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THE PENTAGRAM MAP ON GRASSMANNIANS

by Raúl FELIPE & Gloria MARÍ BEFFA

Abstract. — In this paper we define a generalization of the pentagram map
to a map on twisted polygons in the Grassmannian space Gr(n, mn). We define
invariants of Grassmannian twisted polygons under the natural action of SL(nm),
invariants that define coordinates in the moduli space of twisted polygons. We then
prove that when written in terms of the moduli space coordinates, the pentagram
map is preserved by a certain scaling. The scaling is then used to construct a Lax
representation for the map that can be used for integration.

Résumé. — Dans cet article nous définissons une généralisation de la carte
pentagramme à une carte sur des polygones tordus dans l’espace Grassmannien
Gr(n, nm). Nous définissons les invariants des polygones tordus Grassmanniens
sous l’action naturelle de SL(nm), invariants qui définissent les coordonnées dans
l’espace des modules des polygones torsadés. Nous prouvons ensuite que lorsqu’il
est écrit en termes de coordonnées d’espace de modules, la carte de pentagramme
est préservée par une certaine mise à l’échelle. La mise à l’échelle est ensuite utilisée
pour construire une représentation Lax pour la carte qui peut être utilisée pour
l’intégration.

1. Introduction

In the last five years there has been a lot of activity around the study of

the pentagram map, its generalizations and some related maps. The map

was originally defined by Richard Schwartz over two decades ago ([9]) and

after a dormant period it came back with the publication of [7], where

the authors proved that the map, when defined on twisted polygons, was

completely integrable. The literature on the subject is quite sizable by now,

as different authors proved that the original map on closed polygons was

also completely integrable ([8, 11]); worked on generalizations to polygons

in higher dimensions and their integrability ([1, 2, 4, 5]); and studied the
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integrability of other related maps ([6, 10]). The subject has also branched

into geometry and combinatorics, this bibliography refers only to some

geometric generalizations of the map and is by no means exhaustive.

The success of the map is perhaps due to its simplicity. The original

map is defined on closed convex polygons in RP
2. The map takes a convex

polygon in the projective plane to the one formed by the intersection of

the lines that join every other vertex, as in the figure. The mathematical

consequences of such a simple construction are astonishing (in particular,

the pentagram map is a double discretization of the Boussinesq equation,

a well-known completely integrable system modeling waves, see [7]). Inte-

grability is studied not for the map itself, but for the map induced by it

on the moduli space of planar projective polygons, that is on the space

of equivalence classes of polygons up to a projective transformation. In [7]

the authors defined it on twisted polygons, or polygons with a monodromy

after a period N , and proved that the map induced on the moduli space is

completely integrable. (The map is equivariant under projective transfor-

mations, thus the existence of the moduli induced map is guaranteed.)

In this paper we look at the generalization of the map from the Grass-

mannian point of view. If we think of RP2 as the Grassmaniann Gr(1, 3),

that is, the space of homogeneous lines in R
3, then the polygon would be

a polygon in the Grassmannian under the usual action of SL(2 + 1), with

each side representing a homogeneous plane as in the picture. The case of

RP
m−1 was studied in [1] where the authors proved that the generalized

pentagram map was integrable for low dimensions, and conjectured that a

scaling existed for the map that ensured the existence of a Lax pair and

its integrability. The conjecture was proved in [5]. We can also consider

this case as Gr(1, m), m > 3. From this point of view, it is natural to in-

vestigate the generalized map defined on polygons in Gr(n, mn), where m

and n are positive integers, m > 3. In this paper we define and study the

generalization of the pentagram map to twisted Grassmannian polygons in

Gr(n, mn), m > 3.

The first step is to define the map on the moduli space of Grassmannian

twisted polygons, that is, on the space of equivalence classes of Grassman-

nian twisted polygons, under the classical action of SL((m − 1)n + n) that

generalizes the projective action of PSL(m) on RP
m−1. We do that by

carefully studying the moduli space and finding generic coordinates that

can be used to write the map in a convenient way (as in the case of the

original pentagram map, the map can only be defined generically). The

coordinates are found with the use of a discrete moving frame constructed
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Figure 1.1. the pentagram map on pentagons in Gr(1, 3)

through a normalization process similar to the one described in [3]. The

classification of invariants under this action is, as far as we know, unknown,

and it is completed in Section 3.

In Section 4 we study the case m = 2s. In a parallel fashion to the study

in [5], we proceed to write the pentagram map on the moduli space in the

chosen coordinates, and we show that it can be written as the solution of

a linear system of equations. We use that description and Cramer’s rule to

prove that the map is invariant under a certain scaling. As it was the case

in [5], a critical part of the study is a fundamental lemma that decomposes

the coefficient matrix of the system into terms that are homogeneous with

respect to the scaling. This is Lemma 4 for the even dimensional case, and

Lemma 9 for the odd dimensional one. The proofs of the rest of the results

are supported by those two lemmas. Once the invariance under scaling is

proved, the construction of a Lax representation is immediate when we

introduce the scaling into a natural parameter-free Lax representation that

exists for any map induced on the moduli space by a map on polygons. In

Section 5 we prove the case m = 2s + 1.

The existence of a Lax representation with twisted boundary conditions

does not guarantee the integrability in the geometric sense, although it is

often taken as definition of integrability in some sectors of the community.

Because of the existence of the spectral parameter λ in the Lax represen-

tation, and because the conjugation class of the monodromy is preserved

TOME 69 (2019), FASCICULE 1
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by the map, the map will preserve the characteristic equation of the mon-

odromy, and hence it lies on the Riemann surfaces det(M(λ)−µI) = 0, for

the different values of the complex parameters λ and µ. The coefficients of

this equation will be invariants of the map. This paper generalizes results

in [1] and [5]. In [1] the authors described the existence of a Lax repre-

sentation for the projective case (Grassmannian of dimension 1) assuming

that the map is invariant under certain scaling - a fact they proved for

RP
3 and RP

5. The invariance under scaling for the general case was proved

in [5]. In [1] the authors also described the complete geometric integration

for the lowest dimension n = 3 (the well-known pentagram map is the case

n = 2). The lowest interesting dimension in our study is already very high

dimensional as the dimension of the Grassmannian increases fast, and we

do not include further work in that direction.

Acknowledgements. This paper is supported by Marí Beffa’s NSF

grant DMS #1405722, by Felipe’s CONACYT grant #222870, and by the

hospitality of the University of Wisconsin–Madison during Felipe’s sabbat-

ical year. R. Felipe was also supported by the Sistema de ayudas para años

sabáticos en el extranjero, CONACYT primera convocatoria 2014.

2. Definitions and notations

Let Gr(p, q) be the set of all p-dimensional subspaces of V = R
q or

V = C
q. Each l ∈ Gr(p, q) can be represented by a matrix Xl of size q × p

such that the columns form a basis for l. We denote this relation by l = 〈Xl〉.

Clearly l = 〈Xl〉 = 〈Xld〉 for any d ∈ GL(p), and the representation is not

unique. Hence, Gr(p, q) can be viewed as the space of equivalence classes of

q × p matrices, where two matrices are equivalent if their columns generate

the same subspace. An element of this class, Xl is called a lift of l. The

name reflects Gr(p, q) admitting the structure of a homogeneous space of

dimension p(q − p). Indeed, consider the Lie group SL(q + p), represented

by block matrices of the form
(

Aq−p×q−p Bq−p×p

Cp×q−p Ep×p

)
.

Let H be the subspace defined by Bq−p×p = 0. One can show that

SL((q − p) + p)/H is isomorphic to Gr(p, q) and the natural action of

SL((q − p) + p) on Gr(p, q) is given by

g · 〈X〉 = 〈gX〉.
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Consider Gr(n, mn) for any positive integers n, m, and let

SL((m − 1)n + n) × Gr(n, mn) −→ Gr(n, mn)

be the natural action of the group SL(mn) on Gr(n, mn).

A twisted N -gon in Gr(n, mn) is a map φ : Z −→ Gr(n, mn) such that

φ(k + N) = M · φ(k) for all k ∈ Z and for some M ∈ SL(mn). The matrix

M is called the monodromy of the polygon and N is the period. We will

also denote an N -gon by ℘ = (lk), where lk = φ(k).

Let X = (Xk) be an arbitrary lift for an N -gon ℘ = (lk) with monodromy

M , and choose X so it is also twisted, that is, XN+k = MXk for all

k. For any discrete closed N -polygon d = (dk) in GL(n) (i.e. satisfying

dk+N = dk), we have that Xd = (Xkdk) is also a lift for the same polygon,

with the same monodromy M .

Let us denote by PN the moduli space of twisted N -gons in Gr(n, mn),

that is, the space of equivalence classes of twisted polygons under the nat-

ural action of SL(mn). We will also denote by PlN the moduli space of

N -gons in R
mn×n (or C

mn×n, wherever the lifts live), under the linear

action of SL(mn).

A N -gon ℘ = (lk) is called regular if the matrix

ρk = (Xk Xk+1 . . . Xk+m−2 Xk+m−1)

satisfies the following condition

(2.1) det ρk = |Xk Xk+1 . . . Xk+m−2 Xk+m−1| 6= 0,

for any k ∈ Z and any lift X (clearly, it suffices to check the condition for

one particular lift). In other words, the columns of the matrix constitute a

basis of Rmn (or C
mn) for all k ∈ Z.

3. The moduli space of twisted polygons in Gr(n, mn)

In this section we will prove that the moduli space of regular twisted

polygons, PN , is a N(m − 1)n-dimensional manifold and will define local

coordinates.

