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THE PENETRATION OF A FINGER INTO A
VISCOUS FLUID IN A CHANNEL AND TUBE*

D. A. REINELTT AND P. G. SAFFMANY

Abstract. The steady-state shape of a finger penetrating into a region filled with a viscous fluid is
examined. The two-dimensional and axisymmetric problems are solved using Stokes equations for low
Reynolds number flow. To solve the equations, an assumption for the shape of the finger is made and the
normal-stress boundary condition is dropped. The remaining equations are solved numerically by covering
the domain with a composite mesh composed of a curvilinear grid which follows the curved interface, and
a rectilinear grid parallel to the straight boundaries. The shape of the finger is then altered to satisfy the
normal-stress boundary condition by using a nonlinear least squares iteration method. The results are
compared with the singular perturbation solution of Bretherton (J. Fluid Mech., 10 (1961), pp. 166-188).
When the axisymmetric finger moves through a tube, a fraction m of the viscous fluid is left behind on the
walls of the tube. The fraction m was measured experimentally by Taylor (J. Fluid Mech., 10 (1961), pp.
161-165) as a function of the dimensionless parameter uU/ T. The numerical results are compared with the
experimental results of Taylor.
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1. Introduction. We consider the penetration of a finger into a region which is
initially filled with a viscous fluid. It is assumed that the viscosity of the fluid inside
the finger is negligible when compared with the viscosity of the fluid exterior to the
finger. The more general case, where the viscosity of the fluid inside is not neglected,
can also be solved with the methods described below but is left for further study. The
free boundary value problem for the steady-state shape of the finger is examined with
two different geometries: the two-dimensional case of a finger between parallel plates
and the axisymmetric case of a finger in a tube. It will be supposed that the gravitational
and inertial forces are small in comparison with the viscous forces, and can be neglected.
There is, in principle, no difficulty in incorporating their effect into the fingering
problem with the present method.

The two-dimensional case is important in the study of fingering in a Hele-Shaw
cell composed of two closely spaced parallel plates separated by a distance 2b. The
sides of the cell connecting the two plates are a distance 21 apart, where [ » b. A finger,
shaped like a tongue, moves through the Hele-Shaw cell with constant velocity U. The
thickness of the tongue is 28b and its width is 2Al, where the parameter 8 is equal to
(thickness of finger)/(distance between plates) and the parameter A is equal to (width
of finger)/(width of cell). The determination of the value of A has been a subject of
much interest. Experiments examining the shape of a finger in a Hele-Shaw cell have
been performed by Saffman and Taylor (1958) and Pitts (1980). Since the full three-
dimensional problem is difficult to calculate, the problem of finding the shape of the
finger in the plane parallel to the plates was approximated by averaging the velocity
field across the gap between the two plates. This leads to two-dimensional equations
in which the components of the mean velocity in the plane parallel to the plates are
given by
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where w is the viscosity of the fluid and p is the pressure in the fluid which is to this
approximation a function only of x and z. The plates are taken parallel to the
(x, z)-plane, and the y-axis is normal to the plates with origin in the mid plane. The
continuity equation

u ow
(2) —+—=0

Jox 4z
must also be satisfied. These equations hold in the region of the (x, z)-plane that is
not occupied by the finger.

In the region of the (x, z)-plane where the finger is found, the approximate
equations were given by Saffman (1982). In this region, there is on the surface of each
plate a film of viscous fluid of total thickness mb, where m -» 1 — 8 away from the edge
of the finger, in which the pressure is p; and the components of mean velocity are

m’b? ap; __m’b’ op,
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The continuity equation for the viscous fluid is

@) a_m+a(mui)+a(mwi)=
at ax az

0.

The remaining equation is
(5) pi+bTV’m=p,

where T is the surface tension and p, is the constant pressure inside the finger, i.e. for
[yl <(1-m)b.

The two-dimensional solutions in the two regions are joined by boundary condi-
tions at the edge of the finger. First, there is the kinematic condition as the boundary
of the finger is approached;

(6) (U-w)-n=m(U—u;)-n

where U= (U, 0) is the velocity of the finger, u=(u, w), and n=(n,, n,) is the normal
to the edge of the finger. Second, there is a dynamic condition relating the limits of
the pressure on the two sides,

(7 p—p:=Ap.

Here, the limits are to be understood as outer limits in which the distance from the
edge of the finger is small compared with [, but large compared with b. The limiting
values of m and the pressure jump Ap are so far unknown, but under the postulated
conditions, we expect them to have the form

_p(rU-m b
and

_T(eU-n b
©) ap-gr(22 2)

where R is the radius of curvature in the plane parallel to the plates. The functions F
and f are to be determined by local (inner) solutions of the equations in the vicinity
of the finger edge which take into account the y-dependence of the flow field and
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shape of the interface. As such solutions have not been available, it has been the
practice to approximate them by the relations

(10 F=F, [=fitfis

where F,, f,, and f, are constants.

