
The PERCS High-Performance Interconnect

Baba Arimilli ∗, Ravi Arimilli ∗, Vicente Chung ∗, Scott Clark ∗, Wolfgang Denzel †, Ben Drerup ∗, Torsten Hoefler ‡,

Jody Joyner ∗, Jerry Lewis ∗, Jian Li †, Nan Ni ∗ and Ram Rajamony †

∗ IBM Systems and Technology Group, 11501 Burnet Road, Austin, TX 78758
† IBM Research (Austin, Zurich), 11501 Burnet Road, Austin, TX 78758

‡ Blue Waters Directorate, NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801

E-mail: arimilli@us.ibm.com, rajamony@us.ibm.com, htor@illinois.edu

Abstract—The PERCS system was designed by IBM in re-
sponse to a DARPA challenge that called for a high-productivity
high-performance computing system. A major innovation in the
PERCS design is the network that is built using Hub chips that
are integrated into the compute nodes. Each Hub chip is about
580 mm2 in size, has over 3700 signal I/Os, and is packaged
in a module that also contains LGA-attached optical electronic
devices.

The Hub module implements five types of high-bandwidth
interconnects with multiple links that are fully-connected with a
high-performance internal crossbar switch. These links provide
over 9 Tbits/second of raw bandwidth and are used to construct
a two-level direct-connect topology spanning up to tens of thou-
sands of POWER7 chips with high bisection bandwidth and low
latency. The Blue Waters System, which is being constructed
at NCSA, is an exemplar large-scale PERCS installation. Blue
Waters is expected to deliver sustained Petascale performance
over a wide range of applications.

The Hub chip supports several high-performance computing
protocols (e.g., MPI, RDMA, IP) and also provides a non-
coherent system-wide global address space. Collective commu-
nication operations such as barriers, reductions, and multi-cast
are supported directly in hardware. Multiple routing modes
including deterministic as well as hardware-directed random
routing are also supported. Finally, the Hub module is capable
of operating in the presence of many types of hardware faults
and gracefully degrades performance in the presence of lane
failures.

Keywords-interconnect, topology, high-performance comput-
ing

I. INTRODUCTION

In 2001, DARPA called for the creation of high-

performance highly productive, commercially viable com-

puting systems. The forthcoming system from IBM called

PERCS (Productive Easy-to-use Reliable Computing Sys-

tem) is in direct response to this challenge. Compared to

state-of-the-art high-performance computing (HPC) systems

in existence today, PERCS has very high performance and

productivity goals and achieves them through tight integra-

tion of computing, networking, storage, and software.

Although silicon technologies (e.g., multi-core dies,

45nm) continue to improve generation after generation [6],

surrounding technologies in HPC systems such as the in-

terconnect bandwidth, memory densities and bandwidths,

power packaging and cooling, and storage densities and

bandwidths do not scale accordingly. For instance, while

High Performance Linpack performance [5], [10] shows a

steady improvement over time, interconnect-intensive met-

rics such as G-RandomAccess and G-FFTE [5] show very

little improvement.

The challenge of building a high-performance, highly

productive, multi-Petaflop system forced us to recognize

early on that the entire infrastructure had to scale along with

the microprocessor’s capabilities. A significant component

of our scaling solution is a new switchless interconnect with

very high fanout organized into a two-level direct connect

topology. Using this interconnect technology enables us

to build a full system with no external switches and half

the physical interfaces and cables of an equivalent fat-tree

structure with the same bisection bandwidth.

The rest of this paper is organized as follows. We describe

the PERCS compute node in Section II. The IBM Hub chip

is the gateway to the interconnect as well as the routing

switch in the system. We describe the Hub chip in Section III

and the interconnect topology in Section V. The Hub chip

has several components that permit it to offer high value as

well as high performance. We describe these components

in Section IV. The two-tiered full-connect graph typology

allows for several routing innovations which we describe

in Section VI. We conclude with a description of the Blue

Waters Sustained Petascale System in Section VII.