Assume ℘ = (lk), lk ∈ Gr(n, mn) is a regular twisted N -gon and let {Xk}

be any twisted lift. By dimension counting, and given that ℘ is regular, for

any k = 0, . . . , N − 1 we can find n × n matrices ai
k, i = 0, . . . , m − 1 such

that

(3.1) Xk+m = Xm+k−1am−1
k + · · · + Xk+1a1

k + Xka0
k.

TOME 69 (2019), FASCICULE 1



426 Raúl FELIPE & Gloria MARÍ BEFFA

Notice that if ρk is as in (2.1), then

(3.2) ρk+1 = ρk




On On . . . On a0
k

In On . . . On a1
k

...
. . .

. . .
...

...

On . . . In On am−2
k

On . . . On In am−1
k




= ρkQk,

where Qk is the matrix above. Using (2.1), this implies that det a0
k 6= 0,

for all k. Notice that ρN = ρ0Q0Q1, . . . , QN−1. Thus, if ρ0 = I, the

monodromy is given by M = Q0 . . . QN−1, and for other choices M =

ρ0Q0 . . . QN−1ρ−1
0 . Thus, only the conjugation class of monodromy of the

system defined by the matrices Qk, k = 0, . . . , N − 1, is well-defined, not

the monodromy itself.

Theorem 3.1. — Assume m and N are coprime. Then, for any regular

twisted N -gon, ℘, there exists a lift V = (Vk) such that

(3.3) det(Vk, Vk+1, . . . , Vk+m−1) = 1,

for any k = 0, . . . , N − 1, and such that if ai
k are given as in (3.1), then

(1) a0
k = diagonal(r1

k, . . . , rs
k), where each rs

k is an upper triangular

Toeplitz matrix with det a0
k = 1.

(2) We can choose V such that all am−1
k ’s entries, for any k, are gener-

ated by N(n2 − n + 1) independent functions.

The remaining N(n − 1)m entries of ai
k, i 6= 0, m − 1, together with those

above, define a coordinate system on PN .

Proof. — Let X = (Xk) be any twisted lift of the twisted polygon ℘. We

will call Vk = Xkdk and show that we can find a closed polygon in GL(n),

{dk}, such that the conditions of the theorem are satisfied. If Vk = Xkdk

we have

(3.4) (Vk, . . . , Vk+m−1) = (Xk, . . . , Xk+m−1) diag(dk, dk+1, . . . , dk+m−1).

First of all we will show that condition (3.3) determines the values of δk =

det dk, for any k. Indeed, from (3.4) we have that

k+m−1∏

i=k

δi = Zk,

where Zk = det(Xk, . . . , Xk+m−1)−1 is determined by the choice of lift.

These equations determine δk uniquely whenever N and m are coprime, as
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shown in [5]. Let us call bi
k the invariants in (3.1) associated to Xk and ai

k

those associated to Vk. Then, substituting in (3.1), we have that

(3.5) ai
k = d−1

k+ib
i
kdk+m.

Let p = {pk} be a closed polygon in GL(n) and define the rth m-product

to be the product of every m matrices starting at pr until we get to the

end of the period, that is

[pr, . . . , pr+jm]m = prpr+mpr+2m . . . pr+jm,

with r +(j +1)m > N . If N and m are coprime, by repeatedly adding m to

the subindex we can reach all N elements in {pk}; that is, if N and m are

coprime and N = mq + s, with 0 < s < m, then all pk, k = 0, 1, . . . , N − 1

appear in the product

(3.6) Πm(p0)

= [p0, ..., pN−s]m[pm−s, ..., ]m...[, ..., pN+s−m]m[ps, ..., pN−m]m.

(To see this one can picture a circle with N marked points where we locate

pj . If we join with a segment every m points, we are sure to join all points

with segments before closing the polygon. If the polygon closes leaving

some vertices untouched, it means that a multiple of N can be divided into

the union of disjoint orbits formed by joining every m points. This would

imply that N and m are not co-prime.)

Let us call

(3.7) Ar = Πm(a0
r) = [a0

r, a0
r+m . . . , a0

N+r−s]m . . . [a0
s+r, . . . , a0

N−m+r]m.

We can see directly that Ar+m = (a0
r)−1Ara0

r, for all r. Once more, if N

and m are coprimes, this property guarantees that all Ar have the same

Jordan form, which we will call J .

Finally, notice that if Br = Πm(b0
r), then

(3.8) Ar = d−1
r Brdr.

Let us choose dr to be the matrix that conjugates Br to its Jordan normal

form J , so that Ar will all be in Jordan form. We can choose an order in

the eigenvalues (for example, from smallest to largest) to ensure that the

matrix is unique up to a factor that commutes with J . It is known that if

a matrix commutes with a Jordan form matrix it must be block diagonal

diagonal(r1, . . . , rs),

TOME 69 (2019), FASCICULE 1
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where each rs is a Toepliz matrix, upper triangular, whenever the corre-

sponding Jordan block is of the form



λ 1 0 . . . 0

0 λ 1 . . . 0
...

. . .
. . . . . .

...

0 . . . 0 λ 1

0 . . . 0 0 λ




,

or it is diagonal if the Jordan block is diagonal. Thus, dk are unique up to

a block-diagonal matrix of this form.

Since

Bk+m = (b0
k)−1Bkb0

k,

we have that

Ak+m = J = d−1
k+mBk+mdk+m = d−1

k+m(b0
k)−1Bkb0

kdk+m

= d−1
k+m(b0

k)−1dkd−1
k Bkdkd−1

k b0
kdk+m = (a0

k)−1Aka0
k = (a0

k)−1Ja0
k,

for all k. Therefore, since a0
k commutes with the Jordan normal form, it

must be a Toeplitz matrix of the form stated in the theorem, for all k.

Finally, dk is unique up to a matrix commuting with J , lets call it qk. We

now turn our attention to the transformation of bm−1
k under the change of

lifting, namely

(3.9) am−1
k = q−1

k+m−1b̂m−1
k qk+m,

where b̂m−1
k = d−1

k+m−1bm−1
k dk+m (dk found above), and qr Toeplitz and

commuting with J .

How to determine which entries generate the others depend very much

on the particular point in the Grassmannian. In the generic case qr will all

be diagonal; we will next describe the process generically. Using (3.9) we

see that

am−1
k−m+1am−1

k−m+2 . . . am−1
N+k−m = q−1

k

(
bm−1

k−m+1bm−1
k−m+2 . . . bm−1

N+k−m

)
qk,

for k = 0, . . . , N − 1.

Before we describe the normalizations that will generate the syzygies,

we recall that the determinants of qk are determined by (3.3) for any k =

0, . . . , N − 1, whenever N and m are coprime. Let us call det dk = δk.

The last round of normalizations will be chosen by equating those entries

in place (i, i + 1), i = 1, 2 . . . , m − 1 with the entry (2, 1).

If we denote by qk = diag(q1
k, . . . , qn

k ), and we denote the entries of

bk = bm−1
k−m+1bm−1

k−m+2 . . . bm−1
N+k−m

ANNALES DE L’INSTITUT FOURIER
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by bk
i,j , then these normalizations result in equations of the form

(3.10)
qi+1

k

qi
k

bk
i,i+1 =

q2
k

q1
k

bk
1,2,

for i = 1, . . . , N − 1, and

(3.11)
q1

k

q2
k

bk
2,1 =

q2
k

q1
k

bk
1,2.

(3.11) solves for q2
k in terms of q1

k (if b1,2/b2,1 is not positive, we would need

to choose different normalizations), and substituting it in (3.10) we get an

expression for any qi
k in terms of q1

k. Since det qk = det d−1
k δk, where dk

was determined in the normalization of b0
k, q1

k is also determined.

These last normalizations will produce as many syzygies in the entries in

bm−1
k (linear or quadratic) as indicated in the statement of the theorem. The

fact that the entries of Qk, k = 0, . . . , N − 1, generate all other invariants

of polygons in Gr(n, mn) is a consequence of the work in [3]. �

Remark 3.2. — It is very clear that these last normalizations could be

chosen in many different ways (we could make entries constant, for example;

or we could choose a different block, or relate entries from different blocks).

Not all choices will work for us, and in order to be able to prove scaling

invariance of the map, it is important that we choose the equations to be

homogeneous in the entries of br
k. It is also simpler (although not necessary)

if we choose entries from one block only to define the equations. The choice

of bm−1
k versus br

k, r 6= 0, m−1 is just more convenient, but we could choose

any other r 6= 0 instead.

4. The Pentagram map on Gr(n, 2sn)

4.1. Definition of the map

Next, we define the Pentagram map for the Grassmannian Gr(n, 2sn) for

s > 2. The dimension of Gr(n, 2sn) is clearly (2s − 1)n2.

Let X = (Xk) be a lift of a regular N -gon in Gr(n, 2sn), and define the

following subspaces

Πk = 〈Xk, Xk+2 . . . , Xk+2(s−1), Xk+2s〉,

and

Ωk = 〈Xk+1, Xk+3, . . . , Xk+2s−3, Xk+2s−1〉.

Note that dim Πk = (s + 1)n and dim Ωk = sn. Therefore, generically,

dim Πk ∩ Ωk = n.

TOME 69 (2019), FASCICULE 1
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Definition 4.1. — Let ℘ = (lk) be a twisted N -gon in G(n, 2sn). Let

T (℘) be the map taking the N -gon ℘ to the unique twisted N -gon whose

vertices have a lift of the form T (Xk) = Πk ∩Ωk. The map T is independent

from the choice of the lift X. We call T the Grassmannian Pentagram map.

