
676 Baum

The Perceptron Algorithm Is Fast tor
Non-Malicious Distributions

Erice B. Baum
NEC Research Institute

4 Independence Way

Princeton, NJ 08540

Abstract: Within the context of Valiant's protocol for learning, the Perceptron

algorithm is shown to learn an arbitrary half-space in time O(r;;) if D, the proba

bility distribution of examples, is taken uniform over the unit sphere sn. Here f is
the accuracy parameter. This is surprisingly fast, as "standard" approaches involve
solution of a linear programming problem involving O(7') constraints in n dimen

sions. A modification of Valiant's distribution independent protocol for learning
is proposed in which the distribution and the function to be learned may be cho
sen by adversaries, however these adversaries may not communicate. It is argued
that this definition is more reasonable and applicable to real world learning than
Valiant's. Under this definition, the Perceptron algorithm is shown to be a distri
bution independent learning algorithm. In an appendix we show that, for uniform
distributions, some classes of infinite V-C dimension including convex sets and a
class of nested differences of convex sets are learnable.

§1: Introduction

The Percept ron algorithm was proved in the early 1960s[Rosenblatt,1962] to
converge and yield a half space separating any set of linearly separable classified
examples. Interest in this algorithm waned in the 1970's after it was empha
sized[Minsky and Papert, 1969] (1) that the class of problems solvable by a single

half space was limited, and (2) that the Perceptron algorithm, although converg
ing in finite time, did not converge in polynomial time. In the 1980's, however, it
has become evident that there is no hope of providing a learning algorithm which
can learn arbitrary functions in polynomial time and much research has thus been
restricted to algorithms which learn a function drawn from a particular class of
functions. Moreover, learning theory has focused on protocols like that of [Valiant,

1984] where we seek to classify, not a fixed set of examples, but examples drawn

from a probability distribution. This allows a natural notion of "generalization" .
There are very few classes which have yet been proven learnable in polynomial time,
and one of these is the class of half spaces. Thus there is considerable theoretical
interest now in studying the problem of learning a single half space, and so it is
natural to reexamine the Percept ron algorithm within the formalism of Valiant.

The Perceptron Algorithm Is Fast for Non-Malicious Distributions 677

In Valiant's protocol, a class of functions is called learnable if there is a learn
ing algorithm which works in polynomial time independent of the distribution D
generating the examples. Under this definition the Perceptron learning algorithm
is not a polynomial time learning algorithm. However we will argue in section 2
that this definition is too restrictive. We will consider in section 3 the behavior of
the Perceptron algorithm if D is taken to be the uniform distribution on the unit
sphere sn. In this case, we will see that the Perceptron algorithm converges re
markably rapidly. Indeed we will give a time bound which is faster than any bound
known to us for any algorithm solving this problem. Then, in section 4, we will
present what we believe to be a more natural definition of distribution independent
learning in this context, which we will call N onmalicious distribution independent
learning. We will see that the Perceptron algorithm is indeed a polynomial time non
malicious distribution independent learning algorithm. In Appendix A, we sketch
proofs that, if one restricts attention to the uniform distribution, some classes with
infinite Vapnik-Chervonenkis dimension such as the class of convex sets and the
class of nested differences of convex sets (which we define) are learnable. These
results support our assertion that distribution independence is too much to ask for,
and may also be of independent interest.

§2: Distribution Independent Learning

In Valiant's protocol [Valiant , 1984], a class F of Boolean functions on ~n is
called learnable if a learning algorithm A exists which satisfies the following condi
tions. Pick some probability distribution D on ~n. A is allowed to call examples,
which are pairs (x, I(x», where x is drawn according to the distribution D. A is a
valid learning algorithm for F if for any probability distribution D on ~n, for any
o < 8, f < 1, for any I E F, A calls examples and, with probability at least 1 - 8

outputs in time bounded by a polynomial in n, 8- 1 , and f- 1 a hypothesis 9 such
that the probability that I(x) "I g(x) is less than f for x drawn according to D.

