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The perception of face gender was examined in the context of extending "face space" models of
human face representations to include the perceptual categories defined by male and female faces. We
collected data on the recognizability, gender classifiability (reaction time to classify a face as male/fe
male), attractiveness, and masculinity/femininity of individual male and female faces. Factor analyses
applied separately to the data for male and female faces yielded the following results. First, for both
male and female faces, the recognizability and gender classifiability of faces were independent-a re
sult inconsistent with the hypothesis that both recognizability and gender classifiability depend on a
face's "distance" from the subcategory gender prototype. Instead, caricatured aspects of gender
(femininity/masculinity ratings) related to the gender classifiability of the faces. Second, facial attrac
tiveness related inversely to face recognizability for male, but not for female, faces-a result that re
solves inconsistencies in previous studies. Third, attractiveness and femininity for female faces were
nearly equivalent, but attractiveness and masculinity for male faces were not equivalent. Finally,we ap
plied principal component analysis to the pixel-coded face images with the aim of extracting measures
related to the gender classifiability and recognizability of individual faces. We incorporated these
model-derived measures into the factor analysis with the human rating and performance measures.
This combined analysis indicated that face recognizability is related to the distinctiveness of a face
with respect to its gender subcategory prototype. Additionally, the gender classifiability offaces related
to at least one caricatured aspect of face gender.

Human faces provide us with a plethora of information

that is valuable and necessary for social interaction. When

we encounter a face, we can quickly and efficiently decide

whether it is one we know. For faces ofpersons we know,

we can often retrieve semantic and identity information

about the person. Additionally, from both familiar and

unfamiliar faces we can make judgments about the gen

der, approximate age, and race of the person. The infor

mation we use to accomplish these latter judgments has

been referred to by Bruce and Young(1986) in their model

offace processing as "visually derived semantic" informa-
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tion. The importance ofvisually derived semantic informa

tion for understanding human performance on face pro

cessing tasks has become increasingly evident in recent

attempts to bridge the gap between the perceptual and

memory-based components ofthe face processing system

(Hancock, Burton, & Bruce, 1996; O'Toole, Abdi, Deffen

bacher, & Valentin, 1995; O'Toole, Deffenbacher, Valen

tin, & Abdi, 1994).

In the present study, we concentrate on the categorical

dimension of face gender. We begin by reviewing briefly

the basic psychological findings supporting a prototype

based, face space conceptualization of human face pro

cessing. This abstract representational framework pro

vides a parsimonious account of several well-established

psychological findings concerning face typicality (Light,

Kayra-Stuart, & Hollander, 1979; Valentine, 1991; Val

entine & Bruce, 1986). We then consider the implications

of extending this representational framework to include

natural, perceptual categories of faces, such as face gen

der. These categories share the configural base of a face

prototype, but differ in the nature of the visually derived

semantic information that specifies the subcategorical

face configurations.
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Face Spaces, Typicality, and Gender Categories

The internal representation ofa facial prototype, aver

age face, or common facial configuration has played a

prominent role in many theories of human face process

ing and has been called variously a "facial prototype" (Val
entine & Bruce, 1986), "CONSPEC" (Morton & John

son, 1991), and a "face schema" (Goldstein & Chance,

1980). The psychological evidence supporting a face

prototype comes from the well-established relationships

reported between facial ratings and human performance

on face processing tasks. For example, it is well known

that faces judged to be typical are less accurately recog

nized than are faces judged to be unusual (Light et al.,

1979). This occurs under the assumption that the theo

retical face space is more "crowded" close to the proto

type, and so typical faces are more confusable with other

faces than are distinctive faces. Additionally, faces judged
to be typical are classified as faces more quickly than are

facesjudged to be unusual (Valentine& Bruce, 1986).This

result occurs under the assumption that typical faces are

closer to the prototype than are unusual faces, and so can

be compared to the prototype more quickly than can un
usual faces (Valentine & Bruce, 1986).

In addition to the basic findings concerning face typ

icality, human observer ratings of facial attractiveness

have also been shown to vary inversely with face recog

nizability (Light, Hollander, & Kayra-Stuart, 1981), in

dicating, by implication, that attractive faces may in
some ways be "average." Data from an earlier study by

Shepherd and Ellis (1973), however, are not entirely con

sistent with the results ofLight et ai. (1981). Shepherd and

Ellis examined the effects ofattractiveness (high, medium,

and low) on recognizability at three delay periods (1, 6,

and 35 days). In the short and intermediate delay condi
tions, they found no effects of attractiveness on recog

nizability. In the 35-day delay condition, however, they

found a U-shaped relationship between attractiveness

and recognizability, with very attractive and very unattrac
tive faces better recognized than moderately attractive

faces. An important difference between the study of Light

et al. and that ofShepherd and Ellis, however, is the gen

der of faces used as stimuli; Light et al. used only male

faces, whereas Shepherd and Ellis used only female faces.
The relationship between perceived attractiveness and

computationally defined facial averages has been de

bated vigorously in a number of recent papers (Alley &

Cunningham, 1991; Langlois & Roggman, 1990; Lang

lois, Roggman, & Mussleman, 1994; Langlois, Rogg

man, Mussleman, & Acton, 1991; Pittenger, 1991). Lan

glois and Roggman (1990) found that composite faces,
created by arithmetically averaging the images of several

male or female faces, were judged to be more attractive

than almost any single male or female face. On the other
hand, Perrett, May, and Yoshikawa (1994) found that

composites of faces judged to be "attractive" were them

selves judged to be more attractive than composites

made ofan equal number of faces chosen randomly from
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the sample. Combined, these data suggest that although

the "averageness" or (proto )typicality of a face may re

late to its attractiveness, it is not likely to be the only de
termining factor.

Despite the central importance ofthe average/prototype

face to theories ofhuman face processing, little is known

about how face configurations/prototypes specific to sub

categories of faces, such as male or female faces, or faces
of different races, relate to this theoretical construct. In

addition to the common configuration that all faces share,

there exist several subcategories offaces with somewhat

different configural bases. These include the visually de

rived semantic subcategories associated with race, gen

der, and perhaps age.' Although faces within these sub

groups share the general face configuration (i.e., the

relative position of eyes, nose, and mouth), different vi

sually derived semantic subgroups can be distinguished
from one another by normative and variational differences

in (I) feature-based information, (2) "second-order" con
figural information (see Rhodes, 1988), or (3) in some

combination ofboth. For example, faces ofdifferent races

differ in the norm and variability offeatures like eye color,

hair color, and eye shape, and may also differ in norms

related to general face shape such as the degree of pro

trusion of the facial features. Likewise, male and female
faces differ normatively in feature-based information such

as the size of the nose and prominence of the brow and

also in more global facial shape characteristics such as

"fleshiness" (Enlow, 1982). We will refer to these norma

tive differences between male and female faces as "stim

ulus structure differences."

Stimulus Structure Differences Between

Male and Female Faces

Psychological studies. Questions concerning the na
ture of stimulus structure differences between male and

female faces can be considered both from a psychologi
cal and a computational perspective. From a psycholog

ical perspective, in recent years there has been an intense

interest in determining the information human observers
use to determine the gender ofa face (e.g., Brown & Per

rett, 1993; Bruce et aI., 1993; Bruce & Langton, 1994;

Burton, Bruce, & Dench, 1993; Chronicle et aI., 1995;

Roberts & Bruce, 1988; Yamaguchi, Hirukawa, & Kana
zawa, 1995). These researchers have measured or manip

ulated facial aspects/features potentially relevant for de

termining the gender of a face and have related these

measures or manipulations to human performance in clas

sifying faces by gender. Several approaches have been
taken, including (I) relating human gender classification

performance to geometrically based "facial features"

that is, 2-D and 3-D2 distances and ratio measures among

facial landmarks (Burton et aI., 1993); (2) examining the
importance of individual discrete features (e.g., noses)

in the gender decision (Brown & Perrett, 1993; Chroni
cle et aI., 1995; Yamaguchi et al., 1995); and (3) varying

the mode of presentation of information in faces (e.g.,
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by presenting photographic negatives of faces, inverted

faces, and 3-D head data from laser scans, Bruce & Lang
ton, 1994).

