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Abstract
Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively
resulting in non-specific toxicity. Immune targeting of tumor-specific mutations may allow for more
precise eradication of neoplastic cells. The epidermal growth factor receptor variant III (EGFRvIII)
is a tumor-specific mutation that is widely expressed on GBM and other neoplasms and its expression
enhances tumorigenicity. This in-frame deletion mutation splits a codon resulting in a novel glycine
at the fusion junction producing a tumor-specific epitope target for cellular or humoral
immunotherapy. We have previously shown that vaccination with a peptide that spans the EGFRvIII
fusion junction (PEPvIII-KLH/CDX-110) is an efficacious immunotherapy in syngeneic murine
models. In this review, we summarize our results in GBM patients targeting this mutation in multiple,
multi-institutional Phase II immunotherapy trials. These trials demonstrated that a selected
population of GBM patients who received the vaccines targeting EGFRvIII had an unexpectedly
long survival time. Further therapeutic strategies and potential pitfalls using this approach are
discussed.

Keywords
antigens; CDX-110; central nervous system neoplasms; epidermal growth factor receptor;
immunotherapy; PEPvIII-KLH

1 Introduction: Glioblastoma multiforme & Conventional Therapy
The brain is the most frequent site of crippling and incurable human disease that account for
more than 100,000 deaths each year in the United States [1]. The most common malignant
primary tumor, glioblastoma multiforme (GBM), will arise in more than 15,000 Americans
this year [2] and is uniformly fatal. Malignant primary brain tumors alone are more common
than Hodgkin’s disease and cause more deaths than melanoma or cancers of the bladder or
kidney. Despite aggressive, computer-guided tumor resection [3], high doses of external beam
radiation therapy [4] and multi-mechanistic chemotherapy delivered at toxic doses, the average
lifespan of patients with GBMs is a little more than one year from the time of diagnosis [5,6]
and patients with recurrent tumors have an even more dismal prognosis [4,7-11].
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The estimated cost of treatment for each patient with a malignant brain tumor is between
$30,000 and several hundred thousand dollars annually. Thus, the annual treatment cost alone
for these patients, not mentioning the lost earning potential of afflicted individuals, is greater
than the entire annual budget of the National Institute of Neurological Diseases and Stroke. In
fact, as a result of its ineffectiveness, conventional therapy for a malignant brain tumor
represents the most expensive medical therapy per quality-adjusted life-year saved currently
provided in the United States [12]. Moreover, the non-specific nature of conventional therapy
for brain tumors often results in incapacitating damage to surrounding normal brain [13,14].
Thus, therapeutic strategies that are more likely to be effective against these tumors will have
to precisely target tumor cells while minimizing collateral damage to neighboring eloquent
cerebral cortex. The rationale for employing the immune system to target brain tumors is based
on the premise that the inherent biologic specificity of immunologic reactivity could meet the
clear need for more specific and precise therapy.

2 Central Nervous System Immunity
Immune responses are initiated by uptake of a protein within antigen presenting cells (APC),
processing and subsequent presentation on major histocompatibility complex (MHC) class I
or II [Adaptive immunity]. T cells recognize the antigen within the context of these MHC-
antigen complexes via cell surface receptors – T cell receptor (TCR). More specifically, CD4
+ (helper) T cells recognize peptide-class II complexes, whereas the CD8+ (cytotoxic) T cells
recognize peptide-class I complexes. Full activation of a T cell requires co-stimulation resulting
in the clonal expansion of the naïve T cell. Absence of co-stimulation or the presence of co-
stimulatory inhibition markers can lead to a state of unresponsiveness or anergy in the effector
T cell. The stimulated cytotoxic immune effector cells (CD8+) can destroy tumor cells using
either perforin-induced cell lysis or Fas/APO-l receptor-mediated apoptosis.

The brain has been characterized as being “immunologically privileged”, based on the
protective nature of the brain’s environment provided to allografts and xenografts. A number
of vaccination strategies in experimental animals have been shown to be highly effective
against tumors outside the central nervous system (CNS) but completely failed to have impact
on tumors within the CNS. Patients successfully treated with biomodulators had tumor relapses
within the brain despite remissions extracranially. Conventional dogma to explain the
“immunological privilege” of the brain have included the absence of conventional lymphatics;
however protein, lymphocytes, and macrophages can drain from the cranial subarachonoid
space into the cervical lymph nodes [15]; the presence of the blood-brain barrier (BBB), but
this is broken down during inflammatory processes; and the presumed paucity of APC within
the CNS, however draining antigens to the cervical lymph nodes will be presented there.