This protocol includes a natural formalization of 'generalization' as predic
tion.For more discussion see [Valiant, 1984]. The definition is restrictive in de
manding that A work for an arbitrary probability distribution D. This demand
is suggested by results on uniform convergence of the empirical distribution to the

actual distribution. In particular, if F has Vapnik-Chervonenkis (V-C) dimensionl1

d, then it has been proved[Blumer et al, 1987] that all A needs to do to be a valid

learning algorithm is to call MO(f, 8, d) = max(~logj, Sfdlog1f3) examples and to

find in polynomial time a function 9 E F which correctly classifies these.
Thus, for example, it is simple to show that the class H of half spaces is

Valiant learnable[Blumer et aI, 1987]. The V-C dimension of H is n + 1. All we

need to do to learn H is to call MO(f, 8, n + 1) examples and find a separating half

space using Karmarkar's algorithm [Karmarkar, 1984]. Note that the Perceptron
algorithm would not work here, since one can readily find distributions for which
the Perceptron algorithm would be expected to take arbitrarily long times to find
a separating half space.

11 We say a set S C Rn is shattered by a class F of Boolean functions if F
induces all Boolean functions on S. The V -C dimension of F is the cardinality of

the largest set S which F shatters.

678 Baum

Now, however, it seems from three points of view that the distribution inde
pendent definition is too strong. First, although the results of [Blumer et al., 1987]
tell us we can gather enough information for learning in polynomial time, they say
nothing about when we can actually find an algorithm A which learns in polynomial
time. So far, such algorithms have only been found in a few cases, and (see, e.g.

[Baum, 1989a]) these cases may be argued to be trivial.
Second, a few cl~es of functions have been proved (modulo strong but plau

sible complexity theoretic hypotheses) unlearnable by construction of cryptograph
ically secure subclasses. Thus for example [Kearns and Valiant, 1988] show that
the class of feedforward networks of threshold gates of some constant depth, or of
Boolean gates of logarithmic depth, is not learnable by construction of a crypto
graphically secure subclass. The relevance of such results to learning in the natural
world is unclear to us. For example, these results do not rule out a learning al
gorithm that would learn almost any log depth net. We would thus prefer a less
restrictive definition of learnability, so that if a class were proved unlearnable, it
would provide a meaningful limit on pragmatic learning.

Third, the results of [Blumer et aI, 1987] imply that we can only expect to learn
a class of functions F if F has finite V-C dimension. Thus we are in the position
of assuming an enormous amount of information about the class of functions to be
learned- namely that it be some specific class of finite V-C dimension, but nothing
whatever about the distribution of examples. In the real world, by contrast, we
are likely to know at least as much about the distribution D as we know about the
class of functions F. If we relax the distribution independence criterion, then it can
be shown that classes of infinite Vapnik-Chervonenkis dimension are learnable. For
example, for the uniform distribution, the class of convex sets and a class of nested
differences of convex sets (both of which trivially have infinite V -C dimension) are
shown to be learnable in Appendix A.

§3: The Perceptron Algorithm and Uniform Distributions

The Percept ron algorithm yields, in finite time, a half-space (WH, ()H) which
correctly classifies any given set of linearly separable examples [Rosenblatt,1962].

That is, given a set of classified examples {z~} such that, for some (w~, ()~), W~ .z+ >
()~ and W~ • z~ < ()~ for alII', the algorithm converges in finite time to output a

(W H , () H) such that W H • z~ 2:: () Hand W H . z~ < () H. We will normalize so that

w~ . w~ = 1. Note that Iw~ . z - ()~ I is the Euclidean distance from z to the separating

hyperplane {y : W~ . Y = ()~}.
The algorithm is the following. Start with some initial candidate (wo, ()o),

which we will take to be (0,0). Cycle through the examples. For each example, test
whether that example is correctly classified. If so, proceed to the next example. If
not, modify the candidate by

(1)

where the sign of the modification is determined by the classification of the miss
classified example.