Combined, these approaches have indicated the diffi

culty ofreducing gender-relevant features to simple geo

metrically defined interlandmark facial distances (Bur

ton et al., 1993) and have highlighted the importance of

a broad range of shape and image intensity facial cues to

human face gender judgments (Bruce & Langton, 1994).

The work with discrete features has also indicated a spe

cial role for features like the nose (Chronicle et al., 1995),
eyebrows and facial outline (Yamaguchi et al., 1995),

and jaw (Brown & Perrett, 1993). Additionally, it has

been suggested that gender-specific features may not be
completely constant across different races of faces (Ya

maguchi et al., 1995; see also, O'Toole, Peterson, & Def

fenbacher, 1996, who demonstrated an "other-race ef

fect" for classifying faces by gender).

Computational studies. The recent efforts to deter

mine the features used by human observers to classify

faces by gender have been complemented by equally in

tense computational efforts aimed at developing com

puter models that can classify faces by gender (e.g.,
Abdi, Valentin, Edelman, & O'Toole, 1995; Cottrell &

Fleming, 1990; Golomb, Lawrence, & Sejnowski, 1991;

Gray, Lawrence, Golomb, & Sejnowski, 1995; O'Toole,
Vetter,Troje, & Biilthoff, 1997). In contrast to the psycho

logical studies, which begin by postulating a priori a set

of gender-specific features, most computational studies

have applied statistical pattern recognition procedures to

relatively raw or unprocessed 2-D image or 3-D shape data

about faces. These procedures have been implemented
frequently with connectionist networks, but are usually

equivalent to standard statistical analyses (frequently, prin

cipal component analysis [PCA]) of the raw face image
or shape data.

In the present study, we used a PCA model because it

has been applied most commonly to faces and has been
shown to relate reliably to human recognition perfor

mance and typicality ratings of faces (Hancock et al.,

1996; O'Toole et al., 1994). The purpose ofapplying PCA

to faces is to derive a set of independent or orthogonal di

mensions (principal components, eigenvectors t) with

which faces can be described efficiently and completely.
As such, PCA models can been used to quantify the sta

tistical structure of the information in faces, including

aspects of the visually derived semantic structure. Indi

vidual faces in this model are represented with "fea
tures"-that is, principal components (PCs) or eigen

vectors, derived from a set of face images. When both

male and female faces are included in the set, individual

PCs have been shown to capture information useful for
determining the gender of a face (O'Toole, Abdi, Def

fenbacher, & Valentin, 1993). Additionally, simple face

representations based on combinations of the PCs have

been shown to support excellent gender classification
performance when input to a simple linear classifier net

work (Abdi et al., 1995; O'Toole et al., 1997).

Despite the rather nontraditional nature of PCs as fea

tures, this kind ofrepresentation fits easily into the basic
conceptual structures posited in face space models. Spe

cifically, PC-based representations are founded on the con

cept of a multidimensional space and can accommodate

a prototype. This representational framework simply sup

plements abstract psychological theories, which have not

generally been specific about the dimensions of the face

space, with a set ofconcrete, quantifiable (analyzable) di

mensions derived from a set offaces. More formally, rep

resenting faces via their coordinates on these dimensions
defines a face space. Thus, PCA provides one possible

instantiation of a face space model that yields a set of
stimulus-derived dimensions (see Hancock et al., 1996;

O'Toole et al., 1995). PCA can be thought of, therefore,

as a perceptual front-end for more abstract models offace

processing (O'Toole et al., 1995).

Extending the concepts ofa face space and face proto

type to accommodate natural face categories such as gen

der raises a number of interesting issues concerning the
nature offace typicality and its effects on human perfor

mance in recognizing and categorizing human faces. The

structure of a face space that accommodates visually

derived semantic subcategories of faces is substantially

different from that resulting from a face space accommo

dating only a single homogeneous set offaces. For exam
ple, imagine individual faces represented by points in an

n-dimensional face space, with the distances between any

two points being a measure of the perceived similarity

between the two faces. When applied to a single homoge

neous group of faces (e.g., young adult Caucasian male

faces), the points are likely to form a single cluster. Ap

plied to both male and female faces, it is likely that two
gender-based clusters will result. Accordingly, the simple

assumption that the face space close to the average face

is "crowded" is not likely to be true when both male and

female faces are included in the space. Rather, the face

space close to the average male and average female faces
should be crowded, with relatively few faces around the

overall average face. In this case, the recognizability or

confusability of a face should be most related to its dis

tance from the subcategory average. Likewise, ifthe clas

sification of a face as an exemplar of a gender subcate
gory involves a comparison to the subcategory prototype,

the recognizability of a face should be inversely related

to the time required to classify it as male or female.

Alternatively, the addition of subcategorical structures

to a face space raises psychological issues concerning
the importance of the "contrastive" nature of gender cat

egories in a space. Although the average male or female

face may be considered to be the most typical version of

these categories, there is some evidence to suggest a spe

cial psychological role for subcategory caricatures that
express maximally contrastive aspects of categories

(Rowland & Perrett, 1995; Yamaguchiet al., 1995). Highly

feminine faces are likely to be faces that are most differ
ent from male faces, and vice versa. In the simple face

space conceptualization, feminine faces might be repre-



sented by the points that are farthest from the male sub

category prototype. Ifthese contrastive aspects of the cat

egories of male and female are perceptually important

for the categorization task, then we might expect to see

a dissociation of face recognizability and gender classifi
ability, with the latter tied more to the perceived feminin

ity/masculinity of the face.
In the present study, we have undertaken a systematic

exploration of human performance in a more realistic

face space containing gender categories. As in previous

work, in which the structure of human face space repre

sentations has been probed by establishing relationships

between facial rating data and human performance on in
dividual faces (e.g., Light et al., 1979; Valentine & Bruce,

1986), we began by collecting these data for a large num

ber of individual male and female faces. Because of the

well-established and complex interrelationships among

these rating and performance measures (Hancock et al.,

1996; Light et al., 1979; O'Toole et al., 1994; Valentine

& Bruce, 1986; Vokey & Read, 1992), we have applied

a factor analysis to describe the structure or pattern of

interaction among a set of human rating and performance
variables collected on individual faces. This approach has

been taken successfully in several recent papers and has

yielded insight into the multidimensional structure of fa

cial ratings and human performance measures (see Han
cock et al., 1996; O'Toole et al., 1994; Vokey & Read,

1992). Such structure would not be evident from only

pairs of correlated variables.
The variables assessed in the present study consisted

of (1) two facial ratings potentially related to the gender

appearance of the faces (femininity/masculinity and at

tractiveness) and (2) the human performance measures
offace recognizability and gender classifiability (i.e., re

action time to classify a face by gender). As noted, al

though attractiveness ratings have been shown to relate

to average faces, there are still questions surrounding the

biasing role of face gender in these judgments. We in
cluded measures of the perceived femininity of female

faces and the perceived masculinity ofmale faces, which

we considered (tentatively) as caricatures of the sub

groups offemale and male faces.' Factor analyses ofthese

ratings and performance measures indicated a surprising
independence of the recognizability and gender classifi

ability of faces.
Wenext compared the consistency ofthese findings for

male and female faces and found important differences

in the structure ofthe rating/performance space as a func

tion of face gender, especially with respect to the attrac
tiveness rating. Finally, we anchored the human measures

to stimulus structural properties ofthe face categories by

adding face measures extracted from a PCA ofthe face im

ages to the factor analysis on human measures. These com
putational model measures contained information that

related reliably to face gender and face recognizability.