II. SYSTEM OVERVIEW

Figure 1. Compute node structure

Figure 1 shows the abstract structure of a compute node in

a PERCS system. There are four POWER7 chips in a node

with a single operating system image that controls resource

2010 18th IEEE Symposium on High Performance Interconnects

978-0-7695-4208-9/10 $26.00 © 2010 IEEE

DOI 10.1109/HOTI.2010.16

75

Figure 2. IBM Hub chip overview

allocation. Applications executing on the compute node can

utilize 32 cores, 128 SMT threads, eight memory controllers,

up to 512 GB of memory capacity, over 900 GFLOPS of

compute capacity and over 500 GB/s of memory bandwidth.

The four POWER7 chips are cache coherent and are tightly

coupled using three pairs of buses.

The IBM Hub chip completes the compute node, pro-

viding network connectivity to the four POWER7 chips.

The Hub chip participates in the cache coherence protocol

within the node and serves not only as an interconnect

gateway to the four POWER7 chips that connect to it,

but also as a switch that routes traffic between other IBM

hub chips. A PERCS system therefore requires no external

network switches or routers with considerable savings in the

switching components, cabling, and power.

III. HUB CHIP

The main purpose of the IBM Hub Chip is to interconnect

tens of thousands of compute nodes and to provide I/O

services. The Hub design provides ultra-low latencies at

high bandwidth, dramatically improving the scalability of

applications written using such varied programming APIs

as MPI, sockets, and PGAS languages [2].

The Hub chip also improves the performance and cost of

an HPC storage subsystem by requiring no FCS Host Bus

Adapters, no external switches, no storage controllers and

no direct attached storage within the compute nodes. The

Hub chip also obviates the need for external PCI-Express

controllers by integrating them on-chip.

Key functions used by software are accelerated in hard-

ware by the Hub Chip. The Collective Acceleration Unit

(CAU) in the Hub chip speeds up collective (including

synchronization) operations that are often a big scalability

impediment to high-performance computing applications.

The Hub Chip also employs a memory management unit

that is kept consistent with the TLBs on the compute cores.

This enables an application running on one compute node to

use program-level effective addresses to operate upon data

located on another compute node. Finally, the Hub Chip

also has special facilities to enable certain operations to

be atomically performed in the compute node’s memory

without involving any of the compute node’s cores.

The Hub chip is implemented using 45 nm lithography

Cu SOI technologies. The chip is 582 mm2 in size with

440M transistors and 13 levels metal. There are over 3700

signal I/O and over 11,000 total I/O pins. The Hub chip is

integrated along with 12X optics modules into a 58 cm2

glass ceramic LGA module.

Figure 2 shows an overview of the Hub chip.

IV. HUB CHIP DETAILS

The different components of the Hub chip are described

in greater detail below.

A. PowerBus Interface

The PowerBus interface enables the Hub chip to partic-

ipate in the coherency operations taking place between the

four POWER7 chips in the compute node. The Hub chip is a

first-class citizen in the coherence protocol and has visibility

to coherence transactions taking place in the node, including

TLB-related coherence operations.

B. Host Fabric Interface

The two HFI units in the Hub chip manage communi-

cation to and from the PERCS interconnect. The HFI was

designed to provide user-level access to applications. The

basic construct provided by the HFI to applications for de-

lineating different communication contexts is the “window”.

The HFI supports many hundreds of such windows each with

its associated hardware state.

An application invokes the operating system and thus the

hypervisor to reserve a window for its use. The reservation

procedure maps certain structures of the HFI into the appli-

cation’s address space with window control being possible

from that point onwards through user-level reads and write

to the HFI mapped structures.

The HFI supports three APIs for communication:

• General packet transfer: This can be used for compos-

ing unreliable protocols as well as reliable protocols

such as needed for MPI through higher levels of the

software stack.