In this section we will apply the Perceptron algorithm to the problem of learning

The Perceptron Algorithm Is Fast for Non-Malicious Distributions 679

in the probabilistic context described in section 2, where however the distribution
D generating examples is uniform on the unit sphere sn. Rather than have a
fixed set of examples, we apply the algorithm in a slightly novel way: we call an

example, perform a Perceptron update step, discard the example, and iterate until

we converge to accuracy c/ 2 If we applied the Perceptron algorithm in the standard
way, it seemingly would not converge as rapidly. We will return to this point at the
end of this section.

Now the number of updates the Perceptron algorithm must make to learn a

given set of examples is well known to be O(f;), where I is the minimum distance

from an example to the classifying hyperplane (see ego [Minsky and Papert, 1969]).

In order to learn to c accuracy in the sense of Valiant, we will observe that for
the uniform distribution we do not need to correctly classify examples closer to the
target separating hyperplane than O(-7,:). Thus we will prove that the Perceptron

algorithm will converge (with probability 1 - 8) after O(~) updates, which will

occur after O(-!i) presentations of examples.

Indeed take Ot = 0 so the target hyperplane passes through the origin. Parallel
hyperplanes a distance tc/2 above and below the target hyperplane bound a band
B of probability measure

1,,/2 n 2 A
P(tc) = h/1 - z2) - dz ~

-,,/2 An
(2)

(for n > 2), where An = f«~:+ll)/;) is the area of sn. See figure 1. Using the readily

t
K

J..

Figure 1: The target hyperplane intersects the sphere sn along its equator (if

Oe = 0) shown as the central line. Points in (say) the upper hemisphere are classifie.d
as positive examples and those in the lower as negative examples. The band B 18

formed by intersecting the sphere with two planes parallel to the target hyperplane

and· a distance tc/2 above and below it.

/2 We say that our candidate half space has accuracy c when the probability that

it missclassifies an example drawn from D is no greater than c.

680 Baum

obtainable (e.g. by Stirling's formula) bound that AA:l < vn, and the fact that

the integrand is nowhere greater than 1, we find that for", = €/2vn, the band has

measure less than €/2. If Ot # 0, a band of width", will have less measure than it

would for Ot = 0. We will thus continue to argue (without loss of generality) by
assuming the worst case condition that Ot = 0.

Since B has measure less than €/2, if we have not yet converged to accuracy €,

there is no more than probability 1/2 that the next example on which we update will

be in B. We will show that once we have made rno = rnax(144In!, ~) updates, we

have converged unless more than 7/12 of the updates are in B. The probability of

making this fraction of the up dates in B, hC?wever, is less than 6/2 if the probability

of each update lying in B is not more than 1/2. We conclude with confidence 1-6/2

that the probability our next update will be in B is greater than 1/2 and thus that
we have converged to €-accuracy.

Indeed, consider the change in the quantity

(3)

when we update.

(4)

Now note that ±(Wk . X:l:: - Ok) < ° since x was miss classified by (Wk' Ok) (else we

would not update). Let A = (=F(Wt· x:l:: - Ot». If x E B, then A < 0. If x rt. B, then

A ~ -",/2. Recalling x2 = 1, we see that tl.N < 2 for x E Band tl.N < -0'" + 2

for x rt. B. If we choose 0 = 8/"" we find that tl.N ~ -6 for x ~ B. Recall that,

for k = 0, with (Wo, (0) = (0,0), we have N = 0 2 = 64/",2. Thus we see that if we
have made 0 updates on points outside B, and 1 updates on points in B, N < ° if

60 - 21> 64/",2. But N is positive semidefinite. Once we have made 48/",2 tot'al

updates, at least 7/12 of the updates must thus have been on examples in B.

If you assume that the probability of updates falling in B is less than 1/2 (and

thus that our hypothesis half space is not yet at € - accuracy), then the probability

that more than 7/12 of mo = max(144In~, ~) updates fall in B is less than 6/2.