Notice that we are abusing notation by calling T both the map on poly-

gons and their lifts. We will go further and use the letter T to denote the

image of other data associated to ℘ in T (℘) (invariants, frames, etc). It is

immediate to check that T (℘) is also twisted, with the same monodromy

as ℘, using the fact that ΠN+k = MΠk and ΩN+k = MΩk.

Next we will define this map in the moduli space of polygons, with co-

ordinates given by the invariants in our previous section. We will keep on

using the letter T , defining T : PN −→ PN . We will specify the domain if

needed. Let us assume that V = (Vk) is the lift defined in Theorem 3.1 for

a polygon ℘. Assume

(4.1) Vk+2s = Vka0
k + Vk+1a1

k + · · · + Vk+2(s−1)a
2s−2
k + Vk+2s−1a2s−1

k ,

as in (3.1) for 2s matrices a0
k, a1

k, . . . , a2s−1
k of size n × n and with the

properties described in Theorem 3.1.

Using the fact that T (Vk) ∈ Πk, we know that generically there exist

matrices cj
i such

(4.2) T (Vk) = Vkc0
k + Vk+2c2

k + · · · · · · + Vk+2sc2s
k .

If we now use the relation (4.1) we can replace Vk+2s in (4.2), and arrive

to the following expression for T (Vk) :

T (Vk) = Vkc0
k + Vk+2c2

k + · · · + Vk+2s−2c2s−2
k

+
(
Vka0

k + Vk+1a1
k + · · · + Vk+2(s−1)a

2s−2
k + Vk+2s−1a2s−1

k

)
c2s

k

= Vk(c0
k + a0

kc2s
k ) + Vk+1a1

kc2s
k + Vk+2(c2

k + a2
kc2s

k )

+ · · · + Vk+2s−1a2s−1
k c2s

k .

Since we also assumed that T (Vk) ∈ Ωk then c2r
k + a2r

k c2s
k = 0, for r =

0, . . . , s − 1, and

(4.3) T (Vk)

=
(
Vk+1a1

k + Vk+3a3
k + · · · + Vk+2s−3a2s−3

k + Vk+2s−1a2s−1
k

)
c2s

k .

Although the matrix c2s
k seems to be arbitrary, it is uniquely determined

by the fact that the right hand side of (4.3), not only for k, but also for

k + 1, . . . , k + 2s − 1, must be a lift for the image polygon T (℘), with the

same properties as those found in Theorem 3.1. Once c2s
k are chosen that
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way, we will be able to find the image of the matrices aj
i under the map T ,

as follows. Let us call c2s
k = λk, so that we can write

T (Vk) = ρkrkλk,

with ρk = (Vk, Vk+1, Vk+2, . . . , Vk+2s−1),

(4.4) rk =




On

a1
k

On

a3
k
...

On

a2s−1
k




,

and where λk are uniquely chosen so that {T (Vk)} is the lift of the image

polygon described in Theorem 3.1.

Example 4.2. — In particular, (4.3) implies that when s = 2 the Penta-

gram map takes of following form

T (Vk) = [Vk+1a1
k + Xk+3a3

k]λk = (Vk Vk+1 Vk+2 Vk+3)




On

a1
k

On

a3
k


 λk = ρkrkλk,

for all k ∈ Z.

Extending the map T using, as usual, the pullback, we have that

T (ρk) = (T (Vk), . . . , T (Vk+2s−1))

= ρk(rkλk, Rkrk+1λk+1, . . . , Rk+2s−2rk+2s−1λk+2s−1),

where Rk+r = QkQk+1 . . . Qk+r and Qk is given as in (3.2). This expression

can be written as

(4.5) T (ρk) = ρkNkΛk,

where

(4.6) Nk = (rk, Rkrk+1, Rk+1rk+2, . . . , Rk+2s−2rk+2s−1),

and

(4.7) Λk =




λk On . . . On

On λk+1 . . . On

. . .
. . .

. . .
. . .

On . . . On λk+2s−1


 .
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One can recognize equations (3.2) and (4.5), that is

(4.8) ρk+1 = ρkQk, T (ρk) = ρkNkΛk,

as a parameter free Lax representation for the map T . The compatibility

conditions are given by

(4.9) T (Qk) = Λ−1
k N−1

k QkNk+1Λk+1.

The last block-column of this equation defines the map T on the moduli

space of Grassmannian polygons, written in coordinates given by the in-

variants aj
i . The question we will resolve in the next subsection is how to

introduce an spectral parameter in (4.8).

4.2. A Lax representation for the pentagram map on Gr(n, 2sn)

In this section we will prove that one can introduce a parameter µ in (4.8)

in such a way that (4.9) will be independent from µ. This will define a true

Lax representation that can be used for integration of the map. As it was

done in [5], we will prove that the map T is invariant under the scaling

(4.10) a2r+1
k → µa2r+1

k , a2r
k → a2r

k ,

for any r = 0, 1, . . . , s − 1 and any k (this implies that all entries of these

n × n matrix scale equally). This will involve several steps.

Let us denote the block columns of (4.6) by Fr, so that Fk = rk, and

(4.11) Fk+ℓ = Rk+ℓ−1rk+ℓ = QkQk+1 . . . Qk+ℓ−1rk+ℓ,

ℓ = 1, 2, . . . , with r as in (4.4). Our first lemma will allow us to decompose

the block columns of Nr into homogeneous terms according to (4.10). The

lemma is almost identical to Lemma 3.1 in [5]. Let us denote by Γ the

matrix

(4.12) Γ =




On On On . . . On

In On On . . . On

On In On . . . On

...
. . .

. . .
. . .

...

On . . . On In On




,

where In is the n × n identity matrix. Let us also denote by T the shift

operator, namely T (Vk) = Vk+1. This shift operator can trivially be ex-

tended to invariants using T (ai
k) = ai

k+1 and to functions depending on

the invariants using the pullback. We can also extend it to matrices whose

entries are invariants by applying it to each entry, as it is customary.
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Lemma 4.3. — Let Fk+ℓ be given as in (4.11). Then, there exist n × n

matrices αj
i such that

(4.13)

Fk+2ℓ =
ℓ∑

r=1

Fk+2r−1α2ℓ
2r−1 + Gk+2ℓ,

Fk+2ℓ+1 =
ℓ∑

r=0

Fk+2rα2ℓ+1
2r + Ĝk+2ℓ+1,

for ℓ > 1, where

(4.14)
Ĝk+2ℓ+1 = pk (T Gk+2ℓ)m + ΓT Gk+2ℓ,

α2ℓ+1
2r = T α2ℓ

2r−1, α2ℓ+1
0 = (T Gk+2ℓ)m ,

with

(4.15) pk =




a0
k

On

a2
k

On

. . .

am−2
k

On




,

and

(4.16) Gk+2ℓ+2 = ΓT Ĝk+2ℓ+1, α2ℓ+2
2r+1 = T α2ℓ+1

2r , Gk = Fk = rk.

By Am we mean the last n × n block entry of a matrix A.

From now on we will simplify our notation by denoting Fk+ℓ simply by

Fℓ. We will introduce the subindex k only if its removal creates confusion.

Proof. — First of all, notice that the last column of Q in (3.2) is given by

p + r, as in (4.15) and (4.4). Notice also that, from the definition in (4.11)

we have

Fℓ = QT Fℓ−1.

We proceed by induction. First of all, since F = r,

F1 = QT F = Qr1 = (p + r)am−1
1 + Γr1 = Fam−1

1 + pam−1
1 + Γr1.

We simply need to call Ĝ1 = pam−1
1 + Γr1, and α1

0 = am−1
1 = T (F )m.

Let’s do the first even case also:

F2 = QT F1 = Q(T Ĝ1 + T Fam−1
2 ) = F1am−1

2 + ΓT Ĝ1,

and we call G2 = ΓT Ĝ1. Notice that QT Ĝ1 = ΓT Ĝ1 since the last block

of Ĝ1 vanishes, as indicated by the hat.
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Now, assume

F2ℓ =

ℓ∑

r=1

F2r−1α2ℓ
2r−1 + G2ℓ.

Then

F2ℓ+1 = QT F2ℓ =
ℓ∑

r=1

QT F2r−1T α2ℓ
2r−1 + QT G2ℓ.

Since QT G2ℓ = p (T G2ℓ)m + r (T G2ℓ)m + ΓT G2ℓ and r = F , if

Ĝ2ℓ+1 = p (T G2ℓ)m + ΓT G2ℓ,

α2ℓ+1
2r = T α2ℓ

2r−1, r = 1, . . . , ℓ, α2ℓ+1
0 = (T G2ℓ)m ,

then we have

F2ℓ+1 =

ℓ∑

r=0

F2rα2ℓ+1
2r + Ĝ2ℓ+1.

Looking into the even case, we have that

F2ℓ+2 = QT F2ℓ+1 =

ℓ∑

r=0

QT F2rT α2ℓ+1
2r + QT Ĝ2ℓ+1,

and since F2r+1 = QT F2r and QT Ĝ2ℓ+1 = ΓT Ĝ2ℓ+1, if we call

G2ℓ+2 = ΓT Ĝ2ℓ+1, α2ℓ+2
2r+1 = T α2ℓ+1

2r ,

we prove the lemma. �

Once we have this lemma we can identify homogeneous terms in the

expansion of block columns. Indeed, notice that r and p are homogeneous

of degree 1 and 0, respectively, with respect to the scaling. Since the shift

clearly preserves the degree, from the statement of the lemma we have that

both Ĝk+2r+1 and G2r are homogeneous of degree 1, for any r. Likewise,

αr
0 are also homogeneous of degree 1, for any r, from its definition, and

since all others are obtained by shifting these, they also are.

