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uture broadband distributed systemswill 
have high functionality, availability, reli- 
ability, and performance requirements. 
Their modular structure, however, can 
be exploited to perform run-time enchance- 

ments to increase functionality and to recover from 
a decrease in availability, reliability, or  performance. 

Efficient and effective use of the resources and 
guaranteeing adesired level of quality of service (QoS) 
in a distributed environment are complex but impor- 
tant tasks, not only at system initiation but also at run 
time. In this paper we describe the performability 
manager, a distributed system component that con- 
tributes to a more effective and efficient use of sys- 
tem components and prevents QoS degradation. 

The performability manager dynamically recon- 
figures distributed systems whenever needed, to 
recover from failures and to permit the system to 
evolve over time and include new functionality. Large 
systems require dynamic reconfiguration to sup- 
port dynamic change without shutting down the 
complete system [l-41. 

A distributed system monitor is needed to ver- 
ify QoS. Monitoring a distributed system is diffi- 
cult because of synchronization problems and minor 
differences in clock speeds (see for example [5]). 

Before we describe the functionality and the oper- 
ation of the performability manager (both informally 
and formally), we give an overview of our earlier and 
other  related work in the  distributed systems 
area. In the concluding section we put forward some 
future research issues. Throughout the paper we will 
illustrate the approach by an example distributed 
application: an ANSAware-based number trans- 
lation service (NTS), from the intelligent net- 
works (IN) area. 

Related Distributed-Systems 
Work 

or describing the  functionality of the per- F formability manager we will use the “com- 
mon framework” as  presented in [6], which 
describes the components of a distributed system 
(Figs. 1 and 2): 

Task a certain amount of work to be realized by 
the system. 

Application: the realization of a certain amount 
of work on a system (part). 

System part: an independent component, capable 
of independently executing an application. 

Network: the  complex of connections between 
system parts available to the system partsfor com- 
munications. 

Management: hardware or  software components 
that take care of the mapping of tasks on appli- 
cations and of applications on system parts, in 
order to achieve an efficient and effective use 
of the applications, system parts, and the network. 
An example of an application that uses the above 

framework is described in the  box o n  the  next 

page. 
The distributed nature of the systems we study 

makes their evaluation a complex task. Mapping 
applications on system parts is driven by function- 
al and quantitative arguments, many of which can 
be viewed as reasons for distribution [7,8]: 

Geographical spread of users. 
Geographical spread of information. 
Performance increase. 
Reliability increase. 
Availability increase. 
The quantitative reasons, i.e., the performance, 

reliability, and availability increase can be viewed 
from two sides: a user point of view and a provider 
point ofview. Aproviderwants anefficient andeffec- 
tive use, such as high utilization, of the distribut- 
ed components. To users, quantitative aspects are 
reflected by the QoS. The QoS describes the user- 
perceived performance [9-121. The QoS can be divid- 
ed into subjective and objective elements. Sub- 
jective QoS is user-oriented and hard to quantify and 
measure; objective QoS, the QoS we refer to in 
this paper, can be  measured. Objective QoS is 
related to or can be transformed into the subjec- 
tive QoS, but this is not a one-to-one relation. 

Service Performance Parameters (SPPs), the 
generic term for provider-visible performance param- 
eters [ 131, are quantitative parameters that indicate 
how well the system (service) is performing. Between 
the objective QoS parameters and the SPPs there 

~ 
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exists a one-to-one mapping [9, lo]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASPPs can be mea- 
sured at the service, and they ultimately determine 
the QoS, but they do not describe the QoS in a 
way that is meaningful to users (the subjective QoS). 

Because the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQoS describes the user-perceived 
performance, the separate evaluation of perfor- 
mance, reliability, and availability during system 
design, implementation, and maintenance is not suf- 
ficient. The mutual influence of these aspects is 
recognized by the QoS; modeling and evaluation 
techniques that can handle the combined aspects are 
required. The performability manager uses per- 
formability analysis because it provides a means 
to model and evaluate distributed systemswith respect 
to their QoS [6, 14-17]. 

Functional aspects of distributed systems are gen- 
erally modeled using so-called formal description 
techniques (FDTs). The combined evaluation of 
functional and quantitative aspects requires inte- 
grated modeling techniques and tools; however, 
no well-established modeling frameworks have 
yet been defined for this purpose [6]. 