To see this define LE(p, m, r) as the probability of having at most r successes in m

independent Bernoulli trials with probability of success p and recall, [Angluin and

Valiant,1979], for ° < f3 < 1 that

(5)

Applying this formula with m = mo, p = 1/2, f3 = 1/6 shows the desired result.
We conclude that the probability of making rno updates without converging to €
accuracy is less than 6/2.

The Perceptron Algorithm Is Fast for Non-Malicious Distributions 681

However, as it approaches 1 - € accuracy, the algorithm will only update on a
fraction € of the examples. To get, with confidence 1- 8/2, rno updates, it suffices to

call M = 2mo/€ examples. Thus we see that the Perceptron algorithm converges,
with confidence 1 - 0, after we have called

2 ° 48n M = -max(144In-2 , -2)
€ €

(6)

examples.
Each example could be processed in time of order 1 on a "neuron" which

computes Wk . x in time 1 and updates each of its "synaptic weights" in parallel.
On a serial computer, however, processing each example will take time of order n,

so that we have a time of order O(n2/€3) for convergence on a serial computer.
This is remarkably fast. The general learning procedure, described in section 2,

is to call Mo(€, 0, n+1) examples and find a separating halfspace, by some polynomial
time algorithm for linear programming such as Karmarkar's algorithm. This linear
programming problem thus contains 0(7) constraints in n dimensions. Even to

write down the problem thus takes time o(nf~)' The upper time bound to solve this

given by [Karmarkar, 1984] is O(n505€-2) . For large n the Percept ron algorithm is

faster by a factor of n305 • Of course it is likely that Karmarkar's algorithm could

be proved to work faster than O(n505) for the particular distribution of examples
of interest. If, however, Karmarkar's algorithm requires a number of iterations
depending even logarithmically on n, it will scale worse (for large n) than the

Perceptron algorithm/3

Notice also that if we simply called Mo(€, 0, n + 1) examples and used the
Perceptron algorithm, in the traditional way, to find a linear separator for this set
of examples, our time performance would not be nearly as good. In fact, equation
2 tells us that we would expect one of these examples to be a distance O(nt.g) from

the target hyperplane, since we are calling 0(7) examples and a band of width

O(nf.s) has measure O(*). Thus this approach would take time O(~), or a factor

of n2 worse than the one we have proposed.
An alternative approach to learning using only O(7) examples, would be to

call MoCi, 0, n + 1) examples and apply the Perceptron algorithm to these until a

fraction 1- €/2 had been correctly classified. This would suffice to assure that the

hypothesis half space so generated would (with confidence 1 - 0) have error less
than €, as is seen from [Blumer et aI, 1987, Theorem A3.3]. It is unclear to us what
time performance this procedure would yield.

§4: Non-Malicious Distribution Independent Learning

Next we propose modification of the distribution independence assumption,
which we have argued is too strong to apply to real world learning. We begin
with an informal description. We allow an adversary (adversary 1) to choose the

/3 We thank P. Vaidya for a discussion on this point.

682 Baum

function f in the class F to present to the learning algorithm A. We allow a second
adversary (adversary 2) to choose the distribution D arbitrarily. We demand that

(with probability 1 - 8) A converge to produce an (-accurate hypothesis g. Thus
far we have not changed Valiant's definition. Our restriction is simply that before
their choice of distribution and function, adversaries 1 and 2 are not allowed to
exchange information. Thus they must work independently. This seems to us an
entirely natural and reasonable restriction in the real world.

Now if we pick any distribution and any hyperplane independently, it is highly
unlikely that the probability measure will be concentrated close to the hyperplane.
Thus we expect to see that under our restriction, the Perceptron algorithm is a

distribution independent learning algorithm for H and converges in time O(S;2)
on a serial computer.