This combined analysis of the model and human face
measures gave insight into the nature of the facial infor-
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mation underlying some ofthe human rating and perfor

mance data.
We have carried out three human experiments, a com

bined analysis of these experiments, and a computer sim

ulation. Wepresent the experiments first. We then present

a factor analysis of the faces using the variables gathered

in the experiments. Finally, we present the computational

model and incorporate gender-related model measures

directly into the factor analysis with the human judgment

and performance data.

EXPERIMENT 1
Reaction Time to Classify Faces by Gender

Method
Observers. Eighteen observers (8 males and 10 females) from

the University of Texas at Dallas (UTD) undergraduate population

were recruited in exchange for a core psychology course research
credit.>

Stimuli. One hundred and fifty-two (half male and half female)

Caucasian faces were digitized from slides to a 150- X 225-pixel

image with a resolution of 16 gray levels using a digitizer attached

to a PC with a TARGA board (True Vision). Faces were of young

adults, without facial hair or glasses, and were photographed in front

of a homogeneous light background. All of the face images were

aligned with each other by eye height and by the center point be

tween the eyes. Face images were not normalized explicitly for size,

but were all taken from the same camera distance and thus were

roughly equal in size. These stimuli were used in all experiments

and in the simulation."

Procedure. Observers were instructed that the purpose of the

study was to determine the speed with which they could accurately

determine whether a face was that of a male or a female. Each ob

server read a short description of the experiment explaining that

faces would appear on a computer screen one at a time and would

remain visible until a response was made by pressing a button on a

three-button computer mouse. Observers pressed the left-most but

ton for one gender and the right-most button for the other gender.

The assignment of left/right to gender categorization was counter

balanced across observers and was labeled appropriately in all

cases. When the observer responded, the face disappeared and a com

puter prompt appeared instructing observers to rate their certainty

(I = very sure, 2 = moderately sure, and 3 = guessing). They again

indicated their rating using the three-button mouse, labeled with a

paper overlay above the "male" and "female" button labels. All ob

servers participated in a short practice session using Japanese faces

in order to acquaint themselves with the task and with the equipment.

Results
The primary purpose of this study was to obtain mea

sures of the speed with which individual faces are cate

gorized by gender. However, for comparison with other

related studies, we present a standard analysis ofvariance

(ANOVA) on the observer data in this experiment. Sim

ilar analyses are presented also in Experiments 2 and 3.

Mean reaction times (RTs) to classify male and female
faces were computed individually for male and female

observers. The group means appear in Table I,7 These

data were analyzed using a two-factor ANOVA,with gen
der of observer as a between-subjects factor and gender

of face as a within-subjects factor. The analysis revealed
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EXPERIMENT 2
Masculinity/Femininity and Attractiveness Ratings

Table I
Human Rating and Recognition Performance of Observers

as a Function of Gender and Faces

Method
Observers. Thirty-five observers (18 males and 17 females) from

the UTD undergraduate population were recruited in exchange for

a core psychology course research credit. These observers had not

participated in Experiment I or 2.

Procedure. The final experiment was a standard old/new recog

nition memory study. Observers were instructed to pay close atten

tion to the faces presented because they would be asked to remem

ber the faces in the second part of the experiment. During the

learning part of the study, 76 (38 male and 38 female) faces were

presented one at a time on the computer screen for 3 sec. Observers

took a short break and then viewed 152 faces (76 male and 76 fe

male) one at a time. Half of these faces had been seen by the ob

server in the learning part of the study and half were new faces.

Each face remained on the screen until the observer responded

"old" or "new," using labeled mouse buttons. The order of faces

presented in both the learning and testing phases was randomized

individually for each observer. Due to the fact that we wished to use

these data for computing the recognizability of male and female

faces for male and female observers, elaborate counterbalancing

schemes were implemented so that each face appeared equally often

as old and new across observers, and also su that each face was seen

equally often as old and new by equal numbers ofmale and female

observers. Because of the slight imbalance in the number of male

and female observers tested, this was not achieved precisely.

Nonetheless, the d's and C values were calculated from hit and false

alarm rates that were based on very close to equal numbers of old

and new presentations.

[F(l,I6) = 2.17,p > .05], and a significant interaction

between face gender and observer gender [F(l, 16) =

7.13,p < .05]. As can be seen in Table 1, this interaction

was due primarily to female observers rating female faces

as more attractive than male faces. Male observers rated

male and female faces to be about equally attractive.

Because only male faces were rated for masculinity

and only female faces were rated for femininity, we ana

lyzed the male and female face data in separate one-fac

tor ANOVAs with observer gender as the independent

variable. No differences were found in either case as a

function of observer gender [F(l, 16) < 1 in both cases;

see Table 1 for means].

EXPERIMENT 3
Recognition

Results and Discussion
A d' and criteriont? were computed individually for

each male and female observer recognizing male and fe

male faces. The group means appear in Table 1. These data
were analyzed using a two-factor ANOVA with the gen

der of observer as a between-subjects factor and gender

of face as a within-subjects factor. The d' analysis re
vealed no main effect of face gender [F(l,33) = 1.33,

p> .05], a main effect ofobserver gender [F(l,33) = 4.82,

P < .05], with female observers more accurate than male
observers, and an interaction between face gender and ob

server gender [F(l,33) = 8.72,p < .01], with female ob

servers more accurate with female faces. These data are
consistent with those of most previous work considering

the effects of face and observer gender on face recogni
tion accuracy (see Shepherd, 1981, for a thorough re-

.71

1.05

1.56
0.42

Female

.56

.82

1.13

0.00

Male Female
Faces Faces

Observers

Male

.74

Male Female
Faces Faces

Experiment 3, Recognition

1.15 0.96
0.01 0.34

Attractiveness
Femininity
Masculinity

Experiment I, Speeded Gender Classification

Reactiontime to classify 1,141.31 1,286.80 1,161.08 1,440.06
by gender (msec)

Accuracy (% correct) 94.9 94.9 98.7 95.3

Experiment 2, Ratings

.69 .65
-0.96

d'

Criterion

Method
Observers. Eighteen observers (10 males and 8 females) from

the UTD undergraduate population were recruited in exchange for

a core psychology course research credit. These observers had not

participated in Experiment I.

Procedure. Observers viewed the faces one at a time on a com

puter screen and rated each face for attractiveness using the three

button computer mouse (0 = unattractive, I = somewhat attractive,

and 2 = very attractive).8 After the response, the face remained on

the screen and observers then rated the male faces for masculinity

and the female faces for femininity (0 = not veryfeminine, I = some

what feminine, and 2 = very feminine). For the male faces, "femi

ninity" was replaced in the computer prompt by "masculinity,"? Male

and female faces in this experiment were blocked and the order of

these blocks was counterbalanced across observers.

no main effect of observer gender [F(I, 16) < 1], but did

reveal a main effect of face gender [F( 1,16) = 4.82, p <
.05], with female faces classified more slowly than male
faces. The pattern of data is consistent with the presence

of an interaction between face gender and observer gen

der, but this conclusion was not supported statistically

[F(l,I6) < 1].
The accuracy ofgender classification for male and fe

male observers on male and female faces was high in all
cases (overall average = 95.9%). There was no indication

of a speed-accuracy tradeoff. Furthermore, an ANOVA

on errors revealed no main effects or interactions.

Results
Mean attractiveness and masculinity/femininity rat

ings were computed individually for male and female
observers. The group means appear in Table 1. The attrac

tiveness rating data were analyzed using a two-factor
ANOVAwith the gender ofobserver as a between-subjects

factor and gender offace as a within-subjects factor. The

analysis for attractiveness revealed no main effect ofob

server gender [F( 1,16) < 1], no main effect of face gender



view). Shepherd (1981) noted that although face and ob

server gender effects have not been found consistently in

the literature, when main effects have been found, they

have tended to indicate an advantage for female observers.

When interactions have been found, they have tended to

indicate that female observers are particularly good at

recognizing female faces.