In fact, CNS tumors are recognized by the immune system [16-18]; however these responses
are insufficient for immunological clearance. Primed CD8+ cytotoxic T cells gain CNS access
[19,20]; the lack of tumor eradication indicates that the T cells are functionally impaired within
tumors. Lymphocytes in the CNS of healthy humans are a rare finding but during inflammatory
responses lymphocytes are abundant within the CNS. Lymphocytes generally require
activation prior to entry into the CNS [20] but antigen specificity is not necessary for entry.
Further evidence supporting the fact that immunological responses can occur in the CNS is
supported by the presence of antibody-secreting plasma cells in the CNS [21,22] and the
therapeutic efficacy of systemically administered antibodies for the treatment of multiple
sclerosis [23] and Alzheimer disease [24]. Both peptide vaccination approaches and direct
instillation of glioma-specific antibodies intratumorally have been shown to mediate their in
vivo efficacy via antibody dependent cellular cytotoxicity (ADCC) [25,26]. The potential
limitation of immune clearance of tumors via antibodies is that large, bulky tumors may prevent
sufficient antibody penetration. However, antibodies directed to the vascular component of the
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tumor have demonstrated clinical success [11] as well as delivery via surgically created cavities
[27]. Humoral immune responses have been underappreciated and under assessed in immune
therapeutic clinical trials.

3 Immune suppression
A potential barrier to immunotherapy for patients with GBM is the well-documented
impairment of T and B cell immunity in these patients. Specifically, cutaneous anergy,
lymphopenia, impaired antibody production, reduced lymphocyte protein synthesis, and
diminished lymphocyte responsiveness have been documented [16,17,28-40]. In addition,
human GBM cell culture supernatants have been shown to suppress immune responsiveness
in vitro [41-44], and lymphocytes recovered from such tumors and tested in vitro show a
marked reduction in functional ability [18,42,44]. The presence of immunosuppressive activity
in tumor cyst fluid [45], and the significant improvement in the immunological parameters
after surgical removal of the tumor [16,28] indicate that factors secreted by these tumors
mediate the immunosuppression. The impairment of cell-mediated immunity suffered by GBM
patients is, in part, due to the tumor secretion of transforming growth factor-β (TGF-β) isoforms
and other immunosuppressive molecules such as IL-10 and PGE2 [41,42,46,47]. Human TGF-
β1 and 2 have been isolated from GBM supernatants [42,46,47] and these cytokines have been
shown to suppress the generation of cytotoxic T lymphocytes (CTLs) from peripheral blood
lymphocytes and tumor-infiltrating lymphocytes by interleukin (IL)-2, to inhibit IL-2 receptor
expression on T cells, to reduce IL-1- and IL-2-dependent proliferation of T and B lymphocytes,
to depress the cytotoxicity of natural killer (NK) cells and their activation by γ-interferon (γ-
IFN), to down regulate major histocompatibility (MHC) class II dependent antigen expression,
to suppress Th1 cytokine synthesis, to inhibit the function of APCs, and to suppress the
production of numerous pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α,
γ-IFN, IL-1, IL-6, and IL-8 [42,48-56]. The potential of immunosuppressive factors, such as
TGF-β, to abolish a cell-mediated antitumor immune response has been confirmed
experimentally [57]. Thus, immunosuppressive factors commonly secreted by primary brain
tumors have a significant impact on the efficacy of active immunotherapies if not monitored
and addressed.