• Global address space operations and active messaging:

This can be used by user-level codes to directly manipu-

late memory locations of a task executing on a different

compute node. The Nest Memory Management Unit

provides support for these operations.

• Direct Internet Protocol (IP) transfers

The HFI can extract data that needs to be communicated

over the interconnect from either the POWER7 memory or

76

directly from the POWER7 caches. The choice of source

is transparent with the data being automatically sourced

from the faster location (caches can typically source data

faster than memory). In addition to writing network data to

memory, the HFI can also inject network data directly into

a processor’s L3 cache, lowering the data access latency for

code executing on that processor.

Five primary packet formats are supported: Immediate

sends, FIFO send/receive, IP, remote DMA (RDMA), and

Atomic updates.

A new PowerPC instruction, ICSWX, is used to imple-

ment immediate sends [7]. This instruction forces a cache

line directly to the HFI for interconnect transmission and is

the lowest latency (at the expense of bandwidth) communi-

cation mechanism for sending packets that are less than a

cache line in size.

The FIFO send/receive mode permits an application to

use a staging area for both sending and receiving data. An

application can pre-reserve a portion of its address space to

serve as circular First-In-First-Out buffers. After composing

packets in the send FIFO, the application “triggers” the

HFI by writing an 8-byte value to a per-window trigger

location. In this mode, incoming packets are written to the

receive FIFO by the HFI and can then be processed by the

application. An 8-byte write to another location informs the

HFI of the space that it can reuse in the receive FIFO.

The HFI supports two forms of IP transfers. IP packets

can be transferred to and from the FIFO (see above). IP

packets can also be described with scatter/gather descriptors

with the HFI assembling/dissembling data.

A variety of RDMA mechanisms are supported. In ad-

dition to traditional memory-to-memory transfers, the HFI

also supports transfers between the FIFO and memory. Since

these are asynchronous operations, completion notifications

permit an application to implement read and write fences.

A final packet format permits an application to specify

atomic updates to remote memory locations. Fixed-point

operations such as ADD, AND, OR, XOR, and Cmp &

Swap with and without Fetch for multiple data sizes (8-,

16-, 32-, 64-bits) are supported. Sequence numbers are used

to ensure proper reliable operation of all atomic updates,

with an optimized mode permitting up to four operations to

be packed per cache line at a coarser reliability granularity.

Collective packets are also supported and the operation is

described in more details in Section IV-D.

C. Integrated Switch Router (ISR)

The ISR implements the two-tiered full-graph network

described in Section V. It is organized as a 56 × 56 full

crossbar that operates at up to 3 GHz. In addition to the

forty-seven L and D ports described previously, the ISR also

has eight ports to the two local Host Fabric Interfaces, and

one service port.

The ISR uses both input and output buffering with a

packet replay mechanism to tolerate transient link errors.

This feature is especially important since the D links can be

several tens of meters in length. The ISR operates in units

of 128-byte FLITs with a maximum packet size of 2048

bytes. Messages are composed of multiple packets with the

packets making up a message being potentially delivered out

of order.

High-performance computing applications benefit from

having access to a single global clock across the entire sys-

tem. The ISR implements a global clock feature whereby a

clock onboard is globally distributed across the interconnect

and kept consistent with the clocks on other Hub chips.

Deadlock prevention is achieved through virtual channels,

each corresponding to a hop in the L-D-L-D-L worst case

route.

More details of the ISR as it pertains to routing are

described in Section V below.

D. Collectives Acceleration Unit (CAU)

Many HPC applications perform collective operations

with the application being able to make forward progress not

only after every compute node has completed its contribution

to the collective operation, but also after the results of the

collective are disseminated back to every compute node (e.g.

barrier synchronization or a global sum). The Hub Chip

provides specialized hardware to accelerate frequently used

collective operations.