The criterion analysis showed no main effect of ob

server gender [F(1,33) < 1], a main effect offace gender

[F(I,33) = 26.20,p < .01], with observers using a stricter

criterion for female faces than for male faces, and no
interaction between face gender and observer gender

[F(I,33) < 1].
Next, we computed a d' and C value for each face by

compiling data across the different observers. Although

the recognizability ofindividual faces has been measured

frequently in the literature using methods based on sig

nal detection theory (SDT; see, e.g., Hancock et al., 1996;

Light et al., 1979; O'Toole et al., 1994), these studies did

not make the assumptions of this model explicit as they
apply to individual stimuli, rather than to individual ob

servers. For completeness, we do so in the appendix. In
the present section, we detail only the procedure used to

compute the SDT measures on faces and refer readers in

terested in the SDT model assumptions to the appendix.

Hit rates and false alarm rates for individual faces were

computed as follows. When a face was learned by an ob

server and was later recognized by that observer as "old,"
a hit was recorded for that face. The hit rate for the face

was the proportion oftimes the face was recognized as old

across all of the observers who had learned the face.

When a face was not learned by an observer and the ob

server incorrectly recognized the face as old, a false alarm

was recorded for that face. The false alarm rate for the
face was the proportion oftimes the face was recognized

as old across all of the observers who had not learned the

face. A d' and criterion were computed in the standard

way for each face.

COMBINED ANALYSIS ON FACES

Male and Female Faces
Using data from all three experiments, we assigned

each face a value on the following five variables: (I) RT

(i.e., mean latency to categorize the face by gender),
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Table 2

Correlations Among Human Rating and Recognition

Performance Measures: Upper Triangle Contains

Correlations for Female Faces, Lower Triangle for Male Faces

Reaction Femininity!

Time Attractiveness Masculinity d' Criterion

Reaction time 1.00 -.37t ~ . s s t -.07 .02

Attractiveness -.24* 1.00 .88t .08 .13

Femininity! -.62t .23* 1.00 .07 .05

masculinity

d' .09 -.30t .10 1.00 .46t

Criterion .10 -.17 -.15 .28t 1.00

*p < .05. tp<.OOI.

(2) mean attractiveness, (3) mean femininity iffemale or
mean masculinity if male, (4) d', and (5) criterion. In the

first three cases (RT, attractiveness, and masculinity/

femininity), means were computed across all observers

in the appropriate experiment. In the latter two cases (d'
and criterion), numbers of hits and false alarms were com

piled across observers in Experiment 3 and a single d'
and criterion were calculated for each face. Note that for

the facial attributes of attractiveness, masculinity, and

femininity, high variable values indicated high levels of

the attribute in question (e.g., high numbers indicated

highly attractive faces).

The faces were then separated by gender and a varimax
rotated PCA was applied separately to the correlation

matrices of the raw rating and performance data for male

and female faces. For completeness, we present these

raw correlation matrices in Table 2. Correlations for the

female faces appear in the upper triangle of the matrix,

whereas correlations for the male faces appear in the
lower triangle of the matrix. Note that an interpretation

of PCA data requires a decision about the number of

axes/factors to retain. We based this choice on the struc

ture of the resultant data and presented as many axes as
we were able to interpret easily. Additionally, because

there is no significance test to indicate the size of the

loading to be considered important, it is useful to choose

a loading value for all analyses that will be considered as

a threshold for interpreting the variable loadings. For
comparison with past work (O'Toole et al., 1994), we will

restrict our conclusions to loadings greater than or equal

to .30, which are marked with an asterisk in the tables.

Table 3

Human Rating and Recognition Performance for

Male and Female Faces for the First Two Rotated Factors

Female Faces Male Faces

Classification Recognition Classification Recognition

Reaction time -.71* .04 -.85* .13

Attractiveness .89* .11 .32* -.61

Masculinity! .96* .04 .90* .00

femininity

d' .05 .84* -.15 .83*

Criterion .01 .86* .10 .65*

Proportion of variance .45 .28 .37 .26

accounted for by axis
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The results of the PCA analysis appear in Table 3. We

retained the first two axes, which explained 73% of the

variance for female faces and 63% of the variance for
male faces. Several points are worth noting. First, in

terms of the performance measures, RT and d' appear

independently on the first and second axes, respectively,

for both male and female faces. For convenience and

brevity, we will henceforth refer to these two axes as the

"classification" and "recognition" axes, respectively. The

independence of d' and RT is at odds with our simple con

ceptualization of human classification and recognition

performance being dependent on a face's distance from

a local subcategory prototype. We consider this question

in more detail in the discussion.
Second, beginning with female faces, it is clear from the

first axis that the attractiveness and femininity judgments

were strongly related to RT to classify the faces as female.
Faces rated as highly feminine and highly attractive were

classified as female more quickly than faces judged to be
less feminine and less attractive. The similarly sized load

ings for attractiveness and femininity on this axis suggest

that observersused the attractivenessand femininity ratings
in very similar ways. The similar usage of these ratings sits

uncomfortably with our tentative conceptualizations ofat
tractiveness as "average" and femininity as a "caricature"

offemale (i.e., its contrast from male faces).
The classification axis for male faces is more compli

cated. In general, faces judged to be masculine and attrac

tive were classified as male more quickly than faces judged

less masculine and unattractive. However, the difference

in the size of the loading for attractiveness and mascu
linity suggests that for male faces "attractive" did not

equal "masculine." Masculinity proved more closely tied

to the speed required to classify the face as male than did

attractiveness. As expected from Light et al. (1981), the
attractiveness rating loads in the opposite direction from

d' on the recognizability axis for male faces, indicating

that attractive faces were not well recognized. In contrast
to the female face data, the dissociation ofthe attractive

ness and masculinity ratings is reasonably consistent with

the notion that at least part of the attractiveness rating for
male faces captures "averageness," and that masculinity

captures something caricatured about male faces.
The recognition axis for both the male and female faces

is dominated by the relationship between d' and crite

rion. Additionally, the attractiveness rating did not load
on the recognizability axis for female faces, as it had for

male faces. This result replicates Shepherd and Ellis's

(1973) finding that attractiveness and recognizability for

female faces are unrelated. The present data, combined
with the results of Light et al. (1981) and Shepherd and

Ellis, suggest that the negative relationship between at

tractiveness and recognizability holds only for male faces.
Finally,d' and criterion were not independent for either

the male or the female faces. This result seemed inconsis

tent with earlier data collected on these faces (O'Toole
et al., 1994). This earlier study indicated that d' and cri-

terion were independent for same-race Caucasian faces

but not for other-race Japanese faces. The major differ

ence between the recognition experiment carried out in

that study and the one performed here was the balance of
male and female observers. In the O'Toole et al. (1994)

study, approximately 80% of the observers were female,

whereas here, the proportion was close to 50%.

Male and Female Observers and

Male and Female Faces
To examine the possibility that the difference in the

balance of male and female observers between O'Toole

et al. (1994) and the present study was responsible for the

nonindependence between d' and criterion found here,

and also to extend the present results to look at differ

ences between male and female observers, we repeated

the PCA analysis, separating the data further by the gen
der ofobserver. Thus, we performed four PCA analyses:

(1) female observers with female faces, (2) female ob

servers with male faces, (3) male observers with female

faces, and (4) male observers with male faces. Again, in

all four of these analyses, the first axis was interpretable

as a classification axis. Since these data were similar to

those found previously with male and female observers

combined, we will not consider the first axis further. The
second axis, however, although again identifiable as a

recognition axis, differed as a function of observer and

face gender. This axis appears in Table 4 for each of the
four analyses. First, in all cases, it is clear that d' and cri

terion were not independent. The pattern ofnonindepen

dence differed as a function of observer and face gender.

For male observers of both male and female faces, well

recognized faces tended to be recognized with strict (more

conservative) criteria. This was also true for female ob

servers with female faces. For female observers viewing
male faces, however, the relationship between d' and cri

terion was in the opposite direction. Well-recognized faces

tended to be recognized with looser (more liberal) crite

ria. Thus, it seems that this opposing relationship for fe

male observers on male and female faces, combined with
the preponderance of female observers in O'Toole et al.