The performability manager maintains the re- 
quired QoS by dynamic reconfigurations. This re- 
quires that facilities for dynamic reconfiguration 
should be available in the distributed system. Such 
facilities would include access transparency, con- 
currency transparency, federation transparency, loca- 
tion transparency, migration transparency, and 
replication transparency [18]. These facilities canbe 
realized at several levels in a distributed system: 

The operating system level. 
The middle-ware level (at the level of comput- 
ing platforms or configuration languages). 
The application level. 
The current trendindistributedsystems is topro- 

vide these facilities via computing platforms. 
These platforms allow for a heterogeneous distributed 
system that is transparent to the application pro- 
grammer. Examples of such middle-ware facili- 
ties are the configuration languages Gerel, Conic, 
Argus, Rex, Darwin [ 11, and the computingplatforms 
ANSAware [19] and DCE [20]. ANSAware is the 
computing platform on top of which we imple- 
ment the performabilitymanager and the NTS appli- 
cation. We give more information on ANSAware 
in the sidebars entitled “The ANSAware Infras- 
tructure” and “An ANSAware-based NTS.” 

Computing platforms and configuration languages 
provide usen with more or less the same set of func- 
tionalities that can be used for dynamic andfor static 
configuration and reconfiguration. Examples of the 
use of these facilities for qualitative configuration man- 
agement are described by Cole [21] and Dean [22]. 
Cristian [23] presents an approach for an availability 
manager, which guarantees the availability of the 
applications using replicated components. 

Although the goal of reconfiguration is to main- 
tain the desired QoS or to include new functionality 
in the distributed system, most of the effort in the 
area of dynamically reconfigurable distributed sys- 
tems has been put in supplying facilities to perform 
the reconfiguration, rather than on reconfiguration 
management to guarantee a desired level of QoS. The 
performability manager, however, guides reconfig- 
uration by using a model-based optimization proce- 
dure. Performability evaluation is used in the opti- 
mization procedure. A similar, but less general and 
less “automatic” approach towards resource control 
has been proposed by Lee and Shin [24,25] 
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I 
W Figure 1. The components of a distributed system. 

Also related to our work is the area of optimal 
system design [26, 271, dynamic load balancing 
[28, 291, and task allocation in distributed systems 
[30]. Examplesof these arepresentedby Bowen [31] 
and Hariri [32]: Bowen presents a study on pro- 
cess allocation in heterogeneous distributed systems 
and compares a heuristic-algorithm with an LP-solu- 
tion, whereas Hariri presents an algorithm which 
takes care of optimizing reliability and communi- 
cation delay. Both approaches focus only on a 
single quantitative system aspect (either performance 
or reliability) instead of on a combination of the 
two aspects, as we propose. 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANumber Translation Service 

For the number translation service (NTS), as provided in intelligent networks 
[46,47], end users submit requests or tasks for the application at a certain 
rate. Because we do not have real users in our experimental application, 
we use a component that mimicks user behaviour, the so-called Generat- 
ing Component (GC). The GC generates the calls for the NTS. The NTS 
is provided by the following application components (Fig. 2): 

*The Selection Component (SC): this component selects a service 
using the contents of the requests it receives (in this example, the number 
translation service). 

*The  Number Translat ion Component  (NTC): this component  
receives requests for number translations. The NTC sends a request to a 
database component for the required number and to a billing component 
for the creation of a bill. The  number received from the database is 
returned to the SC. 

*The Database Component (DBC): this component receivesrequests for 
specific numbers. It will fetch the number from a disk and return the 
number to the component that requested the number. 

*The Billing Component (BC): this component receives requests for 
the preparation of a billing record. 

The Management Component (MC) does not belong specifically to 
the NTS but provides the performability manager with the necessary 
“buttons to push” €or performing a reconfiguration. The other compo- 
nents (SC, NTC, DBC, and BC) are components of the application and 
can be controlled by the MC. 

