fyn, and 
other proximal TCR signaling components (73–75). In contrast, 
the role of SHP-2 in T cells is di�erent. SHP-2 is omnipresent and 
SHP-2 de�ciency results in embryonic lethality in mice. SHP-2 
mostly has been depicted as a positive regulator of cell activation 
and appears to be necessary for optimal induction of MAPK/
Erk pathway (76). SHP-2 can recruit insulin receptor substrate 
to insulin receptor (77) and Grb2 to both platelet-derived growth 
factor receptor (78) and erythropoietin receptor (79, 80). A live 
cell imaging study determined that SHP-2, but not SHP-1, is the 
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phosphatase that interacts with PD-1 upon TCR-mediated activa-
tion in live cells (81). �is work showed that PD-1 is translocated 
to dynamic TCR microclusters and accumulates at the signaling 
central supramolecular activation cluster (c-SMAC). SHP-2 is 
shortly recruited to PD-1 therea�er in the microclusters and 
associates with ITSM of PD-1 (81). Using site-directed mutagen-
esis and stable expression of mutagenized PD-1 constructs in 
Jurkat T cells, it was determined that although only mutation 
of PD-1 Y248 abrogated interaction with SHP-2, both Y248 and 
Y223 are actively involved in the inhibitory e�ects of PD-1 on 
IL-2 production (82).

eFFeCTS OF PD-1 ON TCR SiGNALiNG 
AND FUNCTiONAL OUTCOMeS

Programed cell death 1 ligation attenuates TCR-mediated signal-
ing at a proximal level and impairs the activity of two signaling 
cascades, the PI3K/Akt and the Ras/MEK/Erk pathway (68, 83), 
which are co-required to initiate T cell activation (Figure  1). 
One of the many mechanisms via which PD-1 inhibits activa-
tion of the PI3K/Akt pathway includes PTEN phosphorylation 
and phosphatase activity, which is regulated by CK2 (84). CK2 
mediates phosphorylation of PTEN C-terminus serine/threonine 

cluster S380/T382/T383, which, aids PTEN protein stability, while 
reducing PTEN lipid phosphatase activity against the substrate 
PIP3 (85, 86). During TCR/CD3- and CD28-mediated stimula-
tion, PTEN is phosphorylated by CK2 (84), which stabilizes 
PTEN and suppresses its phosphatase activity. In contrast, PD-1 
inhibits the stabilizing phosphorylation of the Ser/�r cluster 
within the C-terminus domain of PTEN, resulting in increased 
PTEN phosphatase activity. �e other major signaling pathway 
targeted by PD-1 is the Ras/MEK/Erk pathway (69, 83). �e acti-
vation of Ras and its downstream MEK/Erk MAP kinase pathway 
in T cells comprises of the Ca2+ and DAG-mediated activation of 
RasGRP1 (87–89) downstream of PLC-γ1 (90), which is inhibited 
by PD-1 (83). Other signaling events initiated by TCR ligation are 
also attenuated by PD-1 ligation including activation of ZAP70 
and PKCθ (69).

PD-1 Targets the Cell Cycle
A major downstream target of the synergistic e�ect of PI3K/Akt 
and Ras/MEK/Erk activation in T cells is the cell cycle machinery. 
Primary T lymphocytes naturally reside in the G0 phase and lack 
expression of cyclins, which are required to interact with cyclin-
dependent kinases (Cdks) to form cyclin–Cdk holoenzyme 
complexes that drive cell cycle progression (91–93). p27kip1, a 
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member of the Kip/Cip family of Cdk inhibitors, interacts with 
Cdk2 and is abundantly present in T cells. Ubiquitin-dependent 
degradation of p27kip1 is required to initiate cell cycle progression 
and entry to S phase by allowing activation of Cdk2. �is event 
is predominantly mediated by Skp1-Cullin-F-box (SCF) family 
ubiquitin ligase, SCFskp2 (94). TCR/CD3 and CD28 costimulation 
regulates the transcriptional induction of Skp2, a substrateSCFskp2 
ubiquitin ligase, and this process requires simultaneous activa-
tion of PI3K/Akt and Ras/MEK/Erk pathways (95). Ligation of 
PD-1 during the T cell stimulation causes abrogated expression of 
Skp2, resulting in increased p27kip1 level and Cdk2 inhibition (83). 
�e impaired Cdk2 activity inhibits Rb phosphorylation, impact-
ing its interaction with chromatin remodeling proteins. Inhibited 
Cdk2 also fails to phosphorylate the checkpoint inhibitor Smad3, 
upregulating its transcriptional activity (96) and resulting in the 
increased abundance of the G1 phase Cdk inhibitor, p15INK4B, and 
the loss of the Cdk-activating phosphatase Cdc25A (83, 97).