Therefore, if we denote G = F , iteratively applying the lemma we have

that Fr are in all cases a combination of G2r and Ĝ2r+1 for the different

values of r, with different types of factors of the form αj
i , each of degree 1.

One can also clearly see that if the columns of Fr generate Rnm for r =

0, 1, . . . , m − 1, them the columns of G2r and Ĝ2r+1, r = 0, . . . , s − 1 will

also generate the same space since the change of basis matrix will be upper

triangular with ones down the diagonal. This new basis will be crucial in

the calculations that follow.

Finally, a comment as to the reason for our notation. Notice that both

G2ℓ and Ĝ2ℓ+1 have alternative zero and non-zero clocks, with G2ℓ starting
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with a zero block and Ĝ2ℓ+1 starting with a nonzero block. We are keeping

that marked not only by the subindex but also by a hat, since as calculations

become more involved it helps to have them be visibly different. It shows

that the entire space can be written as a direct sum of two orthogonal

subspaces, one generated by the block columns with hats and one generated

by those without hats.

Next, assume that we drop the Λk factor and define

T (Vk) = ρkrk.

Define further ci
k = T (ai

k), as given by the following compatibility formula,

which is (4.9) after removing Λk

(4.17) T (Qk) = N−1
k QkNk+1.

Notice that ci
k will need to be normalized by Λk before we can declare it to

be T (ai
k). Let us call ak the last block column in Qk (the ith block will be

ai−1
k ). Then, choosing the last block-column in both sides of the equation

T (ak) = N−1
k QkT Fk+2s−1 = N−1

k Fk+2s,

which can be written as

(4.18) NkT (ak) = Fk+2s.

Thus T (ak) can be interpreted as the solution of the linear equation (4.18).

This will be crucial in what follows.

Theorem 4.4. — The matrices ci
k are homogeneous with respect to the

scaling (4.10), and

d(c2ℓ
k ) = 0, d(c2ℓ+1

k ) = 1,

for any ℓ = 0, 1, . . . , s − 1.

Proof. — As in the previous proof, we will drop the subindex k and

introduce it only if needed.

First of all, let us analyze the homogeneity with respect to (4.10) of the

determinant

D = det N = det(F, F1, . . . , F2s−1).

From (4.13) we can rewrite it as

D = det(F, Ĝ1, G2, . . . , G2s−2, Ĝ2s−1),

and since d(G2ℓ) = d(Ĝ2ℓ−1) = 1 for all ℓ, we have that D is homogeneous

and d(D) = 2sn.
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Next, denote by f j
r the jth column of Fr, and let F j

r,i be the block column

whose individual columns are equal to those of Fr, except for the ith column

which is equal to the jth column of F2s, for any r = 0, 1, . . . , 2s − 1.

Define next

Dj
2ℓ,i = det(F, F1, . . . , F2ℓ−1, F j

2ℓ,i, F2ℓ+1, . . . , F2s−1).

We first notice that using (4.13), we can substitute the ith column of F j
2ℓ,i

by the jth column of G2s, since F2s and G2s differ in a linear combination

of columns of F2r+1, r < s. Let us call the new matrix F j,g
2ℓ,i. We then

simplify the part of the determinant to the right of F j
2ℓ,i using (4.13), to

become

(4.19) Dj
2ℓ,i = det

(
F, F1, . . . , F2ℓ−1, F j,g

2ℓ,i, Ĝ2ℓ+1 + f i
2ℓ

(
α2ℓ+1

2ℓ

)
i
,

G2ℓ, . . . , G2s−2, Ĝ2s−1 + f i
2ℓ

(
α2s−1

2ℓ

)
i

)
,

where (αr
2ℓ)i denotes the ith row of αr

2ℓ.

We now proceed to simplify the columns f i
2ℓ which can be substituted

by gi
2ℓ (the ith column of G2ℓ) since their difference is generated by odd

vectors with subindiced less that 2ℓ. We can then simplify the rest of the

determinant, using (4.13) once more. We get

(4.20) Dj
2ℓ,i = det

(
F, Ĝ1, . . . , Ĝ2ℓ−1, Gj

2ℓ,i, Ĝ2ℓ+1 + gi
2ℓ

(
α2ℓ+1

2ℓ

)
i
,

G2ℓ, . . . , G2s−2, Ĝ2s−1 + gi
2ℓ

(
α2s−1

2ℓ

)
i

)
,

where Gj
2ℓ,i indicates the matrix equal to G2ℓ, except for the ith column

which is equal to gj
2s. Our last step is to notice that we have enough G2r

block-columns (r = 0, . . . , s − 1, r 6= s) that together with Gj
2ℓ,i generically

generate the entire subspace generated by G2r, r = 0, . . . , s − 2. But the

vector gi
2ℓ belongs to this subspace, and hence it will be a combination of

the columns of those blocks. Thus

Dj
2ℓ,i = det(F, Ĝ1, . . . , Ĝ2ℓ−1, Gj

2ℓ,i, Ĝ2ℓ+1, G2ℓ, . . . , G2s−2, Ĝ2s−1),

which clearly shows that Dj
2ℓ,i is homogeneous, and since d(Gj

2ℓ,i) = 1,

d(Dj
2ℓ,i) = 2sn also.

Finally, T (a) is the solution of system of linear equations (4.18), and so,

by Cramer’s rule, the (j, i) entry of c2ℓ = T (a2ℓ) is of the form

Dj
2ℓ,i

D
.

Therefore, c2ℓ is homogeneous and d(c2ℓ) = 0, ℓ = 0, . . . , s − 1.
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We now study c2ℓ+1. Consider the determinant

Dj
2ℓ+1,i = det(F, F1, . . . , F2ℓ, F j

2ℓ+1,i, F2ℓ+2, . . . , F2s−1),

where F j
2ℓ+1,i is defined as F2ℓ+1 substituting the ith column with the jth

column of F2s. As before, using (4.13), we start by noticing that we can

substitute the ith column of F j
2ℓ+1,i by the jth column of G2s, call it gj

2s,

plus f i
2ℓ+1

(
α2s

2ℓ+1

)
i,j

that comes from the expansion of F2s in terms of odd

terms, and the fact that the ith column of F2ℓ+1 is missing. The expression(
α2s

2ℓ+1

)
i,j

is the (i, j) entry of α2s
2ℓ+1. We call the resulting matrix F j,g

2ℓ+1,i.

If we simplify the right hand side of the determinant it becomes

Dj
2ℓ+1,i = det

(
F, F1, . . . , F2ℓ, F j,g

2ℓ+1,i, G2ℓ+2 + f i
2ℓ+1

(
α2ℓ+2

2ℓ+1

)
i
,

Ĝ2ℓ+3, . . . , G2s−2 + f i
2ℓ+1

(
α2s−2

2ℓ+1

)
i
, Ĝ2s−1

)

=
(
α2s

2ℓ+1

)
i,j

det(F, F1, . . . , F2ℓ, F2ℓ+1, G2ℓ+2, . . . , Ĝ2s−1)

+ det
(

F, F1, . . . , F2ℓ, Ĝj
2ℓ+1,i, G2ℓ+2 + f i

2ℓ+1

(
α2ℓ+2

2ℓ+1

)
i
,

Ĝ2ℓ+3, . . . , G2s−2 + f i
2ℓ+1

(
α2s−2

2ℓ+1

)
i
, Ĝ2s−1

)
,

where Ĝj
2ℓ+1,i is equal to Ĝ2ℓ+1 except for the ith column which is equal

to gj
2s.

As before, f i
2ℓ+1 and ĝi

2ℓ+1 differ in a sum of columns of F2r, r 6 ℓ. Thus,

we can substitute f i
2ℓ+1 by ĝi

2ℓ+1 in the determinant. After that, we proceed

to simplify the rest of the determinant obtaining

Dj
2ℓ+1,i =

(
α2s

2ℓ+1

)
i,j

D

+ det
(

F, Ĝ1, . . . , G2ℓ, Ĝj
2ℓ+1,i, G2ℓ+2 + ĝi

2ℓ+1

(
α2ℓ+2

2ℓ+1

)
i
,

Ĝ2ℓ+3, . . . , G2s−2 + ĝi
2ℓ+1

(
α2s−2

2ℓ+1

)
i
, Ĝ2s−1

)
,

Unlike the previous case, this time one of the columns of Ĝj
2ℓ+1,i is even,

and hence, the odd columns (other than ĝi
2ℓ+1) do not generate the odd

orthogonal subspace since they are one dimension short. Thus, including

ĝi
2ℓ+1, we have an equal number of odd and even columns and we need to

expand.

The term that includes no ĝi
2ℓ+1 in the expansion is given by

det(F, Ĝ1, G2, . . . , G2ℓ, Ĝj
2ℓ+1,i, G2ℓ+2, . . . G2s−2, Ĝ2s−1) = 0,
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since, as we said before, there are more even columns that odd columns.

