
By dynamically reconfiguring distributed systems, the
performability manager contributes to a more effective use of
system components and prevents QoS degradation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.W. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Leonard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Franken and Boudewijn R. Haverkort zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

LEONARD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. N. FKANKEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
is a distributed-systems engi-
neer with PTT Research zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Groningen.

BOUDE WIJN R.

H A VERKORT is an assistant
professor in the Tele-Infor-
matics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Open Systems
group of the depapartment of
computer science at the Uni-
versity of Twente.

uture broadband distributed systemswill
have high functionality, availability, reli-
ability, and performance requirements.
Their modular structure, however, can
be exploited to perform run-time enchance-

ments to increase functionality and to recover from
a decrease in availability, reliability, or performance.

Efficient and effective use of the resources and
guaranteeing adesired level of quality of service (QoS)
in a distributed environment are complex but impor-
tant tasks, not only at system initiation but also at run
time. In this paper we describe the performability
manager, a distributed system component that con-
tributes to a more effective and efficient use of sys-
tem components and prevents QoS degradation.

The performability manager dynamically recon-
figures distributed systems whenever needed, to
recover from failures and to permit the system to
evolve over time and include new functionality. Large
systems require dynamic reconfiguration to sup-
port dynamic change without shutting down the
complete system [l-41.

A distributed system monitor is needed to ver-
ify QoS. Monitoring a distributed system is diffi-
cult because of synchronization problems and minor
differences in clock speeds (see for example [5]).

Before we describe the functionality and the oper-
ation of the performability manager (both informally
and formally), we give an overview of our earlier and
other related work in the distributed systems
area. In the concluding section we put forward some
future research issues. Throughout the paper we will
illustrate the approach by an example distributed
application: an ANSAware-based number trans-
lation service (NTS), from the intelligent net-
works (IN) area.

Related Distributed-Systems
Work

or describing the functionality of the per- F formability manager we will use the “com-
mon framework” as presented in [6], which
describes the components of a distributed system
(Figs. 1 and 2):

Task a certain amount of work to be realized by
the system.

Application: the realization of a certain amount
of work on a system (part).

System part: an independent component, capable
of independently executing an application.

Network: the complex of connections between
system parts available to the system partsfor com-
munications.

Management: hardware or software components
that take care of the mapping of tasks on appli-
cations and of applications on system parts, in
order to achieve an efficient and effective use
of the applications, system parts, and the network.
An example of an application that uses the above

framework is described in the box o n the next

page.
The distributed nature of the systems we study

makes their evaluation a complex task. Mapping
applications on system parts is driven by function-
al and quantitative arguments, many of which can
be viewed as reasons for distribution [7,8]:

Geographical spread of users.
Geographical spread of information.
Performance increase.
Reliability increase.
Availability increase.
The quantitative reasons, i.e., the performance,

reliability, and availability increase can be viewed
from two sides: a user point of view and a provider
point ofview. Aproviderwants anefficient andeffec-
tive use, such as high utilization, of the distribut-
ed components. To users, quantitative aspects are
reflected by the QoS. The QoS describes the user-
perceived performance [9-121. The QoS can be divid-
ed into subjective and objective elements. Sub-
jective QoS is user-oriented and hard to quantify and
measure; objective QoS, the QoS we refer to in
this paper, can be measured. Objective QoS is
related to or can be transformed into the subjec-
tive QoS, but this is not a one-to-one relation.

Service Performance Parameters (SPPs), the
generic term for provider-visible performance param-
eters [131, are quantitative parameters that indicate
how well the system (service) is performing. Between
the objective QoS parameters and the SPPs there

~

24 0890-8044/94/$04.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1994 IEEE IEEE Network JanuaryFebruary 1994

~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

exists a one-to-one mapping [9, lo]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASPPs can be mea-
sured at the service, and they ultimately determine
the QoS, but they do not describe the QoS in a
way that is meaningful to users (the subjective QoS).

Because the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQoS describes the user-perceived
performance, the separate evaluation of perfor-
mance, reliability, and availability during system
design, implementation, and maintenance is not suf-
ficient. The mutual influence of these aspects is
recognized by the QoS; modeling and evaluation
techniques that can handle the combined aspects are
required. The performability manager uses per-
formability analysis because it provides a means
to model and evaluate distributed systemswith respect
to their QoS [6, 14-17].