PD-1 Reduces the Threshold of  
TGF-β-Mediated Signaling
One major consequence of PD-1-mediated Cdk2 inhibition and 
subsequent reprograming of Smad3 transcriptional events is 
the conversion of naive T cells into induced T regulatory cells. 
Regulatory T cell populations are critical for the maintenance of 
peripheral tolerance, are potent inhibitors of immune responses 
and play an important role in the prevention of gra� rejection 
(98, 99). Foxp3+ TRegs can be divided into two subsets: natural 
TRegs (nTRegs) and induced TRegs (iTRegs). CD4+Foxp3+nTRegs arise 
as committed regulatory cells from thymus (100), while iTRegs 
(or adaptive TRegs) develop in the periphery from CD4+Foxp3− 
naive T cells in a TGF-β- and IL-2-dependent fashion (101–107). 
PD-1 regulates the function of Smad3 and synergizes with 
TGF-β-mediated signals (83). �is synergizing e�ect on naive 
T cells promotes the di�erentiation of TReg cells (108), thereby 
suppressing generation and function of T e�ector cells (TEFF) via 
a cell extrinsic mechanism. In addition, generation and function 
of TReg cells requires the aLb2 (LFA-1) integrin, whose activity 
is dependent on small GTPase Rap1 (109–112). Importantly, 
PD-1 does not inhibit Rap1 activation (83), indicating that 
PD-1 also supports the pathways required for TRegs to perform 
their immunosuppressive functions. Experiments with PD-L1-
de�cient APCs resulted in minimal conversion of naive CD4+ 
T cells to iTRegs. PD-L1-Ig has also been shown to increase 
Foxp3 expression and suppressive function of established iTRegs 
through attenuation of Akt-mTOR signaling and concomitant 
upregulation of PTEN signaling events that are known to drive 
generation of iTRegs (108, 113–115).

PD-1 Alters the Metabolic Program of 
Activated T Cells
Upon activation, signals from the CD28 costimulatory pathway 
and the γ-chain signaling cytokines promote naïve T cells to switch 
their metabolism from oxidative phosphorylation to glycolysis, 
which is required to support their growth, proliferation, and 
e�ector functions (116–119). Divergence in the metabolic repro-
graming is critical for imprinting distinct T cell fates. Namely, 

preferential switching to glycolysis accompanies e�ector T cell 
di�erentiation (120) and switching to fatty acid beta-oxidation 
(FAO) causes the conversion of T e�ector to T memory cells 
(121). Furthermore, imposing FAO by pharmacologic means 
boosts the generation of TReg cells (122). Studies investigating 
metabolism pro�le of T cells receiving PD-1 signals have shown 
that PD-1 ligation disengaged them from glycolysis, glutaminoly-
sis, or metabolism of branched chain amino acids, but induced 
increased rate of FAO (123). While PD-1 ligation inhibited the 
expression of receptors and enzymes involved in glycolysis and 
glutaminolysis, it increased the expression of carnitine palmitoyl 
transferase (CPT1A), the rate-limiting enzyme of FAO. T cell 
activation causes an increase in extracellular acidi�cation rate 
(ECAR), an indicator of glycolysis, and in oxygen consumption 
rate (OCR), an indicator of oxidative phosphorylation. PD-1 
engagement results in lower ECAR and OCR, but higher OCR/
ECAR ratio compared with T cells stimulated without PD-1 liga-
tion (Figure  1). By altering the metabolic programs of T cells, 
PD-1 ligation seems to generate a more oxidative environment 
(123, 124).

CLiNiCAL iMPLiCATiONS OF PD-1 
LiGATiON ON T CeLL iMMUNe FUNCTiON

Role of PD-1 in Chronic viral infection: 
T Cell exhaustion
Programed cell death 1 has unique regulatory roles in the control 
of virus-speci�c immune responses, and these regulatory func-
tions have been studied extensively during chronic viral infec-
tions. �e CD8+ e�ector T cells behave di�erently in acute and 
chronic viral infections. During acute infection, naïve antigen-
speci�c CD8+ T cells get activated, proliferate, and di�erentiate 
into e�ector CD8+ T cells and e�ciently clear the virus. Most of 
these virus-speci�c e�ector CD8+ T cells then become apoptotic 
and a very small number (5–10%) of long-lived memory cell 
population arises, which is protective against secondary infection 
(125). However, during chronic viral infection, sustained anti-
genic stimulation engenders the loss of e�ector T cells and their 
failure to develop into memory CD8+ T cells (Figure 2A). Under 
these conditions, T cells become unresponsive to viral antigens 
and persist in a non-functional, exhausted state (TEX), in which 
they are unable to clear virus e�ectively (126).