Another contributor of this immune suppression is the presence of CD4+/CD25+ Tregs within
the tumor or the T cell compartment that directly curtail immune responses. Tregs co-express
CD4 and high levels of the high-affinity IL-2 receptor α (IL-2Rα)(CD25)[58], and can be
identified by expression of the intracellular transcription factor, FoxP3. Tregs constitute 5-10%
of peripheral CD4+ T cells in both mice and humans [58-62] and are a normal T cell subset
set with the task of suppressing auto-reactive T cells. In vitro studies have revealed that Tregs
potently inhibit T cell cytokine secretion and proliferation [60,63,64]. Antigen-specific
stimulation through the T cell receptor (TCR) is required for activation of Tregs, but once
activated, Treg-mediated immune suppression is not antigen specific [65]. This immune
suppression is mediated, at least in vitro, by cell-contact dependent mechanisms that are
capable of inducing anergy in target cells [63,65]. Tregs also express cell-surface TGF-β [66]
and induce other cells to secrete IL-10 and TGF-β [67] that mediate and amplify cell-contact
independent inhibition of effector T cells. In a murine model, depletion of CD25+ cells from
splenocytes and subsequent adoptive transfer of the remaining CD25- T cells into immune
compromised mice resulted in a reproducible spectrum of autoimmune disease phenotypes
[68-72], which were preventable by reconstitution with CD4/+CD25+ Treg cells [58,73]. In
mice, removal of CD25+ cells has not proven sufficient for eliciting experimental allergic
encephalomyelitis (EAE). However, adoptive transfer of Tregs into EAE-susceptible mice
proved capable of preventing or alleviating the autoimmunity [74-76], asserting an EAE-
protective role for these cells. These combined inhibitory effects that Tregs exert on the
responses of CD4+ and CD8+ T cells to both self and non-self antigens identify Tregs as a
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unique and possibly potent barrier to antitumor immunotherapy. In support of this, Tregs are
found in increased numbers in PBMCs and tumor infiltrating lymphocytes (TILs) of patients
with several types of cancer [77-79], and the inhibition of tumor-specific, autologous CTL by
Tregs have been demonstrated in a patient with colorectal cancer [80]. Furthermore, in
preclinical murine studies, in vivo depletion of CD25+ cells in mice resulted in prolonged
survival without concomitant autoimmunity in both tumor challenge and stringent therapeutic
vaccination models [81-83].

Within the glioma microenvironment, the effector T cells can be critically suppressed/
overwhelmed by the Tregs. Tissues from glioma patients obtained post-surgical resection have
been dissociated and stained for the CD8+ and CD4+ subsets. The tumor-infiltrating CD8+ T
cells were phenotypically CD8+CD25-, indicating that these cells were not activated or
proliferating. CD4+ T cells were more numerous than CD8+ T cells within glioma tissue and
the majority of CD4+ T cells were Tregs [84]. The expansion of Tregs was significantly higher
in patients within GBM than from control brain specimens [85]. Gliomas also elaborate the
chemokine CCL2 that preferentially attracts Tregs into the tumor microenvironment especially
in high-grade astrocytic tumors [86]. In murine models of syngeneic murine glioma, a time-
dependent accumulation of Tregs was observed in the brain tumors [87]. Furthermore, Fecci et
al showed that although individuals with malignant gliomas are lymphopenic with decreased
CD4 counts; however, the fraction of Tregs is increased [88]. This increase in the Treg fraction
corresponded with a decrease in T cell effector functions. Moreover, in vitro removal of
Tregs was shown to restore T cell function from malignant glioma patients. This data indicate
that Tregs can not only inhibit initial systemic immune activation but also prevent the effector
responses in the glioma microenvironment and as such are a potential therapeutic target.

Other mechanisms that contribute to tumor-mediated immune suppression include CNS
microglia/macrophages that trigger T cell anergy by failing to provide co-stimulation [89], a
paucity of professional APCs such as dendritic cells (DCs) within the CNS that can provide T
cell re-stimulation necessary for optimal effector function [84], and the presence of glioma-
associated mesenchymal cells and cancer stem-like cells that elaborate immune suppressive
cytokines and induce Tregs, respectively [90]. Attempts at blocking a single
immunosuppressive factor in glioma patients will likely be disappointing given the redundancy
of pathways and mechanisms. Thus, combinational approaches that address the local tumor
microenvironment in combination with immune activation are most likely to result in
therapeutic success. Increasingly recognized by those that conduct immunotherapeutic clinical
trials, is the need to negate the immune suppressive tumor microenvironment by either selecting
for patients with minimal residual disease or patients early in their disease course. In the case
of active immunotherapy with a vaccination approach, the balance may be tipped toward a
preponderance of anti-tumor effector responses that could possibly overwhelm the immune
suppressive mechanisms. However, in the case of the clinical trials with PEPvIII-KLH/
CDX-110, the localized tumor microenvironment immunosuppressive effects were potentially
negated by the selection of patients that had gross total resections. Despite patients with GBM
having no endogenous immune responses detectable to epidermal growth factor receptor
variant III (EGFRvIII), active immunization in this context is able to overcome
immunosuppression sufficient to produce EGFRvIII-specific immune responses in almost all
patients.