(1994), can explain why the data from that study showed

independence between d' and criterion.

Table 4
Recognition Axis as a Function of Face and Observer Gender

Observers

Female Male

Female Male Female Male

Faces Faces Faces Faces

Reaction time -.17 .00 .12 .10

Attractiveness .10 -.64* .04 -.64*

Masculinity/femininity .02 -.10 .02 -.01

d' .83* .78* .77* .71*

Criterion .82* -.49* .81* .68*

Proportion of variance

accounted for by axis .25 .26 .26 .26



At present, we can offer neither an explanation nor an

interpretation of the nonindependence ofd' and criterion

in these data. We are further unsure as to why there were

differences in the pattern of nonindependence as a func

tion ofgender of observer and gender of face. The result
is important, however, because it suggests that correla

tions between facial attribute ratings and single compo
nents ofd' (i.e., hit rate and false alarm rate) can be very

difficult to interpret and can be misleading in some cases

(see O'Toole et aI., 1994, for a discussion ofthe problem).

Because of the complexity of the issue and the fact that

it is not central to the theme ofthe present paper, we will

not consider criterion further, though we believe it (and

its relationship to d' in standard face recognition studies)

to be worthy of further study in its own right.

Results, Summary, and Conclusions

From the combined analysis of the first three experi

ments, several points are worth noting. First, indepen

dence was found between the recognizability of a face
and the speed in classifying it as male or female. As noted,

nonindependence might be predicted by a model that

(I) considers the RT to classify a particular face by gen

der as a measure of the distance of that face to the sub

category center or prototype (i.e., in this case, to the av

erage male or female face), and that (2) assumes that
faces are more densely clustered (and hence, less distin

guishable) close to this subcategory center. Independence

of RT and d' is more consistent with a model in which

caricatured rather than prototypical aspects ofgender ap

pearance underlie gender classification performance,

whereas the similarity structure or density ofstimuli (pre
sumably highest around the subcategory prototype) under

lies face recognizability. Weconsider these issues further
after presenting our computational model.

Second, for female and male faces, speed ofclassifying

faces by gender was related both to the attractiveness and
femininity/masculinity ofthe faces. The similarity ofthe

attractiveness and femininity loadings indicates that to a

first approximation, observers tended to use the attractive

ness and femininity ratings in very similar ways-a find

ing that is inconsistent with the conceptualization of at
tractiveness as "average" and femininity as our tentatively

conjectured "caricature" of female.
Third, consistent with the findings of Shepherd and

Ellis (1973) for female faces, attractiveness ratings and

recognizability were not related. Formale faces, attractive
ness ratings were made of two independent components,

one related to the masculinity of the face and to the speed

of classifying it as male, and a second related to the rec

ognizability of the face. This suggests that observers
base attractiveness ratings ofmale faces on two kinds of

information about the faces, one related to masculinity
and RT, and the other to recognizability and criterion. The

latter component is consistent with the findings of Light

et al. (1981), using male faces. Combined with the findings
of Shepherd and Ellis, the present data suggest that the

negative relationship between recognizability and at-
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tractiveness holds only for male faces. The differences

seen between the pattern ofrating and performance mea

sures for male and female faces indicate that caution
should be exercised in interpreting the results of experi

ments using these ratings with both male and female faces.

Finally, differences in the way male and female ob

servers processed these faces were confined primarily to

the recognition axis, on which male and female observers

showed different patterns of relationships between rec

ognizability and response bias.

MODEL DESCRIPTION

The psychological data indicated differences in the pat
tern of interrelationships among gender-related facial

ratings and recognition performance measures for male

and female faces. How do stimulus structure differences

between/among male and female faces relate to these dif
ferences? Answering this question requires an ability to

quantify the information in faces in a way that captures

the visually derived semantic information relevant for cat

egorizing faces by gender. We coded each individual face

as a vector of pixels created by concatenating the rows
of the face image. We then applied a PCA to the cross

product matrix made from the set offace vectors. As noted,

a face is represented in this model as a weighted combi
nation of"features" (PCs, eigenvectors, axes, and dimen

sions). Because the PCA is applied to images, each ei
genvector is interpretable or "displayable" as an image.

Figure 1 shows the first nine eigenvectors extracted from

a matrix made ofmale and female faces. In (re)construct

ing a particular face, these eigenvectors are combined

linearly along with the remaining eigenvectors in the set.

In the context ofrepresenting faces, eigenvectors have
two defining characteristics. First, eigenvectors can be

ordered according to the amount ofvariance (referred to

as the eigenvalue of the eigenvector) each explains in the

cross-product matrix made from the set of faces. This is
a measure of the importance of the eigenvector for rep

resenting all faces in the set and is important for under

standing properties ofthe representation that relate to the
heterogeneity ofthe face set. Second, different "amounts"

of each eigenvector are required to reconstruct particu

lar faces. These amounts measure the importance of the

individual eigenvectors for representing individual faces

and are important for understanding how a particular
face differs from other faces in the set. We refer to these

amounts for a particular face as the face's "weights" with

respect to the eigenvectors.

We have concentrated on eigenvectors explaining
large proportions ofvariance in the face set, since a num

ber of studies have indicated that these eigenvectors con

tain reliable information for predicting the gender of a
face (Abdi et aI., 1995; O'Toole et aI., 1993; O'Toole

et aI., 1997). This is not surprising, given that gender is

one of the basic "features" on which faces can be con
trasted, and hence is likely to explain a large proportion

of variance in a set of faces.
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+ =

Figure 1. Schematic ofthe combination of eigen-images to create a face. The first nine eigen-images are displayed. For illustra
tion purposes, the weights for these first nine eigen-images for the particular face shown are as follows: .89 x the first eigen-image

(e l ) + .30e2 + .07e3 -.04e4 + Oes -.0ge6 + .03e7 + Oes - .02e9 + ... + w.e•.

The relationship between individual eigenvectors and

the gender ofa face has been established in previous work

by computing a point biserial correlation between the

weights of faces on particular eigenvectors and the gen

der of the faces!' (O'Toole et aI., 1993). Using the same

set offaces that we used in the present study, O'Toole et al.

found statistically reliable relationships for 12 eigenvec

tors with relatively large eigenvalues. The strongest rela

tionship was found for the second eigenvector (r = .66,

df = 157,P < .0001). In general, a positive weight on this

eigenvector was required to reconstruct male faces,

whereas a negative weight was required to reconstruct

female faces. Accordingly, O'Toole et al. showed that

adding the second eigenvector to the first produced a face

with a male appearance, whereas subtracting the second

eigenvector from the first produced a face with a female

appearance.I? This demonstration is reproduced in Fig

ure 2. The first row of the figure illustrates, from left to

right, the first three eigenvectors. Row 2 of the figure

shows the result of adding the first eigenvector to the

second (left face) and the result of subtracting the second

eigenvector from the first (right face). This eigenvector

captures hair length and face shape differences between

male and female faces (see also Abdi et aI., 1995, and

O'Toole et aI., 1997, for an analysis ofthe computational

utility and generalizability ofeigenvectors for the gender

classification task).

O'Toole et al. (1993) also found the third eigenvector

weight to be a reliable, though much less powerful, pre

dictor offace gender (r = .21, df = 157,P < .006). Again,

male faces generally required positive values of this

eigenvector, whereas female faces generally required

negative values. We then combined this eigenvector with

the first eigenvector in positive and negative combina

tions. The results appear in row 3 of Figure 2. The face

on the left is the result of adding the third eigenvector to

the first, whereas the face on the right is the result of sub

tracting the third eigenvector from the first eigenvector.

Surprisingly, the eyes and head of the "female" face are

turned very slightly in comparison to the "male" face.'!