Saffman and Taylor (1958) assumed further that the surface tension T could be
neglected (f; = 0) and were able to derive a closed form solution. They also found that
the difference between the shape of the finger determined from their closed form
solution and the shape observed from the experimental results was considerable unless
A is close to 3, but the parameter A was not determined by their analysis. McLean and
Saffman (1981) have taken into account the effect of the surface tension T by setting
fi=—1in their examination of the fingering problem. This removed the indeterminancy
associated with T=0 and gave A as a function of wU/ T."' The shape of the finger with
a given value of A was found to be in close agreement with the shape given by
experimental resuits with the same value of A. However, a comparison between a plot
of A versus pU/ T using these results and the same plot using the experimental results
showed significant disagreement. Rough agreement would be obtained for f; approxi-
mately equal to —3.

In this paper, we calculate

pU nU

(11) F(T,0> and f(T,O)

for finite uU/T. To determine these functions, it is necessary to solve the Stokes
equations in the plane perpendicular to the plates. Bretherton (1961) has determined
F and f for uU/T« 1(b/R=0) by perturbation methods, and recently Park and
Homsy (1983) have determined the b/ R correction for uU/ T« 1 and 0<b/R« 1.
The use of boundary conditions incorporating finite uU/T effects and the b/R
dependence can possibly be used to bring the plot of A versus pU/T into closer
agreement with experiments, and also explain the observed stability of the fingers. The
results of Romero (1982) who explored the dependence of solutions on an assumed
dependence of F and f on uwU/T showed that the b/ R term is essential to remove
the degeneracy of the T =0 closed form solution.

Besides the two-dimensional problem, we also solve the penetration of an axisym-
metric finger into a viscous fluid in a tube. The diameter of the tube is 2b and the
diameter of the finger moving through the tube with constant velocity U is 28b. The
parameter B is equal to (diameter of finger)/(diameter of tube). This problem has
been investigated experimentally by Taylor {1961) and Cox (1962). The numerical
results are compared with the experimental results and the agreement is found to be
remarkably good.

In order to determine the solution to the two-dimensional and axisymmetric
problems for wU/ T equal to O(1), the free boundary value problem is solved in two
stages. First, we begin with an initial guess for the shape of the finger. This can be
found by starting with a small value for the parameter wU/ T and using Bretherton’s
solution. Since we have assumed a shape for the finger, we are forced to drop one of
the boundary conditions applied on the curved interface; the normal-stress boundary
condition is dropped. A system of equations equivalent to the biharmonic equation

! But as later found by Romero (1982) and Vanden-Broeck (1983), there are in fact more than one
value of A for each uU/T.
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must now be solved on a fixed domain. It is important to use a numerical method that
not only gives accurate results in the interior of the domain but also gives accurate
results on the curved interface. To accomplish this, we cover the domain with a
composite mesh composed of a curvilinear grid which follows the curved interface,
and a rectilinear grid which is parallel to the straight boundaries. These overlapping
grids are stretched so that the number of grid points is greatest in regions where they
are needed most. Interpolation equations are used to connect the two grids. Finite
difference methods are used to calculate the numerical solution.

In the second stage, the shape of the finger is altered to satisfy the normal-stress
boundary condition. The curved interface is expanded in terms of Chebyshev poly-
nomials and the known asymptotic behavior of the finger as x - —o0. Using the solution
calculated on the fixed domain, the expansion of the interface, and the normal-stress
boundary condition, a new shape for the interface is determined by a nonlinear least
squares iteration method. After several iterations, the normal-stress boundary condition
is satisfied and we have a solution.

The use of a composite mesh to cover the domain was suggested by Prof. H. O.
Kreiss. We considered the employment of boundary integral methods and finite element
techniques, but found them less convenient and they did not appear to offer improved
accuracy or cheaper computations. The finite element method would have required
using higher order elements with one curved side to conform to the interface. Both
the composite mesh discussed above and a finite element mesh must be altered each
time the interface changes. This was accomplished easily and with a small amount of
computation time using the composite mesh technique. Also, the present method allows
easy incorporation of inertial and nonuniform fluid effects; this is not the case for the
boundary integral method.

2. Formulation of the two-dimensional problem. We examine the penetration of a
finger of fluid into the narrow region between two closely spaced parallel plates. As
mentioned earlier, it is assumed that the viscosity of the fluid inside the finger is
negligible when compared with the viscosity of the fluid exterior to the finger. This
allows us to solve the equations only in the region exterior to the finger. The steady
state problem is examined where the finger is moving with constant velocity U and is
symmetrical about the center line of the channel. The plates are separated by a distance
2b and the finger has asymptotic width 28b.

The Stokes equations for incompressible two-dimensional low Reynolds number
flow are

(123) ﬁ;+6§=0,
(12b) Pe=p(le+iy),
(12¢) Ps=u(Dzetiy),

where p is the pressure and u is the viscosity of the fluid. The velocities # and © of
the fluid are in the £ and j direction respectively. The j-axis is taken normal to the
plates with origin in the mid plane. The tip of the finger moves along the X-axis.
Boundary conditions are applied on the plates j ==+b and on the interface between
the two fluids.