Figure 2. The experimental NTS application. 
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Another important related issue is the monitoring 
of distributed systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ] .  To be able to detect degra- 
dations of the QoS, the distributed system must 
be monitored to detect performability degrada- 
tion. The monitoringoutput can also be used to feed 
the distributed system model with more accurate 
parameters. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The Performability Manager in 
Perspective 

ecause a reconfiguration must be performedwith B great care, the performability manager uses a 
model of the current distributed system to prepare 
a reconfiguration. For deriving a model suitable 
for evaluation, a distributed system must be described 
in a way that makes the creation and evaluation 
of models of alternative configurations possible. 
Therefore, we use the framework in the previous 
section to look at a distributed system at four levels: 
tasks, applications, system parts and the network, 
and management. Each level consists of compo- 
nents and their relations. The relations can exist 
between the different levels as well as between 
the components at one level (mutual relations). 

The ANSAware Infrastructure 

Task level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- The performability manager views 
tasks as task components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt d .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA task is a certain 
amount of work, initiated by a user. For each 
applicationj we define the set of task components 
7J = { t l ,  ... , to} ,  7, E TC with TC = {T I ,  ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP} 
the set of all tasks for all applications. The task com- 
ponents have a relation with the application 
level. We assume that there are no mutual relations 
between task components. 

Application level - Applications are viewed as 
composed of application components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, E AC, 
withAC = {a l ,  ..., a,} the set of all application 
components. In addition to their relations to the 
task and system level, application components 
have a mutual relation that represents the com- 
munication between the application compo- 
nents. Therefore, the performability manager 
views an  application as a structure of applica- 
t ion components and  their  mutual re la t ions  
(communication). A single application structure 
is described by using a graph AI = (VAJ, EA]) 
with VAI LAC and EA] L V’A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx VA]. The complete 
set of (created) application structures tha t  is 
active in the  cu r ren t  d i s t r ibu ted  system i s  
d e n o t e d  by A. Thus ,  we have  AI E A, and  A 
= {(vA~,&$)l j=1, ... ,n},wherenisthenum- 
ber of applications. 

System level - System level is also seen as com- 
posed of components: system parts sk E SC with 
SC = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{sl, ..., s,,,}, and network links, nl E NL and 
N L  = {n l ,  ... , n t }  which provide the  mutua l  
relations between the  system parts. The  dis- 
tributed system structure is described as a graph 
S = (VS, ES) with VS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc SC and ES G VS x VS and 
F :  ES --f NL. 

Paths are also defined at  the system level. A 
path is a finite sequence of network links (arcs or 
edges) between any two system parts (nodes); 
that is, a finite sequence of links in which the ter- 
minal node (system part) of each link coincides 
with the initial node of the following link [33]. P 
is the set of all paths on S;pkl is the set of paths 
between the  system parts sk, S I  andpkl, E Pkl, 

(sg, SI) E ES} .  Every pathpkr, E P can be mapped 
on a set of links of S, by the function F : P 4 ES. 

In addition to their mutual relation, the system 
parts have a relation to the application level. The 
definition of a path is used when assigning the com- 
munication between the application components 
to the system level. If no path exists between two sys- 
tem parts, then these system parts are not connected. 

Management level - The management level is 
orthogonal to the other levels. It consists of man- 
agement tasks, applications and systems and is 
structuredin asimilarway as the “normal” distributed 
system. 

Mapping - The mapping is the logical alloca- 
tion of higher levels to lower levels: the allocation 
of application components on system parts and 
the routing of the communication over the network 
links. This is also reflected in Fig. 4 where the 
mutual relations are represented by solid lines 
and the relations between levels (the mapping of 
the levels) by dotted lines. The allocation of tasks 
to  application components is a special case of 

wherepkl, = {(sk,sh)(sh>sf) ... (sg>sI)I(sk,sh)> ... 7 
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allocation. Although the other allocations are 
subject to change, the task components are always 
allocated to the same application component of 
an application. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A mapping function is described as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMI for 
eachA’. The allocation and routing of a mapping can 
be described in a more formal way. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Allocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- There are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo types of allocations: the 
allocation of task components to  application 
components and the allocation of application 
components to  system parts. The allocation of 
task components to  application components is 
described by the matrix Z’ = TI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx VA’: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* i j  = 1, if the td E T’  is allocated on a, E VA’ 
’ { 0, otherwise 

For the allocation of application components 
ai E A’onsystemcomponentsk~ S, themappingcan 
be described by ma! : VAJ, + VS. You can derive 
such a function for all VA’ E A. For the allocation 
of ai E VA’, and VA’ E A on system component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sk E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVs, we define a parameterx:, as follows: 

’ 

1 ,  k 0, otherwise 
1, if the a, E VA’ is allocated on sk E VS X J  = { 

For A’ you can  c rea t e  ,an allocation matrix 
XI = VAJ x VS, where X’[i,k] = x l k .  The matrix 
XI represents the allocation part of the map- 
ping MI of A’ and still leaves the routing to  be 
solved. 