During the development of exhaustion, loss of e�ector func-
tions happens in a hierarchical manner: IL-2 production, high 
proliferative capacity and in vitro cytolytic activity are lost �rst, 
followed by impairment in the production of TNF-α, IFN-γ, and 
degranulation (127, 128). Although incapable of functioning 
as e�ector or memory, TEX cells are not functionally dormant. 
Instead, they commit to the containment of chronic infections, 
because depleting CD8+ T cells including TEX during simian 
immunode�ciency virus (SIV) infection results in rapid increase 
in viral titers and progression to AIDS (129, 130), suggesting an 
important role for the residual function of SIV-speci�c TEX in 
maintaining a host–pathogen equilibrium and contributing to 
the containment of the chronic infection. TEX cells o�en retain the 
capacity to produce low levels of IFN-γ and/or beta chemokines 
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FiGURe 2 | Biological and clinical implications of PD-1 ligation on T cell immune function. (A) Engagement of PD-1 by PD-L1 expressed on pathogen-

presenting cells inhibits differentiation, activation, and expansion of pathogen-specific T cells in chronic infections. Therapeutic blockade of this pathway can improve 

pathogen-specific immunity. (B) Engagement of PD-1 by PD-L1 expressed on tissues and APC-presenting self-antigens prevents the generation of self-reactive T 

effector cells, promotes the differentiation of TReg cells, suppresses expansion of escaping self-reactive T cells, and prevents autoimmunity. Therapeutic activation of 

this pathway may promote transplantation tolerance and induce self-tolerance in autoimmune diseases. (C) Engagement of PD-1 by PD-L1 expressed on cancer 

cells and immune cells infiltrating the tumor microenvironment (TME) inhibits expansion of tumor-specific T cells, promotes the generation of TReg cells, promotes 

tumor tolerance, and suppresses antitumor immunity. Therapeutic blockade of this pathway can activate antitumor immune responses.

6

Bardhan et al. The PD-1 Pathway and Its Clinical Applications

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 550

and express high levels of granzyme B. In addition, one subset of 
TEX retains some residual cytotoxicity (127, 131, 132). High gran-
zyme B expression is an interesting feature of TEX, given that the 
ex vivo killing capacity of these cells is impaired compared with 
TEFF (131, 132). �us, while TEX cells exhibit impaired e�ector 
functions, some residual functionality remains, and this may be 
important in a host–pathogen equilibrium. In addition to PD-1, 
TEX cells expressed higher levels of other inhibitory receptors 
(e.g., Tim-3, Lag-3, and CD160) as well (131). However, blockade 
of PD-1 is su�cient to induce reinvigoration of a signi�cant frac-
tion of this cell population, which selectively expresses T-betHi 
EomesLo PD-1int and has the ability to proliferate a�er PD-1 block-
ade. In contrast, TEX cells exhibiting EomesHi PD-1Hi are unable to 
respond a�er PD-1 blockade (132). Similar subsets of TEX de�ned 
by reciprocal patterns of T-bet, Eomes, and/or PD-1 expression 

have been found in human patients with HCV and HIV infection 
(133, 134). In these patient populations, PD-1 blockade resulted 
in augmentation of pathogen-speci�c T cells and decrease of viral 
load (46, 47).

Role of PD-1 in Transplantation and 
Autoimmunity
PD-L1 is expressed on a wide variety of non-hematopoietic 
cells and plays a key role for the maintenance of self-tolerance 
(Figure 2B). PD-1 and PD-L1 levels increase a�er heart allotrans-
plantation and their levels correlate with the likelihood of rejection, 
while the use of a PD-L1-Ig fusion protein decreased rejection 
(135). �is �nding was of great interest as PD-L1 is expressed in 
endothelial cells, which are located between the gra� cells and the 
immune cells and suggests a potential target to decrease the rates 
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of gra� rejection. Similarly, GvHD occurring a�er bone marrow 
transplantation (BMT) has been associated with expression of 
PD-1 in the in�ltrating cells. However, de�ciency of the PD-1 
pathway has also been related to higher mortality resulting from 
GvHD (136, 137).

Programed cell death 1 appears to be of major clinical rel-
evance in autoimmune diseases, such as diabetes mellitus type 
I (DM I) and systemic lupus erythematosus (SLE). PD-L1 is 
expressed in pancreatic beta islet cells and limits the activation 
and harmful cytotoxic function of self-reactive T-cells against 
islet cells, thereby protecting from autoimune damage. Treatment 
of non-obese mice with PD-1- and PD-L1-blocking antibodies 
caused faster development of DM I, while treatment with PD-L2 
blocking antibody had no e�ect (138, 139). In SLE, data that 
associates polymorphisms of the PD-1 gene with susceptibility 
to the disease in humans (140) are in line with evidence that 
mice de�cient in PD-1 develop manifestations that resemble 
SLE, including glomerulonephritis and arthritis (7). Involvement 
of the PD-1 pathway in other autoimmune diseases, namely 
multiple sclerosis, rheumatoid arthritis, and in�ammatory bowel 
disease, is also suggested by studies in animals and attributed to 
either absence or non-functionality of regulatory T-cells (115).

