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The influence of the interplanetary magnetic field on solar wind-magnetosphere 
interactions is described. A finite-conductivity solution for the magnetic field B in the 

magnetosheath is constructed, and it holds even close to the magnetopause , where the 
frozen-flux approximation is invalid. The electric field E implied by the solar wind 

plasma bulk motion is determined, too. Magnetic field diffusion caused by finite 
conductivity results in only a partial screening of the outer field in a dissipative layer 

near the magnetopause, with residual Bn and E1 penetrating into the magnetosphere . 
The dependence of the magnetic and electric fields at the magnetopause on the

magnetic Reynolds number, Rm, is Bn～Rm-p and Et～Rm-p; Bt～Rpm, and En～Rmp where

p=0.25. The Poynting vector flux over the magnetopause is independent of Rm and

equal to～2.6×1011W for usual solar wind and IMF parameters. Assuming E11=0 on

open magnetic field lines, it is possible to determine the electric field within the region

of open magnetic field lines using IMF-dependent boundary conditions at the

magnetopause. Field-aligned currents in this region (or in the polar cap) are derived

from the equation Div (ΣE)=j11, where the ionospheric conductivity Σ is assumed

uniform. Sunward convection for northward IMF is explained. A shift of the cusp 

projection in the ionosphere due to the IMF effect is presented. For northward IMF a 
two-vortex convection pattern in the polar cap is obtained. Comparison of model 

predictions with experimental data shows good agreement in the dayside polar cap.
The proposed model provides a self-consistent analytic solution of the problem of

IMF penetration into the magnetosphere.

. Introduction 

Numerous correlations of the interplanetary magnetic field (IMF) with magneto-

spheric dynamics have been observed (see, e. g., the review by NISHIDA, 1983). The

southward component of the IMF controls magnetospheric convection and geo-

magnetic activity. It has also been found that the By-component of the IMF is 

associated with asymmetry in the magnetospheric field (HARDY et al., 1979; 
FAIRFIELD, 1979; COWLEY and HUGHES, 1983), in polar cap convection and in the 

location of field-aligned currents (BURCH, 1973; HEPPNER,1977; COWLEY, 1981a). In

past years the inter-relations between the IMF and polar cap convection, geomagnetic 
variations and field-aligned currents have been intensively studied (BURKE, 1982;

DOYLE and BURKE, 1983; HOLZWORTH and MENG,1984; REIFF and BURCH,1985; 

HEELIS, 1984; IIJIMA et al., 1984 etc.). 

The role of the IMF in the solar wind-magnetosphere interaction was first 

pointed out by Dungey in 1961. The electric field pattern obtained superposing a
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uniform IMF on a dipole field was presented by STERN (1973), and by LYONS (1985) 
for northward IMF (see, also COWLEY (1973)). RUSSELL (1972) investigated 

qualitatively the case for northward IMF and suggested that sunward convection 
could occur in the polar cap. Electric fields in the magnetosphere have been calculated 

by LEONTIEV (1977), LONGENECKER and ROEDERER (1981). 

The mechanism of electric field and field-aligned current generation was 

examined by TVERSKOY (1969), who solved the problem of evolution of a plasma 

cloud in the magnetosphere. Field-aligned currents and general features of 

magnetosphere-ionosphere coupling have also been investigated by TVERSKOY 

(1982). 
VASYLIUNAS (1970, 1972) investigated the modification of the convection 

electric field by a population of trapped particles and by ionospheric conductivity. 

While the results of investigations of electric fields and field-aligned currents, the role 

of ionospheric conductivity inhomogeneities and auroral current systems have been

reported by LYATSKY (1978), LYATSKY and MALTSEV (1983) and ARYKOV et al. 

(1982). 
Before considering IMF penetration into the magnetosphere it is necessary to 

first consider the deformation of the IMF in the magnetosheath. The topology of the 

flow and IMF was investigated by PUDOVKIN and SEMENOV (1976), and detailed 

calculations for the frozen-in condition were made by PIVOVAROV and ERKAEV 

(1978) and KARTALEV and MASTIKOV (1982). 
Although many aspects of the solar wind-magnetosphere interaction have been 

examined, the theory of the formation and behavior of the magnetosphere is still far 

from complete. However, many features of the interaction have been observed. These

include an energy input of the order of 3×1011 Watt, bundles of polar field lines

apparently connected to the IMF, a potential drop of about 50kV across that bundle, 

IMF-dependent convection and Birkeland currents in the polar cap. 