4 The prognostic impact of EGFRvIII expression
The most frequent genetic alteration associated with GBM is amplification of the EGFR gene,
which results in over expression of the EGFR, a transmembrane tyrosine kinase receptor
[91]. The majority of GBMs with EGFR amplification also contain the mutant EGFR gene,
EGFRvIII [92], which is typically expressed in about 30% of newly diagnosed GBM patients.
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The EGFRvIII is characterized by the deletion of exons 2-7, resulting in a sense mutation that
has a truncated extracellular domain with ligand-independent constitutive activity [93]. Given
the crucial function of EGFRvIII in mediating tumorgenesis [93], it would be anticipated that
its expression would confer a poor prognosis in GBM patients. EGFRvIII is not an independent
predictor of median survival in either gross total (1.1 years in EGFRvIII positive tumors versus
1.0 years in EGFRvIII negative tumors) [94] or sub-totally-resected patients [95]. The adjusted
rate ratio for EGFRvIII expression is 1.07 (95% CI, 0.72-1.60) in a multivariate Cox model
analysis. However, EGFRvIII is a negative prognosticator for long-term survival. In patients
surviving for one year or longer, the expression of EGFRvIII is a negative prognostic indicator,
with a median survival in GBM patients with EGFRvIII-positive tumors of 1.2 years versus
2.0 years in non-EGFRvIII expressing tumor patients (p<0.0001) [94]. This was confirmed in
follow-up studies indicating that regardless of intervention (i.e. surgery, chemotherapy,
radiation), that long-term GBM survivors do not usually express EGFRvIII [96].

5 Pre-clinical results of EGFRvIII peptide (CDX-110) vaccination
The EGFRvIII-specific 14-amino acid peptide, PEP-3 (H-Leu-Glu-Glu-Lys-Lys-Gln-Asn-
Tyr-Val-Val-Thr-Asp-His-Cys-OH), is chemically conjugated to keyhole limpet hemocyanin
(KLH) (PEPvIII-KLH/CDX-110) and has been used for the generation of EGFRvIII-specific
antibodies [26,97-105], induction of cellular immune responses [25,106,107], and as a
derivation of targeted toxins [108-111]. Unarmed murine antibodies targeting EGFRvIII have
been shown to exert potent antitumor activity in vitro and in vivo [26]. Specifically, an Ig2a
antibody (Y10) was found to inhibit DNA synthesis and cellular proliferation in tumor cells
expressing EGFRvIII and was capable of inducing autonomous, complement-mediated, and
antibody-dependent cell-mediated cytotoxicity. While systemic therapy failed to increase
median survival of mice with established intracerebral tumors, treatment with a single
intratumoral injection of Y10 increased median survival by an average 286% and produced
26% long-term survivors. Another murine monoclonal antibody (IgG2b) that targets EGFRvIII
(mAb 806), but with reactivity against the wild-type EGFR especially when over-expressed,
has also been shown to reduce tumor growth and angiogenesis, reduce EGFRvIII
phosphorylation, increase tumor cell apoptosis, and down-regulate expression of the apoptotic
protector Bcl-XL [103-105].