Role of PD-1 in Antitumor immunity
�e expression of PD-L1 and PD-L2 on APC a�er exposure to 
IFN-γ and the expression of PD-L1 in cancer cell lines (15) and 
primary cancer cells (141) led to the hypothesis that blockade of 
the PD-1:PD-L1/2 inhibitory pathway might induce antitumor 
immunity. �e hypothesis that engagement of PD-1:PD-L1 
pathway might dampen immune responses for tumors was 
con�rmed by the observation that overexpression of PD-L1 on 
a mouse mastocytoma cell line inhibits CD8+ T cell cytolytic 
activity through PD-1 ligation, which intensi�es tumor growth 
and invasiveness (142). Studies in various types of human cancers 
have con�rmed that tumors exploit PD-1-mediated immune 
suppression to escape immune surveillance. A wide variety of 
solid tumors, including urothelial, ovarian, breast, cervical, 
colon, pancreatic, gastric, melanoma, glioblastoma, non-small 
cell lung cancer (NSCLC), and hematologic malignancies have 
been found to express PD-L1 and to a lesser extent PD-L2, 
which correlate with adverse prognosis (143–149). Importantly, 
the presence of PD-L1 within the tumor microenvironment 
(TME) also correlates with a better clinical response to PD-1/
PD-L1 checkpoint blockade therapy (17, 18, 150). In addition 
to cancer cells, PD-L1 and PD-L2 are also expressed in other 
cellular components of the TME including macrophages (mostly 
M2), myeloid DCs, myeloid suppressor cells (MDSC), stromal 
�broblasts, and endothelial cells (Figure 2C). Similarly to cancer 
cell-speci�c expression, PD-L1 expression on tumor-in�ltrating 
immune cells correlates with clinical responses to PD-1:PD-L1 
blockade therapy. Conversely, lack of PD-L1 upregulation in 
tumor cells or tumor-in�ltrating immune cells correlates with 
lack of therapeutic response and disease progression (151).

PD-L1 expression on cancer cells can be mediated by cell 
intrinsic mechanisms activated by oncogenic mutations (152). 
PD-L1 expression on cancer cells and tumor-in�ltrating immune 
cells can also be induced by local in�ammation, i.e., type I/II 

IFN-gamma released by activated T cells, a condition termed 
“adaptive immune resistance” (Figure  2C) (153). It should be 
noted that reported studies use a di�erent cuto� of PD-L1 expres-
sion level to de�ne positivity and variable approaches regarding 
evaluation of PD-L1 expression only on cancer cells or also on 
tumor-in�ltrating immune cells (17, 18, 150). Use of di�erent 
antibodies for histopathological assessment of PD-L1 expres-
sion may also lead to variable conclusions. Regardless of these 
confounding factors, there is an unequivocal conclusion that the 
degree of PD-L1 expression in the TME positively correlates with 
clinical response.

When the PD-1/PD-L1 pathway is active in the TME, it pro-
motes survival of cancer cells via antiapoptotic signals mediated 
via PD-L1 (141, 154) and inhibits the activation of signaling 
pathways, which are critical for survival, expansion, and dif-
ferentiation of T cells that recognize tumor antigens. �e imbal-
anced activation of signaling events in T cells results in tumor 
tolerance by inhibiting T e�ector and memory cell generation 
and promoting the di�erentiation of TEX and TReg cells (Figure 3, 
le� side). Importantly, high expression level of PD-1 has been 
detected on tumor-in�ltrating T cells, compared with T cells in 
normal tissues and peripheral blood from the same patients and 
healthy donors, and correlate with an exhausted phenotype and 
an impaired e�ector function (155). Blocking the PD-1/PD-L1 
pathway by anti-PD-1 or anti-PD-L1 antibodies suppresses can-
cer cell survival, reverses the e�ects of PD-1 on T cell signaling, 
and promotes the generation of T e�ector and memory cells while 
preventing the di�erentiation of TEX and TReg cells. Together, these 
cell signaling and functional programs enhance antitumor T cell 
responses, leading to tumor regression and rejection (Figure 3, 
right side). It remains to be deciphered whether the therapeutic 
outcome of PD-1 blockade is di�erent between patients with 
oncogenic PD-L1 expression versus immunogenic PD-L1 expres-
sion, in which PD-L1 is expressed on cancer cells and immune 
cells, respectively.

TAKiNG THe BeNCHwORK TO CLiNiC

Targeted therapy against PD-1/PD-L1 has shown signi�cant 
clinical activity in a variety of cancers including solid tumors and 
hematologic malignancies such as melanoma, renal cell carci-
noma (RCC), non-small cell lung cancer (NSCLC), small cell lung 
cancer (SCLC), head and neck squamous cell carcinoma, gastric 
cancer, hepatocellular carcinoma, ovarian cancer, cervical cancer, 
uterine cancer, breast cancer, colorectal cancer, prostate cancer, 
bladder cancer, Merkel cell carcinoma, Hodgkin’s lymphoma 
(HL), di�use large B cell lymphoma, and follicular lymphoma 
(16–19, 145, 150, 156–174).

