
The PEPA Eclipse Plug-in

Mirco Tribastone
mtribast@inf.ed.ac.uk

Adam Duguid
a.j.duguid@sms.ed.ac.uk

Stephen Gilmore
stg@inf.ed.ac.uk

Laboratory for Foundations of Computer Science
The University of Edinburgh

ABSTRACT
The PEPA Eclipse Plug-in supports the creation and analysis of per-
formance models from small-scale Markov models to large-scale
simulation studies and differential equation systems. Whichever
form of analysis is used, models are expressed in a single high-
level language for quantitative modelling, Performance Evaluation
Process Algebra (PEPA).

1. INTRODUCTION
Performance Evaluation Process Algebra (PEPA) [1] is a concise

formal language for high-level quantitative modelling. Applied to
modelling problems across the breadth of computer systems perfor-
mance evaluation and beyond it has users in countries all over the
world. Software tools for PEPA provide support for the modelling
process from the early stages of model development and debugging
right through to automating the experimentation process and cul-
minating in visualisation of numerical results in the form of graphs
and charts.

A large part of the appeal of PEPA, leading to its widespread
adoption, is the clean definition of simple process structures in the
language. As with process algebras in the CSP tradition, a PEPA
model is a parallel composition of sequential components, thus all
PEPA models are finite state by construction. A simple example of
a sequential component is Process1, shown below.

Process1 = (use, r).Process2;

Thus Process1 performs activity use at rate r and evolves to
Process2 (which performs other activities, eventually returning
to Process1). A second copy of this component can be com-
posed in parallel with the first to express unsynchronised concur-
rent execution, written Process1 <> Process1, or equivalently
Process1[2]. An array of six copies would be Process1[6].

Activities allow one component to co-operate with another. Thus
if the CPU1 component is defined as below

CPU1 = (use, r).CPU2;

then the co-operation Process1 <use> CPU1 can perform the
use activity and evolve to be Process2 <use> CPU2, with both
components moving on together.

Alternative behaviours are expressed as a choice. For example

DISK1 = (read, 0.999 * mu).DISK2
+ (fail, 0.001 * mu).DISK0;

describes a disk with rare failures. Papers [2] and [3] provide an
up-to-date introduction to PEPA. A complete formal description is
available in [1].

A distinctive strength of the PEPA language is that it has two
consistent quantitative semantic interpretations. The first interprets

a PEPA model as giving rise to a Continuous-Time Markov Chain
(CTMC) [1]; the second interprets a PEPA model as giving rise to a
system of Ordinary Differential Equations (ODEs) [4]. The ODEs
approximate a very large discrete-state system as a continuous-state
system.

The benefit which this brings to users is that they can begin
developing small-scale models using intuitive discrete-state nav-
igators to investigate model behaviour. When larger and larger
arrays of components are used the complexity of the model will
grow beyond the limits of discrete-state representation. In this case
the modeller can apply the fluid-flow semantics instead, generate a
system of ODEs and analyse these. The ODE-based representation
does not have the same level of support for state-space navigation
but does allow large-scale modelling because the size of the system
of differential equations does not depend on the number of copies
of each sequential component in the PEPA model.

This paper presents the PEPA Eclipse project (home page avail-
able at http://www.dcs.ed.ac.uk/pepa/tools), a soft-
ware tool integrated into the popular Eclipse platform which enables
Markovian steady-state analysis, stochastic simulation, and ODE
analysis of PEPA models. The remainder of this paper is organised
as follows. Section 2 gives an overview of Eclipse and discusses
the architecture of the tool. Section 3 introduces Pepato, the core
Application Programming Interface for the language. Section 4 is
concerned with the elements of the user interface. Finally, Section 5
concludes the paper and draws future tool development directions.

2. OVERVIEW

2.1 The Eclipse Framework
Eclipse is a software platform written primarily in Java. Initially

developed by IBM, it is now open source and is managed by the
Eclipse foundation [5]. Eclipse comprises a run-time environment
(Equinox) compliant with the OSGi standard, based on an exten-
sible architecture. A plug-in is a software component that adds
functionality to Equinox. The Eclipse foundation has developed
and made freely available a rich set of plug-ins that deliver an inte-
grated development environment (IDE) for this framework. The
IDE itself is extensible through the same plug-in mechanism; for
instance, one of the most popular plug-in projects for the Eclipse
IDE is JDT, a powerful toolkit for Java development.