Active immunotherapy targeting EGFRvIII has also been effective [25,106]. Intraperitoneal
vaccination with DCs mixed with PEP-3-KLH increased median survival by >552% (>300
days, P<0.001) in C3H mice challenged with intracerebral tumors [106]. The majority of mice
vaccinated using this approach survived long-term without evidence of tumor, and all survived
rechallenge with tumor suggesting the development of long-lasting immunological memory.
More significantly, C3H mice with well-established intracerebral tumors that received a single
vaccination of PEP-3-KLH in complete Freund’s adjuvant without DCs showed a 26% increase
in median survival time with 40% of the mice surviving long-term (P=0.007)[25]. To determine
the EGFRvIII status of mice that failed to respond to the PEPvIII-KLH vaccination, relapsing
subcutaneous tumors were evaluated by immunohistochemistry. EGFRvIII expression by
immunohistochemistry was lost in 80% of relapsing tumors (n=5) after PEPvIII-KLH
vaccination indicating that although there was a growth delay, EGFRvIII negative escape
variants were a potential mechanism of treatment failure in active immunotherapy.

Mice vaccinated with PEP-3-KLH in the presence of an appropriate adjuvant have produced
EGFRvIII-specific IgG1 and IgG2a antibodies. The induction of the IgG2a antibodies appeared
to correlate with an antitumor immune response [106]. Consistent with this finding, sera from
successfully vaccinated mice mediated potent antibody-dependant macrophage-mediated
cytotoxicity (ADMC) and passive transfer of immune sera protected against tumor challenge
[25]. In C57BL/6 (H-2b) mice, antitumor immune responses were shown to be dependent on
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both NK and CD8+ T cells. Despite this, EGFRvIII-specific cellular immune responses were
not detectable in tumor-naïve vaccinated C57BL/6 mice [25] although they have not been
examined in C3H (H-2k) mice where the MHC Class I peptide binding site affinity is more
favorable [25,106]. This suggests to us the possibility that a secondary CD8+ T cell response
may be induced which is critical to the antitumor effect, but which possibly may not be
EGFRvIII-specific. While clinical evident autoimmune responses were not identified in these
mice, the generation of secondary immune responses that may not be tumor-specific remains
a possibility.

The PEPvIII-KLH vaccination demonstrated suboptimal efficacy in the C57BL/6J background
(H-2B) likely secondary to the suboptimal binding of peptides spanning the EGFRvIII mutation
to class I MHC as predicted at http://bimas.dcrt.nih.gov/molbio/hla_bind/. However, in the
C3H background (H-2K), PEPvIII was predicted to have excellent binding to class I MHC. A
similar problem may arise in certain patient haplotypes. Based on the range of binding affinities
(http://bimas.dcrt.nih.gov/molbio/hla_bind/) of other tumor-specific peptides antigens capable
of eliciting lymphocyte responses
(http://www.cancerimmunity.org/peptidedatabase/tumorspecific.htm) patients with a
haplotype background of HLA-B4403, -B2705, -B5201, -B60 or -B61 would be predicted to
have homologous binding affinities to PEPvIII-KLH. One of these haplotypes, HLA-B27, is
more common in glioma patients at a frequency of 19% compared to 7.5% within the general
population [112]. Therefore, the overall chance that any given glioma patient would have one
of the aforementioned class I haplotypes predicted to have binding to PEPvIII-KLH is 64%. It
is conceivable that many patients will have efficacious vaccine responses to uncommon HLA
Class I haplotypes. Although an HLA-2 restricted epitope of PEPvIII has been determined, full
epitope mapping has not been performed and it is unclear whether any efficacious immune
responses are dependent on HLA class for this antigen. Furthermore, responses in the context
of HLA Class II and antibody responses might also be important in the immune response.
Specifically, in a phase I clinical trial of glioma patients vaccinated with dendritic cells pulsed
with PEPvIII-KLH and GM-CSF, PEPvIII-KLH delayed type hypersensitivity reactions were
observed, which would indicate that the PEPvIII-KLH/CDX-110 is capable of elaborating class
II responses as well. Given the paucity and potential unreliability of epitope mapping using
currently available methods, we do not believe that screening patients on HLA type for
inclusion in the ACTIVATE and ACTII study were appropriate.

