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ABSTRACT 
This research contributes to the body of knowledge in information systems development 
(ISD) with an empirical investigation in form of a case study that demonstrates the 
positive impact of the agile development and project management method Scrum on 
information systems and software development productivity and it provides a useful 
operationalization of the concept through seven identified indicators for productivity. 
Despite the fact that the case unit had challenges with the use of Scrum, the indicators 
identified the areas where the company had managed to exploit the potential of Scrum 
and its practices with regard to increasing productivity. The research results are discussed 
both with regard to the existing Scrum literature as well as to complex adaptive systems 
(CAS) as a foundation for ISD and agile development. 

INTRODUCTION 

Over the last decade agile information systems and software development has received much attention 
from researchers and practitioners as an approach for dealing with change and the unpredictable and 
hardly controllable elements of ISD in a dynamic environment. While numerous publications claim a 
positive impact of agile development and in particular Scrum on information systems and software 
development, only little empirical work exists to verify these claims. The literature review, which was 
part of the study reported here uncovered some notable exceptions. To further contribute to this body 
of knowledge we set out to answer the following two research questions: What impact has the 
introduction of the agile development and project management method Scrum on information systems 
and software development? What is the effect of any deviations from the guidelines for Scrum? The 
results we present in the following are part of a larger project where we developed a framework for 
investigating the impact of Scrum (see Johansen & Uldahl 2012). In this paper however we concentrate 
on one of these concepts, namely Scrum’s impact on productivity in information systems and software 
development. In the remainder of the paper we first briefly introduce Scrum, and then we describe our 
theoretical background and the research setting and method. Subsequently we present and discuss our 
findings against the existing literature on Scrum and relate them to complex adaptive systems (CAS) 
theory, a theory which is considered to provide a theoretical foundation for ISD (Kautz 2012) and in 
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particular agile development (Highsmith 2002). We finish with some conclusions and an outlook to 
future research. 

SCRUM – AN AGILE DEVELOPMENT AND PROJECT MANAGEMENT METHOD  

Scrum is an agile information systems and software development method with a strong focus on project 
management, which was formalized and tested by Schwaber and Sutherland in the mid 1990ties 
(Schwaber & Beedle 2002, Schwaber 2004). Scrum focuses on an iterative and nimble development 
process, on transparency, visibility and on cooperation in and between the development team and the 
customers. In Scrum the development team is called the Scrum team.  Unlike traditional development 
projects where analysts, developers and testers are typically separated, Scrum teams are built on an 
interdisciplinary basis and comprise all these roles in one team preferably in one physical location. This 
structure, as well as Scrum’s focus on self-organization aims at creating team dynamics and a better 
understanding of the tasks to be performed jointly. In this context the role of the Product owner has the 
responsibility to represent the project and product externally to other stakeholders and customers and 
to handle and manage the tasks that appear in the product and release backlogs (see below) (Schwaber 
& Beedle 2002).  Internally, the role of the Scrum master will provide leadership, motivate and facilitate 
the team in line with the Scrum values, practices and development process. 

A Scrum development process is structured through a product backlog, which is a prioritized list of 
required business and technical functions of the envisioned product. It might change in line with the 
customer's new needs. A release backlog is a prioritized subset of the total product backlog and defines 
the functions to be included in a release. A Scrum, performed in so-called sprints, is a set of 
development tasks and processes which a Scrum team carries out to achieve a given sprint goal. The 
length of a sprint is predefined. It typically lasts between 5 and 30 calendar days (Schwaber & Beedle 
2002). What needs to be done during a sprint is determined by a prioritized sprint backlog, which is 
determined together with a sprint goal before the start of each sprint by the team and Scrum master and 
others, if necessary, at a planning meeting. Throughout a project a burn-down chart shows the amount 
of work left to do versus time over a given period (Schwaber 2004). In short daily Scrum meetings 
project members briefly present what they have done during the preceding day, which tasks they take 
on that day, as well as any challenges and obstacles that might have prevented them from carrying out 
their work without any solution being discussed. Scrums of scrums are additional short meetings by the 
Scrum masters of projects, which consist of several Scrum teams. At the end of a sprint a sprint review 
meeting takes place where the Scrum team, the Product owner, other management, and one or more 
representatives from the customer (Schwaber & Beedle 2002) assess the team's development process 
and progress in relation to the predefined sprint goal. Finally the Scrum team, the Scrum master and 
possibly the Product owner hold a meeting, called a retrospective, to secure learning and further 
improvement in the team where both the process and the product are assessed and discussed by each 
individual team member.  