PD-1 Blockade in Melanoma
�e use of antibodies that block immune checkpoints in the 
treatment of solid tumors was o�cially established in the armory 
of anticancer therapies in 2010 when ipilimumab, a CTLA-4 
inhibitor, showed to improve survival in metastatic melanoma 
and led to the FDA approval of ipilimumab for the treatment of 
melanoma (175). Based on the fact that – similar to CTLA-4 – 
PD-1 is a coinhibitory receptor, antibodies have been developed 
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FiGURe 3 | PD-1/PD-L1 blockade enhances tumor rejection by activating T cells. (Left) When PD-1/PD-L1 pathway is active, promotes survival of cancer 

cells via antiapoptotic signals mediated via PD-L1 and inhibits signaling pathways that lead to activation and expansion of T cells that recognize tumor antigens. 

Together, these events lead to impaired generation of T effector and memory cells and preferentiation differentiation of TEX and TReg cells, which promote tumor 

tolerance. (Right) Blocking the PD-1/PD-L1 immune checkpoint pathway by anti-PD-1 or anti-PD-L1 antibodies suppresses cancer cell survival and enhances the 

antitumor responses of T cells, leading to tumor regression and rejection. In contrast to impaired TCR signaling induced by PD-1 engagement, PD-1/PD-L1 

blockade causes activation of T cells by increasing PI3K/Akt or Ras/MAPK pathways, promoting differentiation of effector and memory T cells and suppression of 

TEX and TReg differentiation.
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with the goal to inhibit the PD-1:PD-L1 pathway (Table 1). �ese 
antibodies have generated remarkable responses in a wide spec-
trum of cancers (Table 2) and have shown better clinical ben-
e�t and better toxicity pro�le than CTLA4-blocking antibodies  
(158, 170).

Nivolumab, an IgG4 PD-1 antibody, binds to PD-1 with high 
a�nity and speci�city and was the �rst PD-1 blocking agent 
to demonstrate clinical activity in several di�erent types of 
cancers, including melanoma, RCC, and NSCLC in a phase I/
II trial completed in 2012 (18). In a phase Ib dose escalation 
study, 32% of the patients with advanced melanoma developed 
durable remission, which correlated with expression of PD-L1 
in the tumor cells de�ned as positive at a minimum level of 
5% (18, 168). Subsequently, in a phase III study, which com-
pared nivolumab with dacarbazine in patients with melanoma 

without B-Raf mutation, nivolumab was associated with a 
survival bene�t (73 versus 42%) and higher objective response 
rate (40 versus 14%). �e response rate of patients with PD-L1-
positive tumors (de�ned as PD-L1-positive tumor cells >5%) 
was also better than in patients with PD-L1-negative/interme-
diate tumors (53 versus 33%) (150). In the second phase III 
trial, nivolumab was compared with chemotherapy in patients 
with advanced melanoma non-responsive to ipilimumab (or 
ipililumab and BRAF inhibitor in BRAF-mutant tumors). A 
response rate of 32% was noted in the nivolumab treatment 
group versus 11% in the chemotherapy treatment group. �is 
study also found PD-L1 as a response-predictive biomarker 
with 44% response rate in PD-L1 positive versus 20% in the 
PD-L1 negative tumors (171). Based on these outcomes, FDA 
approved nivolumab on December 22, 2014 for the treatment 
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TABLe 1 | inhibitory antibodies of the PD1:PD-L1 pathway in clinical development.

Checkpoint target Blocking agent Type of antibody Developmental stage Source

PD-1 Nivolumab (BMS-936558) Human Ig4 FDA approved for melanoma, NSCLC, and RCC Bristol-Myers Squibb

Pembrolizumab (MK-3475) Humanized IgG4 FDA approved for melanoma and NSCLC Merck

MEDI0680 (AMP-514) Humanized IgG4 Phase I Medimmune

PD-L1 Durvalumab (MEDI4736) Human IgG4 Phase III Medimmune

Atezolizumab (MPDL-3280A) Human IgG1 Phase III Genentech

MDX-1105/BMS-936559 Human IgG4 Phase I Bristol-Myers Squibb

Avelumab (MSB0010718C) Human IgG1 Phase II Merck Serono
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of patients with melanoma, whose disease state has progressed 
a�er prior treatment.