This would indicate that some female subjects did not

gaze directly at the camera, but rather, just to the side

a surprising result in that the pictures of males and fe

males in this set were taken under identical pose conditions

and with identical instructions (A. Goldstein, personal

communicationj.t- Nevertheless, this difference proved

a reliable discriminator of face gender.

We concentrated on 3 of the 12 eigenvector weights

found to be predictive of face gender by O'Toole et al.

(1993)-the first, second, and third eigenvector weights.

Combined, these three weights explained 58.86% ofthe

total variance in gender prediction, and 65.4% of the

variance explained by the 12 weights that were statisti

cally significant gender predictors. We have chosen to

include these three eigenvector weights in the present

analysis because they were the most strongly predictive

of face gender and because we can offer a prima facie in

terpretation of the information they capture. We have

mentioned our interpretation of the second and third

eigenvectors. The first eigenvector also related to face

gender in the study of O'Toole et al. (1993); (r = .33,

df= 157,p < .0001). Due to the fact that we did not sub

tract the mean face prior to the extraction of eigenvec

tors, the highly similar nature of the face images is such



Figure 2. The first three eigen-images of a face matrix composed

of equal numbers of male and female faces (row 1). The first eigen
vector plus the second eigenvector appears on the left of row 2,

making a face with a male appearance. The first eigenvector minus
the second eigenvector appears on the right of row 2, making a face

with a female appearance (row 2). The first eigenvector plus the

third eigenvector appears on the left of row 3. The first eigenvector
minus the third eigenvector appears on the right of row 3. The face
on the right appears more feminine than the face on the left.

that this eigenvector approximates the average face (for

more details, see Valentin, Abdi, & O'Toole, in press).

Accordingly, unlike the positive/negative image differ
ences we saw for the second and third eigenvectors, both

male and female faces required large positive values of

this eigenvector to be reconstructed, with the recon

structions of male faces requiring a significantly larger

amount of this eigenvector (i.e., the average) than the fe

male faces. The fact that the "amount" of the average
face required to reconstruct a face correlated signifi

cantly with the gender of the face suggests an interesting

aspect of the stimulus structure of our particular set of
male and female faces. Specifically, it would seem that,

on the average, male faces were "closer" to the general

face average than were female faces. IS
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SIMULATION
Quantifying Gender Information in Faces

The present methods are very similar to those applied
in previous studies, and so we provide only a brief over

view of the computational analysis. A more detailed de

scription appears in O'Toole et al. (1994) and a tutorial

explanation can be found in Abdi (1994).

Method
Stimuli. The same 152 faces used in Experiments 1-3 were used

for the simulation as well. For the model, these faces were 151 pix

els in width and 225 pixels in length, and were digitized to 16 gray

levels. These faces constitute 152 ofthe 159 faces used by O'Toole

et al. (1993).

Procedure. For model-predicted gender information, we extracted

the weights for each face with respect to the first, second, and third

eigenvectors. These three weights for a given face served as a model

derived measure of the gender-related information in that face with

respect to the information captured by these eigenvectors.

For model-predicted recognizability information, the recogniz

ability measure should capture the extent to which individual faces

are distinctive or unusual with respect to other faces in the set-in

this case, distinctive with respect to the basic categorical structure

defined by gender. In short, our measure tries to answer the ques

tion, "How distinctive is a face once we have partialed out some of

this basic categorical structure information?" Or, "How different is

it from the gender subcategory average?" This was determined in

two steps. First, because we know that the first three eigenvectors

or eigen-irnages relate to face gender, we can reconstruct faces

eliminating these eigen-images. Second, we computed the cosine or

normalized correlation between each reconstructed face vector and

its original face vector (see O'Toole et aI., 1994). This measures the

similarity between the two vectors and provides an indication of

how much information is "left over" after eliminating most of the

useful gender information in the faces. Relatively high similarity

of these reconstructions to the originals (i.e., the cosine is high) in

dicates that there is a relatively large amount of information leftover

for distinguishing a particular face from the gender subcategory to

which it belongs. Relatively low similarity ofthese reconstructions

to the originals indicates that there is a relatively little information

leftover for distinguishing the face from the category prototype.

Canonical correlation analysis. Before examining the struc

ture among the variables, we assessed the strength and reliability of

the relationship between model and human measures. Canonical

correlation can be used to assess the statistical reliability of the lin

ear relationship between two sets ofvariables. In this analysis, a lin

ear combination within each set of variables was computed so as to

maximize the correlation between the two sets of variables (Kshir

sagar, 1972). We carried out separate analyses for male and female

faces 16 so that the "gender" of the face alone could not be respon

sible for any correlation found. The model measures were the

weights on the first three eigenvectors and the cosine, computed as

indicated previously. The human measures were attractiveness,

masculinity/femininity, RT, and d'.17 This yielded a canonical cor

relation of.49 (maximum likelihood ratio test, p < .03) for the fe

male faces and .52 (maximum likelihood ratio test,p < .001) for the

male faces. The results ofthis analysis indicate that there is a statis

tically reliable relationship between the model and human measures.

Divided further by the gender ofobserver, the canonical correla

tions were not significant, possibly due to the loss ofpower incurred

in dividing the number of cases by 2. Given the lack ofsignificance

and the minor differences due to observer gender in the psycholog

ical data, we do not present these analyses.
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Table 5a

Human and Model Data for Female Faces

for the First Three Rotated Factors

Classification Recognition Axis 3

Reaction time -.68* -.14 .34*

Attractiveness .89* -.10 .19

Femininity .96* -.04 .00

.r .18 .65* .20

EV 1 weight .05 -.57* .76*

EV 2 weight -.04 .08 .88*

EV 3 weight -.31* .48* .09

Cosine -.01 .80* -.27

Proportion of variance
accounted for by axis .30 .27 .13

Varimax peA analysis combining human and model data.

Next we examined the structure of the relationship among model

and human measures by applying a varimax-rotated PCA to the

combined model and human data for the male and female faces. We

simply supplemented the human rating and performance measures

for each face with the four additional model-derived measures for

each face. The results of the varimax-rotated PCA analysis appear

in Table 5. Note that for all three of the eigenvector weights, high

numbers indicate values toward the male end ofthe scale, low num

bers indicate values toward the female end (see Figure 2), and high

cosines indicate high-quality reconstructions (reconstructions sim

ilar to the original faces).

In both the male and female analyses, we retained three axes, ac

counting for a total of70% ofthe variance for female faces and 68%

of the variance for male faces. The classification and recognition

axes seen in the psychological data are again identifiable as the first

two axes. We discuss the third axis individually for the male and fe

male faces. Because there is no appropriate common label for this

axis, in Tables Sa and 5b we simply label it "Axis 3."

Several points are worth noting. First, for both male and female

faces, the strongest overlap between model and human measures

occurred on the recognition axis, which shows roughly equally

sized loadings for model and human measures (see Tables Sa and

5b). The common structural element of this recognition axis for

male and female faces is a loading of d' and cosine in the same di

rection, opposing an inverse loading ofthe first eigenvector coeffi

cient.l'' The direction ofthe cosine-d' relationship loading indicates

that faces with higher quality model representations were better rec

ognized by human observers. That is, these faces were more read

ily distinguished from their subcategory prototype and were, there

fore, presumably more distant from it in the face space. This

replicates a similar finding by O'Toole et al. (1994) when identity

specific information in the face representations was preserved (i.e.,

when faces were reconstructed with eigenvectors with relatively

smaller eigenvalues).'?

Table 5b

Human and Model Data for Male Faces
for the First Three Rotated Factors

SUMMARY AND DISCUSSION

The first eigenvector coefficient, or "amount of the average face

required to reconstruct the face," also loaded in opposition to d',

Faces more similar to this common face base were less recognizable

than were faces less similar to this base. This is consistent with

common interpretations of prototype theory for faces .