LITERATURE REVIEW AND THEORETICAL BACKGROUND 

In our study we were interested in the impact of a specific method, namely Scrum on information 
systems and software development. Our literature review was therefore focused on that particular 
approach and not in general on project management methods’ or agile methods’ impact on information 
systems and software development. This limited our sources to writings which take their starting point 
in agile software development. We combined a concept-centric with an author-based approach 
(Webster & Watson 2002) and applied backward referencing of sources.  Our original search with 
keywords such as ’impact of Scrum’, ’effect of Scrum’, ’impact of Scrum implementation’,  and ’effect 
of Scrum implementation’ primarily in Google, Google Scholar and IEEE sources lead to about 90 
publications of which 8 dealt more precisely with our research  problem. An additional 8 articles were 
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identified through the other mechanisms. From that literature we derived a number of concepts and for 
these concepts indicators for the impact of Scrum on information systems and software development 
processes and projects. The resulting framework consisted of the identified, interrelated concepts 
productivity, quality, role of leadership, transparency, customer satisfaction, as well as employee 
satisfaction and a total of 38 indicators, which defined the concepts on a more detailed level. Here - due 
to page limitations - we are focusing on Scrum’s impact on the first one. 

Productivity in the agile literature is an expression of the development team productivity (Moe & 
Dingsøyr 2008). There are a number of interrelated indicators that are linked to different areas that may 
impact on productivity. Dybå & Dingsøyr (2008) describe the results of a comparative case study where 
productivity was measured in projects driven by traditional and agile development methods based on 
the number of lines of code (LOC) per hour, month or employee. Guang-Yong (2011) describes the 
measurement of productivity in the number of lines of code, and demonstrates how productivity 
increases gradually as a team becomes more self-organized and manages to review its development 
processes to avoid the repetition of mistakes. Appelo (2010) has a different view how productivity can 
be measured. He highlights the increased functionality to the final product as a direct indicator of 
improved productivity. The way he measures the functionality is the number of story points that have 
been completed within a given period. A story point is a number that reflects the severity of a given 
task. Mahnic and Vrana (2007) and Mahnic and Zabkar (2008) define the assessment of productivity 
as a ratio of the added value versus the associated financial costs as well as costs associated with bug 
fixes. We use these sources to investigate the indicators employee performance, the time associated 
with fixing bugs, and repetition of the same mistakes.  Sutherland and Altman (2010) use the term 
"perfect hours" as a label for a project participant’s undisturbed and uninterrupted work. They 
emphasize that a project’s progress and productivity should be measured by taking perfect hours 
combined with other indicators into account. The number of interruptions and the number of 
uninterrupted development hours were the two indicators we descended from these authors. Moore et 
al. (2007) argue that increased productivity through the use of Scrum is grounded on its focus on 
delivering functional software in short time intervals with fixed deadlines where developers do not end 
up in endless development cycles in an attempt to provide perfect solutions with a product that can 
handle everything at one time. The avoidance of continuous development cycles and compliance with 
deadlines are the last two indicators we derived from these authors.  

RESEARCH SETTING AND METHOD 

We chose a case study approach to research the impact of Scrum on information systems and software 
development processes and projects. The chosen case organization has approximately 40 years of 
experience in solving complex IT tasks. Some years ago it changed from being publically owned to 
private company. It has about 3,000 employees, who are involved in the development of administrative 
and statutory software solutions. The investigated case department falls into the latter category and has 
45 employees. Its sole product is a case management system for municipal job centers, which gives 
administrators the opportunity to work across different platforms. For the development of the case 
management system, the department previously followed the traditional waterfall model. In 2011 it 
launched the implementation of Scrum as the preferred development model. At the time of our 
investigation, the department had completed three full releases with the use of Scrum. As such the 
department had the profile of the unit of analysis we were looking for, an organization that had recently, 
within the past year, chosen to implement Scrum, and that had previously used the traditional waterfall 
model. With the former model still in their minds we expected the employees to make candid 
assessments of the impact of Scrum as compared to the past. 