Pembrolizumab is a very high a�nity humanized IgG4 
antibody directed against human PD-1. Randomized trials have 
been performed in both ipilimumab naïve (NCT01866319) 
and previously treated patients (NCT01704287). Promising 
results in preliminary studies (165, 166) led to a phase II dose 
escalation trial comparing two dose levels of pembrolizumab 
to chemotherapy in ipilimumab-refractory melanoma patients 
(176). �is study showed clear bene�t for both groups that 
received pembrolizumab with 6-month progression-free sur-
vival (PFS) of 34 and 38% compared to the PFS of 16% of the 
chemotherapy group. A subsequent phase III trial compared the 
treatment outcome of two di�erent administration schedules 
of pembrolizumab to ipilimumab in patients with advanced 
melanoma and provided evidence of improved survival rate 
in both pembrolizumab treatment groups compared to the 
ipilimumab group (74 and 68 versus 58%) (158). On September 
4, 2014 pembrolizumab was approved by FDA for the treatment 
of advanced melanoma in patients previously treated with ipili-
mumab or a BRAF inhibitor in BRAF V600 mutation positive 
patients. To date, both nivolumab and pembrolizumab have also 
been approved by FDA and used for treatment in NSCLC, head 
and neck cancer, RCC, and Hodgkin lymphoma.

PD-1 Blockade in NSCLC
�e success of PD-1 blocking antibodies in NSCLC has 
made headlines since checkpoint blockade was thought to be 
responsive solely in immunogenic tumors like melanoma and 
RCC. A phase I dose-evaluating study of nivolumab has shown 
responses in patients with squamous and non-squamous 
histology, with or without EGFR or KRAS mutations, with or 
without tumor PD-L1 expression, and across di�erent dose 
levels (18). On the basis of these preliminary results, two 
randomized phase III studies were undertaken. One compared 
nivolumab to docetaxel in advanced squamous NSCLC and 
found an improved median overall survival (OS) (9.2 versus 
6.0  months) (172). In this study, tumor expression of PD-L1 
determined at three di�erent expression cuto� levels (1, 5, 
and 10%) had neither prognostic nor predictive of treatment 
bene�t. �e second study followed the same design and stud-
ied responses of patients with non-squamous NSCLC. In this 
patient group, nivolumab also resulted in improved median OS 
bene�t compared to docetaxel (12.2 versus 9.4 months) while 
the OS at 1 year was 51% in the nivolumab group versus 39% 
in the docetaxel group (177). Correlations between therapeutic 

bene�t and PD-L1 expression on tumor cells at the same 
cuto� levels (1, 5, and 10%) was also studied. In contrast to 
the observations in patients with advanced squamous NSCLC 
(172), patients with PD-L1-positive non-squamous NSCLC 
tumors had therapeutic bene�t over those with PD-L1-negative 
tumors and this was observed across all three PD-L1 expression 
levels. Nivolumab was approved by FDA in March, 2015 for 
treatment of squamous NSCLC, and eventually for all patients 
with advanced NSCLC progressing a�er platinum-based 
chemotherapy on October 9, 2015. Almost in parallel, FDA 
also approved Pembrolizumab on October 2, 2015 for PD-L1-
positive NSCLC, based on a large clinical trial, which assessed 
e�cacy and safety of pembrolizumab in patients with advanced 
NSCLC (17). As in previous studies, therapeutic bene�t was 
correlated with tumor PD-L1 positivity, which in this study 
was de�ned at the >50% cuto�. Importantly, this study also 
provided evidence that a striking survival bene�t was observed 
in patients who received pembrolizumab without prior treat-
ment with chemotherapy.

PD1:PD-L1 Blockade in Other Cancers
More than 100 trials are currently investigating the use of 
PD-1 blockade agents as monotherapy or in combination 
with chemotherapeutic agents, targeted therapies, or alternate 
immunotherapy modalities for multiple tumor types (http://
clinicaltrials.gov).

For RCC, immunotherapy has always been considered as 
a primary therapeutic strategy because of its immunogenic 
nature. �e rationale for treatment with PD-1:PD-L1 blockade 
in RCC was further supported by the excessive PD-L1 expres-
sion in in�amed and cancerous kidney tissues (178). A rand-
omized phase II trial comparing di�erent doses of nivolumab 
in advanced RCC patients has shown a long-lasting objective 
response in about 22% of the patients (179). Currently, a combi-
natorial treatment regimen of nivolumab with either sunitinib 
or pazopanib is being developed, which has shown better e�-
cacy, but higher toxicity (180). �e e�cacy of pembrolizumab is 
also currently being evaluated in a phase I/II trial in treatment 
naïve metastatic RCC patients in combination with pazopanib 
or axitinib.

One of the most impressive responses has been observed in 
HL, in which PD-1 blockade with nivolumab resulted in response 
rate of 87% (19, 181, 182). �is outcome is based on the molecular 
upregulation of the PD-1:PD-L1 pathway through ampli�cation 
of 9p24.1, which increases the gene dosage of PD-L1 and PD-L2 
together with Jak2 in nodular sclerosing HL (183).
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TABLe 2 | examples of clinical trials with antibodies blocking the PD-1:PD-L1 pathway.