The remaining terms in the expansion are

s−1∑

r=ℓ+1

n∑

p=1

(
α2r

2ℓ+1

)
i,p

det
(

F, Ĝ1, . . . , Ĝj
2ℓ+1,i, . . . , Ĝ2r−1, Gi

2r + ĝi
2ℓ+1eT

p ,

Ĝ2r−1, . . . , G2s−2, Ĝ2s−1

)
,

where
(
α2r

2ℓ+1

)
i,p

is the (i, p) entry of α2r
2ℓ+1, Gi

2r has zero ith column and

where ep is the standard canonical basis of R
n with a 1 in the pth entry

and zero elsewhere. Each one of these determinants has an equal number

of odd and even columns. Each column is homogeneous of degree 1, and

so each determinant is homogeneous of degree 2sn. But, like D (also of

degree 2sn), they are multiplied by
(
α2r

2ℓ+1

)
i,p

, homogeneous of degree 1.

Hence, Dj
2ℓ+1,i is homogeneous and d(Dj

2ℓ+1,i) = 2sn + 1.

Finally, since, according to (4.18), the (j, i) entry of T (a2ℓ+1) = c2ℓ+1 is

equal to

Dj
2ℓ+1,i

D
,

we conclude that c2ℓ+1 is homogeneous and d(c2ℓ+1) = 1. This concludes

the proof of the theorem. �

Our final step is to introduce the normalization matrices λk and to study

how they might affect the scaling degree of T (ai
k). Recall that λk has two

factors: dk, used to normalize c0
k and to transform them into their Jordan

form (as in (3.5)); and qk, in the generic case, a diagonal matrix used to

define syzygies among the entries of cm−1
k , as in (3.9) (cm−1

k plays the role

of bm−1
k in (3.9)).

Lemma 4.5. — The matrices λk are homogeneous with respect to (4.10)

and

d(λk) = −1,

for all k.

Proof. — Since λk = dkqk, we will look at each factor separately.

The first factor dk is determined by the normalization of Bk as in (3.8),

where, in our case, Bk = Πm(c0
k) as in (3.6). But, given that c0

k are invariant

under the scaling, Bk will also be, and hence so will dk.

The second factor, qk, is found by using a number of equations of the

form (3.10)–(3.11), which finds each entry of qk as fuctions of the first entry

q1
k. Since cm−1

k (which plays the role of bm−1
r ) is homogeneous with respect

to the scaling, equations (3.10)–(3.11) imply that qi
k are homogeneous also,
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with equal degree. Also, since det qk = det d−1
k δk, where δk = det λk, each

entry of qk will have degree equal to d(δk)/n. Hence, to prove the lemma

we need to show that d(δk) = −n.

But this follows from the fact that NkΛk = ρ−1
k T (ρk), where Λk is as

in (4.7), must have determinant equals 1 since ρk does. Therefore,

det(Nk)δkδk+1, . . . , δk+m−1 = 1.

If we now apply the scaling, and having in mind that d(Nk) = nm, we get

µnm det(Nk)δ̂k δ̂k+1, . . . , δ̂k+m−1 = 1,

where δ̂k+1 is the scaled determinant. As show in [5], this system has a

unique solution whenever N and m are coprime. But

δ̂k+r = δk+rµ−n,

for all r, is clearly a solution. Hence δk are homogeneous and d(δk) = −n.

This concludes the proof. �

We are now in position to prove our main theorem.

Theorem 4.6. — The Grassmannian pentagram map on the moduli

space PN defined by (4.9) is invariant under the scaling (4.10).

Proof. — We need to show that T (ai
k) are homogeneous, and d(T (a2ℓ

k )) =

0, d(T (a2ℓ+1
k )) = 1 for ℓ = 0, . . . , s − 1. As in previous proofs, we will drop

the subindex unless there could be some confusion.

Using (4.9), and denoting by a the last column of Q, we can write T (a)

as

T (a) = Λ−1N−1QT N




On

...

On

λm+1


 ,

or as the solution of the linear system of equations

NΛT (a) = QT N




On

...

On

λm+1


 .

Since we plan to use Cramer’s rule once more, we will study the associated

determinants.
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To start with, we know that det(NΛ) is a homogeneous function of degree

nm − nm = 0. Define

Dj
r,i = det(Fλ, F1λ1, . . . , Fr−1λr−1, F j,λ

r,i , Fr+1λr+1, . . . , F2s−1λ2s−1)

= det(F, F1, . . . , Fr−1, F j,λ
r,i , Fr+1, . . . , F2s−1)δ1 . . . δr−1δr+1 . . . δ2s−1,

where F j,λ
r,i has all the columns equal to Frλr, except for the ith col-

umn which is given by the jth column of F2sλ2s, that is, by F2sλj
2s =

F2sd2sqj
2sej , with d2s and q2s as in (3.8) and (3.9).

Assume r = 2ℓ. — As in the first lemma, we can use (4.13) to write down

the determinants in terms of homogeneous components. For example, the

jth column coming from F2s can be replaced by that of G2s in F j,λ
r,i and we

can simplify the terms to the left of it, including the remaining columns of

F2ℓ. We obtain

det(F, F1, . . . , F2ℓ−1, F j,λ
2ℓ,i, F2ℓ+1, . . . , F2s−1)

= det
(

F, F1, . . . , F2ℓ−1, Gj,λ
2ℓ,i, Ĝ2ℓ+1 + f i

2ℓ(α
2ℓ+1
2ℓ )i,

G2ℓ+2, . . . , Ĝ2s−1 + f i
2ℓ(α

2s−1
2ℓ )i

)
.

The block column Gj,λ
2ℓ,i is equal to G2ℓλ2ℓ except for the ith column, which

is equal to G2sλj
2s. We can further use (4.13) to substitute f i

2ℓ with gi
2ℓ.

Once we do that, we see that the even orthogonal subspace is generated

by the columns of G2r, r = 0, . . . , s − 1 except for the extra column in

G2ℓ, which in this case is generically covered by combination of columns in

G2sλj
2s. Thus, as before, we can remove the gi

2ℓ terms from the determinant

and simplify to the left of the 2ℓ position.

We obtain

Dj
r,i = det

(
F, Ĝ1, G2 . . . , Ĝ2ℓ−1, Gj,λ

2ℓ,i, Ĝ2ℓ+1, . . . , Ĝ2s−1

)

δδ1 . . . δ2ℓ−1δ2ℓ+1 . . . δ2s−1,

with hats and non-hats alternating. All of the columns of Gr are homo-

geneous of degree 1 for any r. On the other hand, the columns of Gj,λ
2ℓ,i

have degree zero since G2ℓ has degree 1 and λ2ℓ has degree −1, so does

G2sλj
2s = G2sd2sqj

2sej . Therefore,

d(Dj
r,i) = n(m − 1) − n(m − 1) = 0.

The (j, i) entry of T (a2ℓ) is given by
Dj

2ℓ,i

D , and hence d(T (a2ℓ)) = 0.
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Assume r = 2ℓ + 1. — In this case, and always using (4.13), the deter-

minant

Dj
r,i = det(Fλ, F1λ1, . . . , F2ℓλ2ℓ, F j,λ

2ℓ+1,i, F2ℓ+2λ2ℓ+2, . . . , F2s−1λ2s−1),

can be further simplified replacing the ith column of F j,λ
2ℓ+1,i, given by

F2sλj
2s, by

hj,λ
2s = G2sλj

2s + F2ℓ+1α2s
2ℓ+1λj

2s.

We can then simplify the side of the determinant to the right of F j,λ
2ℓ+1,i so

that F2r+1 → Ĝ2r+1 and F2r → G2r + f i
2ℓ+1

(
α2r

2ℓ+1

)
i
. After this simplifica-

tion we can also substitute f i
2ℓ+1 with ĝi

2ℓ+1 and F j,λ
2ℓ+1,i by Ĝj,λ

2ℓ+1,i, where

all columns of Ĝj,λ
2ℓ+1,i are equal to those of Ĝ2ℓ+1λ2ℓ+1, except for the ith

column, given by

gj,λ
2s = G2sλj

2s + Ĝ2ℓ+1α2s
2ℓ+1λj

2s.

We then continue to simplify the part of the determinant to the left of

Ĝj,λ
2ℓ+1,i. The result of all these simplifications is the determinant

det
(

F, Ĝ1, G2, . . . , G2ℓ, Ĝj,λ
2ℓ+1,i, G2ℓ+2 + ĝi

2ℓ+1

(
α2ℓ+2

2ℓ+1

)
i
,

Ĝ2ℓ+3, . . . , G2s−2 + ĝi
2ℓ+1

(
α2s−2

2ℓ+1

)
i
, Ĝ2s−1

)
.

First of all, notice that if we expand this determinant, the term in the

expansion without any gi
2ℓ+1 is given by

det(F, Ĝ1, . . . , G2ℓ, Xλ, G2ℓ+2, . . . , Ĝ2s−1),

where Xλ equals Ĝ2ℓ+1λ2ℓ+1 except for the ith column given by

Ĝ2ℓ+1α2s
2ℓ+1λj

2s. All columns of Ĝ2ℓ+1λ2ℓ+1 have degree zero, except for the

ith column which has degree 1 (d(Ĝ2ℓ+1) = d(α2s
2ℓ+1) = 1 while d(λj

2s) =

−1). Therefore, the degree of this determinant is n(m − 1) + 1.

If we now look at any of the terms in the expansion containing gi
2ℓ+1, we

have

s−1∑

r=ℓ+1

n∑

p=1

(
α2r

2ℓ+1

)
i,p

det
(

F, Ĝ1, . . . , Y λ, . . . , Ĝ2r−1, Gi
2r + ĝi

2ℓ+1eT
p ,

Ĝ2r−1, . . . , G2s−2, Ĝ2s−1

)
,

where
(
α2r

2ℓ+1

)
i,p

is the (i, p) entry of α2r
2ℓ+1, Gi

2r has zero ith column and

where ep is the standard canonical basis of R
n. The matrix Y λ is equal

to Ĝ2ℓ+1λ2ℓ+1 except for the ith column, which is equal to gj,λ
2s . We can
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further simplify gj,λ
2s to become G2sλj

2s since its odd term is generated by

the other columns.