As we were not able to make direct measurements, such as number of interruptions, errors, 
uninterrupted development hours, etc., we chose to directly ask respondents about their perceptions of 
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the given concepts. The indicators, which we had derived from the literature review, were therefore 
transformed into direct questions for our interviews, which we validated with 2 employees in a small 
pilot study before putting them to the 11 interview partners, who were available for the study. We 
developed 3 largely overlapping interview guides for the three stakeholder groups, with 6 developers 
as respondents, 4 respondents in leadership roles such as Scrum master, Product owner or unit managers 
and one representative from the service department, which is responsible for customer liaisons. All 
interviews were recorded, transcribed and handed over to the respondents for approval. The results of 
our analysis were also presented to the participants of this study and the case organization at large. 

The data collection with standardized interviews allowed both collections of qualitative and quantitative 
data. We first asked the respondents to numerically assess,  on a scale from -5 to + 5, for each indicator 
its individual change, improvement or decline,  as compared to the situation before the implementation 
of Scrum and then to evaluate its impact on the concept in question, here productivity. After that 
quantitative judgment we asked into the reasons for these assessments, which provided rich qualitative 
data.This combination of data allowed for data and method triangulation to improve the validity of our 
findings (Andersen 2006). The subsequent analysis was based on mean values for the quantitative data 
within each indicator; these were interpreted on the basis of the qualitative opinions. The results were 
then compared and discussed with regard to published Scrum guidelines, findings from the literature, 
and CAS theory. It is worth pointing out that the numerical element of the collected data should be 
considered secondary. The interviews were intended as the primary source to collect qualitative data 
with a statistical element - and not vice versa. The quantitative data was exclusively used to create an 
indication and an overview over any specific area. 

RESULTS – SCRUM’S IMPACT ON PRODUCTIVITY 

Table1 summarizes the respondents’ assessment of Scrum’s impact on productivity. Despite some 
individual variations the respondents’ mostly positive scores indicate their favourable assessment and 
an improvement in productivity after the implementation of Scrum. 

 
 Improve- 

ment 
Impact on 

productivity 
Range of score in 
both dimensions 

No of interruptions 1.4 2.0 0 - 4 
Endless  
development cycles 

2.8 2.8 1 - 5 

Repetition of  mistakes 1.1 1.4 -1 - 4 

Compliance with deadlines 2.9 2.1 0 - 5 

Bug fixing time 0.5 1.7 -2 - 3 

No of uninterrupted 
development hours  

0.8 1.3 0 - 3 

Employee performance 3.5 4 3 - 4 

Table 1: Mean Values of Scores for Scrum’s impact on productivity 

Number of Interruptions 

The respondents largely agreed that the number of interruptions had been reduced, and that this had 
affected productivity in a positive direction. At the high end of the scale one developer argued as 
follows: "Well, mainly because I refer to my Scrum Master now, go through her, I say. I'll do it, but it 
must come from the right path. If it comes from the right direction, then it is not so much an interruption, 
it's just a part of Scrum." 
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This respondent also scored the impact on productivity high. He underlined the way Scrum worked and 
emphasized that the number of interruptions had not necessarily decreased, but as the process had 
changed, he perceived the interruptions no longer as disturbances. 

All other respondents signalled a moderate improvement. There was broad consensus that they still 
were upset in their everyday routines when interruptions occurred, however, they felt that the number 
of interruptions was less than before. The following quote supported this; respondent A said: "Yes I [a 
developer] would say +2, and that’s based on that there are disruptions; although we try to avoid them, 
they are there nevertheless. But when I think back to the previous projects I have been involved in I 
think there have been even more disturbances (...)." 

In slight disagreement another developer answered: "So, I would say 0, I think that I have neither got 
more nor less interruptions (...)." 

Both respondents still decided to give the impact on productivity the same score they had given to the 
first dimension. The general higher score for impact was due to the individual respondents’ opinion that 
the benefits of fewer disturbances had lifted productivity significantly. 

Endless Development Cycles 

The respondents generally agreed that the introduction of Scrum had resulted in that they were not to 
the same degree than before in endless development cycles. One respondent had an interesting position 
on this: "Yes, because I think  what, among others,  happened in the our tradition approach  was that 
we developed for two months and then we found out that it was too large and complex; we did not 
recognize that we had bitten off more than we could  chew. So there was too much work in it, we had 
to squash it and that happened many times, the consequence being, it had to be unpacked six months 
later again, or when we had the necessary resources, and then we had to start again from the very 
beginning with much of what had been done earlier." 