6 Clinical Results
Once PEPvIII-KLH/CDX-110 was demonstrated to be efficacious in mice, clinical trials under
BB-IND-9944, approved by each participating institutions IRB, were initiated. For the clinical
trials with PEPvIII-KLH/CDX-110, all patients had a newly diagnosed GBM that underwent
at least a 95% resection of the T1-gadolinium enhancing component of the tumor. Prior to
vaccination all patients had received at least standard of care external beam radiation. Patients
were not enrolled if they progressed immediately after radiation or were dependent on steroids
above physiologic levels at the time of the first vaccination. In the first clinical trial (VICTORI)
conducted at Duke University Medical Center, PEPvIII-KLH/CDX-110 was loaded onto
autologous DCs, which were matured and used for immunization. Thirteen patients who were
not screened for EGFRvIII expression received 3 vaccinations 2 weeks apart. EGFRvIII
expression was not able to be obtained in a post-hoc fashion for this trial. The median time to
progression (TTP) was 10.2 months and the median overall survival (OS) was 22.8 months.

A second clinical trial, A Complimentary Trial of an Immunotherapy Vaccine Against Tumor
Specific EGFRvIII (ACTIVATE), was conducted at both Duke University Medical Center and
M.D. Anderson Cancer Center. In this trial, 18 newly diagnosed EGFRvIII-positive GBM
patients were treated with PEPvIII-KLH/CDX-110 given intradermally in GM-CSF without
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accompanying DCs. The vaccination regimen consisted of 3 vaccines 2 weeks apart followed
by monthly vaccinations until progression. Toxicity was minimal and there was no evidence
of induced autoimmunity. Both humoral and cytotoxic EGFRvIII immune responses were
enhanced in patients vaccinated with PEPvIII-KLH/CDX-110. In vaccinated patients the
median TTP was 14.2 months which compared favorably to a historical control group matched
for entry criteria and failure to progress after radiation (6.3 months) (p=0.0102). OS was 26
months compared to 15 months for the historical controls (p<0.0001)[112,113].

To evaluate the effectiveness of vaccination in combination with standard of care
temozolomide (TMZ) chemotherapy, in a third clinical trial (ACTII), the vaccine was given
in coordination with concurrent daily TMZ in monthly cycles after completion of radiation.
Patients were enrolled sequentially into two groups based on the dose of TMZ given during
monthly cycles and vaccinated as described for ACTIVATE. Patients in group A received TMZ
at a dose of 200 mg/m2 for 5 days of a 28 day cycle and those in group B received TMZ at a
dose of 100mg/m2 for 21 days of a 28 day cycle. Patients were vaccinated on day 21 of each
cycle until progression. All patients enrolled in ACT II vaccinated in coordination with monthly
cycles of TMZ have a median TTP of 15.2 months versus 6.4 months for historical controls
(p=0.0004) and a median survival of 23.2 months versus 15.2 months for historical controls
(p=0.0004). Patients treated in group A had a median survival of 33 months [115]. Monitoring
of EGFRvIII-specific responses demonstrated that the sequential administration of CDX-110
with TMZ did not ablate immunological responses. We are currently investigating whether
EGFRvIII-targeted vaccines produce responses that are strictly restricted to the EGFRvIII
epitope or may be more broadly reactive.

7 Expert Opinion
In light of the documented expression of normal and fetal brain antigens on human glioma cell
lines [116] and brain tumor tissue [117-120], active immunization with untested or unselected
antigens risks inducing an uncontrolled autoimmune response against normal CNS antigens
similar to EAE. Myelin basic protein (MBP) is the most common known antigenic trigger, but
myelin proteolipid protein [121,122], myelin oligodendrocyte glycoprotein [123], glial
fibrillary acidic protein, and S-100β [124] are also sufficient antigens for the induction of EAE,
and many other antigens remain unidentified, which would be present in tumor homogenates
and acid eluted peptides used in some types of vaccinations strategies. Humans are susceptible
to the induction of EAE [125-129] and EAE can be induced in monkeys after repeated injections
of homogenized CNS tissue [130] and in the various species with adjuvants [131].

Given the range of protocols that routinely use immunization with CNS tissue, the induction
of such autoimmunity is a concern. Although no cases of EAE were reported in some human
studies [132-135]; a careful review of the studies by Bloom et al. [136] and Trouillas [137]
reveal one possible case of EAE in each study. Thus, the risk of EAE, or other similar and
potentially lethal autoimmune responses, may limit the optimization and efficacy of active
immunotherapy for CNS tumors if antigens are not selected carefully for tumor-specificity.