The pattern of results for male and female faces diverged on the

recognition axis in two ways. For male faces, attractiveness loads on

this axis in the direction expected-that is, with the first eigenvec

tor coefficient, and against d' and cosine. This is consistent with the

suggestion that one component of attractiveness in male faces

makes for a less recognizable, and in part, more "average" face. For

female faces, the third eigenvector coefficient also loaded in the same

direction as d' and cosine, so that female faces with more mascu

line values of this weight-that is, more frontal-looking faces

were more recognizable. It might be possible that the latter compo

nent captures something related to the attractiveness-recognizability

relationship found for male faces, with these female faces being

treated like unattractive (more discriminable) male faces, rather than

female faces.

For the classification axes (see Tables Sa and b), the pattern of

human data is again characterized by the opposition of RT and the

combination ofattractiveness and masculinity/femininity. Note that

in contrast to the recognition axis, where model and human measures

had roughly an equal foothold, this classification axis was primarily

dominated by the human measures. Surprisingly, the model mea

sure that loaded most strongly on this axis, and the only model mea

sure to load above our criterion, was the weight on the third eigen

vector. Despite its modest size, this loading appears for both male

and female faces. For female faces, femininity and attractiveness

loaded in a direction opposing the third eigenvector weight and RT.

Thus, feminine and attractive faces, which were classified as female

relatively quickly, tended to have smaller (more negative) values of

the third eigenvector and hence tended to be slightly turned from the

camera. For male faces, masculinity and attractiveness loaded in the

same direction as the third eigenvector weight. In other words, mas

culine and attractive faces tended to have larger (more positive) val

ues of the third eigenvector and hence tended to gaze directly at the

camera.

Finally, the third axis retained in this analysis (see Tables Sa and

b), though dominated by model measures, is interesting for female

faces in that it contains a second orthogonal component of RT, re

lated only to model measures. RT appears on this axis in the same

direction as the first and second eigenvector weights. This indicates

that faces requiring larger amounts of the average face to be recon

structed (i.e., female faces with more male values of this eigenvec

tor weight) were classified as female more slowly than were faces

requiring less of the general average. Additionally, female faces

with more male values ofthe second eigenvector weight were clas

sified more slowly as female. In general, these are female faces with

short hair and more male-shaped faces, as defined by this eigen

vector (see Figure 2). This second component ofRT was detected in

this analysis, but not in the analysis of the purely psychological data,

due to the presence of model measures relevant to the information

on which it was based. This information was apparently not cap

tured in the facial characteristic ratings or recognition performance

measures.

For male faces, the third axis was completely dominated by

model measures and shows only that the second and third eigen

vector weights loaded in opposition for male faccs-" Since no human

measure loaded in this axis at a level meeting our criterion, this sim

ply indicates an axis dissociating typically masculine values on the

second and third eigenvectors.

In summarizing the specifics of these results for female

faces, "attractive" was very nearly synonymous with "fern-
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inine" and was related to the time required to call the face
"female." This finding indicates that our tentatively ad

vanced conceptualizations of "attractiveness as average"

and "femininity as a caricature" cannot both be correct. We

would argue that "caricature," rather than "average," may

be a better descriptor of the information captured by these

ratings. Supporting this conclusion, the model data indi

cated that the distinguishability of the face when some of

the basicgender informationwaseliminated(distinctiveness

with respect to the prototype femaleface) was not related ei

ther to the attractiveness/femininity rating or to the RT to

classify the face as female. By contrast, this model-based

distinctiveness information was quite strongly related to

the recognizability of the face. The premise here is that a

caricature is built by opposition to a contrastive category.

For example, a "caricatured female" emphasizes/exagger

ates the features that most distinguish it from male faces.
Recognition memory performance, on the other hand,

would be more concerned with the local category structure
(i.e., female), since it is presumably most related to the

number of similar distracting items for an individual face.

In summarizing the specifics of these results for male

faces, "attractive" was not synonymous with "mascu

line." Rather, attractiveness was a 2-D entity, one dimen

sion of which mirrored the unidimensional attractiveness

rating seen for female faces and related to masculinity
and the time required to classify the face as male. The

second dimension ofattractiveness related to the model

derived measure of the distinguishability of the face

from the male prototype and, importantly, to the recog

nizability of the face for human observers. These results

indicate that although masculinity may be seen as an "at

tractive" property of male faces, it is possible that ex
treme masculinity in a face may render it a bit too "strong"

looking. It is possible, therefore, that the masculine com

ponent of attractiveness may need to be tempered or

toned down somewhat for a male face to be judged attrac

tive. By contrast, it is somewhat hard to imagine extreme

femininity rendering a female face unattractive.
In relating these findings to past work, our psycho

logical data clear up the disagreement in the literature

concerning the relationship between attractiveness and

recognizability, replicating the findings of both Light

et al. (1979) and Shepherd and Ellis (1973). The critical
factor explaining the difference in results between these

studies is face gender, which dissociates two subcompo

nents of attractiveness for male, but not for female, faces.

This dissociation is important for interpreting results that

draw on rating and performance measures gathered on

both male and/or female faces.
Additionally, with reference to past work, the fact that

we did not find a relationship between attractiveness and

"average" for the female faces is not necessarily incon
sistent with the claim that an averaged or composite fe

male face is more attractive than most single noncompos

ite faces. In contrast to past work (Langlois & Roggman,
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1990; Langlois et al., 1994), the attractiveness ratings used

in the present study were collected on "unprocessed" faces

(i.e., single noncomposite faces), rather than on com

posite or averaged faces. The process of averaging faces

can selectively obliterate relatively low-contrast, high

spatial-frequency (i.e., finely detailed) information that

is specific to only one or a few of the faces in the set to

be averaged (cf. Langlois et al., 1994). This could in

clude small skin irregularities such as blemishes, which

may render a face less attractive, as well as dimples or

long eye lashes, which may render a face more attractive

(see also Perrett et al., 1994, for more discussion of this

issue). Primarily, with respect to the model proposed here,

this kind ofinformation is likely to be contained in eigen
vectors with relatively small eigenvalues (see O'Toole

et al., 1993). The presence ofthis low-contrast, high spa

tial frequency information, by its very definition, is likely

to have a negligible effect on the arithmetically computed

distance of a face to the average face. This information
may be, nonetheless, clearly detectable for human ob

servers in a single or unaveraged face and may have very

important consequences for perceived attractiveness. In

other words, although averaged faces may be generally

judged to be more attractive than single faces, single faces

that are close to the average may contain low-contrast,
but detectable, features that are very important for the hu

man judgment of attractiveness.

One last speculative point we wish to make refers to

the nature of stimulus information contributing to mas

culinity and femininity judgments. This concerns the

small but consistent loading of the third eigenvector co
efficient on the classification axis for both male and fe

male faces. Our interpretation ofthe information provided

by this model measure is that it conveys information about

a facial mannerism. Thus, it seems possible that a face

can be made to appear (at any given instant) more femi

nine or more masculine via some very simple facial man
nerisms. For example, looking straight ahead and seeking

direct eye contact may lend any face a more masculine ap

pearance, whereas averting the eyes and gazing downward

may lend a face a more feminine appearance. These are
simple, though subtle, changes in the orientation offaces,

which (I) were useful in explaining variance in the face

set (i.e., were captured by the third eigenvector), (2) were

useful in predicting the gender of a face in purely com

putational terms, and (3) related to the human measures

captured by the classification axis.
Examining the interrelationships among commonly

assessed facial rating and performance measures can

give insight into the potentially multidimensional compo

nents of these measures. The consistency of this relation

ship across groups of faces that vary in base configural
properties such as gender, race, or age may be an impor

tant element in developing and refining face processing

theories to fit the heterogeneous nature of the faces we

encounter in the course of our social experience.
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NOTES

I. However,age may have less ofa "categorical" and more ofa con

tinuous structure than race and gender.

2. The 3-D features were derived from full and profile views of the

faces.