Functional aspects of distributed systems are gen-
erally modeled using so-called formal description
techniques (FDTs). The combined evaluation of
functional and quantitative aspects requires inte-
grated modeling techniques and tools; however,
no well-established modeling frameworks have
yet been defined for this purpose [6].

The performability manager maintains the re-
quired QoS by dynamic reconfigurations. This re-
quires that facilities for dynamic reconfiguration
should be available in the distributed system. Such
facilities would include access transparency, con-
currency transparency, federation transparency, loca-
tion transparency, migration transparency, and
replication transparency [18]. These facilities canbe
realized at several levels in a distributed system:

The operating system level.
The middle-ware level (at the level of comput-
ing platforms or configuration languages).
The application level.
The current trendindistributedsystems is topro-

vide these facilities via computing platforms.
These platforms allow for a heterogeneous distributed
system that is transparent to the application pro-
grammer. Examples of such middle-ware facili-
ties are the configuration languages Gerel, Conic,
Argus, Rex, Darwin [11, and the computingplatforms
ANSAware [19] and DCE [20]. ANSAware is the
computing platform on top of which we imple-
ment the performabilitymanager and the NTS appli-
cation. We give more information on ANSAware
in the sidebars entitled “The ANSAware Infras-
tructure” and “An ANSAware-based NTS.”

Computing platforms and configuration languages
provide usen with more or less the same set of func-
tionalities that can be used for dynamic andfor static
configuration and reconfiguration. Examples of the
use of these facilities for qualitative configuration man-
agement are described by Cole [21] and Dean [22].
Cristian [23] presents an approach for an availability
manager, which guarantees the availability of the
applications using replicated components.

Although the goal of reconfiguration is to main-
tain the desired QoS or to include new functionality
in the distributed system, most of the effort in the
area of dynamically reconfigurable distributed sys-
tems has been put in supplying facilities to perform
the reconfiguration, rather than on reconfiguration
management to guarantee a desired level of QoS. The
performability manager, however, guides reconfig-
uration by using a model-based optimization proce-
dure. Performability evaluation is used in the opti-
mization procedure. A similar, but less general and
less “automatic” approach towards resource control
has been proposed by Lee and Shin [24,25]

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADistributed svstems

Task\, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA \\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArk

Mana ement
(pedormadity manager)

I
W Figure 1. The components of a distributed system.

Also related to our work is the area of optimal
system design [26, 271, dynamic load balancing
[28, 291, and task allocation in distributed systems
[30]. Examplesof these arepresentedby Bowen [31]
and Hariri [32]: Bowen presents a study on pro-
cess allocation in heterogeneous distributed systems
and compares a heuristic-algorithm with an LP-solu-
tion, whereas Hariri presents an algorithm which
takes care of optimizing reliability and communi-
cation delay. Both approaches focus only on a
single quantitative system aspect (either performance
or reliability) instead of on a combination of the
two aspects, as we propose.

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANumber Translation Service

For the number translation service (NTS), as provided in intelligent networks
[46,47], end users submit requests or tasks for the application at a certain
rate. Because we do not have real users in our experimental application,
we use a component that mimicks user behaviour, the so-called Generat-
ing Component (GC). The GC generates the calls for the NTS. The NTS
is provided by the following application components (Fig. 2):

*The Selection Component (SC): this component selects a service
using the contents of the requests it receives (in this example, the number
translation service).

*The Number Translat ion Component (NTC): this component
receives requests for number translations. The NTC sends a request to a
database component for the required number and to a billing component
for the creation of a bill. The number received from the database is
returned to the SC.

*The Database Component (DBC): this component receivesrequests for
specific numbers. It will fetch the number from a disk and return the
number to the component that requested the number.

*The Billing Component (BC): this component receives requests for
the preparation of a billing record.

The Management Component (MC) does not belong specifically to
the NTS but provides the performability manager with the necessary
“buttons to push” €or performing a reconfiguration. The other compo-
nents (SC, NTC, DBC, and BC) are components of the application and
can be controlled by the MC.

Figure 2. The experimental NTS application.

IEEE Network JanuaIy/February 1994 25

Another important related issue is the monitoring
of distributed systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] . To be able to detect degra-
dations of the QoS, the distributed system must
be monitored to detect performability degrada-
tion. The monitoringoutput can also be used to feed
the distributed system model with more accurate
parameters. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The Performability Manager in
Perspective

ecause a reconfiguration must be performedwith B great care, the performability manager uses a
model of the current distributed system to prepare
a reconfiguration. For deriving a model suitable
for evaluation, a distributed system must be described
in a way that makes the creation and evaluation
of models of alternative configurations possible.
Therefore, we use the framework in the previous
section to look at a distributed system at four levels:
tasks, applications, system parts and the network,
and management. Each level consists of compo-
nents and their relations. The relations can exist
between the different levels as well as between
the components at one level (mutual relations).