The IDE revolves around the notion of workbench, which repre-
sents the main container of the Eclipse user interface. An Eclipse
workspace contains a menu bar, a tool bar, a status bar, and a col-
lection of editors and views. The two latter components are both
used as a presentation layer to some underlying business model; an
editor to alter the underlying model of its registered types while a
view presents contextual information.

The PEPA Eclipse project comprises contributions to the Eclipse
framework for the development and the analysis of PEPA perfor-
mance models. The project is organised as a set of plug-ins which
perform various PEPA-related tasks. As with most medium- to
large-sized Eclipse projects, these plug-ins are conveniently pack-
aged into features. One advantage is that the plug-ins can be directly
installed from within Eclipse through a user-friendly Update Man-
ager, which also takes care of dependency resolution.

To install the PEPA Eclipse project the user points the Update
Manager to http://www.dcs.ed.ac.uk/pepa/update/.
A few simple steps presented in a wizard dialogue will guide the
user through the process of downloading and installing the nec-
essary components on the Eclipse platform. Seamless upgrade to
newer versions of the product is available via the same interface.

2.2 Architecture
The architecture of the PEPA Eclipse project exhibits a loosely-

coupled intra- and inter-component interaction to allow ease of
maintainability and accomodate further enhancements of function-
ality. The project consists of the following six plug-ins: 1) Pepato;
2) Common; 3) Common UI; 4) Eclipse Core; 5) Eclipse Core UI;
6) PEPA Help plug-in.

The Common and Common UI plug-ins provide necessary sup-
port to the other plug-ins of the system, as they encapsulate pieces
of commonly-used functionality such as routines for path manipu-
lation, services that handle the progress of long-running tasks, and
frameworks for plotting tools. Because of their ancillary nature,
they will not be discussed further. A user manual is provided in
HTML format through the PEPA Help plug-in as an extension of
the Eclipse Help system. This is the standard mechanism of docu-
menting plug-ins in Eclipse, which has two major benefits for the
user: 1) The documentation for all the installed plug-ins is located
in a central repository, easily accessible from the IDE; 2) The user
interface can be enriched with hot-keys and hyperlinks to the rele-
vant pages. In this paper we provide a detailed description of the
other plug-ins. The concepts are practically applied to a simple
running example, which is shown in Figure 1. The PEPA model is
amenable to all the kinds of analysis supported by the plug-in, and
here it is presented with the concrete syntax accepted by the tool.

/* Rate declarations */
r = 1.0;
s = 4.5;
t = 5.5;
/* Sequential component Process */
Process1 = (use, r).Process2;
Process2 = (think, s).Process1;
/* Sequential component CPU */
CPU1 = (use, r).CPU2;
CPU2 = (reset, t).CPU1;
/* System equation */
Process1[8] <use> CPU1[4]

Figure 1: A simple PEPA Model

3. PEPATO
The project is centered around Pepato, an application program-

ming interface (API) exposing a library for several PEPA-related
core tasks. The root object is the abstract syntax tree of a PEPA
model, which can be either generated from a PEPA model file, or
created programmatically via the API. The abstract syntax tree is

the input for the various forms of analysis available in the library:
static analysis, Markovian analysis, simulation, and ODE analysis.

3.1 Static Analysis
Static analysis is concerned with the inspection of the abstract

syntax tree for the detection of potential problems in the model
description as early as possible in the modelling life cycle. Basic
checks include issuing warning messages when process definitions
or rate variables are declared but not used, or when there are activi-
ties in cooperation sets that are not performed by both of the coop-
erating sequential components. A routine detects potential dead-
locks when an action type in a cooperation set is not performed by
a cooperating sequential component. The output of this stage is a
list of messages, categorised as warnings or errors, along with the
source code location in which the problem has occurred.