Routing - We now present a way of describing 
the  rout ing  fo r  an  appl ica t ion  Al .  F rom a n  
application point of view, the communication 
between application components is described 
by ( a ; ,  aj) E EA]. The routing of the communica- 
tion of (a i ,  U,) E EA’ on a path between (sk, s!) E 

ES is described by mrj : EAJ ES.  We derive 
such a function,for all EA] E A. For the routing 
of (ai,  ai) of EA’ on the pathpkl, E P ~ , J ,  v = ,l, ... 
, n and P ~ , J  E P, we define a parameter y ; j , k / v ,  
where: 

1, if (a, ,a,)  E EA’ is routed onpk,, E e,, 
Y i j , k / ,  = { 0, otherwise 

Every path p k ~ ,  E P can be projected on  a set 
of physical links of S; that is, by the earlier derived 
function F : P + ES. Thus,pk/, = {ag, ... , esh I 
es,, . . . , eSh E E S )  and esg = { (Sk, S,) I Sk, S, E V!>. 
Using this notation allows us to create a routing 
matrix Y’ = EAI XES, where Y’[ {(ai,aj),pklv] =yjjAlv. 
Y’ represents the routing part of the mapping 
M’ of applicationA’. 

Overall Mapping - The mapping is determined 
by the set of routingvectors Y = {Y’, ... , Y ” } ,  
and the set of allocation vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = { X l ,  . . . , X ! }  
and Z = {Z’ ,  ... , Z” } ,  thus M’ = {Z’,X’, Y’}. 
The overall mapping is defined: M = U c A j  M i .  

Using the view just presented, we can state 
that a configuration of a distributed environment 
consists of the structures and mapping of the dis- 
tributed system; that is, the constellation of com- 
ponents, their physical interconnection, and their 
mapping on  each other.  As a consequence, a 
reconfiguration is the changing of the structure 
or the mapping. For the creation of alternative 
configurations we intend to use application place- 
ment procedures as proposed in [26,29,30,31, 
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Figure 4. The distributed system configurution. 

An ANSAware-based NTS 
[n our experimental distributed environment the computational objects 
we the applicationcomponents of the distributed system. One or more appli- 
cation components or computational objects make up a distributed appli- 
xition (see Fig 5). Each computational object has been implemented as a 
process. All invocations for the experimental application are announcements, 
except for those between the NTC and the BC and those between the 
NTC and the DBC, which are interrogations. 

BC 

BC 

cc w sc Y NTC 

Figure 5. The experimental application described in a computational 

For the experimental application, we use a small distributed system 
consisting of three SUN SPARC workstations connected by an Ethernet 
as depicted in the two lower layers of Fig. 6. Within this experimental dis- 
tributed environment we use two monitors: DEMON, the Distributed 
Environment MONitor [48] is used to visualize the structure of the exper- 
imental distributedenvironment and JEWELis used to do performance mea- 
surements in the experimental distributed environment (51. 

fonn. 

/ I  I 
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341. Formally, the distributed system configura- 
tion, R, is a function of the task components, the 
application and system structure and the map- 
ping: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F(TC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, s, 4. 