Specialized ALU logic within the CAU implements mul-

ticast, barriers and reduction operations. For reductions, the

ALU supports the following operations and data types:

• Fixed point: NOP, SUM, MIN, MAX, OR, AND, XOR

(signed and unsigned)

• Floating point: MIN, MAX, SUM, PROD (single and

double precision)

Software organizes the CAUs in the system into collective

trees. Each tree is set up so that it “fires” when data on all of

its inputs are available with the result being fed to the next

“upstream” CAU. There is one CAU in each Hub chip and

a link in the CAU tree could map to a path in the network

made up of more than one link. A multiple-entry content

addressable memory structure per CAU supports multiple

independent trees that can be concurrently used by different

applications, for different collective patterns within the same

application, or some combination.

Reliability and pipelining are afforded using sequence

numbers and a retransmission protocol. Each tree has exactly

one participating HFI window on any involved node. The

tree can be set up such that the order in which the reduc-

tion operations are evaluated is preserved from one run to

another. Programming models such as the Message Passing

Interface (MPI) [8], which permit programmers to require

collectives to be executed in a particular order, can benefit

from this feature.

77

E. Nest Memory Management Unit (NMMU)

A key facility for high-performance global address space

languages such as UPC [3], CAF [9], and X10 [2] is a low-

overhead mechanism for user-level code to operate upon the

address space of processes executing on the compute nodes.

The NMMU in the Hub chip facilitates such operations.

A process executing on a compute node can register its

address space, permitting interconnect packets to directly

manipulate the registered region. Registering a portion of the

address space results in the NMMU being able to reference

a page table mapping table that maps effective addresses to

real memory. A cache of the mappings is also maintained

within the Hub chip and can map the entire real memory of

most installations.

Incoming interconnect packets that reference memory

such as RDMA packets and packets that perform atomic

operations contain both an effective address as well as

information pinpointing the context in which to translate

the effective address. This greatly facilitates global address

space languages by permitting such packets to contain easy-

to-use effective addresses.

F. IO connectivity

The Hub chip has three PCI-E ports. Two of the ports are

×16 and support ×16, ×8, ×4, and ×1 connections. The

third port is ×8 and supports ×8, ×4, and ×1 connections.

The ports are all backwards compatible up to Generation

1.1a. The Hub chip supports “Hot plug” capability.

V. PERCS TOPOLOGY

Two key design goals for PERCS were to dramatically

improve bisection bandwidth (over other topologies such as

fat-tree interconnects) and to eliminate the need for external

switches. With these goals in mind, the Hub chip was

designed to support a large number of links that connect

it to other Hub Chips. These links are classified into two

categories “L”, and “D”, that permit the system to be

organized into a two-level direct-connect topology. Figures 3

and 4 illustrates these concepts.

Every Hub chip has thirty-one L links that are used to

fully connect thirty-two Hub chips into a star topology.

Within this group of thirty-two Hub chips, every chip

has a direct communication link to every other chip. The

Hub chip implementation further divides the L links into

two categories: seven electrical LL links with a combined

bandwidth of 336 GB/s and twenty-four optical LR links

with a combined bandwidth of 240 GB/s. The L links bind

thirty-two compute nodes into a supernode.

Every Hub chip also has sixteen D links that are used

to connect to other supernodes with a combined bandwidth

of 320 GB/s. The topology maintains at least one D link

between every pair of supernodes in the system, although

smaller systems can employ multiple D links between su-

pernode pairs.

Since the Hub chip being connected to the POWER7 chips

in the compute node at a bandwidth of 192 GB/s and has

40 GB/s of bandwidth for general I/O, the peak switching

bandwidth of the Hub chip exceeds 1.1 GB/s. An interesting

metric is the ratio of the injection bandwdith to/from the

compute POWER7 chips and the network bandwidth. When

all links are populated and operate at peak bandwidths, the

injection bandwidth to network bandwidth ratio is 1:4.6.

Note though that by performing the dual roles of switch

and interconnect gateway, the majority of traffic through the

Hub chip will typically be destined for other compute nodes.