In the present work such properties will be derived using a simple model of the 

magnetospheric interaction in which the solar wind plasma is regarded as an ohmic

conducting fluid (ALEXEEV, 1984; ALEXEEV and BELENKAYA, 1983a, b, 1985). 

Several additional approximations are also made. First of all, since the Alfven-

Mach number in the solar wind plasma is large (MA～10), it is reasonabie to neglect

the IMF when describing the flow of the solar wind plasma around the magneto-

sphere. This is confirmed by the good agreement of gas-dynamic models with the 

shapes of the magnetopause and the bow shock, as observed by numerous spacecraft 

(SLAVIN and HOLZER, 1981; SLAVIN et al., 1983). 
Secondly, the flow will be regarded as incompressible: although some 

compression occur near the subsolar point, it is overall a reasonable approximation, 

and it simplifies the calculation. 

The most significant approximation, however, concerns the value of the electric

conductivity a, or more accurately of the magnetic Reynolds number Rm, defined

further below. For reasons which will be discussed, the value of Rm used for the flow 

near the magnetopause is of order 104, far smaller than the value which classical

conductivity calculations based on collisions would give. "Anomalous" plasma effects 

can however produce such a reduction, which here leads to reasonable values of Bn on 

the magnetopause and of the magnetospheric voltage drop. 

In Section 2 below, an analytical solution of the flow field V is described,
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assuming that the magnetopause follows a paraboloid of revolution. If the electric 

conductivity of the plasma is everywhere a, the electric potential U may be expressed 

analytically, and from this follows the magnetic field B. In Section 3 the magneto-

pause is allowed to take a more general axisymmetric shape and solutions are 
developed by perturbation, using Rm-1 as a small parameter. In Section 4 the linkage 

between the magnetospheric field and the IMF is studied. By using a model of that

linkage and assuming E・B=0, the magnitude of the convection field and the

ionospheric "footprint" of open magnetospheric field lines is investigated.

2. Fields and plasma flow outside the magnetosphere; Paraboloid model 

Let us now consider the solution of the external problem. Consider the steady 

flow of an incompressible conducting fluid past a paraboloid of revolution. At infinity 

the stream is homogeneous as is the magnetic field B0, which is also assumed to be 

normal to the velocity. A paraboloid of revolution is chosen here because it matches 

fairly well the front of observed magnetopause and because in that case the solution 

may be expressed analytically. 

Let us neglect the magnetic force in the equation of motion. Then the velocity 

field is independent of the magnetic field and is determined from the equation

Δ・V=0 (1)

With the boundary conditions V={-V0, 0, 0} at x→ ∞ and Vn=0 on the obstacle. At

infinity (x→ ∞), the magnetic field is given by B={0, 0, -B0}, while the electric field is

E={0, E0, 0} (where E0=V0B0/c since the current/is zero at x→ ∞). The electric and

magnetic fields are determined from Maxwell's equations

(2)

and Ohm's law

(3)

The conductivity σ is assumed uniform. The solution of the problem then depends on

only one parameter, the magnetic Reynolds number Rm=4π σV0R1/c2, Where R1 is a

characteristic dimension, here the distance to the subsolar point, whose standard

value will be assumed to be R1=10RE=6.4×104km.

The set of Eqs. (2) and (3) has been examined in detail in kinematic dynamo

theory (MOFFATT, 1978). The electric field is usually eliminated by taking the curl of

Eq.(3)and the equations ofinduction or diffusion for the magnetic field are obtained.