This statement provided evidence that the case unit had previously experienced projects that had been 
developed for a number of months, only to be shelved and then started all over again. This was further 
supported by another developer: "(...) Before we got Scrum, it happened many times that an entire 
delivery was actually thrown away (...) now we think much about that it [a sprint or sprint goal] should 
be clear in itself, and that the next one should also be clear in itself (...)." 

This respondent rated the improvement and impact as significant. Both accounts point to that Scrum 
has minimized the risk that the case unit did unnecessary development work. This had happened 
because, according to the respondents, the focus on delivery of functional software had increased and 
because the development process now was iterative and took place in short cycles.  

Another developer was however slightly less positive, because, while he thought that there had been an 
improvement, he argued that there had not been any designated endless development cycles before the 
implementation of Scrum. He said: "No, not really, but that has something to do with the fact that we 
have always been under a bit of time pressure. So, this endlessness where you sit and fiddle with things, 
it has been non-existent. We have a little history that we may have focused on providing 80% solutions. 
Because it was more important that we came out with new functionality than that it was 100% correct. 
So in that way we did not produce these endless tracks." 

This perception, however, was unique among the respondents, but pointed to another issue, namely the 
delivery of less complete solutions. 

Repetition of Mistakes 

With regard to this indicator there was a noticeable difference in how respondents with greater 
responsibilities replied compared to the other respondents. We also asked respondents directly to decide 
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whether the indictor's influence was due to the Scrum processes’ focus on self-organization and 
retrospectives. One manager, who had rated both dimensions rather high, explained why he felt that the 
tendency to repeat the same mistake had been reduced after the introduction of Scrum:  "Yes. I think 
so. Well, I think due to the fact that each individual has more responsibility one just does not make the 
same mistakes. That’s what I think. It has nothing to do with retrospectives, the assessments one makes, 
but more with the fact that the responsibility lies with the individual. I think more that's what makes 
that a person will remember next time, here, we have to maybe do something else." 

According to this respondent, the improvement had solely come about through the increased personal 
responsibility, i.e. through self-organization and not through learning in retrospectives. An explanation 
how the case unit used retrospectives was given by a developer, who saw no improvement nor any 
change in impact:  "There is no difference because we do not use retrospectives to talk about what has 
been developed. De facto we use them to discuss the method, what has been good and whether there 
have been more or less disruptions or, if yes, whether we had a problem with that (...)." 

A developer, who saw a slightly negative impact on productivity although he meant that the repetitions 
of mistakes had been reduced, explained his choice with this argument: "Well, it's because before we 
sat in professional groups. Now a .net developer, a main framer, a tester and an analyst sit together. 
And we have a good team, that's not it. But there’s another dynamic, there is." 

Overall, the result of this indicator shows that the respondents felt an improvement, which had a positive 
impact. The examination of this indicator also identified that the case unit only discussed the Scrum 
method in their retrospective meetings, but not the developed product. 

Compliance with Deadlines 

Our respondents generally agreed that there had been a clear improvement in this particular area. One 
of the main reasons that respondents were so positive was that Scrum broke the development process 
down into smaller iterations and deliveries. Several respondents highlighted this. For example, one 
developer stated: "Yes, it is because it is a shorter and more manageable process, it is like that. Well I 
would say it has become easier to meet the deadlines for when we should deliver." 

Another developer added: "Because you have a well-defined task, you have your notes, you follow up 
on. So that’s completely mastered. You have this 14-day sprint to do it (...)." 

Another argument for why the impact of deadlines had increased came from a manager, who underlined 
that it not just had become easier to meet deadlines due to the decomposition and prioritization of tasks, 
which had had a great effect on productivity. He attributed the increase also to the fact that it had 
become easier to handle those elements and components that could be cut off at the end of the 
development process without much loss of functionality. This became possible because Scrum 
prioritizes and structures its processes different than the waterfall model did. He said: "Well, if you take 
the components of a car in the right order. If you wait to mount the wheels last, you fail to prioritize. 
It's the antenna, which should be mounted at the end, which we can leave out if we do not reach it (...)." 