We now change to a reference frame moving with the finger. The tip of the finger
is fixed at the origin. In this new reference frame, the velocities are independent of
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time. Dimensionless variables are introduced by

where R is the radius of curvature and T is the surface tension. In the perturbation
analysis of the fingering problem, it becomes clear that the appropriate scaling for p
is T/b and not uU/b. The use of the second scaling results in p>—co as uU/T->0.
We substitute these new variables into (12) to get

(13a) u,+v,=0,
(13b) pxzca(uxx+uyy)9
(13¢) P, =Ca (v, t+v,),

where Ca= puU/T. The capillary number Ca is the ratio of the viscous force to the
force of surface tension.

In solving the fingering problem numerically, it is convenient to express the
equations in terms of the stream function and the vorticity. We substitute the stream
function ¢ defined by

u=y, v=—i,
and the vorticity o defined by
® =0~ U,
into (13). If the pressure is eliminated from the equations, we obtain

(143) '*l’xx + (//yy =",
(14b) Wt o, =0.

On the interface, it is convenient io use an arc-length coordinate s equal to zero
at the origin and increasing along the curved interface. Using the arc-length coordinate,

the tangent vector t is equal to (x, y,), and the normal vector n, pointing into the
finger, is equal to (—y,, x,). The interface conditions are

(153) xswx +ys'~ljy = 0;
(ISb) (yz— x?)(lpyy - l/Ixx) +4xsysd’xy = Oa

1
(15C) p-2Ca[(yz_x§)lpxy—xsys(¢’yy—(//xx)]zpo—i,
where

1
T XsYss T YiXss.
R Vss 7 VsX,

Since the pressure can only be determined up to a constant, we are free to set the
constant pressure p, inside the finger equal to zero. These three interface conditions
can be rewritten as

(16a) =0,
(16b) @ = 2X.4f — 2y, =0,
(16C) P 2Ca [(yi - xi)l//xy - xsys(dfyy - dlxx)]'lp XeVss = YsXss = 0.
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The boundary condition (16b) is found by differentiating (15a) with respect to s and
using this equation to eliminate the ¢, term in (15b).

It is assumed that the shape of the finger is symmetric in the y direction; it is
then only necessary to solve (14) for y =0. The symmetry conditions for x =0 are

(17a,b) P(x,0)=0, w(x,0)=0.
In the new reference frame, the no-slip condition on the wall becomes
(18a,b) p(x, )=—(1-8), ¢(x1)=-1

As x> —00, the width of the finger approaches a constant; thus, we get a constant
velocity between the finger and the solid boundary. Poiseuille flow develops as x - .
The asymptotic behaviors are

Yy>—-y+B and w->0 asx—--—00,

d/»—;-ﬂ [y—%f] —y and w-3B8y asx->©.

3. Asymptotic properties of the solution. The shape of a finger penetrating into a
viscous fluid can be determined by using singular perturbation methods for small Ca.
This work is described in Reinelt (1983). It is an extension of the work of Bretherton
(1961) and his analysis of the motion of long bubbles in tubes. The work differs from
Bretherton’s work in that it outlines a procedure to develop a complete asymptotic
expansion in terms of Ca. It also constructs the equations in the boundary layer region
in terms of scaled coordinates of order unity. The method of matched asymptotic
expansions is used to connect the inner and outer solutions.

From Bretherton’s solution or the solution using singular perturbation methods,
B is given by

(19) B~1.0-1.337Ca*>.

This expression, valid for small values of Ca, holds for both the two-dimensional and
axisymmetric problems. It will be compared with the numerical results.

The asymptotic behavior of the solution as x > —o0 can be expanded in powers
of exp (kx) for finite values of Ca. This leads to a relationship between Ca, B, and k,
the decay rate as x > —co. The relationship will also be used to check the numerical
results.

For the two-dimensional solution, the stream function takes the form

¥(x, y)~—y+B+eg(y)+0(e ).
We substitute this expression into (14) to get an equation for g(y),
8y T 2k2gyy + k4g =0.

The solution to this equation is a combination of the functions sin ky, cos ky, y sin ky,
and y cos ky. If we satisfy the boundary conditions on the wall (18), we get the following
expressions for the stream function, vorticity, pressure, and the shape of the interface:

P(x, y)~—y+B+e[A[k(y —1) cos k(y —1) —sin k(y — 1)1+ Bk(y — 1) sin k(y — 1)],
w(x, y)~2k* e®[Asin k(y —1)— B cos k(y —1)],
p(x, y)~—2Ca k? e™[A cos k(y — 1)+ B sin k(y —1)],
y(x)~B—De",
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where A, B, and D are unknown constants. The above expressions are substituted into
the three interface conditions (16a, b, ¢). If we keep only terms of O(exp kx), then the
three equations for A, B, and D are given by the matrix equation

—q cos g+sin q gsin g 1] [A 0
gsingq cos q 1| |B|=]|0
—2Ca(cosq+gsing) —2Cagqcosqg 1| D 0

where g =k(1—8). The determinant of the matrix must be set equal to zero for a
solution other than the trivial solution. This leads to an equation for g in terms of Ca,

(20) 2q—sin2g+Ca (4g°—4 cos’ q) =0.
The leading order expansion of (20) as Ca— 0 gives
(21) q~(3Ca)'”

which agrees with the singular perturbation solution. The relationships (20) and (21)
between k(1 —B) and Ca will be compared with the numerical results.