Instead, if we eliminate the magnetic field from Eqs. (2) and (3), we obtain a

second-order equation for a single scalar function, the electric field potential. Using

(2) and (3), the equation of current conductivity Δ・j=0 and the vector identity

Δ ・(V×B)=B・(Δ ×V)-V・(Δ ×B) yields the following equation
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(4)

Let us introduce dimensionless parabolic coordinates μ, λ, φ which are related to

solar-magnetospheric coordinates by

(5)

where R=√(x-R1/2)2+y2+z2 is the distance from the common focus of paraboloid

of revolution which are the coordinate surfaces μ=const and λ=const. In these

parabolic coordinates the magnetopause is the surface λ=λ0=1 (ALEXEEV and

SHABANSKY, 1972; STERN, 1985). The value of λ0 determines the ratio of the dawn-

dusk dimension of the magnetosphere to the distance to the subsolar point (this ratio

is 2√2 for the case under consideration here).

A dimensionless potential of the velocity field W(V=-V0R1ΔW) can be

obtained by solving Eq. (1) with the boundary conditions given above. The result is

(6)

(7)

where h=√2R/R1=√ μ2+λ2 is the scale factor.

The potential U of the electric field E=-E0R1 Δ U is obtained from Eq. (4)

(8)

The variables are separated in Eq. (8). Let us represent the potential as U=A(μ)f(λ)C(φ)

then the boundary condition

unambiguously determines C(φ)=-sinφ and we obtain, for A(μ) and f(λ), the

equations

(9)
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(10)

where m is a constant.

Let A(μ) be finite at μ=0 and to increase at infinity as μ. Then Equation (9) yields

A=μ and m=1. The analysis of Eq. (10) shows that it has two linearly independent

solutions, one is finite at λ=0 and increase as λ at infinity, and another turns into

infinity at λ=0 and decreases as exp(-Rmλ2/2) at λ→ ∞. The latter solution describes

penetration of the magnetospheric field into the solar wind plasma because it is

connected to a singularity (a source) inside the magnetosphere. The characteristic

scale of e-fold decrease of the magnetospheric field is R1/√Rm. We are concerned

with the inversed process, i.e. the solar wind field penetration into the magnetosphere,
therefore in the general solution of Eq. (10) we leave out this term. Simple
transformations allow reduction of Eq. (10) to the standard form. The solution with
the required asymptotic form (see e.g. ABRAMOWITZ and STEGUN (1964)) is

(11)

where 2ξ=Rmλ2, Γ(t) is the gamma-function, 1F1(a, c; t) is the confluent hyper-

geometric function (Kummer's function) and the constants a and c are determined by

Rm(2c=2+√Rm2+4 and 4a=2c+Rm-4). Using the integral representation for 1 F1 the

following expression for the potential U can be obtained

(12)

Differentiating U we obtain the components of the electric field vector

(13)

To determine the magnetic field, we should substitute Eq. (13) into Ohm's law (3)

and solve the set of equations contained. The current component normal to the

magnetopause is required to be zero (jλ=0). Then Bφ=cEλ/Vμ and hBμtanφ=-λBφ;

Δ ・B=0 yields λhBλtanφ=-μ ∫Bφdλ. Thus, vector B has the components

(14)

The components of the electric current vector obtained from the solution of Eqs. (2)
and (4) are

(15)

where 1g(λ)=λf-(λ2-1)f' and j0=cB0/4πR1 is the characteristic density of the current

screening the field B0 at distance R1. An examination of Eqs. (13)-(15) shows that the

scalar product E・B=j・B/σ is zero, i.e., the magnetic field lines are equipotentials
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(E11=0 as in the case Rm-1=0). The violation of the frozen-in condition reveals itself in

the non-conservation of the electric field potential along the plasma stream lines,

E・V≠0. Using the equation of a magnetic field line Bλdμ=Bμdλ we obtain that the

field line intersecting the magnetopause at μ=μ0 lies on the surface μ(λ) where μ is

determined by the equation

(16)

The condition E・B=0 and Eq. (16) yields the equation of a magnetic field line

(17)

where y∞ fixes the equipotential comprising the field line. Figure 1 shows the field lines

in the plane y=0 (heavy lines) together with the stream lines (thin lines) .