3.2 Markovian Analysis
The first stage of Markovian analysis is the exploration of the

model’s state space. A strength of Pepato’s state space exploration
tool is the implementation of the aggregation algorithm presented
in [6]. The concrete syntax permits the definition of an array of
processes in the form S[N], where S is a PEPA component name
and N ≥ 1. In addition to being a shorthand notation for a par-
allel composition of N identical sequential components, an array
of components may be subjected to aggregation through a user-
defined option parameter of the library. If aggregation is turned on,
an equivalence relation called isomorphism is exploited to reduce
the state space size of the underlying Markov chain. Informally, the
array of components is represented in a canonical form in which
the information on the position of a sequential component in the
array is lost. For example, let S1, S2, . . . SN be the local derivatives
of some sequential component S and S[3] be the system equation.
The states (S1 ‖ S2 ‖ SN), (S2 ‖ S1 ‖ SN), and (SN ‖ S1 ‖ S2)
would be represented by the same state in the lumped Markov
chain. For instance, the PEPA model in Figure 1 has 4096 states
without aggregation; if aggregation is enabled, the state space size
is reduced to 45. This aggregation technique still suffers from state
space explosion, although to a lesser extent. In our experience with
PEPA modelling, it has enabled us to analyse Markov chains which
would have been otherwise intractable without aggregation.

The interface of the object representing a state space is trans-
parent to the technique used during state space exploration. This
represents an instance of a more common concern throughout the
design of the library to ease maintainability and extensibility. In
this case we leveraged a well-known software design pattern [7]—
the Abstract Factory pattern—to seamlessly add new implemen-
tations of the state space exploration tool. The currently available
version performs in-memory explicit enumeration of the state space
and can support Markov chains up to about five million states.
(The actual maximum number of states depends on the structure
of the model and the memory required to keep the state description
vector.) However, this architecture may easily accommodate fur-
ther enhancements—a out-of-memory disk-based solution to store
larger state spaces is ongoing work.

Another situation in which extensibility is desirable is the data
structure used to store the labelled generator matrix of the underly-
ing Markov chain. Here, we used the Adapter pattern to allow for
different data structures to be interchangeably used with different
implementations of the state space exploration tool. Enabling this
flexibility is of utmost importance to optimise the solution, as some
solvers perform more efficiently if the generator matrix is stored in
certain forms. Pepato uses the Matrix Toolkit for Java library [8]
for the storage of the generator matrix as well as the analysis of

the Markov chain. With similar arguments discussed for the archi-
tecture of the state space exploration tool, an Abstract Factory pat-
tern is used to expose the array of solvers available in the library.
The current version of Pepato performs steady-state analysis of the
underlying Markov process.

The vector holding the steady-state distribution is of little use
by itself. One way to reason about the performance of the sys-
tem under study may be to compute the probability mass of a set
of states which satisfy certain conditions. Pepato has the notion
of filters to define such sets. Filters are grouped into two cate-
gories: state-based and transition-based filters. The former are
used to specify conditions which must hold on the local states of
the sequential components of the PEPA process. The latter match
states according to properties on their incoming or outgoing transi-
tions.

Pepato supports the following state-based filters:

Local State Filter This takes as input a local state of a sequential
component S, an integer K , and a relational operator ◦ ∈

{<, ≤, =, >,≥, 6=}. It returns the set of states in which the
number of sequential components in state S, denoted by #S,
satisfies the relation #S ◦ K . In the sample PEPA model,
a performance metric of interest could be the probability of
finding all the CPUs in their idle state CPU2. This can be
simply queried by using the local state filter CPU2 = 4.

Pattern Matching Filter A more expressive way of filtering based
on local states is available through a pattern-matching fil-
ter. For example, the expression Si| ∗ |Sj matches states that
have the first sequential component in state Si and the third
sequential component in state Sj. The wildcard operator ∗ is
used to indicate any local state in a position. The same query
as above is represented by the following expression:

||*|*|*|*|*|*|CPU2|CPU2|CPU2|CPU2

Unnamed State Filter Consider the definition

S def
= (α, r).(β, s).S′

The local state (β, s).S′ is called unnamed because it is not
defined through a constant. The modeller may want to use
unnamed local states because their behaviour is of secondary
importance for the performance analysis. This filter returns
the set of states in which all its sequential components are
not in an unnamed state.

Probability Threshold Filter This filter may be applied to match
states whose steady-state probability is above or below a given
threshold.

A transition-based filter takes as input an action type and the direc-
tion of the transition (i.e. incoming or outgoing). It filters states
which have transitions of the given direction labelled with the given
action type. Both kinds of filter can be combined using boolean
operators.