A similar procedure was applied to the axisymmetric problem by Cox (1962)
which led to an equation involving the three parameters Ca, 3, and k. In the experiments,
the value of k was determined by fitting the finger profile with an exponential curve.
In the numerical treatment of the problem, k is one of the parameters used to describe
the interface; its value will be determined by satisfying the equations and boundary
conditions.

4. Numerical solution on a fixed domain. To solve the fingering problem numeri-
cally, we begin with an initial guess for the shape of the finger. The initial guess is
found by starting with a small value for Ca and using the perturbation solution. Since
we have assumed a shape for the finger, we are forced to drop one of the three interface
conditions (16a,b, ¢); the normal-stress boundary condition (16¢) is dropped. The
shape of the finger will be altered to satisfy this condition.

It is important to develop numerical methods that not only give accurate results
in the interior of the region, but also give accurate results at the boundaries. To satisfy
the normal-stress boundary condition, it is necessary to compute the pressure and the
stresses accurately on the boundary. To accomplish this, we cover the domain with a
composite mesh composed of a curvilinear grid which follows the curved interface,
and a rectilinear grid which is parallel to the straight boundaries. Kreiss (1983) has
developed a numerical code that constructs a curvilinear grid using spline interpolation
that follows the smooth boundary of a simply connected domain. The rest of the
domain is covered with a uniformly spaced rectilinear grid. The overlapping grids are
used to solve a system of hyperbolic differential equations. We have modified these
methods to treat the elliptic problem in this paper.

In the numerical treatment of the fingering problem, we restrict the infinite domain
given by —00<x <o and 0=y=1 to a finite domain given by X.,;;, =X = X, and
0=y=1. If the values of x,;, and x_,, have been chosen properly, the difference
between the numerical solution calculated on this domain and the solution calculated
on an even larger domain will be small. As mentioned in § 2, the domain is further
restricted to the region exterior to the finger.

In the fingering problem, stretching is used in the curvilinear grid to place more
grid points at the tip of the finger and fewer grid points where the width of the finger
approaches a constant. To construct the curvilinear grid, we begin with a square grid
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with uniformly distributed grid points given by
($, 7)=(~1/N~1,j-1/M~1), wherei=1,2,---,Nandj=1,2,--- M.

There are N grid points in the § direction and M grid points in the 7 direction. The
curvilinear grid is defined by mapping this square grid onto a region which follows
the curved interface using a transformation T,. To simplify the interface conditions, it
is convenient to use the arclength parameter s along the interface. Stretching is
introduced by the transformations

§=F(s), F=G(r),

where F and G are functions that produce a one-to-one mapping between the two
sets of variables. The functions F and G are given in the appendix.

To construct the transformation T, cubic spline interpolation is used to approxi-
mate the shape of the curved interface through the N grid points on the interface of
the finger. The boundary 7 =0 of the square grid is mapped onto the interface curve
C, by

x(sa 0)=X1(S), y(sa 0):' Y](S),

where X, and Y, are cubic spline functions. Another set of N points is chosen on a
curve that lies in the interior of the domain under consideration. The interior curve
used is a modified version of the Saffman-Taylor solution

Ty

exp[k(x—x,)]=cos [—]

2B,
where ki, x;, and B, are chosen constants. The transformation of the boundary 7= 1
onto the interior curve Cj, is also done by cubic spline interpolation and given by

x(sa 1)=XM(S), y(S, 1)=YM(S)'

The curves, C,; and Cy,, form the two curved boundaries of the curvilinear grid. The
corresponding grid points on these two curves are connected by straight lines. The
complete transformation T, is

x(s, r)=(1=r)X,(s) +rXpu(s),

(22)

y(s, r)=(1-r)Yi(s)+rYn(s),
with
(23) s=F73), r=G (7).

The function G is chosen such that G(1) = 1. This transformation is one-to-one and
its Jacobian is never singular. A typical curvilinear grid is shown in Fig. 1.
Stretching is also used in the rectilinear grid to place a smaller mesh size near
y =1 where the fluid moves into the narrow region between the finger and the wall.
In the x direction, we place fewer grid points near the boundaries at x;, and x,,,.
To construct the transformation T,, we begin with another square grid with uniformly
distributed grid points given by
i~ j-1

Nx—l’—ﬁ;)’ where i=1,2,-++, Ny and j=1,2,---, N,.

<aei,y*,~>=(

The number of grid points in £ and § directions are N, and N, respectively. The
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F1G. 1. Typical curvilinear grid.

transformation T, given by

(24) £=f(x), =80,

maps the square grid onto the rectilinear grid. The functions f and g are given in the
appendix.

Many of the grid points in the rectilinear grid are in the interior of the finger.
These points are not used in the computation of the solution. Figure 2 gives an example
of a rectilinear grid that shows only the grid points actually used. It is important that
the grids overlap so that all grid points on Cy, lie in the interior of the rectilinear grid.
Also, the grid points on the jagged boundary of the rectilinear grid must lie in the
interior of the curvilinear grid.

1.0

0.0
-5.0 1.5

FI1G. 2. Typical rectilinear grid.