Both the magnetic field component normal to the magnetopause and the

potential difference over the given magnetospheric cross-section are determined by

the value of f(λ0)=f(1)=k. The dependence of Bn on position on the magnetopause is

given by

Bn=kB0cosγ (18)

where γ is the angle between the normal to the magnetopause and the vector B0 in the

undisturbed flow. In a similar manner, the tangential component of electric field is

equal to that given by a homogeneous field kE0. These are the components of vectors

E and B which penetrate into the magnetosphere. The normal component En and the

tangential one, Bt can in general be screened by surface charges and currents. These

components are proportional to f'(1).

Fig. 1. Magnetic field lines (heavy lines) and streamlines (thin lines), lying in the noon-midnight plane,
for the paraboloid model of the magnetosheath field and flow.
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Let us now consider the influence of the value of Rm on the behaviour of the

solution. For an insulator, Rm=0, electric and magnetic fields are independent.of V

and uniform E=E0, B=B0, and j=O. In the other limiting case, Rm→ ∞, f(λ)=√ λ2-1,

Bn=Et=0 and. En and Bt at the magnetopause approach infinity as (λ2-1)-1/2.

with Rm>1, we have the following numerical estimates: k=f(1)=R-pm/√2 and

f'(1)=k√Rm=Rpm/√2, where p=0.25. These expressions show that Bn and Et at the

magnetopause tend to zero as R-pm, and Bt, En increase as Rpm.

The Poynting vector P=E×Bc/4π flux over the magnetopause

(19)

is proportional to the cross-section area of the magnetosphere S1(S1=π μ21R21; μ1R1 is

the distance to the X-axis) and to the magnetic energy flux V0B20 in the undisturbed

flow. This value is independent of Rm and is not zero in the limit Rm-1=0.

To determine the value of Rm for the solar wind plasma, we refer to ALEXEEV et

al. (1982) where the conductivity has been estimated using the observed characteristic

thickness of MHD discontinuities (current layers) in the solar wind. These estimates

yield σ=2×10-5 mhom-1 and Rm=600. This value of σ is many orders of magnitude

less than the Coulomb conductivity. This fact might be explained by some anomalous

resistivity mechanism (or it could be described by the free particle dynamics in the

current sheet).

It should be emphasized that, since the current increases as Rm3/4 (at Rm>1) near

the obstacle, it is natural to assume that the current density must exceed the critical

value for some instability leading to the appearance of anomalous resistivity. In this

case, proceeding to the limit Rm-1=0 is impossible near the obstacle. We present, for

example, the Rm value at which the current density at the magnetopause is equal to the

threshold value for ion-sound instability (current velocity Vc～ √Te/mi)

(20)

Here use is made of the mean values of the-solar wind parameters (Debye radius

rd=103cm, Alfven velocity VA～40km/s and ion thermal velocity VTi～40km/s).

The conductivity value corresponding to Eq. (20) is σ=3×10-4 mhom-1. Knowing

σ, one can estimate the effective collision frequency v*(ARTZIMOVICH and SAGDEEV,

1979)

(21)

If the plasma frequency in the solar wind is ω0=1.5×105 rad/s. An estimate of v*

using the non-linear regime of ion-sound instability (GALEEV and SAGDEEV, 1973)

gives a similar value v*=10-2 ω0√me/mi(Te/Ti)3/2 0.15×103 s-1. Practically the

magnetic field magnitude is limited by energy to B=MAB0. It gives Rm≦4MA4
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(Rm≦4×104). Furthermore, the magnetopause thickness (R1/Rm) is limited to ion

Larmor radius, 0.1 RE, which also gives Rm≦104. So we expect the magnetic Reynolds

number to be roughly 103-104.

It appears from the above discussion that 0.07<k<0.14 and 7>f'(1)>3.5. The

component ofthe IMF normal to the magnetopause(for Bo=SnT)will then be given

by (0.07-0.14) B0=(0.35-0.7)nT, and Bt=(35-17.5)nT. The potential difference

δU=kE0D (at the magnetosphere cross-section D=4R1=40RE) is δU=(36-72)kV.

Though the dependence on conductivity is fairly small, experimental values of δU in

the polar cap and Bn are in accord with σ=3×10-5 mhom-1 and Rm=1000,

respectively.