The ANSAware Infrastructure

Task level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- The performability manager views
tasks as task components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt d . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA task is a certain
amount of work, initiated by a user. For each
applicationj we define the set of task components
7J = { t l , ... , to} , 7, E TC with TC = {T I , ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP}
the set of all tasks for all applications. The task com-
ponents have a relation with the application
level. We assume that there are no mutual relations
between task components.

Application level - Applications are viewed as
composed of application components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, E AC,
withAC = {a l , ..., a,} the set of all application
components. In addition to their relations to the
task and system level, application components
have a mutual relation that represents the com-
munication between the application compo-
nents. Therefore, the performability manager
views an application as a structure of applica-
t ion components and their mutual re la t ions
(communication). A single application structure
is described by using a graph AI = (VAJ, EA])
with VAI LAC and EA] L V’A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx VA]. The complete
set of (created) application structures tha t is
active in the cu r ren t d i s t r ibu ted system i s
d e n o t e d by A. Thus , we have AI E A, and A
= {(vA~,&$)l j=1, ... ,n},wherenisthenum-
ber of applications.

System level - System level is also seen as com-
posed of components: system parts sk E SC with
SC = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{sl, ..., s,,,}, and network links, nl E NL and
N L = {n l , ... , n t } which provide the mutua l
relations between the system parts. The dis-
tributed system structure is described as a graph
S = (VS, ES) with VS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc SC and ES G VS x VS and
F : ES --f NL.

Paths are also defined at the system level. A
path is a finite sequence of network links (arcs or
edges) between any two system parts (nodes);
that is, a finite sequence of links in which the ter-
minal node (system part) of each link coincides
with the initial node of the following link [33]. P
is the set of all paths on S;pkl is the set of paths
between the system parts sk, S I andpkl, E Pkl,

(sg, SI) E ES} . Every pathpkr, E P can be mapped
on a set of links of S, by the function F : P 4 ES.

In addition to their mutual relation, the system
parts have a relation to the application level. The
definition of a path is used when assigning the com-
munication between the application components
to the system level. If no path exists between two sys-
tem parts, then these system parts are not connected.

Management level - The management level is
orthogonal to the other levels. It consists of man-
agement tasks, applications and systems and is
structuredin asimilarway as the “normal” distributed
system.

Mapping - The mapping is the logical alloca-
tion of higher levels to lower levels: the allocation
of application components on system parts and
the routing of the communication over the network
links. This is also reflected in Fig. 4 where the
mutual relations are represented by solid lines
and the relations between levels (the mapping of
the levels) by dotted lines. The allocation of tasks
to application components is a special case of

wherepkl, = {(sk,sh)(sh>sf) ... (sg>sI)I(sk,sh)> ... 7

26 IEEE Network JanuaryiFebruary 1994

allocation. Although the other allocations are
subject to change, the task components are always
allocated to the same application component of
an application. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A mapping function is described as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMI for
eachA’. The allocation and routing of a mapping can
be described in a more formal way. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Allocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- There are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo types of allocations: the
allocation of task components to application
components and the allocation of application
components to system parts. The allocation of
task components to application components is
described by the matrix Z’ = TI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx VA’: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* i j = 1, if the td E T’ is allocated on a, E VA’
’ { 0, otherwise

For the allocation of application components
ai E A’onsystemcomponentsk~ S, themappingcan
be described by ma! : VAJ, + VS. You can derive
such a function for all VA’ E A. For the allocation
of ai E VA’, and VA’ E A on system component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sk E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVs, we define a parameterx:, as follows:

’

1 , k 0, otherwise
1, if the a, E VA’ is allocated on sk E VS X J = {

For A’ you can c rea t e ,an allocation matrix
XI = VAJ x VS, where X’[i,k] = x l k . The matrix
XI represents the allocation part of the map-
ping MI of A’ and still leaves the routing to be
solved.