Cancer types Blocking agents Clinical response rate

Melanoma Nivolumab 12.8% in treatment-refractory metastatic melanoma, 28% in advanced melanoma, 40% in melanoma treated in 

combination with ipilimumab, 20% in nivolumab followed by iplimumab, 40% in previously untreated melanoma 

without BRAF mutation, 57.6% (nivolumab plus iplimumab) versus 19% (ipilimumab) versus 43.7% (nivolumab) in 

untreated stage III or IV melanoma

Pembrolizumab 38% in comparison to chemotherapy (14%), 26% in ipilimumab-refractory advanced melanoma, 33% in comparison 

to ipilimumab (11.9%) in advanced melanoma

Atezolizumab 21% objective response rate

MDX-1105 17.3% objective response rate

NSCLC Nivolumab 12.8% in treatment-refractory metastatic NSCLC, 18% in advanced NSCLC, 14.5% in refractory NSCLC, 17% in 

previously treated NSCLC, 20% in advanced squamous cell NSCLC, higher overall survival (12.2 months) versus 

docetaxel treatment (6 months)

Pembrolizumab 63 versus 0% in stage IV NSCLC patients with high and low non-synonymous mutation burden, 19.4% in advanced 

NSCLC of unselected population, 45.2% objective response rate in PD-L1+ population

Durvalumab 14% objective response rate in unselected population and 23% in PD-L1+ population

Atezolizumab 15% objective response rate in unselected population and 38% in PD-L1+ population

MDX-1105 10.2% in NSCLC

Renal cell carcinoma Nivolumab Higher overall survival (25 months) and better objective response rate (25%) in comparison to everolimus treatment 

(19.6 months and 5% ORR)

Atezolizumab 21% overall response rate

MDX-1105 11.7% response rate

Breast cancer Atezolizumab 19% objective response rate

Pembrolizumab 18.5% response rate

Small cell lung cancer Nivolumab 18% objective response rate in monotherapy and 17% objective response rate in combination

Pembrolizumab 35% response rate

Atezolizumab 21% objective response rate

Head and neck Durvalumab 12% objective response rate

Pembrolizumab 24.8% objective response rate observed in both HPV+ and HPV− patients

Atezolimumb 19% objective response rate

Hepatocellular carcinoma Nivolumab 19% objective response rate

Gastric cancer Nivolumab 31% response rate

Atezolizumab 21% overall response rate

Ovarian cancer Nivolumab 15% response rate, responses lasted up to 17 months

Avelumab 14.7% objective response rate

Pembrolizumab 11.5% response rate

Atezolizumab 21% overall response rate

MDX-1105 5.9% response rate

Bladder cancer Atezolizumab 26% objective response rate in unselected population and 43% in PD-L1+ population

Pembrolizumab 25% objective response rate in unselected population and 38% in PD-L1+ population

Mismatch repair-deficient 

carcinoma (colorectal and 

other)

Pembrolizumab 40% objective response rate in repair-deficient CRC, 0% in repair-sufficient CRC, 71% in mismatch repair-deficient 

non-colorectal carcinomas

Merkel cell carcinoma Pembrolizumab 71% objective response rate

Hodgkin’s lymphoma Nivolumab 87% objective response in relapsed or refractory Hodgkin’s lymphoma

Pembrolizumab 66% overall response rate
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Currently, ongoing clinical trials are investigating PD-L1 
blocking antibodies. Such antibodies, speci�cally MPDL3280A 
(Atezolizumab) and MEDI4736 (Durvalumab) are being evalu-
ated in metastatic melanoma. Interestingly, Atezolizumab was 
associated with good responses and less pulmonary toxicity 
compared to PD-1 antibodies (184). In a randomized phase 
II trial, Atezolizumab is being compared with platinum-based 
chemotherapy and docetaxel a�er platinum failure in NSCLC. 
Durvalumab in combination with an EGFR inhibitor is being 

compared to chemoradiation in stage III NSCLC, where an objec-
tive response rate of 14% has been noticed across all histologies 
(185, 186). Atezolizumab is also currently being investigated as 
monotherapy or in combination with bevacizumab in compari-
son to a control group of sunitinib in treatment-naïve locally 
advanced or metastatic RCC. In a recent study, one complete and 
two partial responses were observed in patients with recurrent or 
metastatic triple negative breast cancer who are PD-L1 positive. 
PD-L1 blockade therapy also appears to be e�ective in bladder 
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cancer. In a phase I study of atezolizumab in advanced bladder 
cancer, an objective response rate of 43% has been observed in 
tumors expressing high levels of PD-L1 (160).