Each column has degree 1, except for those in Y λ, which have degree 0.

Since each term is multiplied by
(
α2r

2ℓ+1

)
i,p

, of degree 1, each term has

degree n(m − 1) + 1, and so does the determinant. From here

d(Dj
2ℓ+1,i) = n(m − 1) + 1 − n(m − 1) = 1.

Since the (j, i) entry of T (a2ℓ+1) is given by
Dj

2ℓ+1,i

D , we have

d(T (a2ℓ+1)) = 1,

which concludes the proof of the theorem. �

This theorem allows us to define the Lax representation for the map T

on PN . Indeed, if we define

Qk(µ) =




On On . . . On a0
k

In On . . . On µa1
k

On In . . . On a2
k

...
. . .

. . .
. . .

...

On . . . On In µa2s−1
k




,

then there is a unique matrix Nk(µ) such that

(4.21) T (Qk(µ)) = Nk(µ)−1Λ−1
k Qk(µ)ΛnNk(µ).

The matrix Nk(µ), which is invariant and hence depends on ar
k, is simply

the matrix Nk in (4.6) rescaled by (4.10), that is

Nk(µ) = µ
(

rk, Qk(µ)rk+1, Qk(µ)Qk+1(µ)rk+2, . . . ,

[
Qk(µ) . . . Qk+2s−2(µ)

]
rk+2s−1

)
.

(We can ignore the factor µ in front.) The system of equations

T (ηk) = ηkNk(µ); ηk+1 = ηkQk(µ),

has (4.21) as compatibility condition. (4.21) must be independent from µ

since T is defined by its last column, and it is preserved by the scaling,

while the rest of the entries are zero or In, and hence independent from

µ. Hence, this system is a standard Lax representation for the Pentagram

map on Grassmannian, which can be used as usual to generate invariants

of the map. Indeed, the conjugation class of the monodromy is preserved

by the map T : PN → PN , as we saw before. Since a representative of the

class is given by M = Q0Q1 . . . QN−1, we obtain the following theorem.
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Theorem 4.7. — The map T : PN → PN lies on the Riemann surface

det(Q0(µ)Q1(µ) . . . QN−1(µ) − ηInm) = 0

with µ, η ∈ C.

5. Pentagram map on Gr(n, (2s + 1)n)

5.1. Definition of the map

In this section we will define the Pentagram map for the Grassmannian

Gr(n, (2s + 1)n) for s > 1. Recall that the dimension of Gr(n, (2s + 1)n) is

2sn2.

Assume that ℘ = (lk) is a twisted polygon on Gr(n, (2s+1)n) and let Xk

be any twisted lift. Let Πk be the unique n(s+1) linear subspace containing

the following subspaces

Πk = 〈Xk, Xk+2, . . . , Xk+2s〉.

We define the pentagram map to be the map T taking the polygon ℘ to

the unique twisted polygon (with the same monodromy) whose kth vertex

has a lift given by the intersections Πk ∩ Πk+1. This map can be defined

either on the space of polygons, or on the vertices. The map T is well

defined and independent from the lift X. In fact, from the Grassmann

formula we get

(2s + 1)n = dim(Πk−1 + Πk) = dim Πk−1 + dim Πk − dim(Πk−1 ∩ Πk)

= (s + 1)n + (s + 1)n − dim(Πk−1 ∩ Πk)

= 2(s + 1)n − dim(Πk−1 ∩ Πk),

which shows that dim(Πk−1 ∩ Πk) = n for any k, and hence Πk ∩ Πk+1 is

a lift of a unique element in Gr(n, (2s + 1)n), an element equals to the kth

vertex of T (℘). As before, we will abuse notation and use T equally for the

map on polygons, on their lifts, on frames or on the moduli space.

Clearly the pentagram map is invariant under the action of the projective

group (linear on lifts), and therefore one is able to write it as a map on the

moduli space of Grassmannian polygons, as represented by the invariants

we found in Section 3. This is what we do next.

Let us consider a twisted normalized lift V = (Vk) of a regular N -gon,

℘ = (lk) as in Theorem 3.1. Then, using dimension counting, there exist

2s + 1 squared n × n matrices a0
k, a1

k, . . . , a2s−1
k , a2s

k such that

(5.1) Vk+2s+1 = Vka0
k + Vk+1a1

k + · · · + Vk+2s−1a2s−1
k + Vk+2sa2s

k .
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The blocks will be normalized so that a0
k is diagonal or Toeplitz, and the

entries of a2s
k have a number of syzygies that relate them.

If the lift is twisted, then ai
k will be N -periodic for i = 0, 1, 2, · · · , 2s;

that is

(5.2) ai
k+N = ai

k,

for any k.

Since T (Vk) ∈ Πk+1, we can assume that there exists ci
k, n × n matrices

such that

(5.3) T (Vk) = Vk+1c1
k + Vk+3c3

k + · · · + Vk+2s−1c2s−1
k + Vk+2s+1c2s+1

k ,

for all k ∈ Z.

On other hand, we can replace Vk+2s+1 in the last term of (5.3) by

(5.4) Vk+2s+1 = Vka0
k + Vk+1a1

k + · · · + Vk+2s−1a2s−1
k + Vk+2sa2s

k .

It follows that

(5.5)

T (Vk) = Vk+1c1
k + Vk+3c3

k + · · · + Vk+2s−1c2s−1
k

+ (Vka0
k + Vk+1a1

k + · · · + Vk+2s−1a2s−1
k + Vk+2sa2s

k )c2s+1
k

= Vka0
kc2s+1

k + Vk+1[c1
k + a1

kc2s+1
k ] + Vk+2a2

kc2s+1
k

+ Vk+3[c3
k + a3

kc2s+1
k ] + · · · · · · + Vk+2s−2a2s−2

k c2s+1
k

+ Vk+2s−1[c2s−1
k + a2s−1

k c2s+1
k ] + Vk+2sa2s

k c2s+1
k .

Since we also have T (Vk) ∈ Πk, it follows that c2ℓ+1
k = −a2ℓ+1

k c2s+1
k for any

ℓ = 0, . . . , s − 1, and

T (Vk) =
[
Vka0

k + Vk+2a2
k + · · · + Vk+2s−2a2s−2

k + Vk+2sa2s
k

]
c2s+1

k .

Remark 5.1. — As in the previous case, the matrix invariant matrix c2s+1
k

has no apparent restrictions, but in fact, it is completely determined. In

order to be able to define the pentagram map on the moduli space coor-

dinates given by the matrices aj
k, we need to guarantee that {T (Vk)}N

k=1

is the lift of T (lk) as described by Theorem 3.1, as far as T (℘) is generic.

As we showed in Theorem 3.1, there is such a unique lift, and c2s+1
k = λk

will be the proportional matrix that appears in the theorem. In fact, we

have not shown that if ℘ is regular, so is T (℘). As it was the case with the

original pentagram map ([9]), the map is only generically defined.)

Example 5.2. — For s = 1, that is, on Gr(n, 3n) the Pentagram map is

T (Vk) = (Vka0
k + Vk+2a2

k)λk = (Vk, Vk+1, Vk+2)




a0
k

On

a2
k


 λk = ρkrkλk,
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for any k ∈ Z.

Now, define

(5.6) ρk = (Vk Vk+1 . . . Vk+2s−1 Vk+2s),

so that for any k ∈ Z

T (Vk) = ρk




a0
k

On

a2
k

On

...

On

a2s
k




λk.

As before, if ρk+1 = ρkQk, and

rk =




a0
k

On

a2
k
...

a2s−2
k

On

a2s
k




,

and if we extend T to ρk by applying it to each block-column, we can write

(5.7) T (ρk) = ρk

(
rkλk Rk+1rk+1λk+1 · · · Rk+2srk+2sλk+2s

)
,

where, if Qk is given as in (3.2), then Rk+i = QkQk+1 · · · Qk+i−1, for

i = 1, 2, . . . .

Now, as we did before, for any k ∈ Z define

Nk =
(
rk Rk+1rk+1 Rk+2rk+2 · · · Rk+2srk+2s

)
.

It follows that

(5.8) T (ρk) = ρkNkΛk, ρk+1 = ρkQk,

where

Λk =




λk On . . . On

On λk+1 . . . On

. . .
. . .

. . .
. . .

On . . . On λk+2s


 .
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As before, the compatibility condition of these two natural maps is given

by

T (T (ρk)) = T (ρkNk) = ρk+1Nk+1 = T (T (ρk))

= T (ρk+1) = T (ρkQk) = T (ρk)T (Qk).

Hence

ρk+1Nk+1Λk+1 = T (ρk)T (Qk) = ρkNkΛkT (Qk),

for all k ∈ Z. It shows that (5.8), together with

(5.9) T (Qk) = Λ−1
k N−1

k QkNk+1Λk+1,

holds true for any k ∈ Z and describes a discrete, parameter free, Lax

representation for the map T defined on the moduli space as represented by

the invariants that appear in the last column of Qk. Notice that from (5.7)

we now that λk are also periodic, that is λk+N = λk for any k. And from

the definition in (3.2) so are both Qk and Rk.