If adversary 1 and adversary 2 do not exchange information, the least we can
expect is that they have no notion of a preferred direction on the sphere. Thus our
informal demand that these two adversaries do not exchange information should
imply, at least, that adversary 1 is equally likely to choose any w, (relative e.g. to

whatever direction adversary 2 takes as his z axis). This formalizes, sufficiently for
our current purposes, the notion of Nonmalicious Distribution Independence.

Theorem 1: Let U be the uniform probability measure on sn and D any other
probability distribution on sn. Let R be any region on sn of U-measure (8 and
let z label some point in R. Choose a point y on sn randomly according to U.
Consider the region R' formed by translating R rigidly so that z is mapped to y.

Then the probability that the measure D(R/) > (is less than 8.

Proof: Fix any point z E sn. Now choose y and thus R'. The probability z E R' is
(8. Thus in particular, if we choose a point p according to D and then choose R',
the probability that pER' is (8.

N ow assume that there is probability greater than 8 that D(R/) > (. Then we

arrive immediately at a contradiction, since we discover that the probability that
p E Fe is greater than (8. Q.E.D.

Corollary 2: The Perceptron algorithm is aNon-malicious distribution indepen
dent learning algorithm for half spaces on the unit sphere which converges, with

confidence 1 - {) to accuracy 1 - (in time of order O(S;2) on a serial computer.

Proof sketch: Let ",, = (8/2fo,. Apply Theorem 1 to show that a band formed by

hyperplanes a distance ",, /2 on either side of the target hyperplane has probability

less than 8 of having measure for examples greater than (/2. Then apply the

arguments of the last section, with ",' in place of "'. Q.E.D.

Appendix A: Convex Sets Are Learnable for Uniform Distribution

In this appendix we sketch proofs that two classes of functions with infinite
V -C dimension are learnable. These classes are the class of convex sets and a class
of nested differences of convex sets which we define. These results support our

The Perceptron Algorithm Is Fast for Non-Malicious Distributions 683

conjecture that full distribution independence is too restrictive a criterion to ask
for if we want our results to have interesting applications. We believe these results
are also of independent interest.

Theorem 3: The class C of convex sets is learnable in time polynomial in (-1 and

6-1 if the distribution of examples is uniform on the unit square in d dimensions.

Remarks: (1) C is well known to have infinite V-C dimension. (2) So far as we
know, C is not learnable in time polynomial in d as well.

Proof Sketch:/ 4 We work, for simplicity, in 2 dimensions. Our arguments can readily
be extended to d dimensions.

The learning algorithm is to call M examples (where M will be specified). The

positive examples are by definition within the convex set to be learned. Let M+ be
the set of positive examples. We classify examples as negative if they are linearly
separable from M+, i.e. outside of c+, the convex hull of M+.

Clearly this approach will never missclassify a negative example, but may miss
classify positive examples which are outside c+ and inside Ct. To show (- accuracy,

U
~~~~II 

lllllUHf ~~ ~f=: 

~ ~ ~~ 

~~~ ~l== 
~t?0 t?0~ ~II
§~ ~~

E~ ~~~

E~ ~
=~~~ mf
~~E=

Figure 2: The boundary of the target concept Ct is shown. The set It of little
squares intersecting the boundary of c, are hatched vertically. The set 12 of squares
just inside Ii are hatched horizontally. The set 13 of squares just inside 12 are
hatched diagonally. If we have an example in each square in 12, the convex hull of
these examples contains all points inside c, except possibly those in It, 12 , or 13 •

/4 This proofis inspired by arguments presented in [Pollard, 1984], pp22-24. After
this proof was completed, the author heard D. Haussler present related, unpublished

results at the 1989 Snowbird meeting on Neural Computation.

684 Baum

we must choose M large enough so that, with confidence 1 - 8, the symmetric
difference of the target set C. and c+ has area less than f.