It was, however, not everyone, who shared the positive majority attitude; one developer saw no change, 
although he felt that the work had become easier to handle; he explained:  "(...) Now, it's hard in a 
different way, because you have a sprint, so you have a deadline of 14 days instead of a deadline of 3 
months. Plus, now you make minor things, where before you after all sometimes built these big chunks. 
Now it's more manageable. So on the whole I think it's the same. It's just so hard to achieve it, as it was 
before. " 

This person stood alone with his opinion, thus it did not substantially affect the overall positive picture. 
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Bug Fixing Time 

The respondents were unanimous in assessing this indicator, with the exception of one developer, who 
chose to evaluate the first dimension quite negative (-2), but its impact as very positive (3). He argued 
although more time was spent on bug fixes than in the past - an observation, which he interestingly 
enough  did not refer to himself - it now happened at an earlier time in the process, which had a positive 
effect:  "(...) It may not be me personally, who spends so much more time, but I've seen developers 
spent more time on it, and it's probably a -2 ... Well, we spend much time on bug fixes, but we do it at 
a better point in time now than we did, because, I feel, we used to spend much time on bugs that were 
registered quite late by customers; we now simply find more errors as a consequence of our Scrum 
processes (...)." 

There was a broad agreement that the restructuring of the bug fixing and error correction process with 
short iterations and testers directly on the team had improved and that this had a positive impact on 
productivity. One developer gave an interesting explanation for this; he felt that productivity had 
increased, because the individual developers were now spared of being repeatedly and often with a 
delay reminded of their own errors. "(...) that way one can say that it [the new process] also helps to 
protect ourselves more. That we can say. The team is protected from mistakes they might have made 
themselves earlier in the development process." 

Several respondents stated that it had made a big difference that there was now dedicated time 
specifically for bug fixes, and that it happened earlier in the process. Moreover, it was also mentioned 
that the interaction between testers and developers within the small teams did that both parties were 
given an insight into the work of the other - resulting in fewer errors, and ultimately less time spent on 
bug fixes. 

Number of Uninterrupted Development Hours 

There was much agreement about this indicator across all respondents. The slight improvement was 
explained with that there were more meetings now, but that the meetings had become better to support 
the teams in handling challenges. These led to higher scores for the indicator’s impact on productivity.  
The respondents stated that they were now working more efficient because problems were solved within 
the teams and because they had better knowledge about the tasks. This was best described by two 
developers, who both stressed the positive side of performing tasks in a team:  

"This is because many of the things we now do in the team, so there are not so many of those big formal 
review meetings. And earlier it took a long time, both the test case writing by the developers and 
analysts, but this now is done inside and across the team." 

"Simply across the table, a ping pong that helps us to avoid endless, stupid time-wasting analysis and 
dead ends, so we quickly can resolve any issues (...)." 

A third developer emphasised the increase of knowledge, which he related to the fact that there now 
were new tasks beyond coding, which were considered as development.  Although this was novel and 
a challenge for him, as he had a prior focus on programming, he perceived this change not as necessarily 
negative and an interruption of his development work: "No, I do not think that, sitting down and 
analysing actually has the positive effect that one gets to know the tasks much better." 

Still he was very conservative in his assessment of the achieved improvement and its impact as he 
scored both dimensions with 0, interestingly indicating that he did not perceive a significant change of 
this indicator.  



Australasian Journal of Information Systems Volume 18 Number 3 2014 

310 

Employee Performance  

While all other indicators of productivity were primarily assessed from the developers’ perspective this 
one was based on the opinion of the four respondents in leadership roles. They provided a very positive 
assessment. One of them explained this by referring to their negative experiences and what had been 
bad before the implementation of Scrum and the prevailing perception about those involved in the 
development process:  "(...) the waterfall model also represents a kind of hierarchy. So, those on the top 
[at the very beginning of a project] are the best and the coolest, and at the bottom we find the testers, 
those, who are low skilled, have little education or are not educated at all. So it was not just the waterfall 
model, which allowed the analyst to possibly spend too much time, and then they delivered too late 
down to (...) the developers, who passed it on even later to the testers. (...)" 

The respondent clearly felt the waterfall model put a disadvantage on those, who worked towards the 
end of a development process. All time overruns happened at the expense of the testers, who thus could 
not test sufficiently, which eventually led to rather erroneous software put into production. Given that 
this no longer happened as Scrum made sure that there was knowledge and understanding across the 
different professional disciplines, the respondent believed that the overall performance had increased. 
Another manager fully agreed that it had increased, but had slightly different reasons: "(...) Because 
now everyone has to make visible what he or she  has been doing every day, that makes that one cannot 
so much hide behind a task (...)." 

This manager argued that the daily Scrum meetings raised the individual employees' performance, since 
there was greater pressure to either deliver results or to demonstrate what challenges one had run into. 
Such a result-oriented environment could well have had a negative effect on the unit’s culture and its 
ambience, but this was neither stated by any of the leaders nor by the developers; in contrast a recently 
performed survey in the organization confirmed these results. 