Another useful way of extracting performance indices of interest
from a PEPA model is the application of reward structures to the
steady-state probability distribution. A reward function f : S → R
is a real-valued function on the states of the underlying Markov
chain. Let π be the steady-state probability distribution of the
Markov chain and i be the index over the state space. The reward
is computed as follows

R =

∑
i

πi · f (Si)

Pepato can be used to compute the following reward structures:
throughput, utilisation and population levels. Throughput is asso-
ciated with an action type and represents the number of activities of
a particular type that are performed in a unit of time. Let OS be the
set of outgoing transitions of state S. Let (α, r, S′) be a triple repre-
senting one such transition. The reward structure for the throughput
Tα of an action α is defined as follows

Tα =

∑
(α,r,S′)∈OS∧α=α

r

In performance evaluation, the notion of utilisation is tradition-
ally associated with queueing networks to indicate the occupancy
of a server. In PEPA utilisation is interpreted differently. Con-
sider a sequential component S evolving through a set of local
states {S1, S2, . . . SN}. The utilisation US(Si) of a local state Si
of a sequential component is the fraction of its lifetime that the
sequential component spends in state Si. Clearly, for all sequential
components it must hold that

∑
i U (Si) = 1.

Finally, population levels indicate the average number of copies
of a sequential component in the steady state. This reward structure
will be used later in this paper when we discuss support for ODE
analysis.

On a side note, it is worth mentioning the interoperability capa-
bility of Pepato. The API provides support for exporting the tran-
sition system of the Markov chain in a row-column-value text for-
mat, which can be easily imported by external matrix toolkits such
as Matlab. The state descriptor may also be exported in a comma-
separated values text format, for processing with tools such as grep
or sed. The state space interface also has an import option to load
a steady-state distribution vector computed by third-party solvers.

3.2.1 Stochastic Simulation
The Pepato library also supports time-series analysis by stochas-

tic simulation or solving ODEs through a customised library [9].
These techniques allow the observation of a system as it evolves
from an initial state over a period of time, a situation more com-
monly known as the Initial Value Problem (IVP). In this case the
system equation of a PEPA model provides the IVP. More impor-
tantly, both techniques can analyse systems that are intractable by
Markovian analysis.

This advantage is not simply the result of a more powerful tech-
nique, rather it is the combination of these types of analysis when
used on a model in the aggregated form. With the Markovian anal-
ysis altering the number of copies of an aggregated component
impacts the size of the state space, whereas altering the number
of activities enabled by a component affects the number of links
in the space. The dominant influence on Markovian analysis is the
number of copies of each component. The stochastic simulation
and ODE solvers however are mostly insensitive to changes in lev-
els of components, being more affected by the number of unique
components and activities in the entire system.

The stochastic simulators which are currently supported are Gille-
spie’s Stochastic Simulation Algorithm (SSA) [10] and the Gibson-
Bruck algorithm [11]. Originally designed for modelling chemical
reactions, they are derived from the same fundamental laws as the
master equation, which itself is a Markov chain. It is this struc-
ture, and the optimisations possible because of it, which allow these
algorithms to analyse in a realistic time systems which would be
intractable when using a state-based representation.

The format required by the simulators presents the model in
terms of activities, rather than components, with each entry defin-
ing a unique firing of that action. Let α be an activity which is
enabled in two or more components, in this instance C1 and C2.

If these two components do not co-operate over α then they must
appear as two unique entries within the simulator. The correct rate
at which each unique entry fires is also required, and this even
depend on components which are not directly involved in this activ-
ity. To generate the correct data the Pepato library uses an interme-
diate representation to build partial forms as the system equation of
the model is traversed.

Evaluation by stochastic simulation will always give good agree-
ment when compared to Markovian analysis as both are stochastic
and discrete in nature. The trade-off is computation time. To dis-
cover the steady-state of the system from stochastic simulation a
number of independent replications must be performed, with a sim-
ulation time long enough for the average to tend towards the steady-
state. This often means that when Markovian analysis is tractable
it will also be the faster method.