In solving the equations on a composite mesh, the grid points can be divided into
three categories. At interior points of each grid, difference equations that approximate
the partial differential equations are applied. At grid points that lie on the boundary
of the domain, boundary conditions are applied. The third type of grid points are
those that lie on the interior curve Cy of the curvilinear grid and those that lie on the
jagged boundary of the rectilinear grid. It is at these grid points that interpolation
equations are used to connect the solutions on the two grids.

At interior points of each grid, the system of equations (14) is replaced by difference
equations at the uniformly distributed grid points of the two square grids. These grids
are related to the rectilinear and curvilinear grids through the transformations T, and
T.. For example, the stream function equation (14a) is written in terms of X and y
coordinates by using (24),

(25) f'<x>j—£[f'<x>gg] +g'(y)j—yA[g'(y)§iyf'] ——w
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where
x=f(%), y=g'(.

Using the notation ¢,; = ¢(%, ;), a difference equation for (25) is given by

[:_[ y ((/IH-IJ l/le1> ' (dlu l/jl l,))]
h, i+1/2 h, i—1/2 h,

8 !/,l dll ’ l/l,~'“l/l,--_
+h:|:g,+1/2( J+;1y J) gj_,/2<#’-l:*'-—l =—w;;

where the mesh sizes h, and h, are

h, = h =

The expression fi./, is defined by

f.+1/2 _[f'(x )+ (X))

This second order accurate difference equation is used at all interior grid points of the
(X, ) square grid. A similar procedure is used to find the difference equations to be
applied at the uniformly distributed grid points of the (8§, 7) square grid.

The computational boundary conditions for the fingering problem must be chosen
carefully. One method of applying the boundary conditions at y =1 is to construct the
grid with the boundary y =1 centered between the top two grid lines. This allows us
to give the value of ¢ on the top two grid lines. However, this approach leads to an
O(1) error in the vorticity near the corner x = x,,.., and y = 1. To avoid these problems,
we construct the rectilinear grid with the top grid line coincident with y = 1. A second
order accurate equation for the vorticity on the boundary y =1 can now be written
using ¢ on the top three grid lines and ¢, given on the boundary. A more complete
discussion of the boundary conditions can be found in Reinelt (1983).

On the interface, the curvilinear grid is constructed with the grid line (F=0)
coincident with the shape of the interface curve. The boundary conditions applied on
the interface are written in terms of s and r coordinates by

(1/:0’ w_z(xssrx'*_yssry)dlr:()-

The value of ¢, is calculated to second order by using the first three grid lines in the
r direction.

The values of  and w at the third type of grid point are determined by interpolating
between the two grids. A nine point formula and a four point formula were examined
for this interpolation. The nine point formula was chosen because a test of calculating
an exact solution with inhomogeneous boundary conditions showed that a four point
formula was not accurate enough. The interpolation equations are discussed in terms
of a smooth function u. To simplify the interpolation formulas, we use formulas based
on the uniformly distributed grid points of the two square grids. Each grid point on
the curve Cy,, given by (s, 1), can be located in the interior of the (X, ) square grid
by using (22) and (24). If (X, Jo) is the location of one of these grid points, then the
approximate value of u at this grid point can be found by using the nine point
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interpolation formula given by

(26) w0, )= T 3 di@) di(y)u(Rrres, Frars),

di(a)=—3a(1-a), dfa)=(1-a)l+a), d=3a(l+a),

a=jeo—£i , :Aﬁo_fj i
Xr+1 7 Xg Yiv17Ys
where (X, ,) is the grid point closest to the point (£, 7o).

To find the approximate value of u at each (x, y) grid point on the jagged boundary,
we locate each of these grid points in the interior of the (8, #) square grid. These values
are found by using Newton’s method and (22) and (23). Once these points are located,
the interpolation formulas are identical with (26) where £ and § are replaced by §
and 7.

5. Iteration method. To determine the degree to which the normal-stress boundary
condition is satisfied, it is necessary to find the pressure and the stresses on the interface.
The pressure is calculated from the vorticity solution by integrating along the interface.
The pressure is given in terms of the vorticity by

px=—Caw,, Py =Ca w,.

Using the transformation T, and these relationships between the pressure and the
vorticity, the derivative of the pressure with respect to arc length is

Ds = —Ca [xsry - ysrx]wr -Ca [xssy - yssx]ws-

The stresses t,,, ¥, and ¢,, are calculated at each grid point on the curved interface
from the stream function and vorticity solutions. We substitute the initial guess for the
shape of the interface and the values of the pressure and stresses at each grid point
on the interface into the normal-stress boundary condition (16¢). If this boundary
condition is satisfied, we have determined the shape of the finger. Normally, the
right-hand side of the normal-stress boundary condition is not equal to zero at each
grid point, but a residual R; is present. These residuals R, i=1,2,---, N give the
error in the boundary condition (16c) at each of the N grid points along the interface
of the finger. In our calculations the value of N is seventy-six. The shape of the
interface must now be changed until all the residuals are smaller than a chosen error
tolerance.

To change the shape of the interface, it is convenient to expand the interface in
terms of a set of functions and unknown parameters. The shape of the finger is
determined by the numerical values of these parameters. The form of the expansion
greatly affects the amount of computing time needed to converge to the interface shape
that satisfies the normal-stress boundary condition. In fact, if the expansion is not
chosen properly, the problem may never converge.