3. Expansion in orders of Rm-1

The exact solution obtained above for a paraboloid allows a similar problem to

be treated for an arbitrary axisymmetric magnetopause. For simplicity the plasma is

still considered as incompressible and the velocity field is assumed to be potential (for

supersonic flow past an axisymmetric body Δ ×V=0). Compressibility as well as the

conductivity inhomogeneity make the problem far more complex, and are therefore

omitted in this first approximation.

Let V=-V0R1 Δ W be a solution of Δ ・V=0 with the corresponding boundary

condition (Vn=0) at the magnetopause. As before the system of MHD equations

reads

(22)

In (22) dimensionless variables V0 V*=V, B0B*=B and E0E*=E are inserted. The
spatial scale R1 now is the body curvature radius at the subsolar point. We shall omit
the subscript (*) marking dimensionless variables everywhere except in ambiguous

.

We now introduce the axisymmetric stream function ψ, which is defined by the

equation ∂ψ/∂ ρ=-ρVx, ∂ψ/∂x=ρVρ; ψ characterizes the mass flow through a stream

tube. The function ψ is unambiguously given by the boundary condition on the

magnetopause surface where ψ=0, and at x→ ∞ where ψ=0.5ρ2. Here ρ=√y2+z2/R1

is the dimensionless distance from the X-axis (the Earth-Sun line). Then the equation

for the electric potential (22) in variables W,ψ,φ(W is the velocity field potential,φ

being measured counterclockwise from the positive z-axis) reads:

(23)

Here V(W,ψ) is the absolute value of flow velocity. In reducting (23) use was made of

the scale factors for variables W,ψ and φ (hw=V-1, hψ=(ρV)-1, hφ=ρ). In the limit of

frozen-in flow (Rm>1) going over to variables W,ψ,φ reduces Eq. (23) to the form

∂U/∂W=0. Correspondingly Eq. (23) is then satisfied by a function of the form Uf(ψ,

φ) and the condition at infinity gives Uf=-√2ψsinφ unambiguously. TVERSKOY
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and ALIMARIN (1982) have also constructed the solution for frozen-in supersonic

flow past the magnetosphere.

Let us now single out a region where Uf describes an exact solution U of Eq. (23)

with an accuracy of up to order Rm-1. Since our equation is of the form Rm-1

Δ2U=V2∂U/∂W with a small parameter (Rm-1<1) affecting higher derivatives, a

boundary layer can be formed. Beyond this layer U coincides with Uf and the solution

is independent of Rm, but inside the dissipative layer the terms due to finite

conductivity are essential. Let us now define the thickness of the dissipative layer d, as

the distance from the magnetopause where Δ2 Uf=RmV2∂U/∂W. To estimate

∂U/∂W, we use the exact solution for a paraboloid. At the magnetopause this solution

is (see Eq. (12))

(24)

where ρ1(W)=ρ(W,0) is the equation of the magnetopause. The dissipative layer

includes all points with ρ2≧ √Rmψ.

Beyond a laver of thickness Rm-1/2(for ψ>ρ2/√Rm) the frozen-in condition is

valid and U=Uf. Inside the solution can be obtained using a power series in Rm-1/2.

Omitting some technical details of the calculation we obtain the electric and magnetic

fields at the magnetopause:

(25)

where ρ1'=dρ1/dW; k=Rm-1/4 √2 is the screening coefficient and V1 (W) is the flow

velocity at the magnetopause.

As a special case, let the shape of the magnetopause be given by the expression

r(r+x)=2, r=√x2+ρ2. such a surface is formed when a flow streaming radially from

aspherically symmetric source is superposed on a homogeneous flow. The velocity

field potential in this case is W=x+r-1.

For this case the frozen-in magnetic field is given by TVERSKOY and ALIMARIN

(1982). It will be used here beyond the dissipative layer. At the magnetopause Eqs.

(25) for the magnetic and electric fields are employed after calculating functions ρ1 (W)

and V1 (W)

(26)

The Poynting vector P (see (19)) flux over the magnetopause (Pψ=EφBw

-EwBφ=-V1ρ1'/2) is
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(27)

This value is independent of Rm and is equal to the magnetic energy flux over the

cross-section of the magnetosphere (4πR12).