3.3 ODE Analysis
Generating the ODEs of a PEPA model requires the same infor-

mation as the stochastic simulators, but in a different form. Using
the intermediate state already created by the Pepato library it is a
simple matter to generate the correct ODEs, where each equation
is the summation of rates of activities where the component is a
derivative and the subtraction of the summation of rates of activ-
ities where the component is enabled, also referred to as the exit
and entry activities of a component [4]. Figure 2 shows the ODEs
generated from the example PEPA model given in Figure 1.

dProcess1
dt

= sProcess2 − r min(Process1, CPU1)

dProcess2
dt

= r min(Process1, CPU1) − sProcess2

dCPU1
dt

= tCPU2 − r min(Process1, CPU1)

dCPU2
dt

= r min(Process1, CPU1) − tCPU2

Figure 2: The set of ODEs derived from the simple PEPA model
in Figure 1.

The Pepato library currently supports two numerical integrators
for ODES, a Runge-Kutta implicit-explicit implementation [12] and
the Dormand-Prince adaptive step-size solver [13], both through
the odeToJava library [14]. In contrast to the stochastic simula-
tors, the ODE solvers are continuous and deterministic, and ill-
equipped to deal with discontinuous functions because of this. This
is a potential issue when dealing with passive rates within a model,
where the rate is not dependent on the population level of a com-
ponent, but merely its presence. This does not negate the useful-
ness of the ODE solvers, which are complimentary to the stochastic
simulators—as the population sizes within a model grow the confi-
dence in the ODE solution increases, as does the performance gain
over the stochastic simulation. An example of the results possible
from both families of methods can be seen in Figure 3, where the
number of independent replications has been kept low to highlight
the stochastic behaviour.

4. THE GRAPHICAL USER INTERFACE
Pepato is available to Eclipse users through the plug-ins Eclipse

Core and Eclipse UI. When developing for Eclipse, it is a rec-
ommended practice to separate out core functionality of a service

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2

P
op

ul
at

io
n

le
ve

ls

Time

Process1

CPU1

Process2

CPU2

Figure 3: ODE and SSA analysis of the simple PEPA model
in Figure 1. Solid lines represent the ODE solution and dot-
ted lines the SSA (performed with 10 independent replications).
The legend is ordered by final population level from the ODE
solution.

and its contributions to the user interface into (at least) two dis-
tinct plug-ins. This allows the core functionality to be used in a
context in which the user interface is not necessary or even not
available. Eclipse Core exposes Pepato to the platform, and its
main role is to provide a mapping between files managed within
Eclipse and PEPA-related objects. In particular, it is based on the
Eclipse Resources plug-in, which implements a file-system layer
for the Eclipse workbench (i.e., the workspace) on top of the native
file system of the underlying operating system. This facilitates the
management of events related to changes in the state of workspace
files. For example, listeners may be installed on files to be notified
when a file being edited is saved. Eclipse Core registers listen-
ers to PEPA model files, which trigger the automatic execution of
the PEPA parser and the static analysis routines when the model is
saved. Eclipse Core also represents a good entry point for develop-
ers of third-party plug-ins to use PEPA-related services.

Eclipse UI contains all the user interface contributions to the
Eclipse IDE. It features an editor, which is automatically associ-
ated by the workbench to workspace files with the .pepa exten-
sion. The editor has syntax highlighting and supports graphical
annotations (markers) for problems encountered during the mod-
elling process. Tasks to be performed on the PEPA model being
edited are shown in the top-level menu bar, and a number of views
are connected to the editor. A customisable arrangement of all the
views of interest to a PEPA modeller is provided in the PEPA per-
spective. Figure 4 is a screen-shot of the Eclipse workbench with a
possible layout for modelling with PEPA. In this section we provide
a detailed discussion of the views and the actions available under
the Eclipse UI PEPA plug-in.