Combination Approaches
�e combination of checkpoint blockade was �rst tested in 
advanced melanoma patients treated with nivolumab and ipili-
mumab and the resulting clinical activity was phenomenal (187). 
In a phase II study, the objective response rate for nivolumab 
plus ipilimumab was 59% in comparison to 11% with ipilimumab 
alone (188). Most recently, a phase III study of nivolumab plus 
ipilimumab versus nivolumab versus ipilimumab was performed 
in treatment naïve advanced melanoma patients (170). Again, 
the response rate was 57.6% for the combination therapy in 
comparison to 43.7% for nivolumab and 19% for ipilimumab 
monotherapies. �e improved outcomes of the combination 
therapy over ipilimumab alone appear to be sustained within 
the 2-year follow-up of patients with combination therapy (189). 
�e combination approach was also tested in patients with meta-
static RCC. In this patient group, ipilimumab plus nivolumab 
in two di�erent dose levels gave a response rate of 43 and 48%, 
respectively (190). Comparison between the combination check-
point immunotherapy and sunitinib in advanced RCC is under 
investigation.

In NSCLC, a phase III study of nivolumab plus ipilimumab 
versus nivolumab monotherapy versus chemotherapy is cur-
rently undergoing (NCT02477826). Promising results were also 
reported from a phase I study of combination of Durvalumab 
and tremelimumab in NSCLC. Also, another phase III study in 
untreated, advanced NSCLC has recently begun with durvalumab 
plus tremelimumab versus durvalumab versus chemotherapy 
(NCT02453282). �e combinatorial studies examining e�cacy 
and safety of these drugs are also been undertaken in several 
other malignancies, including SCLC (191), gastric, and bladder 
cancer (NCT01928394). Because of di�erent cellular expression/
localization of PD-1 and PD-L1 in normal tissues, the tolerability 
of combination of PD-1 plus PD-L1 is also being investigated 
(NCT02118337).

Determinants of Response
In order to understand how PD-1 blockade imparts tumor 
rejection, it is critical to identify the cell population(s) that are 
targeted and altered during antibody treatment (192). �e pres-
ence of PD-L1 within TME in more than 1% of tumor cells has 
been shown to correlate with a better clinical response to PD-1/
PD-L1 checkpoint blockade therapy. In contrast, lack of PD-L1 
upregulation in tumor cells or lack of tumor-in�ltrating immune 
cells has been observed in most progressing patients (18, 151, 
193). However, studies in RCC have determined that detectable 
tumor expression of PD-L1 can be documented only in a small 
fraction of patients (20–30%), yet, a higher number of patients 
with PD-L1 negative RCC responded to PD-1 blockade (194).

As mentioned above, in addition to tumors, PD-L1 expres-
sion on tumor-in�ltrating immune cells, mainly myeloid APC 
(macrophage and myeloid DCs) correlates with clinical responses 

to PD-1:PD-L1 blockade therapy (151). Based on these �ndings, 
it is possible that therapeutic PD-1 blockade might work more 
e�ectively if the tumors have already been identi�ed by the host 
immune system and PD-L1 expression in cancer and innate 
immune cells is the consequence of local IFN-γ production by 
tumor-activated T cells (151, 193). �us, one key approach to 
understand which cell types are important for tumor rejection 
is to determine location, density, and phenotype of the immune 
cells inside the TME and their spatiotemporal expression of 
PD-1 and PD-L1. Techniques to achieve this goal include, but 
not limited to, slide-based quantitative immunehistochemistry 
(IHC) and quantitative multiplexed IHC in  situ gene expres-
sion assay (193, 195–197). �e use of di�erent anti PD-1 and 
anti PD-L1 antibodies, the di�erent cuto� points to measure 
expression, the di�erent cell types in which expression is being 
evaluated and the di�erent scoring systems used by various 
pathology laboratories has caused di�culty in harmonizing 
the IHC readouts. �e Cancer Immunotherapy Trials Network 
has started to review the immunodynamic e�ects of checkpoint 
inhibitors with the goal to identify and de�ne immune assess-
ment modalities and sites, both systemic and intratumoral, which 
are critical to the therapeutic success (198). Re�ning immune 
endpoints will provide the tools for the design of improved 
clinical trials, for selection of appropriate candidate patients for 
PD-1-based immunotherapy, and for assessment of induction 
and maintenance of therapeutic response.

CONCLUSiON AND FUTURe DiReCTiONS

Programed cell death 1 is involved in the induction and main-
tenance of peripheral tolerance and plays a crucial role in the 
regulation of autoimmunity, transplantation immunity, infec-
tious immunity, and tumor immunity. Currently, in parallel 
with the development of new discoveries about the molecular 
mechanisms of PD-1 function, clinical trials of combinatorial 
approaches are emerging. Such studies aim to maximize thera-
peutic antitumor bene�t by blocking PD-1 together with other 
checkpoint inhibitors – such as CTLA-4, LAG3, TIM3, or by 
blocking PD-1 while engaging activating receptors of the TNF 
superfamily with agonist antibodies. Furthermore, PD-1 block-
ade together with chemoradiotherapy is anticipated to extend the 
therapeutic bene�ts of PD-1 checkpoint inhibition to a higher 
number of patients.
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