3. These have been referred to as "eigen-pictures" by Sirovich and

Kirby (1987) and "eigen-faces" by Turk and Pentland (1991).

4. Although masculinity and femininity are considered orthogonal

dimensions in the personality literature, in the face perception litera-



ture, femininity/masculinity have assumed a single scale (see, e.g.,

Bruce, Ellis, Gibling, & Young, 1987; Burton et aI., 1993).

5. The number of observers may seem relatively small in Experi

ments I and 2, but our primary analysis treats "cases" as faces, rather

than as observers. Additionally, of the eight possible main effects/

interactions tested in these two experiments, in all but one case, the

observer-based analyses of variance yielded F values that were either

less than I or proved statistically significant, indicating that it would be

unlikely that more observers would have changed results substantially.

6. For comparison purposes, it should be noted that these faces con

stituted 152 of the 159 Caucasian faces used in O'Toole et al. (1993)

and O'Toole et al. (1994).

7. These mean reaction times are substantially longer than those re

ported in other studies ofgender classification times (e.g., Bruce, Ellis,

Gibling, & Young, 1987, who found gender classification times of

slightly over 600 msec). Perhaps the major difference between this task

and similar ones was the inclusion of a certainty rating task intervening

between speeded classification trials in our study. This led us to won

der if this intervening task could have "broken the stride" of the ob

servers in the reaction time task. We thus tested an additional 5 ob

servers in the classification task, eliminating the rating task, and found

that the mean reaction time dropped by 211 msec. Although still longer

than in other studies, the factor analysis will show that reaction times re

lated to the other psychological measures of gender-related attributes in

interpretable ways.

8. In theory, a 5- or 7-point rating scale would have been better, but

a 3-point scale was sufficiently sensitive in this study to capture stong

and meaningful variations among the face measures (see Table 2). The

correlations between measures define lower bounds on the reliability of

the measures (Nunnally, 1978), thus allaying concerns about the con

sistency with which observers rated faces.

9. We note that this method allows for possible order effects of al

ways rating attractiveness before masculinity/femininity.

10. We used C, a measure of the displacement of the criterion in

z-score units, computed as -0.5(zH + zFA)' With this measure, smaller

values imply looser criteria (Snodgrass & Corwin, 1988).

II. Face gender was defined as 0 for female and I for male.

12. See also O'Toole et al. (1997) for a replication of this finding

with 3-D data from laser scans of human heads.

13. When we showed these faces to people informally, all agreed that

the face on the right appears female, but not all agreed that the face on

the left appeared male. In any case, all seemed to agree that the right

hand face appears more feminine than the left-hand face.

14. It is worth noting that this is a very subtle cue. We have used this

set offaces in many experiments and have never noticed differences in

the gaze direction of the male and females in the photographs, though

our PCA model detected it. Although this may be considered a "prob

lem" for the standardization ofthe photographs, it would apply perhaps

to other face sets that have not been similarly analyzed for systematic

"nonfeature" differences between male and female faces.

15. The weight on the first eigenvector is simply the dot product be

tween the vector of pixel values specifying a face and the first eigen

vector and hence is a direct measure of the physical similarity between

the two.

16. A joint analysis done over all faces was not necessary since we

knew already that the three model gender measures were correlated

with the sex of the face, which is embodied in the masculinity and fem

ininity judgments. For completeness, however, when the male and fe

male faces were combined, the canonical correlation between model and

human measures was .74 (maximum likelihood ratio test,p < .0001).

17. As noted, we omitted the criterion from further consideration. For

completeness, we carried out canonical correlations including criterion,

but the inclusion of criterion did not change the size of the correlation

substantially.
18. The opposition of the two model measures, cosine against the

first eigenvector coefficient, is in part artifactual because (I) the first

eigenvector is highly related to the mean, so all faces will have strong

positive values on it; (2) the larger this weight for a given face, the larger

the variation in the face explained by the first eigenvector, and the less

explained by the eigenvectors contributing to the cosine measure.
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19. In O'Toole et al. (1994), a much larger range of the eigenvectors

was eliminated in this identity-specific condition. It would appear,

therefore, that eliminating only the first three eigenvectors in the pre

sent analysis was sufficient to replicate this finding.

20. For specialists ofPCA, who may be disturbed by a cross-loading

of two eigenvector weights from orthogonal eigenvectors, recall that the

PCA on faces was carried out for male and female faces combined,

whereas the varimax-rotated PCA on the face measures, where we see

this cross-loading, was done individually for male and female faces.

APPENDIX

Signal Detection Model Comparison

for Observers and Faces

Signal detection model for observers. When computing

the measures d' and C for a particular observer in a particular
condition of a recognition experiment, data from many differ

ent faces are combined. Each hit that contributes to the hit rate

and each false alarm that contributes to the false alarm rate
comes from a different face. All the different faces that an ob

server learned in the learning phase ofa recognition experiment
contribute to the old distribution, and all the faces that the ob

server did not learn, but that are used as test faces, contribute

to the new distribution. In general, the dimension on which
these faces are distributed is thought to be an indication of the

level of familiarity that a particular observer experiences when

looking at faces. To be able to recognize faces at a level above

chance, the observer must experience generally higher levels of
familiarity when viewing faces he/she has seen before than

when viewing faces that he/she has not seen before.
The d' measures the overlap of evoked familiarity feelings

for an observer when old versus new faces are being viewed.

For observers with good recognition skills, there will be rela

tively little overlap between the old and new distributions, and
for observers with poorer recognition skills, there will be rela

tively more overlap between the distributions. The differences

in d' yielded by different observers under identical experimen
tal conditions are thought to reflect the characteristics of the

individual observers such as their visual and perceptual abili
ties, memory capacity, motivation, and experience with the

task.

The criterion measures the observer's level of conservative
ness during the experiment for responding that he/she has seen

faces previously. In other words, how familiar must a face in the

experiment seem for the observer to be comfortable responding
"known." Criterion is generally thought to reflect both the char

acteristics ofthe individual observers and the characteristics of

different situations. The former include inherent aspects of the
observer's personality such as the liberalness/conservativeness

ofguessing strategy, and the latter include aspects ofthe experi
mental situation, including task demands and context, such as

the proportion of faces that are actually old versus new in rec

ognition test.

Signal detection model for faces. When computing the mea
sures d' and C for a particular face in a particular condition of a

recognition experiment, data from many different observers are
combined. Each hit that contributes to the hit rate and each false

alarm that contributes to the false alarm rate comes from a dif
ferent observer. All of the observers in the experiment who

learned a particular face in the learning phase of a recognition

experiment contribute to the old distribution for that face, and
all of the observers who did not learn this face but see it in the
recognition test contribute to the new distribution for the face.
The dimension on which these observers are distributed is an
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indication of the level of familiarity people experience when

looking at the/ace in question. For the face to be recognizable

at a level above chance, observers who have seen the face be

fore should generally experience higher levels of familiarity

than observers who have not seen the face before. More for

mally, the distribution composed of the observers who have

seen the face before (old) should not overlap completely with

the distribution composed of the observers who have not seen

the face before (new).

The d' is a measure of the overlap offamiliarity levels expe

rienced by the observers who have seen the face before and the

distribution of observers who have not seen the face before-s

that is, its recognizability. For highly recognizable faces, there

will be relatively little overlap between the old and the new dis

tributions, whereas for less recognizable faces, there will be

more overlap between the distributions. Differences in the d's

yielded by different faces under identical experimental condi

tions are thought to reflect the characteristics ofthe individual

faces, including whether or not they have moles, buck teeth,

and so on.

The criterion measures the tendency of the face to evoke old

versus new responses from observers in a particular experiment.

Criterion reflects both the characteristics ofthe individual/aces

and the characteristics 0/ the experimental situation. An ex

ample combining both factors might be as follows. Male faces

with long hair may evoke lots of old responses in a task in

which they constitute 80% of the faces used, but may evoke

many fewer old responses when they represent a small minor

ity of the faces.
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