SUMMARY OF RESULTS AND DISCUSSION OF FINDINGS 

As mentioned earlier the investigation of Scrum’s impact on productivity in information systems and 
software development was part of a larger study, which both developed and applied a comprehensive 
framework consisting of seven related concepts. Although a presentation of the overall result would 
give a much more comprehensive portrait of the method’s impact we have here focused on one of the 
keystone concepts mostly due to page limitations. This still provides some valuable insights and where 
necessary we will relate to the other concepts. As a starting point for our subsequent discussion we 
summarize the results of our analysis concerning Scrum’s impact on productivity in the case unit as 
follows: 

We found that the decrease in the number of interruptions was limited, but it had led to a significant, 
perceived impact on productivity. In addition, the changed process with interruptions now coming from 
an authorized person and thus being less perceived as disturbances was appreciated.  

Prioritizing new functionality higher than error-free deliveries had been the organization’s strategy to 
avoid endless development cycles. Nevertheless these were experienced by the majority of the 
respondents. The increased focus on delivering functional software in defined, short iterations has 
prevented endless development and has resulted in more productivity, however not on the expense of 
product quality. Scrum’s impact on quality and the interrelation of productivity and quality in the case 
organization are beyond the scope of this paper, but are documented in Johansen & Uldahl (2012).  

With regard to the repetition of mistakes there was also positive development. Primarily the 
respondents' explained this  progress with  Scrum’s focus on self-organization and not that much with 
the practice of retrospectives, which are the method’s explicit mechanism for the identification of 
weaknesses and subsequent process and product improvements. 
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The respondents felt that Scrum’s decomposition and prioritization of tasks had positively changed the 
compliance to deadlines and had had a positive impact on productivity in general. 

Bug fixing time was the area with the least perceived improvement compared to the other indicators. 
Despite low average ratings, respondents expressed that although the actual time spent had not 
decreased, bug fixing now happened at a much better and appropriate time in the process. Thus, its 
impact on productivity was assessed significantly higher.  

The perception of the number of uninterrupted, continuous development hours had also only seen a 
very modest increase. The respondents reasoned that the use of Scrum had led to more meetings than 
in the past, which led to interruptions in the continuity of their work. The frequent meetings resulted, 
however, in a better understanding of the tasks.  This was appreciated by the respondents as having a 
positive impact on their productivity as they thought they now both worked more efficiently and tackled 
unforeseen challenges much better.  

The managers among the respondents assessed that the employees' performance had increased 
significantly. They provided two different arguments for this. First Scrum’s emphasis on visibility and 
transparency, which we had identified as a separate concept for investigating Scrum’s impact on 
information systems and software development, made it compulsory for developers to publically 
present their work and take a position with regard to any challenges they had encountered. As a 
consequence they put more focus on the execution of their tasks.  The other reason was related to the 
avoidance of project overruns. In the past overruns had always been passed through the chain of 
development tasks, with the results that the developers or even more so the testers became time-
pressured and could not do their job properly. The shorter iterations carried out by a multidisciplinary 
team avoided this effect and resulted in overall better performance. 

These favorable results are in line with the results for the other concepts and their indicators, which 
with the exception of customer satisfaction were all very positive (Johansen & Uldahl 2012). As with 
all qualitative studies of this kind we of course have to take the danger of positive bias and a 
respondents’ tendency of reporting future expectations rather than stating actual perceptions into 
account. 

On this background, we now compare our empirical data first with the literature on agile information 
systems and software development and in particular the identified writings about Scrum. According to 
these sources, there are a number of areas that impact on productivity, these being: sprints, a focus on 
functional software, retrospectives, self-organization, the product backlog and the daily scrum 
meetings. 

The introduction of an iterative sprint development process (Schwaber & Beedle 2002) plays a central 
role in the use of Scrum. In the case unit, sprints had made it easier to comply to deadlines as tasks were 
now decomposed in smaller manageable items with clear definitions, which allowed for their easier 
handling and execution. These results are confirmed in empirical work reported by among others 
Augstine et al. (2005), Vidgen and Wang (2006) as well as Wang and Vidgen (2007). 