In the sidebar entitled "Formal Description of 
the ANSAware-based NTS," we used the nota- 
tion presented in this section to  describe the 

~~~ 

Formal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdescription zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the ANSAware- 
We can describe the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANTS using the graph notation as 
The available components are: 

TC = {T') p =  Q2.31) 
SC = (sun2~un3) 
AC = {GC,SC,NTC,DBC,BC) 

NL = {n l }  

F i e  7. The graph-oriented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAview of the dkhibuted environment. 

stem level of the environme 

A' = (VA', EA') 
VA ' = { GC,SC,NTC,DBC,BC) 
EA1 = { (GC,SC),(SC,NTC), 
The only aspect that still needs 

different levels. Because there is only 
simple, M = {M1}. We use the a1 

ES = {(sun2jun3)) 

{z 'p ,Y l l :  

This mapping in combination with the applicat 
level components results in a configuration as show 
can see that the application components NTC, BC, and DBC are allocat- 
ed on one system part and therefore do  not use any communication paths 
as shown by Y I. Although the relations between the management level 
and the application components have not been shown, each of the appli- 
cation components actually has a relation with all the management com- 
ponents. 

experimental NTS application mentioned in the 
previous sidebars. 

Annotation with Service Performance 
Parameters 
In this section we present the set of service per- 
formance parameters (SPPs) used to estimate the 
QoS of a distributed system. The set of SPPs is 
split into performance and reliability parameters. 
We annotate the graph models described in the 
previous section with these parameters (see also [27, 
33,351). 

For the parameterization of the model, we 
expand our notation of an application compo- 
nent. An application componentqcan perform one 
or more operations (use services): o, E U ;  with a; 
= {ol, ... ,on} ,  the set of operations performed 
by ai. Operation (or service) 0, of ai is represent- 

Let vlliOu be the average processing workload 
requirement of operation ou of application com- 
ponent a; (for example, the processing requirements 
of an application component can be expressed as the 
number of instructions to be executed). 

A system part s k  has a processing capacity 
expressed by ysk, (for example, the capacity of a 
cpu can be expressed as the number of instruc- 
tions executed per second). The mean service 
rate of sk with respect to aiou is: 

ed by %Iu. 

The average communication workload requirement, 
the number of bytes transferred for communica- 
tion between application components per invoca- 
tion of operation aiou by aj can be expressed as 

' b j .  ai,,). 
A pathpkl, has a communication capacity 

expressed by yPklv (for example, expressed as the 
number of bytes that can be transferred per  
second). The mean service rate ofpk[" w.r.t. (a,, 
ai,,) as: 

The communicationwork capacity of a path is based 
on the individual capacities offered by the net- 
work links. 

The above are generic terms to express the 
load incurred by an application component and 
the load of communication between two application 
components as well as the capacity of system 
parts and paths. Using these, we can annotate or label 
the earlier defined application and system graphs 
with the parameters we previously defined. 

For each 0, of a; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE AJ we can derive the aver- 
age number of invocations per task submitted to 
AJ [36-391, which is expressed as The  
average request rate A! for a n  applicationAyisgiven 
by task component td E TJ: 

Using ysk, vaiOu and LAj for exam,ple, we 
can derive the utilization of Pklv by a; E AI as: 

(3) 
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utilization ofpklV by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai, ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAI for operation o, of 
a, as: 

For the reliability aspects it is assumed that only 
the hardware can fail and can be repaired zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[40]. There- 
fore, we only have to  assign failure and repair 
rates to system parts and the paths between them. 
For each system part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsk we define the failure and 
repair  ra te  of tha t  system par t  as f s k  and r S k ,  
respectively. The failure and repair rate of a pathpkl, 
is defined asfpklv and rpklv, respectively. 

Performability Manager Functionality 
and Environment 
The performability manager should become 
active whenever the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQoS isviolatedorwhen adegra- 
dation of performance, reliability or availability 
occurs. We will describe some of these situations 
in more detail below. 

A taskinitiated byausercaneitherbecompleted 
using already running applications or a new 
application must be created and placed in the sys- 
tem. This leads to two situations in which a recon- 
figuration can occur. 

In the first situation, there is only an increase 
of the workload for the existing distributed sys- 
tem configuration. An increase of the workload 
might lead to a violation of the QoS of other tasks. 
When this is the case, a reconfiguration by the 
performability manager of the distributed system 
might be necessary so that the QoS is restored 
and remains guaranteed. The second situation leads 
to a change in the distributed system configura- 
tion, which consequently leads to a distributed 
system reconfiguration. 

Another situation inwhich the support of the per- 
formability manager is desired iswhen a fault occurs 
in the distributed system that leads to a violation 
of the QoS. 

Reconfigurations can either be performed 
statically (stop the distributed system, perform 