5.2. A Lax representation for the pentagram map on
Gr(n, (2s + 1)n

As we did for the even dimensional case, in this section we will prove

that one can introduce a parameter µ in (5.8) in such a way that (5.9) will

be independent from µ. This will define a true Lax representation that can

be used for integration of the map. As it was done in [5], we will prove that

the map T is invariant under a scaling, this time given by

(5.10)
a2r+1

k → µ−1+r/sa2r+1
k , r = 0, . . . s − 1

a2r
k → µr/sa2r

k , r = 0, 1, . . . , s.

We will follow the same steps as in the even dimensional case. The first

steps involve proving that the map defined without the proportional matrix

λk is invariant under the scaling. We will then calculate the degree of λk

using these results and incorporate the proportional matrices λk to the map

to finally calculate the degree of T (ai
k).

First of all, notice that if, as before, we denote by Fk+r the r + 1 block-

column of Nk, the analogous to Lemma 4.3 still holds true. We cite it here

without proof, since the proof is identical.
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Lemma 5.3. — Let Fk = rk and Fk+ℓ = Rk+ℓrk+ℓ, ℓ = 1, . . . as above.

Then, there exist n × n matrices αj
i such that

(5.11)

Fk+2ℓ =

ℓ∑

r=1

Fk+2r−1α2ℓ
2r−1 + Gk+2ℓ,

Fk+2ℓ+1 =

ℓ∑

r=0

Fk+2rα2ℓ+1
2r + Ĝk+2ℓ+1,

for ℓ > 1, where

(5.12)
Ĝk+2ℓ+1 = pk (T Gk+2ℓ)2s + ΓT Gk+2ℓ,

α2ℓ+1
2r = T α2ℓ

2r−1, α2ℓ+1
0 = (T Gk+2ℓ)2s ,

with

(5.13) pk =




On

a1
k

On

a3
k

On

...

a2s−1
k

On




,

and

(5.14) Gk+2ℓ+2 = ΓT Ĝk+2ℓ+1, α2ℓ+2
2r+1 = T α2ℓ+1

2r , Gk = Fk = rk.

By A2s we mean the last n × n block entry of a matrix A.

The main difference with the even dimensional case is that the even

block-columns G2ℓ start now with a non-zero block (while before it started

with a zero one), and generate a (s+1)n dimensional subspace, orthogonal

to those generated by the odd ones Ĝ2ℓ+1, which start with a zero block

and generate a sn dimensional subspace. Also, in this case the first two

blocks of G2ℓ are zero since Gk+2ℓ = ΓT Ĝk+2ℓ−1 and Γ shifts all the blocks

once downwards.

Assume first that we drop the Λk factor and define

T (Vk) = ρkrk.

Define also ci
k = T (ai

k), which is given by the compatibility formula below,

the analogous to (4.17)

T (Qk) = N−1
k QkNk+1.
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Then

T (ak) = N−1
k QkT Fk+2s = N−1

k Fk+2s+1,

which can be written as

(5.15) NkT (ak) = Fk+2s+1.

Once more T (ak) can be interpreted as the solution of the linear equa-

tion (5.15).

Theorem 5.4. — The matrices ci
k are homogenous with respect to the

scaling (5.10), and

d(c2ℓ
k ) =

ℓ

s
, d(c2ℓ+1

k ) = −1 +
ℓ

s
.

Notice that the degree of cr
k coincides with that of ar

k. Later we will show

that λk are all invariant under scaling and this theorem will essentially

prove the invariance of the map under (5.10).

Let us once more drop the subindex k unless needed. As we did in the

previous case, we will work with determinants of the form Dj
r,i, simplifing

them down to their homogeneous component, and calculating their degree.

Because they are solution of (5.15), each entry of cr will be a quotient of

these determinants and D, and this way we will be able to determine their

degree. The study comes in a number of lemmas.

Lemma 5.5. — The determinant

D = det(F, F1, . . . , F2s),

is invariant under (5.10).

Proof. — Using (5.11) we have that

D = det(F, Ĝ1, G2, . . . , Ĝ2s−1, G2s).

This time all G2r = ΓT Ĝ2r−1 have the first two blocks equal On; therefore,

the blocks in the first row of D are all zero, except for the first block which

is the first block of F = r, i.e. a0, and which is invariant under scaling.

If we simplify using the first n rows, we have the determinant of a matrix

that looks like


A1,1 On A1,2 On . . . A1,s On

On B1,1 On B1,2 . . . On B1,s

A2,1 On A2,2 On . . . A2,s On

On B2,1 On B2,2 . . . On B2,s

... . . . . . . . . . . . . . . . . . .

As,1 On As,2 On . . . As,s On

On Bs,1 On Bs,2 . . . On Bs,s




,
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where Ai,j are the nonzero blocks of Ĝ2j−1 and Bi,j are the nonzero blocks

of G2j . Using n2s(s − 1) exchanges of rows and columns, this determinant

can be easily transformed into

det

(
A Osn

Osn B

)
,

with A = (Ai,j) and B = (Bi,j). Also, since G2ℓ = ΓT Ĝ2ℓ−1, we have that

B = T A and D = det A det T A.

We will next show that d(Ai,j) = i−j
s . This will imply, from the definition

of determinant, that d(det A) = n
∑s

i=1

∑s
j=1

i−j
s = 0, concluding the

proof.

Indeed, from (5.12) we have

Ĝ2ℓ+1 = p (T G2ℓ)2s + ΓT G2ℓ = p
(

T 2Ĝ2ℓ−1

)
2s−1

+ Γ2T 2Ĝ2ℓ−1,

and using this we conclude that

(5.16) Ak,ℓ+1 = a2k−1T As,ℓ + T 2Ak−1,ℓ.

The degrees of the nonzero blocks of p are given by

−1, −1 +
1

s
, −1 +

2

s
, . . . , −1 +

s − 1

s
,

while the degree of a2s is 1. Thus,

d(Ak,1) = d(a2k−1a2s) = d(T a2k−2) =
k − 1

s
.

We now use induction. Assume that d(Ai,j) = i−j
s for all i = 1, . . . s and

all j < ℓ. From (5.16) we have that, since d(a2k−1) = −1 + k−1
s ,

d(a2k−1T 2As,ℓ) = −1 +
k − 1

s
+

s − ℓ

s
=

k − ℓ − 1

s
;

d(T 2Ak−1,ℓ) =
k − 1 − ℓ

s
,

and so

d(Ak,ℓ+1) =
k − (ℓ + 1)

s
,

concluding the proof of the lemma. �

Let us denote by Dj
r,i the determinant given by

Dj
r,i = det(F, F1, . . . , Fr−1, F j

r,i, Fr+1, . . . , F2s),

where F j
r,i is the block-column obtained from Fr by substituting the ith

column, f i
r, with the jth column of F2s+1, f j

2s+1.
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Lemma 5.6. — Determinant Dj
2ℓ+1,i is homogeneous for all i, j = 1, . . . n,

and ℓ = 0, . . . , s − 1, and

d(Dj
2ℓ+1,i) = −1 +

ℓ

s
.

Proof. — As in the previous cases we will make heavy use of (5.11) to re-

duce the determinants to their homogeneous components before calculating

their degree. First of all we will substitute the ith column of F j
2ℓ+1,i in

det(F, F1, . . . , F2ℓ, F j
2ℓ+1,i, F2ℓ+2, . . . , F2s),

by that of Ĝ2s+1, ĝj
2s+1, since the difference is a combination of even

columns, which are all present in the determinant. We can then simplify

the columns to the right of this and substitute them by either Ĝ2r+1 or by

G2r + ĝi
2ℓ+1

(
α2r

2ℓ+1

)
i
,

where a super index indicate the column, a subindex the row. We can then

substitute all the remaining columns of F j
2ℓ+1,i and Fr, r 6 2ℓ by those of

Gr or Ĝr, depending on parity, to obtain

Dj
r,i = det

(
F, Ĝ1, . . . , G2ℓ, Ĝj

2ℓ+1,i, G2ℓ+2 + ĝi
2ℓ+1

(
α2ℓ+2

2ℓ+1

)
i
,

Ĝ2ℓ+3, . . . , G2s + ĝi
2ℓ+1

(
α2s

2ℓ+1

)
i

)
,

where Ĝj
2ℓ+1,i is equal to Ĝ2ℓ+1 except for its ith column which has been

substituted by the jth column of Ĝ2s+1. Since the missing column in Ĝ2ℓ+1

has been substituted by another odd column, if we expand this determinant

all the terms that include any extra column ĝi
2ℓ+1 will vanish since we

already have odd columns equal to half the dimension in their standard

position. Therefore

Dj
r,i = det(F, Ĝ1, . . . , G2ℓ, Ĝj

2ℓ+1,i, G2ℓ+2, Ĝ2ℓ+3, . . . , G2s).