The topology used by PERCS permits routes to be made

up of very small numbers of hops. Within a supernode, any

compute node can communicate with any other compute

node using a distinct L link. Across supernodes, a compute

node has to employ at most one L hop to get to the “right”

compute node within its supernode that is connected to

the destination supernode (recall that every supernode pair

is connected by at least one D link). At the destination

supernode, at most one L hop is again sufficient to reach

the destination compute node.

VI. ROUTING

The above-described principles form the basis for direct

routing in the PERCS system. A direct route employs a

shortest path between any two compute nodes in the system.

Since a pair of supernodes can be connected together by

more than one D link, there can be multiple shortest paths

between a given set of compute nodes. With only two levels

in the topology, the longest direct route L-D-L can have at

most three hops made up of no more than two L hops and

at most one D hop.

PERCS also supports indirect routes to guard against

potential hot spots in the interconnect. An indirect route is

one that has an intermediate compute node in the route that

resides on a different supernode from that of the source

and destination compute nodes. An indirect route must

employ a shortest path from the source compute node to the

intermediate one, and a shortest path from the intermediate

compute node to the destination compute node. The longest

indirect route L-D-L-D-L can have at most five hops made

up of no more than three L hops and at most two D hops.

Figure 5 illustrates direct and indirect routing within the

PERCS system.

A specific route can be selected in three ways when

multiple routes exist between a source-destination pair. First,

software can specify the intermediate supernode but let the

hardware determine how to route to and then from the inter-

mediate supernode. Second, hardware can select amongst the

multipe routes in a round robin manner for both direct and

indirect routes. Finally, the Hub chip also provides support

for route randomization whereby the hardware can pseudo-

randomly pick one of the many possible routes between a

source-destination pair. Hardware-directed randomized route

78

Figure 3. IBM Hub chip structure and interconnections

Figure 4. Direct connections between nodes in a supernode and supernodes in the system

selection is available only for indirect routes. These routing

modes can be specified on a per-packet basis.

The right choice between the use of direct versus indirect

route modes depends on the communication pattern(s) used

by applications. Direct routing will be suitable for communi-

cation patterns where each node has to communicate with a

large number of other nodes as with spectral methods. Com-

munication patterns that involve small numbers of compute

nodes will benefit from the extra bandwidth offered by the

multiple routes with indirect routing.

Routing is accomplished using static route tables placed in

the routers (ISR). These route tables are set up during system

initialization and are dynamically adjusted as links go down

or come up during operation. Packets are injected into the

network with a destination identifier and the route mode.

Route information is picked up from the route tables along

the route path based on this information. Packets injected

into the interconnect by the HFI employ source route tables.

Per-port route tables are used to route packets along each

hop in the network. Separate route tables are used for inter-

79

Figure 5. Direct and Indirect routes in PERCS

supernode and intra-supernode routes.

Virtual channels (VCs) are used to prevent deadlocks.

Rather than use priorities, we use the position of the current

hop within the full route to select which VC to use. Based on

the worst case route in the system being L-D-L-D-L, there

are three VCs assigned to L links and two VCs assigned to

D-links.

Figure 6 shows how data flows within the PERCS system.

The Integrated Switch Router (ISR) within the Hub chip

employs cut-through and wormhole routing [4] with 128-

byte FLITs. FLITs are assembled into packets which is

the largest unit for which the hardware makes an ordering

guarantee: all FLITs of a packet will be delivered in order.

No ordering guarantees are provided between packets in

a message. Thus even packets sent from the same source

window (see Section IV) and node to the same destination

window and node may reach that destination in a different

order.

Figure 6 shows two Host Fabric Interfaces (HFIs) coop-

erating to move data from the POWER7s attached to one

PowerBus to the POWER7s attached to another PowerBus

through the interconnect. Note that the path between any

two HFIs may be indirect, requiring multiple hops through

intermediate ISRs.