Although the specificity of tumor-specific vaccination therapies, such as those targeting
EGFRvIII, may have the possible advantage of minimizing autoimmune complications, the
heterogeneity of malignant brain tumors may limit the effectiveness of vaccinations targeting
only one tumor-specific antigen. Furthermore, cross-presentation of non-targeted antigens
could also lead to deleterious autoimmune responses. Conversely, multi-antigenic vaccines in
this patient population have demonstrated robust immunologic responses and encouraging
clinical results without the induction of autoimmunity, and catastrophic autoimmune responses
have not been reported to date. Although recent human vaccine studies have not demonstrated
evidence of autoimmunity, they have also not formally demonstrated any evidence of efficacy.
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If more potent vaccines are required for clear evidence of efficacy, the risk of autoimmunity
might become more evident.

In both the ACTIVATE and ACT II clinical trial, upon tumor progression, in the vast majority
of recurrent patients, the EGFRvIII expression on the GBM was lost. This was similarly seen
in our preclinical model system [25]. Furthermore, not all newly diagnosed GBM patients
express the EGFRvIII target. CMV is an endemic β-Herpesvirus that does not usually cause
significant clinical disease in adults but has been implicated in a number of human malignancies
[138,139]. GBMs, but not the normal surrounding brain, express highly immunogenic
Cytomegalovirus (CMV) antigens [140-143] which can be used as tumor-associated targets.
The cellular arm of the immune system surveys and eradicates virally-infected cells, even
within the “immune privileged” CNS, through the induction of well-characterized cytolytic
mechanisms [144-147]. Thus, CMV-directed immunotherapy may effectively elicit the
selective killing of CMV-infected tumor cells in patients with GBM. Near universal detection
of the CMV immunodominant proteins pp65, glycoprotein B (UL55), and immediate early
gene 1 protein (IE1) in GBM has been confirmed by a variety of approaches [140,148-150]
including electron microscopy [140]. The subclinical reactivation of CMV has been shown in
critically ill and immunocompromised patients [151]. Interestingly, astrocytic cell lines are
some of the few cell lines that support CMV propagation in vitro [152], and a patient with
AIDS associated CMV infection and malignant astrocytoma was found to have widespread
infection of malignant astrocytes by CMV at autopsy with little to no spread in adjacent normal
brain, indicating a preferential trophism of CMV [153]. The potential relevance of targeting
CMV antigens in GBM was recently highlighted in a New England Journal of Medicine
publication demonstrating the potent induction of anti-CMV immune responses in a patient
immunized with tumor-lysate pulsed DCs. This patient’s tumor was subsequently shown to
exhibit strong expression of CMV antigens including pp65 by immunohistochemistry [154].
Thus, vaccination to cytomegalovirus (CMV) represents an alternative therapeutic target in the
scenario of GBM patients who fail to express EGFRvIII.

At the core of the development of more effective immunotherapeutic strategies against brain
tumors is the simultaneous stimulation of a more potent immune response against the tumor
while overcoming immunosuppressive mechanisms induced by the tumor itself. An optimal
approach for modulating or suppressing the Treg population for therapeutic purposes is an area
of controversy. Overcoming Treg immune suppression can be achieved via a variety of
approaches including Ontak (denileukin diftitox; a recombinant protein of diphtheria toxin and
IL-2)[155], cyclophosphamide [156], anti-CD25 antibody (targets the receptor for IL-2
[157]), cytotoxic T-lymphocyte-associated protein (CTLA)-4 blockade (inhibits co-
stimulation)[158], signal transcription and activator of translation (STAT)-3 blockade agents
(blocks the transcriptional activation of FoxP3)[159], by inhibiting the Treg trafficking (i.e.
inhibition of CCL2) with temozolomide [160], or non-specifically with lymphodepletion to
augment immunological responses, which has been described in both murine model systems
[156] and in human cancer patients [161]. The enhanced anti-tumor responses after
lymphodepletion may be secondary to the removal of competition at the surface of antigen-
presenting cells [162], enhanced availability of cytokines that augment T cell activity (such as
IL-7 and IL-15)[163], and/or the depletion of the immune inhibitory Tregs [164].
Temozolomide can inhibit the proliferation of lymphocytes and deplete Tregs [165] and inhibit
trafficking of Tregs into the glioma microenvironment [160] and in combination with PEPvIII-
KLH/CDX-110 has encouraging clinical results [115]. It is possible that regulatory T cell
depletion by temozolomide may be responsible for the synergy between immunotherapy and
chemotherapy; however, regulatory T cells have not been rigorously quantitated before and
after temozolomide therapy.
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Several of the aforementioned agents are being considered in combination with PEPvIII-KLH/
CDX-110 vaccine. In preclinical animal models, inactivation of Tregs with an anti-CD25
antibody in murine glioma models has been shown to enhance vaccination-induced anti-tumor
immune responses and result in the eradication of intracerebral astrocytomas without induction
of autoimmunity [157]. Similar results were also obtained in this murine model system with
systemic CTLA-4 blockade. The CTLA-4 blockade reversed the CD4+ T cell deficit, similarly
seen in malignant glioma patients and normalized the ratio of Tregs in tumor-bearing mice
[158]. While eliminating the suppression of endogenous antitumor immune responses through
the elimination of Tregs may enhance tumor immune clearance, there is a potential risk of
inducing autoimmunity, although that was not found in the murine models. It is likely that
strategies that induce Th17 responses and not necessarily the inhibition of Tregs are more likely
to induce CNS autoimmunity [166].