The interface is expanded as a function of y. The expansion for the shape of the
finger is given by

27) x(y) = log {[1 "(%)2][”@)250 4T (%ﬂ}

where B, k, ¢y, €1, -+, G are the parameters that determine the shape of the interface.
The expansion is constructed so that the tip of the finger is located at the origin and
x(—y) is equal to x(y). The functions T»; are the even Chebyshev polynomials. If the
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grid points on the interface are projected onto the y-axis, there are many more points
near the ends of the interval, —8 = y = B, than near the center of the interval. This is
characteristic of the so-called Chebyshev abscissae. The Chebyshev polynomials are
chosen because it is expected that they will converge rapidly given the distribution of
grid points used in the fingering problem. This is indeed found to be the case.

The asymptotic behavior of the shape of the finger as x> —00 is

y~ B — D exp (kx).

This relationship is inverted to give

s~y 5(-3)]
kK °LD\' B

as y - B. The expansion is constructed so that this asymptotic behavior is included. If
this is a good expansion, the value of ¢; will decrease as j increases. This allows us to
use the finite series from j=1 to m as a good approximation to the infinite series.

The problem is now reduced to finding the parameters B, k, ¢y, ¢, - - *, ¢,y that
satisfy the equations

(28a) Ri(B, k, Co, €1y * * +, Cm) =0, i=1,2,--+,N.

This is an overdetermined nonlinear system of equations because the number of grid
points ( N) is larger than the number of parameters (m +3). These equations are solved
by determining the parameters that minimize the function

(P(BskaCOa Cpy*° ,cm)zR%+R§+' * ’+R?\].

To do this, we linearize the equations (28a) about an initial set of parameters
ﬁu’ kV’ C(’;’ c;” Tt b c:;i'

(286)  Ri(B% K chychy -, €t (B = B) 4+ -+ (= ) 0.
B acy,

This leads to a matrix equation containing the N X (m +3) Jacobian of (28a). The new
values of the parameters are now determined by the method of least squares. The
process is repeated until the values of R, i=1,2,--, N are smaller than 1 X107,

In the above calculations there is not a simple functional relationship between R;
and the unknown parameters because the values of the pressure p and the stresses ¢,,,
¥y, and ¢, depend on the parameters in some unknown way. In order to calculate
the Jacobian of (28a), a small step size h is added to each parameter independently
and the new values of R; are determined. For example, we calculate

Ri(BV+h, kV’ C(,)), C;), T, c'v")
which is used to determine the entries of the Jacobian
GR,_Ri(B"+h )R’ ")
B h

R; is calculated m +3 times, once for each of the parameters. Each time the interface
changes a new curvilinear grid is constructed. The calculations needed to determine
the new grid and the transformation T, are a very small portion of the total computing
time. The major portion of the computing time is needed to determine the numerical
values of ¢ and w on each of the fixed domains. In calculating the entries of the
Jacobian, we can greatly reduce this time by not solving the entire system of equations
directly each time.
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On each of the fixed domains a large sparse system of linear equations for the
values of ¢ and o at the grid ponts of the rectilinear and curvilinear grids must be
solved. If v is the vector that contains ¢ and o, then the system of linear equations
can be written

Av=Dh,

To solve this system of linear equations, we determine the LU decomposition of the
matrix A, where L is a lower triangular matrix and U is an upper triangular matrix.
This linear system of equations now decomposes into two triangular systems that are
solved by forward substitution and back-substitution. This decomposition of A involves
a major portion of the computation time and is done using a sparse matrix solver
(odrv, ndrv) developed at Yale University.

In order to calculate the values of R;(B”+h, k”, cg, - - -, c.,) and the values of the
R;’s found by perturbing the other parameters, it is necessary to solve a new system
of linear equations

Av=bh.

Since this new system of equations is a perturbation of the original system of equations,
it can be rewritten as

where A and b are the matrices in the original system. The matrices A; and b, contain
the small perturbations to the original system for small values of h. If we set

V=v+v,+tvy+tvyt- -

then the solution to the new system of equations can be determined by solving the
following equations:

Avl = bl —A,V,
AV2 = _Alvl,

AV3 = "A]V2.

Since the LU decomposition of A is known and the right-hand side of each of these
equations is known from the previous step, these equations are easily solved by forward
substitution and back-substitution. In practice, the value of v is determined to six
places by solving only two or three of these equations. Using this method, the computa-
tion time necessary to compute the Jacobian is essentially equivalent to the time needed
to solve the original system.

6. Numerical results for the two-dimensional problem. The numerical results are
calculated by beginning with pU/T =0.01 and using the shape of the perturbation
solution. Several iterations are needed to satisfy the normal-stress boundary condition.
The value of uwU/ T is then increased by small increments. The size of the increments
varied from 0.02 for pU/ T <0.10 to 0.20 for U/ T > 1.00. The shape of the interface
at the previous value of wU/ T is used as the basis for determining the new interface
shape at the subsequent value of uU/T. Three or four iterations are needed for the
normal-stress boundary condition to be satisfied at each value of uU/ T which corre-
sponds to about 25 minutes of CPU on a VAX 11/750.