the reconfiguration, and start the system again), 
or dynamically (on the fly). The performability man- 
ager we present in this paper focuses on dynamic 
reconfiguration. 

More generally, the performability manager must 
perform reconfigurations of the distributed sys- 
tem configuration, whenever necessary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto recover 
from and prevent degradation of QoS. 

To fulfill its task, the performability manager 
needs supporting facilities. A global description 
of these facilities is given in Fig. 8; the performability 
manager is situated between them. 

In future environments, users must be able to 
compose new applications. Therefore, a trader facil- 
ity is needed to communicate or negotiate with 
users. With the trader, users will agree upon the 
functionality of the application and the desired QoS 
and costs. The trader will ask the performability 
manager if it is possible to  realize the QoS and 
cost requirements, 

New applications are composed of application 
components from the component library, which 
contains, apart from a description of the application 
components, a description of the system parts 
and network components. The  performability 
manager needs a description of all these components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W Figure 8. The environment of the perfarmability manager. 

to create a distributed system model suitable for per- 
formability evaluation. 

The preparation of the dynamic reconfigura- 
tion by the performability manager is performed 
by using a model according to the current distributed 
system configuration. With this model, the per- 
formability manager can create and evaluate 
alternative configurations and choose the optimal 
configuration. 

Todetect aviolation of the QoS, aperformability 
monitor is needed to check the applications of 
the distributed system with respect to their QoS. 
If this performability monitor detects a violation, 
i t  must report it to the performability manager. 

Operation of the Performability 
Manager 

nce triggered, the performability manager estab- 0 lishes a reconfiguration in three steps fol- 
lowing the trigger: 

0: Trigger for a reconfiguration. 
1: Creation of alternative configurations. 
2: Evaluation of the alternative configurations. 
3: Performing the reconfiguration. 

Triggers for U Reconfigurufion 
The need for a reconfiguration can arise because 
of the introduction of a new application or to a 
perceived degradation of the QoS. The latter can 
be due to a failure or due to the first. 

W h e n  a reconf igura t ion  occurs ,  Clcurre,, 
will change. This means that TC, A, S or  Awill 
change. When a new application application is 
introduced, TC, A, and Awill change. For a new 
application new tasks will be generated, so that 
TC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt TC U TC,,,. The set of applications will 
of course be  expanded, A t  A U A,,,, and the 
mapping will change. Consequently, the addition 
of a new application results in a new mapping, 
Ai-h’u M,,,. 

The second possible trigger is a perceived degra- 
dation of the QoS, such as that resulting from a 
failure. This can be  coped with by rerouting of 
communication or reallocation of applications. If 
this happens,  only the  mapping is subject t o  
change. If a system part failure occurs, the set of avail- 
able system components becomes smaller, S +- S 
- Sfai led,  and therefore  the  mapping must be  
changed. If an application is to be removed, then the 
set of tasks, applications and the mappingwill change. 
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Creation of Alternative Configurations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The performability manager creates a set of con- 
figurations in order to select the optimal configu- 
ration. The current configuration, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARcurenr, and the 
trigger for reconfiguration serve as inputs for 
this creation process. As explained in the previ- 
ous section, first the component sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, and S of 
&,,are adjusted according to the trigger for recon- 
figuration. Then the decision upon the mapping 
for the new configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,,, must be made. 

The mapping is a complex function. If we allo- 
cate m application components on n system parts, 
then there are nm possible allocations. This num- 
ber even increases if we allow for component 
replication or if we take into account the routing 
of the communication between components. The 
optimal mapping is a problem of exponential 
complexity. 

In general, the goal is to find the mapping that 
minimizes some cost function but fulfills other 
constraints. The constraints can have various ori- 
gins, such as resource constraints (memory, CPU, disk, 
communication), availability and reliability con- 
straints, or dependency constraints. 

These constraints have a direct (CPU capacity) 
or indirect (precedence relations) relation with 
the SPPs and therefore with the established or 
required QoS. Using these constraints we can 
create various cost functions, which will in gener- 
al lead to different mappings. Our specific goal is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Describing Alternative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO 
Changing the mapping of application to 
configurations of the distributed s 

pings, M and M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’. In the first a1 
M = (2 *, X 2, Y 2>) we moved all the a 
same system part, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs u n 2  For this c 
use the communication paths. In 
(represented byM3 = {Z3,X3, Y 3>), r 
DBC’, and BC’). For this alternative 