Figure 2 presents the equipotential surfaces U=const for this case. This figure

shows the deformation of equipotential surfaces which are parallel in the plane

containing B0 and V0 far from the body. Equipotentials on the magnetopause are

Fig. 2. Electric field equipotential surfaces. The deformation of these surfaces by magnetic field diffusion

and the bulk plasma motion is shown.
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curves "parallel" to their meridional section. Figure 3 shows the projection of the

magnetic field lines onto the plane x=const. The conductivity values were chosen

according to the estimates presented above. The model demonstrated in Figs .2 and 3

is approximate since only the first terms of the series ψ/ρ2 were used. However with

this model we can extend our results to the far tail region where the paraboloid

magnetopause approximation is invalid, because the radius of the paraboloid cross-

section at x→-∞ increases without limit.

4. Electric and magnetic fields inside the magnetosphere

The external problem solution describes "screening" of the solar wind electric

and magnetic fields. Consider now the processes caused by the existence within the

magnetosphere of an open flux tube connecting the ionosphere to the solar wind.

Such tubes are present during both northward and southward IMF.

Estimates show that the ionospheric effects on the plasma flow in the

magnetosheath is weak. The energy～1011 W dissipated in the ionosphere represents

only about one hundredth of the solar wind flow energy incident on the "effective"

magnetosphere cross-section 4πR12. Consequently the plasma flow on the magneto-

sheath section of the open field line is not affected and the electric field is determined

by the solution of the external problem. Inside the magnetosphere field lines are

assumed to be equipotential, E11=0. With a given magnetic field model the condition

E11=0 unambiguously defines E and the plasma convection velocity in the interior

magnetospheric portion of the open flux tube. Application of the current continuity

Fig. 3. Magnetic field line projections onto the plane X=const. The cross-sectionis perpendicular to the
Earth-Sun line.
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condition in the ionosphere Δ ・j=0 then determines the field-aligned current j11, given

the ionospheric conductivity tensor Σ. It should be noted however that some of j11

observed seems to occur on closed field lines, while here only the flow on open field

lines is treated.

Now we describe the electric field on open field lines inside the magnetosphere.

This is determined from the electric potential on the magnetopause and the magnetic

field component Bn normal to the magnetopause, which were determined from the

kinematic magnetosheath problem considered above (see Eq. (18)). Inside the

paraboloid, B is the sum of four fields: Bd+Bt+BCF+b where Bd is the geodipole field,

Bt is due to the geomagnetic tail current system (ALEXEEV et al., 1975), BCF is due to

magnetopause surface currents (ALEXEEV, 1978) and b is the IMF penetrating into

the magnetosphere. The later field is determined by equation Δ ・b=0, Δ ×b=0 and

by the boundary condition (18).

The solution for b is a uniform field directed along the undisturbed IMF and

equal to kB0. If the value of Rm is selected to be 104 (see Eq. (20)), then k is equal to

0.07. Turning now to the electric field, the tangential component is continuous at the

magnetopause and equal to Et=E0t=kE0sin γ where γ is the angle between the normal

to the magnetopause and E0, from which the interior electric field can be derived by

tracing the magnetic field lines. It is important to note that the potential imposed

across the magnetosphere is k times that across the same width in the solar wind (k is

usually called "the efficiency of reconnection factor") and the IMF-associated

perturbation b is k times IMF B0, too (see COWLEY, 1981a).

The ionospheric equipotentials were calculated first for the case of southward-

directed b. Then the polar cap boundary is not equipotential. The bx, by IMF

components control the displacement of the cap position from its average value and

the distortions of the streamlines away from that of a simple uniform flow. Depending

on the sign of the bx-component, the polar cap is displaced either towards noon or

towards midnight, and the convection reversal line shifts poleward from the polar cap

boundary at noon or midnight, respectively (COWLEY, 1981b). This effect is

antisymmetric for the south and north polar caps. The by-component shifts

equipotentials towards dawn or dusk. Figure 4 illustrates the effect of both of the IMF

components.