4.1 Contributions to Other Plug-ins
The Navigator view is used to navigate the Eclipse workspace.

Workspace files with the .pepa extension are associated with the
PEPA synchronisation icon in the editor and registered with the
PEPA editor. The Problems view is populated automatically with
syntax error and static analysis messages. The plug-in defines two
levels of severity: a warning allows the user to continue the anal-
ysis, whereas an error must be fixed. The Console view provides

Figure 4: The PEPA Eclipse Plug-in at a glance. This screen-shot shows an instance of the Eclipse 3.3 IDE running on Mac OS X. The
top-middle area shows an editor for the simple PEPA model. The model contains a deliberate unused definition (rate u), underlined
in the editor area and reported as a problem in the Problems view. Below the editor is the State Space View, which lists the state
space of the Markov chain. The model has been solved for steady-state analysis (as reported in the Console view) and the probability
distribution is shown as a column in the State Space View. The Population tab of the Performance Evaluation view is open in the
top-right area of the workbench. This data is presented graphically as a bar chart in the Graph View (top left).

verbose information on the status of a PEPA model. In particu-
lar, it displays execution times of the various stages of analysis and
provides hyperlinks which open the related views.

4.2 AST View
The AST (Abstract Syntax Tree) view is connected to the active

PEPA editor in the workspace and shows a tree-based graphical
representation of the abstract syntax tree of the PEPA model, along
with the source code location information as gathered during the
scanning and the parsing of the document. It mainly serves debug-
ging purposes and is particularly useful for developers who wish to
manipulate PEPA abstract syntax trees programmatically.

4.3 State Space View
The State Space View is linked to the active PEPA editor and

provides a tabular representation of the state space of the under-
lying Markov chain. The table is populated automatically when
the state space exploration is invoked from the corresponding top-
level menu item. A row represents a state of the Markov chain,
each cell in the table showing the local state of a sequential com-
ponent. The order in which sequential components are displayed
corresponds to the order in which they are found in the cooperation
set by depth-first visit of the cooperation’s binary tree. A further
column displays the steady-state probability distribution if one is
available.

A toolbar menu item provides access to the user interface for
managing state space filters. When a set of filter rules is activated,

the excluded states are removed from the table. The probability
mass of the states that match the filters is automatically computed
and shown in the view. Filter rules are assigned names and made
persistent across workspace sessions. From the toolbar the user can
invoke a wizard dialogue box to export the transition system and
one to import the steady-state probability distribution as computed
by external tools.

The view also has a Single-step Debugger, a tool for navigating
the transition system of the Markov chain. The debugger can be
opened from any state of the chain and its layout is as follows. In an
external window are displayed the state description of the current
state and two tables. The tables show the set of states for which
there is a transition to or from the current state. The tables are
laid out similarly to the view’s main table. In addition, the action
types that label a transition are shown in a further column. The user
can navigate backwards and forwards by selecting any of the states
listed.

4.4 Performance Evaluation View and Graph
View

A wizard dialogue box accessible from the top-level menu bar
guides the user through the process of performing steady-state anal-
ysis on the Markov chain. The user can choose between an array of
iterative solvers and tune their parameters as needed. Performance
metrics are calculated automatically and displayed in the Perfor-
mance Evaluation View. It has three tabs showing the results of the
aforementioned reward structures (throughput, utilisation, and pop-

ulation levels). Throughput and population levels are arranged in
a tabular fashion, whereas utilisation is shown in a two-level tree.
Each top-level node corresponds to a sequential component and its
children are its local states.

The Performance Evaluation View can feed input to the Graph
View, a general-purpose view available in the plug-in for visual-
ising charts. Throughputs and population levels are shown as bar
charts and a top-level node of the utilisation tree is shown as a pie
chart. As with any kind of graph displayed in the view, a number of
converting options is available. The graph can be exported to PDF
or SVG and the underlying data can be extracted into a comma-
separated value text file.

4.5 Experimenting with Markovian Analysis
An important stage in performance modelling is sensitivity anal-

ysis, i.e. the study of the impact that certain parameters have on the
performance of the system. A wizard dialogue box is available in
the plug-in to assist the user with the set-up of sensitivity analysis
experiments over the models. The parameters that can be subjected
to this analysis are the rate definitions and number of replications
of the array of processes in the system equation. The performance
metrics that can be analysed are throughput, utilisation, or popu-
lation levels. If the model has filter rules defined, the probability
mass of the set of filtered states can be used as a performance index
as well. The tool allows the set-up of multiple experiments of two
kinds: one-dimensional (performance metric vs. one parameter) or
two-dimensional (performance metric vs. two parameters changed
simultaneously). The results of the analysis are shown in the Graph
View as line charts.

For example, a parameter that may have an important impact on
the performance of the system is the reset delay of the CPU.