In addition to the direct and indirect route tables, the ISR

also has multicast route tables for replicating and forwarding

IP multicast packets. All of the route tables are set up during

system initialization by network management software. In

the event of link or other failures, network management

software is alerted and intervenes to reroute the system.

VII. BLUE WATERS—A LARGE-SCALE EXAMPLE

IBM and NCSA are working on constructing Blue Waters,

a machine expected to achieve sustained Petascale perfor-

mance for a large set of applications. Blue Waters will

comprise more than 300.000 POWER7 cores, more than

1 PiB memory, more than 10 PiB disk storage, more than

0.5 EiB archival storage, and achieve around 10 PF/s peak

performance. More information on Blue Waters is available

at the Blue Waters project office [1].

A possible configuration could consist of several hundred

supernodes (SN) with thousands of hub chips. Since the

number of D links in an SN may not be an integral multiple

of the number of other SNs in the system, the Hubs in an SN

80

Figure 6. Packet flow in PERCS between two compute nodes. Note that data can both originate from and be written to caches on the source and destination
compute nodes.

can differ in their D-link connections by one. For the number

of SNs in Blue Waters, the ratio of injection bandwidth is

expected to be close to that outlined in Section V.

A. Effective Alltoall Bandwidth

Alltoall is an important operation in parallel computing

and imposes a high load onto the network. In this section,

we derive a model for the effective alltoall bandwidth of the

Blue Waters System. We derive an upper bandwidth bound

with a simple counting argument assuming all communi-

cations happen simultaneously. First, we lead the argument

for shortest-path static routing. From a single source, each

compute node (CN) can be reached through a series of LL,

LR and D links. We use only paths P that do not includes

more than one D link or LL-LR, LR-LL, LL-LL, LR-LR

connections. We denote e(P) as the number of CNs that

can be reached from one node through P . We assume that

each Hub Chip is connected with d D-links to d distinct

supernodes. Thus, e(LL) = 7, e(LR) = 24, e(D) = d,

e(LL-D) = e(D-LL) = 7d, e(LR-D) = e(D-LR) = 24d,

e(LL-D-LL) = 49d, e(LL-D-LR) = e(LR-D-LL) = 168d,

e(LR-D-LR) = 576d, and
∑

e(P) = 31 + 1024d.

We can now count c(L), the number of paths that lead

through each LL, LR, and D link: c(LL) = (e(LL) + e(LL-

D) + e(D-LL) + 2e(LL-D-LL) + e(LL-D-LR) + e(LR-D-

LL))/7 = 1+64d, c(LR) = (e(LR)+e(LR-D)+e(D-LR)+
e(LR-D-LL)+e(LL-D-LR)+2e(LR-D-LR))/24 = 1+64d,

and c(D) = (e(D)+e(D-LL)+e(LL-D)+e(D-LR)+e(LR-

D) + e(LL-D-LL) + e(LL-D-LR) + e(LR-D-LL) + e(LR-

D-LR))/d = 1024. This results in an effective bandwidth

b(L) per channel: b(LL) = 24 GiB/s
1+64d , b(LR) = 5 GiB/s

1+64d , and

b(D) = 10 GiB/s
1024

. The D-links seem to be the bottleneck of

the alltoall for d < 8 while the LR-links are a bottleneck for

d ≥ 8. For d ≥ 8, the effective alltoall bandwidth (limited

by the slowest link) with shortest path routing would thus be∑
e(P) · 5 GiB/s

1+64d = 155+5120d
1+64d per CN. This is close to the

injection bandwidth of a CN (4·24 GiB/s = 96GiB/s). We

thus showed that the PERCS network topology with direct

routing enables high-bandwidth alltoall communication on

Blue Waters.