A cross-section of the magnetosphere through the noon.midnight meridian

plane is shown in Fig. 5 for northern hemisphere summer and for southward IMF,

and in Fig. 6 for northward IMF. In the later case the cross. section contains two

neutral points ON and Os. The central regions are occupied by quasi-dipolar lines

(type-1 lines). Lines of type 2 are open field lines going from the solar wind to the

Earth. Type-3 1ines are IMF lines. The magnetic field lines and plasma streamlines are

shown. Figure 5 and 6 were calculated using b={0, 0, ± 125 nT}. This very large value

of b was selected in order to clearly demonstrate the IMF-related effects.

In the next part of this section the magnetospheric electric field will be calculated

using a northward Bo=20 nT and b={0, 0, 1.5 nT}. Figure 7 shows the convection

lines (coincide with equipotentials) on the geomagnetic equatorial plane . Figure 7

shows the equatorial flow caused by penetration of the solar wind electric field into

the magnetosphere for this case. The ring-shaped region is the equatorial cross-

section of the bundle of open (type 2)field lines. Quasi-dipolar magnetic field lines

(type 1)intersect with the equatorial plane within this region, but beyond this region
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Fig. 4. Convection lines in the northern polar cap for southward IMF. IMF components are bx=-0 .7

nT; by=0.7 nT; bz=-1nT; ｜b|=1.5 nT. Convection lines intersect the boundary of the open field line

area (dotted line)driving convection at middle latitude.

we have IMF lines (type 3). Solar wind plasma flows into the magnetosphere on the

dayside, and moves along the convection lines in the antisolar direction, first in the 

ring-shaped region and then in the magnetospheric tail. 

On the dayside open field lines are connected to the northern polar cap and on the 

night side to the southern polar cap. A two-vortex convection system with a 

singularity into which all equipotentials enter arises in the polar cap. The equi-

potentials pass through the singularity since in the magnetosphere there exists a
neutral point in the magnetic field. 

Figures 8 and 9 show the configuration of equipotentials in the northern and 

southern polar caps, respectively. In this case the polar cap boundary is equipotential.
The total potential differences δU in the northern and southern polar caps were
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Fig. 5. Noon-midnight meridional magnetospheric cross-section for southward IMF. Large arrows 

show the solar wind and magnetospheric plasma bulk motion direction. The dotted line shows the 

dissipative layer boundary.

calculated. These were δUN=63kV in the northern polar cap (summer) and δUs=85

kV (winter).

Figure 10 presents the subsolar part of the magnetopause viewed from the sun. 

The dashed area shows the portion of the magnetopause intersected by open field 

lines, together with equipotentials. Figure 11 shows the same part of the magneto-

pause viewed from the dusk side. 
Figure 12 from ALEXEEV and BELENKAYA (1985) demonstrates the deformation 

of equipotentials when northward IMF is reconnected with the magnetospheric field. 

For clarity and simplicity, beyond the magnetosphere the equipotential surface is

presented as a plane. The magnetic field lines lying on the selected equipotential 
surface are shown. Large arrows indicate the plasma flow direction. It can be seen 

how the bulk motion of the solar wind lines beyond the magnetosphere transforms
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Fig. 7. Convection in the magnetospheric equatorial plane for northward IMF. The magnetopause and

convection of the open field lines are indicated. The streamlines have been obtained by mapping the

equipotential lines y=±1, ±3, ±5, ±7 from the magnetopause along numerically integrated magnetic

field lines into the equatorial plane.

Fig. 8. Equipotentials (streamlines) in the northern polar cap for by=0, bx=1nT, bz=1 nT; |b|=1.5 nT.

into a vortex at ionospheric altitudes. Figure 12 shows results obtained by numerical 

integration of the field line equations. Here and in the remainder of this section we 

used a simple model in which the magnetopause is approximated by a conducting 
sphere of radius R1. To illustrate the process more clearly, we used an enhanced IMF 

value, with the field directed towards the north and dawn side (bz=by=42 nT, bx=0).
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Fig. 9. As for Fig. 8 but in the southern polar cap.