The corresponding allocation matrices are: 

I 

to fulfill the required QoS related constraints and 
optimize the other QoS related constraints. 

We define c,,k as the incurred cost for the a h  
cation of application component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, to system part 
sk and c,,klv as the cost for the routing of the com- 
munication (U,,.,) if pathpkl,, is used. The costs 
must be derived from the QoS-related require- 
ments. For each type of applicationAI there are 
different QoS requirements QOSAJ. From the  
required QoS forAJ, we derive QoS bounds 
BAl, for example on performance and reliability, 
BA,{Bpe$Al, BrelA,}. This results in a general cost 
function: 

P EA’ 

The costs in such a function can represent the fail- 
urerate of applicationAJ. Ifwe assume that no appli- 
cation (software) failures occur and that the system 
parts and network links (hardware) are never turned 
off [ 3 5 ] ,  then the failure rate ofAJ is expressed 
using the failure rate of the system components, as 
shown in the algorithm below. In the cost function, 
fsk is the failure rate of system partsk andfpklv the fail- 
ure rate of pathpkl” both used by application Ai. 
We then derive a mapping algorithm in which 
the failure rate of an application A’ is optimized 
and capacity constraints must be fulfilled: 

Given TC, A and S and QoSd 
For all A’ E A and QOSAJ 
Realize M J =  [YJ, X J ]  
- Minimize the failure rate FAI E 

- Subject to capacity constraints: 
* For all Sk E S: 

With this mapping algorithm, we can create a set 
of configurations by using different cost functions 
or different heuristics for solving the optimization 
problem [38]. Two alternative mappings for the 
experimental application presented earlier are shown 
in the sidebar entitled “Describing Alternative Con- 
figurations with Graphs.” 

Evaluation of Alternative Configurations 
Performability models are required for the evalu- 
ation of alternative configurations with respect to 
QoS. Therefore, every alternative configuration CL,lt 
must be transformed into a performability model 
Valt. This is done by replacing each component of 
TC,A,andS by astochasticpetrinet (SPN) submodel 
(see the sidebar entitled “SPN Submodels”). 
These models are both flexible and relatively easy to 
solve with current software tools [41]. We use the 
mapping and the application and system graphs 
to create the overall performability model. Notice 
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n this case, a timed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
USERS, which is a Poisson 

the distributed environment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MI. W e  left out of the SPN 
repair behaviour of the sys- 
clusion of these aspects, 

[41], will be  discussed else- 

that we use an SPN model library for all standard 
system, application, and task components. 

Once all the alternative models have been 
constructed and solved, the optimal alternativecon- 
figuration is selected, based on the expected QoS 
derived by the model evaluation. 

Note that for this approach to be useful in a 
real-time environment, the amount of calcula- 
tions to be performed for the performability eval- 
uations must be small. The involved models must 
therefore be very simple. More information on model 
creation and solution can be found in [42]. 

Once one out of possibly many alternative con- 
figurations has been selected, the reconfiguration 
is performed by the computingplatform that supports 
the distributedsystem. How the computingplatform 
goes along with this, is not the concern of the per- 

formability manager. The only concern of the per- 
formability manager is to make sure that it does 
not request reconfigurations that cannot fulfilled. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Con cl usion 

e have presented the performability manag- W er, a distributed system components that takes 
care of guaranteeing user-requested QoS in a fail- 
ure- prone environment. It does so by carefully select- 
ing an alternative configuration, based on performa- 
bility evaluation of a number of possible alterna- 
tive configurations. The models of the alternative 
configurations are automatically constructed, using 
a library of SPN model components. Once a recon- 
figuration has been selected, it is put into effect 
by a computing platform that supports the distribut- 
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m m m m m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The per- 

formability 

manager 

dynamically 

reconfigures 

distributed 

systems 

whenever 

needed, to 

recover 

from 

failures and 

to permit 

the system 

to evolve 

over time. 

ed system. We illustrated the approach by describ- 
ing the role of a performability manager in an 
ANSAware-based distributed environment. 

Model creation is both crucial and difficult. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn 
overall system performability model must be cre- 
ated,  a t  run-time, ou t  of model components. 
Apart from that, the performability manager must 
also be able to create alternative configurations. The 
problem of the mapping must be solved using 
graph theoretical, linear programming, or heuris- 
tic methods. Because of the expected unstruc- 
turedness and  complexity of the  problems, 
heuristic solutions seem to be the most promising. 

The creation of alternative configurations can 
theoretically provideuswith a huge number of alter- 
native models. A solution to this problem might 
be to use the performability model of the current 
configuration for a sensitivity analysis [43,44,45]. 
The results of this analysis can guide the choice 
of sensible alternative configurations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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