In the ACTIVATE and ACT II clinical trials, only GBM patients with gross total resections
of the T1-gadlinium enhancing component were eligible for enrollment. The purpose of which
was to minimize the profound immune suppressive influences of the local tumor
microenvironment. However, many, and likely the majority of cancer patients, can’t achieve
this state of minimally residual disease. Agents that can counteract the immune suppressive
influence of a bulky tumor are essential - especially those that can control multiple, redundant
immune suppressive mechanisms. The signal translation and activator of transcription
(STAT)-3 pathway, which is induced in diverse tumor-infiltrating immune cells [167-169], is
a highly immune suppressive pathways. Activation of STAT-3 suppresses macrophage
activation [170-172], limits inflammatory responses [173], reduces cytotoxicity by natural
killer (NK) cells and neutrophils, reduces the expression of MHC II, CD80, CD86, and IL-12
on DCs rendering them unable to stimulate T cells and generate antitumor immunity
[167-169], reduces CNS microglia/macrophage activity [89] but induces Tregs [159,174,175].

We have shown that an orally bioavailable, small molecule inhibitor of the STAT-3 pathway
achieves excellent CNS penetration with minimal systemic toxicity [89] and has marked in
vivo activity against established intracerebral syngeneic murine models of tumor. In vivo
efficacy is mediated by a combination of enhanced tumor cytotoxicity and Treg inhibition
[159,175]. The potential of using STAT-3 inhibitors in the treatment of CNS gliomas and
metastasis is evident, and especially in combination with other immune therapeutics. Since
PEP-3-KLH/CDX-110 is effective in the treatment of intracerebral tumors in both murine
models [25] and in GBM patients [113,114,176] by a combination of EGFRvIII-specific
humoral and cytotoxic responses, synergistic activity would be anticipated with STAT-3
inhibitors since the later inhibit Tregs, enhance cytotoxic responses, and reverse immune
suppression in the tumor microenvironment. Additionally, since many of the known inhibitors
of Treg activity (anti-CD25, CTLA-4 etc) have cross-reactivity to other T effector populations,
the selective STAT-3 inhibitors may be superior to optimizing immune activation since T cell
effector activation is a STAT-5 dependent process. Thus, the combination approach of PEPvIII-
KLH/CDX-110 with STAT-3 inhibition may be beneficial to GBM patients with bulky disease
who are unable to undergo surgical resection.

In summary, vaccination with PEPvIII-KLH/CDX-110 has been proven to be safe and
immunogenic in multiple clinical trials for newly diagnosed GBM patients. TTP and OS in
vaccinated patients is encouraging and a larger Phase II trial is ongoing (ACT III) sponsored
by Celldex Therapeutics and a Phase III trial is planned (ACT IV). Other common malignancies
such as breast and lung cancer also express EGFRvIII [177], so the implementation of this type
of promising vaccination approach may be considered.
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