Indirect random routing would essentially half the alltoall

bandwidth because it would perform a logical alltoall to

81

reach the intermediate supernode and then perform a second

deterministic alltoall. Random routing is interesting because

it can improve the worst-case congestion for other commu-

nication patterns. For example, communication from all 32

CNs in SN A want to communicate to different CNs in SN B

would cause a congestion of 32 on the D-link between A and

B. With random routing, each connection would bounce at

a random SN which, with high probability, does not cause

congestion on the D-link. Similar discussions can be lead

for other communication patterns. We expect that the ideal

routing scheme differs for different application classes. More

detailed analyses are subject of current research.

B. Network Requirements of Petascale Applications

In the following, we briefly describe typical challenging

requirements of Petascale applications and provide rough

performance estimations. This short discussion shows how

the described features of the PERCS network architecture are

most critical to achieve Petaflop performance. Applications

to be run on the system include Lattice QCD with a grid-

size of 843 · 144 and a homogeneous isotropic turbulence

code in a triply periodic box of size 122883.

For a high-performance implementation of Lattice QCD,

the code running at full scale is expected to perform a

global sum (allreduce) of two double complex values every

25-100µs. The CAU is capable of enabling Lattice QCD

to be solved at this performance level and the offloaded

global operation would even allow the application to hide

the communication latency.

A three-dimensional Fast Fourier Transformation (3d

FFT) is the most critical part in the Turbulence code. The

3d FFT is decomposed in two dimensions and requires

alltoall communication along both dimensions. An example

decomposition of a 81923 system into a x × y = 256 × 32
processor grid leaves 8192 pencils per CN. The computation

would require 32 parallel alltoalls of size 4 MiB among 256

CNs and 256 parallel alltoalls of size 32 MiB bytes among

32 CNs. This mapping would map the y dimension into a SN

while distributing the x dimension across SNs. The large-

message communication would then use all 24 LR and 7

LL links per source simultaneously with the bandwidth of

the slower LR links (31 · 5 GiB/s) which saturates the link

bandwidth of the connections between the Hub chip and

the POWER7 chips (assuming peak bandwidths). The small-

message communication would use 8 D, 7 LL, and 24 LR-

links to inject data simultaneously. Each SN communicates

32 · 4 MiB Bytes with each other SN over 256 D-links

resulting in a bandwidth of
256·10 GiB/s

32
= 80GiB/s per

CN (the transfer is limited by the W links). Better mapping

strategies for different layouts and sizes are subject of active

research.

ACKNOWLEDGMENT

This material is based upon work supported by the De-

fense Advanced Research Projects Agency under its Agree-

ment No. HR0011-07-9-0002. This work is also supported

by the Blue Waters sustained-petascale computing project,

which is supported by the National Science Foundation

(award number OCI 07-25070) and the state of Illinois.

Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the author(s) and

do not necessarily reflect the views of the funding agencies.

The authors would like to thank Marc Snir, Bill Kramer,

Jeongnim Kim, and Greg Bauer for helpful comments and

discussions to improve Section VII.

REFERENCES

[1] Blue Waters Sustained Petascale Computing, Project Office.
http://www.ncsa.illinois.edu/BlueWaters/, 2010. accessed July
2010.

[2] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster computing.
Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) 2005, pages 519–538, 2005.

[3] U. Consortium. UPC Language Specifications, v1.2. Tech-
nical report, Lawrence Berkeley National Laboratory, 2005.
LBNL-59208.

[4] W. Dally and B. Towles. Principles and Practices of Inter-
connection Networks. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[5] J. Dongarra and P. Luszczek. Introduction to the HPCCha-
llenge Benchmark Suite. Technical report, ICL Technical
Report, 10 2005. ICL-UT-05-01.

[6] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, third
edition, 2003.

[7] IBM. Power Instruction Set Architecture, 2009.

[8] MPI Forum. MPI: A Message-Passing Interface Standard.
Version 2.2, September 4th 2009.

[9] R. W. Numrich and J. Reid. Co-array fortran for parallel
programming. SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[10] TOP500. http://www.top500.org/, 2006. accessed July 2010.

82