Routing - We now present a way of describing
the rout ing fo r an appl ica t ion Al . F rom a n
application point of view, the communication
between application components is described
by (a ; , aj) E EA]. The routing of the communica-
tion of (a i , U,) E EA’ on a path between (sk, s!) E

ES is described by mrj : EAJ ES. We derive
such a function,for all EA] E A. For the routing
of (ai, ai) of EA’ on the pathpkl, E P ~ , J , v = ,l, ...
, n and P ~ , J E P, we define a parameter y ; j , k / v ,
where:

1, if (a, ,a,) E EA’ is routed onpk,, E e,,
Y i j , k / , = { 0, otherwise

Every path p k ~ , E P can be projected on a set
of physical links of S; that is, by the earlier derived
function F : P + ES. Thus,pk/, = {ag, ... , esh I
es,, . . . , eSh E E S) and esg = { (Sk, S,) I Sk, S, E V!>.
Using this notation allows us to create a routing
matrix Y’ = EAI XES, where Y’[{(ai,aj),pklv] =yjjAlv.
Y’ represents the routing part of the mapping
M’ of applicationA’.

Overall Mapping - The mapping is determined
by the set of routingvectors Y = {Y’, ... , Y ” } ,
and the set of allocation vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = { X l , . . . , X ! }
and Z = {Z’ , ... , Z” } , thus M’ = {Z’,X’, Y’}.
The overall mapping is defined: M = U c A j M i .

Using the view just presented, we can state
that a configuration of a distributed environment
consists of the structures and mapping of the dis-
tributed system; that is, the constellation of com-
ponents, their physical interconnection, and their
mapping on each other. As a consequence, a
reconfiguration is the changing of the structure
or the mapping. For the creation of alternative
configurations we intend to use application place-
ment procedures as proposed in [26,29,30,31,

ansa ansa

unix unix

sun 1 sun 2

I :

ansa

unix

sun 3

Task level

Task component .-..
I I

c : I

, : I i a
1 i n

I . ,

I . I
Mapping _..... ._. _.. .._ ’

. I I
*:

Application level

Application
component -.- .-- -.-

im
! e

System level

I :
Network link ...-..’ : 1

Figure 4. The distributed system configurution.

An ANSAware-based NTS
[n our experimental distributed environment the computational objects
we the applicationcomponents of the distributed system. One or more appli-
cation components or computational objects make up a distributed appli-
xition (see Fig 5). Each computational object has been implemented as a
process. All invocations for the experimental application are announcements,
except for those between the NTC and the BC and those between the
NTC and the DBC, which are interrogations.

BC

BC

cc w sc Y NTC

Figure 5. The experimental application described in a computational

For the experimental application, we use a small distributed system
consisting of three SUN SPARC workstations connected by an Ethernet
as depicted in the two lower layers of Fig. 6. Within this experimental dis-
tributed environment we use two monitors: DEMON, the Distributed
Environment MONitor [48] is used to visualize the structure of the exper-
imental distributedenvironment and JEWELis used to do performance mea-
surements in the experimental distributed environment (51.

fonn.

/ I I

IEEE Network JanuaryFebruaIy 1994 27

341. Formally, the distributed system configura-
tion, R, is a function of the task components, the
application and system structure and the map-
ping: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F(TC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, s, 4.