4.6 Time-Series Analysis
When performing a time-series analysis there are three basic

steps to complete; component selection, solver selection and solver
parameterization, all of which are handled by the time-series anal-
ysis wizard. Rather than simply observing all components, the
wizard allows the modeller to select only those components that
are of interest. This becomes more pertinent as either the num-
ber components in the system or number of observed time points
increase—one limitation of the current time-series solvers is that all
data is held in memory, and only written out to disk when export-
ing from the graph view. Solver selection and parameterization are
self-explanatory, with the list of visible parameters being dynami-
cally linked to the currently selected solver.

In keeping with the rest of the UI, the selections across all three
steps are persistent across invocations. Likewise, each unique param-
eter is stored only once, meaning parameters such as start and stop
times are persistent over all solvers. Lastly, the parameters, includ-
ing selected solver, are attached to the results in the graph view for
future reference. Currently this meta data can only be seen when
the data is exported. The last feature of the wizard is the ability to
export the model in alternative formats, such as Matlab.

5. CONCLUSION
In this paper we presented the PEPA Eclipse Plug-in Project, a

toolkit to support the timed process algebra PEPA for the Eclipse
framework. The project allows the user to perform steady-state
Markovian analysis, stochastic simulation, and fluid-flow analysis
of PEPA models. Although one of the main points of strength is the
integration with the Eclipse platform and its development environ-
ment, the Pepato library can also be used by third-party Java-based
applications. For instance, in the analysis of large-sized models the

user-friendliness of the graphical interface may be desirably traded
with a less demanding interface. We are currently working on the
implementation of a command-line interface for Pepato.

The plug-in project is under active development, and a number
of extensions have been planned for future work. With regards
to Markovian analysis, we are developing software modules for
transient analysis and the computation of response-time quantiles.
The experimentation framework, currently available for Markovian
analysis only, is being extended to ODE analysis and stochastic
simulation.

Acknowledgement
The helpful comments of the anonymous referees are appreciated.
This work has been partially sponsored by the EU-funded project
SENSORIA, IST-2005-016004.

6. REFERENCES
[1] J. Hillston. A Compositional Approach to Performance

Modelling. Cambridge University Press, 1996.
[2] J. Hillston. Tuning systems: From composition to

performance. The Computer Journal, 48(4):385–400, May
2005. The Needham Lecture paper.

[3] J. Hillston. Process algebras for quantitative analysis. In
Proceedings of the 20th Annual IEEE Symposium on Logic
in Computer Science (LICS’ 05), pages 239–248, Chicago,
June 2005. IEEE Computer Society Press.

[4] J. Hillston. Fluid flow approximation of PEPA models. In
Proceedings of the Second International Conference on the
Quantitative Evaluation of Systems, pages 33–43, Torino,
Italy, September 2005. IEEE Computer Society Press.

[5] Eclipse Foundation. Eclipse home page.
http://eclipse.org.

[6] S. Gilmore, J. Hillston, and M. Ribaudo. An efficient
algorithm for aggregating PEPA models. IEEE Transactions
on Software Engineering, 27(5):449–464, May 2001.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

[8] B.-O. Heimsund. MTJ: Matrix Toolkit for Java.
http://ressim.berlios.de/.

[9] CompBio Group, Institute for Systems Biology. ISBJava.
Available at http://magnet.systemsbiology.
net/software/ISBJava/.

[10] D.T. Gillespie. Exact stochastic simulation of coupled
chemical reactions. Journal of Physical Chemistry,
81(25):2340–2361, December 1977.

[11] M.A. Gibson and J. Bruck. Efficient exact stochastic
simulation of chemical systems with many species and many
channels. Journal of Physical Chemistry, 104:1876–1889,
2000.

[12] U. M. Ascher, S. Ruuth, and R. Spiteri. Implicit-explicit
Runge-Kutta methods for time-dependent partial differential
equations. Applied Numerical Mathematics,
25(2-3):151–167, November 1997.

[13] J.R. Dormand and P.J. Prince. A family of embedded
Runge-Kutta formulae. Journal of Computational and
Applied Mathematics, 6(1):19–26, March 1980.

[14] odeToJava library. Available at
http://www.netlib.org/ode/odeToJava.tgz.