PENETRATION OF A FINGER INTO A VISCOUS FLUID 555

The typical number of grid points used in each direction of the curvilinear and
rectilinear grids is

N=76, M=7, N,=55, N,=34.

The value of x.,, is determined by the choice of $,,..; Xmin i approximately equal to
—5.0. The value of x,,,, is equal to 2.0. The shape of the finger is determined by using
nine parameters (m = 6) for the expansion of the interface given in (27). The magnitude
of the final coefficient ¢s is O(107*). The inclusion of a greater number of parameters
has very little effect on the shape of the finger.

Figure 3 is a plot of g =k(1—8) versus uU/T. The solid line is a plot of (20)
which was determined by expanding the solution in terms of eigenfunctions as x -» —oo.

O,o 1 Il L 1 1 | [ | 1 | | L 1 L Il 1 1 [l d
0.0 0.5 1.0 1.5 2.0

pU/T

FI1G. 3. The relationship k(1 — ) versus pU/T. s, numerical results;
perturbation result (21).

, plot of equation (20); - - -,

The dots shown on the plot are the values of k(1 — ) calculated from the numerical
results. The numerical results are in close agreement with the analytical result. The
dashed line is a plot of the perturbation solution (21). As mentioned in §3, it is
equivalent to the leading order behaviour of (20). The perturbation solution (21) is in
error by no more than 10% provided nU/T <2 X107 In Fig. 4, the solid line is a
plot of B versus wU/T calculated from the numerical solutions and the dashed line
is a plot of (19) determined from the perturbation solution. The function F discussed

1.0

0.8\

o6 \
\
BN
0.4 \

0.2} \

\
O0L_1 1 v 1 v gy Y SR SR N TR TR VO S |

0.0 0.5 II.O 1.5 2.0
KU/ T

F1G. 4. The finger width B versus uwU/ T for the two-dimensional problem. ——, numerical results; - - -,
perturbation result (19).
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_g=r(*Y
1 B—F(T,O>.

As x - 00, the pressure is given by

in the introduction is given by

p~-3B8Cax+g,

where ¢, is a constant. It is this constant that gives the pressure jump that is needed
in the two-dimensional approximation of the flow in the Hele-Shaw cell,

cp=f(“—TL~],0).

The dotted line in Fig. 5 is a plot of ¢, versus uU/ T and the solid line is the actual
pressure drop Ap across the tip of the finger. The dashed line is the pressure drop
calculated by Bretherton (1961) for Ca— 0 and is given by

Ap~~—1.0-3.8Ca®?>,

_5.0 1 1 1 | 1 i 1 L 1 \l\ 1 1 i 1 i i 1 i ' J
0.0 05 1.0 15 20
KrU/T

FIG. 5. Pressure drop Ap across tip of the finger versus uU/ T for the two-dimensional problem. ——,
numerical results; - - -, perturbation result; - - - -, c, versus pU/T.

This perturbation solution is equal to c, up to the order calculated. Both ¢, and Ap
have been normalized by T/b.
As x - 00, the velocity in the x-direction is

u->3p(1-y*) -1

When the value of B is greater than %, the fluid near the x-axis moves with a velocity
greater than that of the finger. In this case, two additional stagnation points are present
on the interface. For all values of B, there is a stagnation point at the tip of the finger.
Figure 6 gives examples of the streamlines in the two cases.

7. Numerical solution of the axisymmetric problem. We consider the penetration
of a finger into a tube. As in the two-dimensional case, the steady state problem is
examined and the finger moves parallel to the x-axis with constant velocity U. The
diameter of the tube is 2b and the diameter of the finger is 28b. The parameter S is
equal to (diameter of finger)/(diameter of tube).
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(b) + + + \

FI1G. 6. Typical shape of streamlines relative to the finger. (a) B >3, two-dimensional case; B> 1/\/5,
axisymmetric case. (b) B>2, two-dimensional case; B> 1 /\/5, axisymmetric case.

The same dimensionless variables used in the two-dimensional case are used here.
We write the equations in terms of the stream function  defined by

1 1
u:'_d’ya v=_~4’xa
y y
and the vorticity w defined by
®=0,— U,

The equations for ¢ and w in axisymmetric Stokes flow are

1
(293) Wyx + d/yy _; ‘//y = Tyw,
(29b) +w,, + 1 ! 0
Wyt w,,+—w,——w=0.
yy y ¥y y2

The variable y is used for the radial coordinate to avoid confusion with the r coordinate
used in the curvilinear grid.

The interface is described by (x(s), y(s)) where s is the arclength along the
interface curve. In the axisymmetric case, the boundary conditions on the interface
are given by

(30a) y=0,

(30b) Yo = 2%~ 2ystb, =0,

(30c) p—2Ca [yfux—xsys(vx+uy)+x§uy]+(—l-+——l—) =0,
R, R,

where

1 1 1
U=y,  U="",, 5,
y Ty Y T

S WA S
x y xx3 'y y Xy y2 X+
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The principal curvatures for the axisymetric problem are

1 1 X,

—.R.'_l:xsyss—ysxss’ E:——-—;.