In the sidebar entitled "Formal Description of
the ANSAware-based NTS," we used the nota-
tion presented in this section to describe the

~~~ 

Formal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdescription zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the ANSAware- 
We can describe the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANTS using the graph notation as 
The available components are: 

TC = {T') p =  Q2.31) 
SC = (sun2~un3) 
AC = {GC,SC,NTC,DBC,BC) 

NL = {n l }  

F i e  7. The graph-oriented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAview of the dkhibuted environment. 

stem level of the environme 

A' = (VA', EA') 
VA ' = { GC,SC,NTC,DBC,BC) 
EA1 = { (GC,SC),(SC,NTC), 
The only aspect that still needs 

different levels. Because there is only 
simple, M = {M1}. We use the a1 

ES = {(sun2jun3)) 

{z 'p ,Y l l :  

This mapping in combination with the applicat 
level components results in a configuration as show 
can see that the application components NTC, BC, and DBC are allocat- 
ed on one system part and therefore do  not use any communication paths 
as shown by Y I. Although the relations between the management level 
and the application components have not been shown, each of the appli- 
cation components actually has a relation with all the management com- 
ponents. 

experimental NTS application mentioned in the 
previous sidebars. 

Annotation with Service Performance 
Parameters 
In this section we present the set of service per- 
formance parameters (SPPs) used to estimate the 
QoS of a distributed system. The set of SPPs is 
split into performance and reliability parameters. 
We annotate the graph models described in the 
previous section with these parameters (see also [27, 
33,351). 

For the parameterization of the model, we 
expand our notation of an application compo- 
nent. An application componentqcan perform one 
or more operations (use services): o, E U ;  with a; 
= {ol, ... ,on} ,  the set of operations performed 
by ai. Operation (or service) 0, of ai is represent- 

Let vlliOu be the average processing workload 
requirement of operation ou of application com- 
ponent a; (for example, the processing requirements 
of an application component can be expressed as the 
number of instructions to be executed). 

A system part s k  has a processing capacity 
expressed by ysk, (for example, the capacity of a 
cpu can be expressed as the number of instruc- 
tions executed per second). The mean service 
rate of sk with respect to aiou is: 

ed by %Iu. 

The average communication workload requirement, 
the number of bytes transferred for communica- 
tion between application components per invoca- 
tion of operation aiou by aj can be expressed as 

' b j .  ai,,). 
A pathpkl, has a communication capacity 

expressed by yPklv (for example, expressed as the 
number of bytes that can be transferred per  
second). The mean service rate ofpk[" w.r.t. (a,, 
ai,,) as: 

The communicationwork capacity of a path is based 
on the individual capacities offered by the net- 
work links. 

The above are generic terms to express the 
load incurred by an application component and 
the load of communication between two application 
components as well as the capacity of system 
parts and paths. Using these, we can annotate or label 
the earlier defined application and system graphs 
with the parameters we previously defined. 

For each 0, of a; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE AJ we can derive the aver- 
age number of invocations per task submitted to 
AJ [36-391, which is expressed as The  
average request rate A! for a n  applicationAyisgiven 
by task component td E TJ: 

Using ysk, vaiOu and LAj for exam,ple, we 
can derive the utilization of Pklv by a; E AI as: 

(3) 

28 IEEE Network JanuaryFebruary 1994 



utilization ofpklV by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai, ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAI for operation o, of 
a, as: 

For the reliability aspects it is assumed that only 
the hardware can fail and can be repaired zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[40]. There- 
fore, we only have to  assign failure and repair 
rates to system parts and the paths between them. 
For each system part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsk we define the failure and 
repair  ra te  of tha t  system par t  as f s k  and r S k ,  
respectively. The failure and repair rate of a pathpkl, 
is defined asfpklv and rpklv, respectively. 

Performability Manager Functionality 
and Environment 
The performability manager should become 
active whenever the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQoS isviolatedorwhen adegra- 
dation of performance, reliability or availability 
occurs. We will describe some of these situations 
in more detail below. 

A taskinitiated byausercaneitherbecompleted 
using already running applications or a new 
application must be created and placed in the sys- 
tem. This leads to two situations in which a recon- 
figuration can occur. 

In the first situation, there is only an increase 
of the workload for the existing distributed sys- 
tem configuration. An increase of the workload 
might lead to a violation of the QoS of other tasks. 
When this is the case, a reconfiguration by the 
performability manager of the distributed system 
might be necessary so that the QoS is restored 
and remains guaranteed. The second situation leads 
to a change in the distributed system configura- 
tion, which consequently leads to a distributed 
system reconfiguration. 

Another situation inwhich the support of the per- 
formability manager is desired iswhen a fault occurs 
in the distributed system that leads to a violation 
of the QoS. 

Reconfigurations can either be performed 
statically (stop the distributed system, perform 
the reconfiguration, and start the system again), 
or dynamically (on the fly). The performability man- 
ager we present in this paper focuses on dynamic 
reconfiguration. 

More generally, the performability manager must 
perform reconfigurations of the distributed sys- 
tem configuration, whenever necessary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto recover 
from and prevent degradation of QoS. 

To fulfill its task, the performability manager 
needs supporting facilities. A global description 
of these facilities is given in Fig. 8; the performability 