Fig. 10. Viewed from the Sun of the subsolar part of the magnetopause. the dashed area shows the 

portion of the magnetopause intersected by open field lines connected to the southern polar cap (upper 
area) and to the northern polar cap (lower area).
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Fig. 11. The same as in Fig. 10, but viewed from the dusk side.

Line P (a portion of a circle) shows the interaction of the equipotential surface with 

the magnetopause. 

The dashed curve shows field lines A, mapping to the north neutral point ON. The 

boundary of the region of open field lines mapping to the northern polar cap is formed 

by the A1-type lines except for a single line (B1N) directed towards the south neutral 

point (OS). The line BIN and OS are not shown in Fig. 12. A singular field line Bls 
symmetric to B1N goes from ON. Near ON this line (B1s) is orthogonal to the A, lines 

and lies on the boundary of the region of open field lines mapping to the southern 

polar cap. 
A singular equipotential surface U0 passing through the singular field line B1s 

divides the open field line region of the polar cap into two parts with oppositely 

directed flow vorticity. The potential of the polar cap boundary is U0. For by=0 two

antisymmetric vortices are present (see Figs. 8 and 9). As |by| increases, the ratio of

the areas occupied by the two vortices increases rapidly from unity and approaches

the value of=5 even for bx=by. For bx=0 one of the vortices occupies the entire polar

cap and the other one disappears. Similar results were derived independently by

LYONS (1985).

After the ionospheric electric potential has been determined the field-aligned

currents can be calculated by solving the equation Δ ・(ΣE)=j11. Figures 13 and 14

show the distribution of field-aligned current for northward b and by=0 (see Fig. 13) 

or bx=0 (see Fig. 14). Thick arrows show current concentrated at the polar cap 

boundary. The singularity of potential near the cusp reveals itself in a field-aligned 
current, the latter increasing as ON' is approached and going to infinity at the limit. The
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Fig. 12. Magnetic field lines lying on a fixed equipotential surface are shown. Dotted lines are connected 

with the neutral point. The plasma bulk motion is indicated by large arrows.

cusp is defined as the point ON where the field line from the neutral point ON intersects 

the ionosphere. The maximum value of the field-aligned current is determined by the 

internal resistance of the solar wind generator which can be neglected in the field-

aligned current calculation. 

The theory is compared with Magsat data in Fig. 15 (IIJIMA et al., 1984). The 

field-aligned currents called the NBZ-current system in the southern polar cap is

shown there. One can see a good agreement between the theory and experiment. 

5. Conclusions 

The external source of the magnetospheric electric field caused by the solar wind

flow was theoretically described above for an open magnetosphere. The proposed
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Fig. 13. Field-aligned and Pedersen currents for the case bx<0, by=0, bz>0 (see the text).

Fig. 14. As for Fig. 16, but for bx=0, by<0, bz>0.

model provides an analytic solution of the problem of IMF penetration into the

magnetosphere. We have the following general results:

a. Superposition of the effects of bulk motion and diffusion caused by finite

conductivity results in an incomplete screening of the external field by a thin current

sheet near the magnetopause. Residual Bn and E1 penetrating into the magnetosphere

are presented.
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south polar cap bz>0

upward current

downward current

Fig. 15. Magsat data (IIJIMA et al., 1984 (left)) and calculated results (right)); regions of upward and 

downward field-aligned currents are shown.

b.The dissipative layer thickness _near the magnetopause, in which the frozen-

in approximation is invalid, is R1/√Rm.

c. The internal magnetic field is fully screened from external space by a thin

current sheet near the magnetosphere.

d. The Rm dependences of the magnetic and electric fields at the magnetopause

are Bn～Rm-p, Et～Rm-p, Bt～Rmp, En～Rmpp=0.25.

e. The poynting flux over the magnetopause is independent of Rm and equals

1.3×1011W (for B0=5 nT and V0=400km/s).
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f. The IMF screening coefficient k～Rm-p is of the order of 0.1 (k=Bn/B0

=Et/E0).

g. In our resistive model magnetic field lines are still electric equipatentials.

This condition determines the electric field inside the magnetosphere and the field

aligned current in the polar cap.
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