Consider now the following product

(5.17) ĝj
2s+1 = ĝi

2ℓ+1 ⊗ (ĝi
2ℓ+1)−1 ⊗ ĝj

2s+1,

where by (ĝi
2ℓ+1)−1 we mean the vector whose entries are the inverses of

the entries of ĝi
2ℓ+1, and where the product represents the individual entries

product, as customary. We claim that (ĝi
2ℓ+1)−1 ⊗ ĝj

2s+1 is homogeneous,

each entry with the same degree. Indeed, using the fact that d(Ai,j) = i−j
s

(recall that Ai,j , i = 1, . . . s, are the nonzero blocks of Ĝ2j−1, j = 1, . . . , s),
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we can see that

d((ĝi
2ℓ+1)−1 ⊗ ĝj

2s+1) = d(ĝj
2s+1) − d((ĝi

2ℓ+1)

=

(
∗, −1, ∗, −1 +

1

s
, ∗, . . . , ∗, −1 +

s − 1

s
, ∗

)

−

(
∗, −

ℓ

s
, ∗,

1 − ℓ

s
, ∗, . . . , ∗,

s − 1 − ℓ

s
, ∗

)

=

(
∗, −1 +

ℓ

s
, ∗, −1 +

ℓ

s
, ∗, . . . , ∗, −1 +

ℓ

s
, ∗

)
,

where ∗ indicates the position of a zero block. Therefore, substituting ĝj
2s+1

by (5.17) in the determinant, expanding the determinant using this column,

and using the fact that D is invariant under scaling gives us

d(Dj
2ℓ+1,i) = −1 +

ℓ

s
,

as claimed. �

Lemma 5.7. — Determinant Dj
2ℓ,i is also homogeneous for all i, j =

1, . . . , n, ℓ = 0, . . . , s − 1 and

d(Dj
2ℓ,i) =

ℓ

s
.

Proof. — The proof of this case is a bit more complicated. We need to

look at the determinant

Dj
2ℓ,i = det(F, F1, . . . , F2ℓ−1, F j

2ℓ,i, F2ℓ+1, . . . , F2s).

As before, we simplify the ith column of F j
2ℓ,i, using (5.11). That is, f j

2s+1

will be substituted by

(5.18) ĝj
2s+1 + f i

2ℓ

(
α2s+1

2ℓ

)
i,j

.

We can then substitute the columns to the right of this one: we substitute

F2r+1 by Ĝ2r+1 + f i
2ℓ

(
α2r+1

2ℓ

)
i

and F2r by G2r. We can also substitute f i
2ℓ

in the expression of F2r+1 by gi
2ℓ. We then change the remaining columns

in F j
2ℓ,i, including f i

2ℓ, by those of G2ℓ (we call the resulting matrix Gj
2ℓ,i),

and substitute the F ’s blocks to the left of Gj
2ℓ,i by G-blocks. Then, col-

umn (5.18) becomes

(5.19) ĝj
2s+1 + gi

2ℓ

(
α2s+1

2ℓ

)
i,j

.
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and the resulting determinant is given by

det
(

F, Ĝ1, G2 . . . , Ĝ2ℓ−1, Gj
2ℓ,i, Ĝ2ℓ+1 + gi

2ℓ

(
α2ℓ+1

2ℓ

)
i
,

G2ℓ+2, . . . , Ĝ2s−1 + gi
2ℓ

(
α2s+1

2ℓ

)
i
G2s

)
.

If we now expand the determinant using the ith column of Gj
2ℓ,i, i.e. (5.19),

we have

Dj
2ℓ,i =

(
α2s+1

2ℓ

)
i,j

D

+ det
(

F, Ĝ1, G2 . . . , Ĝ2ℓ−1, Gj
2ℓ,i, Ĝ2ℓ+1 + gi

2ℓ

(
α2ℓ+1

2ℓ

)
i
,

G2ℓ+2, . . . , Ĝ2s−1 + gi
2ℓ

(
α2s+1

2ℓ

)
i
G2s

)
,

where Gj
2ℓ,i has as ith column ĝj

2s+1 and G2ℓ elsewhere.

Notice that, once more, if we expand this determinant, the terms with

no Gi
2ℓ will be zero since we have more odd columns that are needed to

generate the odd subspace (indicated with a hat) given that Gj
2ℓ,i contains

one. Thus, the determinant expands as

s−1∑

r=ℓ+1

n∑

p=1

(
α2r+1

2ℓ

)
i,p

det
(

F, Ĝ1, G2, . . . , Gj
2ℓ,i, Ĝ2ℓ+1, . . . ,

Ĝp
2r+1 + gi

2ℓe
T
p , G2ℓ+1, . . . , G2s

)
,

where Ĝp
2r+1 indicates Ĝ2r+1 with a zero p column. Each one of these

terms can transformed by shifting the p column of Ĝp
2r+1 + gi

2ℓe
T
p and the

ith column of Gj
2ℓ,i. The expansion becomes

(5.20)

s−1∑

r=ℓ+1

n∑

p=1

±
(
α2r+1

2ℓ

)
i,p

det(F, Ĝ1, G2, . . . , G2ℓ, Ĝ2ℓ+1, . . . ,

Ĝp
2r+1 + ĝj

2s+1eT
p , G2ℓ+1, . . . , G2s),

and now we are ready to calculate degrees. Substitute ĝj
2s+1 by

ĝj
2s+1 = ĝj

2s+1 ⊗ (ĝp
2r+1)−1 ⊗ ĝp

2r+1,
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as before, and notice that the degree of ĝj
2s+1 ⊗ (ĝp

2r+1)−1 is the same for

all of its block-entries and equal to −1 + r
s

d(ĝj
2s+1 ⊗ (ĝp

2r+1)−1) = d(ĝj
2s+1) − d(ĝp

2r+1) =




∗
1−(s+1)

s

∗
2−(s+1)

s
...

s−(s+1)
s

∗




−




∗
1−(r+1)

s

∗
2−(r+1)

s
...

s−(r+1)
s

∗




.

We now need to calculate the degree of αj
i . This is simple from (5.12)

and (5.14). We see that

d(α2r+1
0 ) =

s − r

s
, d(α2r+1

2ℓ ) = d(α
2(r−ℓ)+1
0 ) = 1 −

r − ℓ

s
,

d(α2r
2ℓ+1) = d(α

2(r−ℓ−1)+1
0 ) = 1 −

r − ℓ − 1

s
.

With this, every term in the expansion (5.20) has degree

−1 +
r

s
+ d(

(
α2r+1

2ℓ

)
i,p

) = −1 +
r

s
+ 1 −

r − ℓ

s
=

ℓ

s
,

and since

d
((

α2s+1
2ℓ

)
i,j

D
)

= d
((

α2s+1
2ℓ

)
i,j

)
= 1 −

s − ℓ

s
=

ℓ

s
,

we conclude the proof of the lemma. �

After these results, the proof of Theorem 5.4 is immediate since the entry

(j, i) of cr is the quotient

Dj
r,i

D
,

and so d(cr) = d(Dj
r,i), which coincide with the statement of the theorem.

Finally, the following theorem is a consequence of 5.4.

Theorem 5.8. — If N and m are coprime, the map T is invariant under

the scaling (5.10).

Proof. — To prove this result we simply need to prove that λk are in-

variant under scaling. After this fact is proved, computations similar to

those in the proof of Theorem 4.6 will show that even as we introduce λk

in the different block columns of determinants D and Dj
ℓ,i, they do alter

neither the homogeneity nor the degree of the determinants because they
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are invariant under the scaling and all columns of a block-column have the

same degree (and so do their linear combinations). Therefore

d(cr
k) = d(T (ar

k)) = d(ar
k),

for any k and r = 0, . . . , m − 1. We will avoid further details of those com-

putations since they are almost identical to those in 4.6 and the interested

reader can reproduce them.

To show that λk are invariant under scaling is not hard: if N and m are

coprime, their determinants, δk = det λk, are the unique solution of

det Nkδkδk+1 . . . δk+m−1 = 1,

and since det Nk = Dk, det Nk is invariant under the scaling (since

d(Dk) = 0) and so are δk for any k. We next look at each factor in the

splitting of λk = dkqk. As in the previous case, the factors dk are deter-

mined by the normalization of Bk = Πm(c0
k) as in (3.6), and since c0

k are

invariant under the scaling, so will dk.

Finally, qk are uniquely determined by equations of the form (3.10)

and (3.11) for cm−1
k , and by their determinants. Since ck

i,j =

cm−1
k−m+1cm−1

k−m+1 . . . cm−1
N+k−m is homogeneous, equations (3.10)–(3.11) are

scaling invariant. Furthermore, det qk = det d−1
k δk and both δk and det dk

are scaling invariant, so is det qk. Therefore, qk are scaling invariant and so

are λk. �

As in the even dimensional case, this theorem allows us to define the Lax

representation for the map T : PN → PN . Indeed, if we define

Qk(µ) =




On On On . . . On On a0
k

In On On . . . On On µ−1a1
k

On In On . . . On On µ
1
s a2

k

On On In . . . On On µ−1+ 1
s a3

k
...

. . .
. . .

. . .
...

...
...

On On . . . On In On µ−1+ s−1
s a2s−1

k

On On . . . On On In µa2s
k




,

then we can define

Nk(µ) = (rk(µ), Rk(µ)rk+1, Rk+1(µ)rk+2(µ), . . . , Rk+m−2(µ)rk+m−1(µ)),
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where

rk(µ) =




a0
r

On

µ
1
s a2

r

On

µ
2
s a4

r
...

On

µas
k




,

and Rk+r(µ) = Qk(µ)Qk+1(µ) . . . Qk+r(µ). The compatibility condition of

the system

ρk+1 = ρkQk(µ), T (ρk) = ρkNk(µ),

will be given by

(5.21) T (Qk(µ)) = Nk(µ)−1Λ−1
k Qk(µ)ΛnNk(µ).

(5.21) must be independent from µ since T is defined by its last column,

and it is preserved by the scaling, while the rest of the entries are zero

or In, and hence independent from µ. Hence, this system is a standard

Lax representation for the Pentagram map on Grassmannian in the case

m = 2s + 1, which can also be used as usual to generate invariants of the

map. With this new scaling, Theorem 4.7 is also true in the case when m

is odd.
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