Scrum’s increased focus on iterative delivery of functional software should according to the literature 
increase productivity while avoiding falling into endless development cycles in an attempt to develop 
the ‘perfect piece’ of software (Moore et al. 2007). This was the effect Scrum had on the case unit, 
which thus was an area where the method lived up to the expectation. 

Retrospectives are intended to increase the productivity among others as a result of the project 
participants’ learning from their own and others' mistakes, so that errors and faults are not repeated in 
the next sprint or iteration. Retrospectives should address both, the overall application of the method, 
its processes and practices, but also the more specific experience in the daily development work and its 
relation to the resulting product (Schwaber 2004). The latter turned out to be an area the case unit did 
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not focus on and thus did not benefit from in their daily work. This prioritization of topics discussed 
during retrospectives can be explained with the case unit’s early stage of utilizing Scrum and their lack 
of experience with regular retrospectives. In the case organization this area should therefore get further 
attention with an increased focus on Scrum’s practices to support learning. 

Self-organization in a Scrum team has among others the objective to protect and relieve individual team 
members from certain tasks and create an environment where they are not constantly disturbed in their 
work. In a successfully self-organized team, everyone has insights into the other team members' tasks, 
while at the same time a Scrum master is clearly identified and appointed (Schwaber & Beedle 2002). 
This means that when there is a need for input from a specific team member, the other team members 
are not unnecessarily disturbed, as the tasks have been clearly defined, broken down and distributed. If 
in doubt, the Scrum master is available to facilitate or solve the problem. At the case unit this had not 
yet been fully achieved, which meant that employees were still interrupted and disturbed in their work 
and further efforts will be needed to progress. However, one of the benefits of the Scrum master role 
had been achieved already, since the respondents expressed that the interruptions now came from the 
right person. 

In the literature the avoidance of repeating errors is ascribed to retrospectives. As discussed above in 
the case unit retrospectives had not yet been applied to their full potential, yet the perception of the 
respondents had been that the repetition of errors had drastically decreased. This was attributed to the 
influence that self-organization had. As a consequence of the increased individual developer’s 
responsibility now, team members had become more mindful not to repeat the same mistakes. 
Individual and collective mindfulness have been reported as characteristics of agile development 
independently of a particular method or agile practice (Matook & Kautz 2008). This supports that the 
lack of exploiting retrospectives in the case organization has been compensated by self-organization 
and mindfulness to lead to a positive outcome with regard to avoiding the repetition of mistakes. 

In the case organization the introduction of a product backlog had primarily an effect on compliance 
with deadlines. As the work was now broken down to single items, there were ongoing opportunities 
to check whether the agreed schedule was met. Additionally, there was now the possibility to prioritize 
and plan the order of executing the items in an appropriate manner, which according to the literature 
(see e.g. Schwaber & Beedle 2002) further increases the overall productivity. The introduction of a 
product backlog at the case unit had affected both of these areas positively, and thus the overall 
productivity. Product backlogs can also be used to plan a specific test, debugging and error correction 
period in form of a dedicated item for these tasks (Schwaber 2004). In the case unit this did not lead 
directly to a reduction of the time spent on bug fixing, but it had resulted in bug fixing happening at a 
more appropriate point in time, which ultimately had had an impact on productivity. 

Finally, daily Scrum meetings, have among others the objective to create visibility in a Scrum team. 
This helps that everyone in a team gains insight into what the others are working on and at the same 
time it makes it difficult for employees to conceal modest work efforts, since they publically have to 
communicate and document their results (Schwaber & Beedle 2002). The latter had a substantial impact 
on employee performance in the case unit - and as such affected productivity positively as openly 
explaining why as task took longer than expected, had the psychological effect that it deprived the 
employees of the opportunity to hide behind a task longer than necessary. 

In addition, the meetings had both a positive and negative impact on the number of uninterrupted 
development hours. The increased number of meetings had reduced the amount of uninterrupted 
development hours. This was outweighed, however, by the fact that the meetings created better 
visibility, oversight and knowledge. This allowed employees to tackle unforeseen challenges better, 
which had a positive effect on productivity, since waste time was avoided. 
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Our overall positive assessment of Scrum on the productivity of information systems and software 
development confirms empirically the expectations and claims, which are made in many of the 
conceptual and non-academic writings we had identified in our literature review. It also fills a gap in 
the area of empirical studies of agile software development (Dybå & Dingsøyr 2008). In the absence of 
quantitative data and with no possibility to make direct measurements and collect such data throughout 
the project it is however built on subjective perceptions. 