The pressure p, is the constant pressure inside the finger and is set equal to zero. The
boundary conditions on the wall of the tube are

(31a,b) bxD=—301-8),  hxD=-1,

and the symmetry conditions on the centerline are
(32a,b) ¥(x,0)=0, w(x,0)=0.
The asymptotic behaviours of  and w are
y->—3»*-B*) and w->0 asx->-,
¢ ->3B8°(2y°~y*)-1y* and w->4B8% as x->x.

As in the two-dimensional case, the normal-stress boundary condition is dropped, and
the numerical solution is computed on a fixed domain. The normal-stress boundary
condition is used to find the shape of the finger.

The results for the axisymmetric problem are very similar to the two-dimensional
results. In Fig. 7, the solid line is a plot of 8 versus p U/ T calculated from the numerical

1.0

0.8\

o6 \
B+ N

0.4t \

0.2+ \

N\,
0.0 NGO Y HUUR N HNY . S T N SO N N R | Lo J—

0.0 0.5 1.0 1.5 20
/T

F1G. 7. The finger width B versus uU/ T for the axisymmetric problem. ——, numerical results; —--
perturbation result (19).

>

solutions and the dashed line is the perturbation result (19). As x - oo, the pressure is
given by

p~-8B°Cax+g,
where ¢, is a constant. The solid line in Fig. 8 shows Ap, the pressure drop across the
tip of the finger, and the dotted line gives c,. Both Ap and c, have been normalized

by T/b.
As x - 00, the velocity in the x-direction is

u->28%1-y)—1.

For B greater than 1/ \/5, the fluid near the x-axis moves faster than the finger. Taylor
(1961) discusses the two simplest types of flows that might occur: a stagnation point
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0.0

-2.0

-4.0
Ap,Cp

-6.0]

-8.0

OO 0 v gy
0.0 0.5 1.0 1.5 20

¢, versus pU/T.

at the origin with a stagnation ring on the interface of the finger or two stagnation
points on the x-axis, one of which is at the origin. By examining Fig. 6, it is clear that
a stagnation ring is present for 8 greater than 1/v2.

When the axisymmetric finger moves through the tube, a fraction m of the viscous
fluid is left behind on the walls of the tube. The fraction m was measured experimentally
by Taylor as a function of wU/T. Figure 9 compares the numerical results with the
experimental results where m is equal to 1 — 8% The numerical results are in excellent
agreement with the experimental results.

1.0

0.8}

0.6}
m -

041

0.2

ool 0oyt o3oa a4y

0.0 0.5 .0 1.5 20
nu/T

FIG. 9. Fraction m of viscous fluid left behind on the walls of the tube versus pU/T. ——, numerical
result; », Taylor experimental results.

8. Conclusion. In solving the fingering problem, we have used a composite mesh
to cover the domain. The resulting numerical solution is not only accurate in the
interior of the region but also on the boundaries of the domain. The amount of
computing time necessary to construct the grids is a very small percentage of the time
necessary to compute the solution to the fingering problem.

The employment of a composite mesh creates enough flexibility that it can be
used to treat problems with many different types of geometries. It can also be used in
determining solutions that exhibit singular behavior. The composite mesh can be
composed of as many grids as necessary to solve a given problem. The grids are easily
constructed to include stretching which places grid points where they are needed most.
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The numerical methods employed work very well in the treatment of this free
surface problem. Many other free surface problems could be examined by extending
the methods to include the effects of the inertia terms. The effects of gravity on the
shape of the finger for the two-dimensional and axisymmetric geometries can also be
calculated. The methods could also be extended to handle time-dependent free surface
problems. In these problems, the curvilinear grid would move with the interface at
each time step of the calculation.

Appendix. As discussed earlier, stretching functions are introduced to place grid
points where they are needed most. In the x direction, fewer grid points are needed
near X, and x,,., where the solution tends to a function of y only. The x dependence
is a decaying exponential. The function f takes the form

£=f(x)=Ax+B+C- Dtanh (%)
and the first derivative is

jé‘
dx

=f"(x)= A+ C sech® (x ;)xo) .

A and C are chosen such that there is a larger mesh size near the boundaries and a
smaller mesh size in an interior region centered about the point x,. The constant D is
the decay rate from the smaller mesh size to the larger one. B is chosen such that
S(Xmin) = 0.

In the perturbation problem, it was found that for small Ca the finger nearly fills
the channel. To numerically solve the fingering problem for this case, it is necessary
to have a small mesh size near y = 1. The stretching in the y direction takes the form

y=g(y)=Ay+C-D [exp (llD——y)) —exp (_(ll’;}’))]

where the first derivative is given by

dy —(1- —
a0 snclon (457 en(452)]

The constants A and C are chosen to produce a small mesh size near y=1 and a
larger one away from y = 1. D is the decay rate between the two mesh sizes.

In the s direction, we use a stretching transformation that produces more grid
points in the region near the tip of the finger and fewer in the region where the width
approaches a constant. The transformation is given by

§=F(s)=As+C- Dtanh (-—é—)

where the derivative is

ggs= F'(s)= A+ C sech’ (%) .

Again, A and C are chosen to produce the appropriate mesh sizes and D is the decay
rate. In the fingering problem it is not necessary to stretch in the r direction, so we
simply set = G(r)=r.
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