Divide the unit square into k2 equal subsquares. (See figure 2.) Call the set
of subsquares which the boundary of Ct intersects II. It is easy to see that the
cardinality of II is no greater than 4k. The set 12 of subsquares just inside 11 also
has cardinality no greater than 4k, and likewise for the set 13 of subsquares just
inside 12 • If we have an example in each of the squares in 12 , then Ct and C+ clearly

have symmetric difference at most equal the area of 11 U 12 U 13 < 12k X k- 2 = 12/ k.

Thus take k = 12/f. Now choose M sufficiently large so that after M trials there is
less than 8 probability we have not got an example in each of the 4k squares in 12 •

Thus we need LE(k-2 ,M,4k) < 8. Using equation 5, we see that M = 5f~oln8 will

suffice. Q.E.D.

Actually, one can learn (for uniform distributions) a more complex class of

functions formed out of nested convex regions. For any set {C1, C2, ••. , c,} of I convex

regions in ~d, let R1 = C1 and for j = 2, ... ,1 let Rj = Rj-1 n Cj. Then define a

concept f = R1 - R2 + R3 - •.. R,. The class C of concepts so formed we call nested
convex sets. See figure 3.

c,

Figure 3: Cl is the five sided region, C2 is the tria~gular region, and Cs is the
square. The positive region C1 - C2 U C1 + C3 U C2 U C1 IS shaded.

The Perceptron Algorithm Is Fast for Non-Malicious Distributions 685

This class can be learned by an iterative procedure which peels the onion. Call
a sufficient number of examples. (One can easily see that a number polynomial in

I, f, and 6 but of course exponential in d will suffice.) Let the set of examples so

obtained be called S. Those negative examples which are linearly separable from all
positive examples are in the outermost layer. Class these in set Sl. Those positive
examples which are linearly separable from all negative examples in S - Sl lie in
the next layer- call this set of positive examples S2. Those negative examples in
S - Sl linearly separable from all positive examples in S - S2 lie in the next layer,

S3. In this way one builds up I + 1 sets of examples. (Some of these sets may

be empty.) One can then apply the methods of Theorem 3 to build a classifying

function from the outside in. If the innermost layer S,+1 is (say) negative examples,

then any future example is called negative if it is not linearly separable from S'+1,
or is linearly separable from S, and not linearly separable from S,-1, or is linearly

separable from S,-2 but not linearly separable from S,-3, etc.

Acknowledgement: I would like to thank L.E. Baum for conversations and L. G.
Valiant for conunents on a draft. Portions of the work reported here were per
formed while the author was an employee of Princeton University and of the Jet
Propulsion Laboratory, California Institute of Technology, and were supported by
NSF grant DMR-8518163 and agencies of the US Department of Defence including
the Innovative Science and Technology Office of the Strategic Defence Initiative
Or ganization.

References

ANGLUIN, D., VALIANT, L.G. (1979), Fast probabilistic algorithms for Hamilto

nian circuits and matchings, J. of Computer and Systems Sciences, 18, pp 155-193.

BAUM, E.B., (1989), On learning a union of half spaces, Journal of Complexity

V5, N4.
BLUMER, A., EHRENFEUCHT,A., HAUSSLER,D., and WARMUTH,M. (1987),

Learnability and the Vapnik-Chervonenkis Dimension, U.C.S.C. tech. rep. UCSC
CRL-87-20, and J. ACM, to appear.

KARMARKAR, N., (1984), A new polynomial time algorithm for linear program
ming, Combinatorica 4, pp373-395

KEARNS, M, and VALIANT, L., (1989), Cryptographic limitations on learning

Boolean formulae and finite automata, Proc. 21st ACM Symp. on Theory of

Computing, pp433-444.

MINSKY, M, and PAPERT,S., (1969), Perceptrons, and Introduction to Computa

tional Geometry, MIT Press, Cambridge MA.

POLLARD, D. (1984), Convergence of stochastic processes, New York: Springer

Verlag.

ROSENBLATT, F. (1962), Principles of Neurodynamics, Spartan Books, N.Y.

VALIANT, L.G., (1984), A theory of the learnable, Conun. of ACM V27, Nll,
pp1l34-1142.