Nonetheless, on a more theoretical level our study can be related to complex adaptive systems (CAS) 
theory to find support for the increase of productivity as one outcome of Scrum. CAS theory underpins 
agile information systems and software development methods (Highsmith 2000) such as Scrum and the 
case unit appears to be rather successful after its transition to Scrum. On this background the above 
results can be linked to CAS concepts and principles. If ISD, in our case agile development supported 
by Scrum, is understood as CAS, certain characteristics of the process are recognized to facilitate good 
performance and thus productivity, while others inhibit it (Meso & Jain 2006; Kautz 2012). 

A number of concepts are frequently used when discussing CAS. All these core concepts are intertwined 
and mutually reinforcing. Within the area of ISD Vidgen and Wang (2009) as well as Kautz (2012) 
have summarized and put them forward as follows: Interconnected autonomous agents are able to 
independently determine what action to take, given their perception of their environment; yet, they 
collectively or individually are responsive to change around them, but not overwhelmed by the 
generated information flow. Self-organization is the capacity of these agents to evolve into an optimal 
organized form, which results from their interaction in a disciplined manner within locally defined and 
followed rules. Co-evolution relates to the fact that a complex adaptive system and/or its parts alter 
their structures and behaviours in response to their internal interactions and to the interaction with other 
CAS where adaptation by one system affects the other systems, which leads to reciprocal change where 
the systems evolve individually, but concertedly. Time pacing indicates that a complex adaptive system 
creates an internal rhythm that drives the momentum of change, which is triggered by the passage of 
time rather than the occurrence of events; this stops them from changing too often or too quickly. Poise 
at the edge of time conceptualizes a complex adaptive system’s attribute of simultaneously being rooted 
in the present, yet being aware of the future and its balance of engaging exploitation of existing 
resources and capabilities to ensure current viability with engagement of enough exploration of new 
opportunities to ensure future viability. Poise at the edge of chaos describes the ability of a complex 
adaptive system to be at the same time stable and unstable; this is the place not only for experimentation 
and novelty to appear, but also for sufficient structures to avoid disintegration; CAS that are driven to 
the edge of chaos out-compete those that are not. The above analysis has provided examples of 
interacting interconnected autonomous agents, such as the involved developers and testers, their self-
organization as individuals and as project teams, their co-evolution through knowledge sharing and 
learning from each other, as well as for time pacing in the short iterative development cycles, and for 
poise at the edge of time and chaos, for instance with regard to compliance to deadlines, bug fixing time 
and uninterrupted development hours, which thus empirically and theoretically lend support to the 
identified perceived positive impact of Scrum on performance and productivity of information systems 
and software development in our case setting. 

CONCLUSION 

While the usual disclaimers for the shortcomings of qualitative research also apply for our study, our 
work contributes to the body of knowledge in information systems development with an empirical 
investigation that demonstrates the positive impact of the agile development and project management 
method Scrum on information systems and software development productivity and it provides a useful 
operationalization of the concept through seven indicators. Despite the fact that the case unit had 
challenges with the use of Scrum, the indicators identified the areas where the company had managed 
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to exploit the potential of Scrum and its practices with regard to increasing productivity. Through the 
analysis we found an interesting area where the case unit differed from the Scrum literature’s 
recommendations. The case unit’s handling of retrospective meetings only reflected the actual process 
and method, but not the developed product. This put the unit at the risk of missing out on any 
knowledge, which could contribute positively to the future iterations and development projects. 
Therefore future research should further investigate the relationship between team learning and 
interaction of autonomous interconnected team members in retrospectives and how productivity 
supported through Scrum stems from learning. 

Although several authors underline the importance of an open organizational culture for agile 
development (Cockburn 2001; Highsmith 2002; Nerur et al. 2005; Robinson & Sharp 2005; Kautz et 
al. 2009) and argue that an innovative and open organizational culture is necessary to develop software 
according to agile principles we decided to disregard the concept as such as we assumed that the culture, 
its elements, the basic assumptions held by all members of that culture, their values and beliefs, and 
their artefacts and creations (Schein 2004) and  the cultural changes as a result of an implementation of 
Scrum would have an impact and become visible through the indicators.  In other words, for culture as 
a broad concept we thought it would make more sense to be implicitly investigated through the 
productivity indicators. In hindsight the relationship between culture and productivity in the use of agile 
methods such as Scrum does however also merit a thorough investigation through future research on 
its own. 
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