manager is situated between them. 

In future environments, users must be able to 
compose new applications. Therefore, a trader facil- 
ity is needed to communicate or negotiate with 
users. With the trader, users will agree upon the 
functionality of the application and the desired QoS 
and costs. The trader will ask the performability 
manager if it is possible to  realize the QoS and 
cost requirements, 

New applications are composed of application 
components from the component library, which 
contains, apart from a description of the application 
components, a description of the system parts 
and network components. The  performability 
manager needs a description of all these components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W Figure 8. The environment of the perfarmability manager. 

to create a distributed system model suitable for per- 
formability evaluation. 

The preparation of the dynamic reconfigura- 
tion by the performability manager is performed 
by using a model according to the current distributed 
system configuration. With this model, the per- 
formability manager can create and evaluate 
alternative configurations and choose the optimal 
configuration. 

Todetect aviolation of the QoS, aperformability 
monitor is needed to check the applications of 
the distributed system with respect to their QoS. 
If this performability monitor detects a violation, 
i t  must report it to the performability manager. 

Operation of the Performability 
Manager 

nce triggered, the performability manager estab- 0 lishes a reconfiguration in three steps fol- 
lowing the trigger: 

0: Trigger for a reconfiguration. 
1: Creation of alternative configurations. 
2: Evaluation of the alternative configurations. 
3: Performing the reconfiguration. 

Triggers for U Reconfigurufion 
The need for a reconfiguration can arise because 
of the introduction of a new application or to a 
perceived degradation of the QoS. The latter can 
be due to a failure or due to the first. 

W h e n  a reconf igura t ion  occurs ,  Clcurre,, 
will change. This means that TC, A, S or  Awill 
change. When a new application application is 
introduced, TC, A, and Awill change. For a new 
application new tasks will be generated, so that 
TC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt TC U TC,,,. The set of applications will 
of course be  expanded, A t  A U A,,,, and the 
mapping will change. Consequently, the addition 
of a new application results in a new mapping, 
Ai-h’u M,,,. 

The second possible trigger is a perceived degra- 
dation of the QoS, such as that resulting from a 
failure. This can be  coped with by rerouting of 
communication or reallocation of applications. If 
this happens,  only the  mapping is subject t o  
change. If a system part failure occurs, the set of avail- 
able system components becomes smaller, S +- S 
- Sfai led,  and therefore  the  mapping must be  
changed. If an application is to be removed, then the 
set of tasks, applications and the mappingwill change. 

IEEE Network Janualypebruary 1994 29 



Creation of Alternative Configurations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The performability manager creates a set of con- 
figurations in order to select the optimal configu- 
ration. The current configuration, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARcurenr, and the 
trigger for reconfiguration serve as inputs for 
this creation process. As explained in the previ- 
ous section, first the component sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, and S of 
&,,are adjusted according to the trigger for recon- 
figuration. Then the decision upon the mapping 
for the new configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,,, must be made. 

The mapping is a complex function. If we allo- 
cate m application components on n system parts, 
then there are nm possible allocations. This num- 
ber even increases if we allow for component 
replication or if we take into account the routing 
of the communication between components. The 
optimal mapping is a problem of exponential 
complexity. 

In general, the goal is to find the mapping that 
minimizes some cost function but fulfills other 
constraints. The constraints can have various ori- 
gins, such as resource constraints (memory, CPU, disk, 
communication), availability and reliability con- 
straints, or dependency constraints. 

These constraints have a direct (CPU capacity) 
or indirect (precedence relations) relation with 
the SPPs and therefore with the established or 
required QoS. Using these constraints we can 
create various cost functions, which will in gener- 
al lead to different mappings. Our specific goal is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Describing Alternative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO 
Changing the mapping of application to 
configurations of the distributed s 

pings, M and M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’. In the first a1 
M = (2 *, X 2, Y 2>) we moved all the a 
same system part, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs u n 2  For this c 
use the communication paths. In 
(represented byM3 = {Z3,X3, Y 3>), r 
DBC’, and BC’). For this alternative 

The corresponding allocation matrices are: 

I 

to fulfill the required QoS related constraints and 
optimize the other QoS related constraints. 

We define c,,k as the incurred cost for the a h  
cation of application component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, to system part 
sk and c,,klv as the cost for the routing of the com- 
munication (U,,.,) if pathpkl,, is used. The costs 
must be derived from the QoS-related require- 
ments. For each type of applicationAI there are 
different QoS requirements QOSAJ. From the  
required QoS forAJ, we derive QoS bounds 
BAl, for example on performance and reliability, 
BA,{Bpe$Al, BrelA,}. This results in a general cost 
function: 

P EA’ 

The costs in such a function can represent the fail- 
urerate of applicationAJ. Ifwe assume that no appli- 
cation (software) failures occur and that the system 
parts and network links (hardware) are never turned 
off [ 3 5 ] ,  then the failure rate ofAJ is expressed 
using the failure rate of the system components, as 
shown in the algorithm below. In the cost function, 
fsk is the failure rate of system partsk andfpklv the fail- 
ure rate of pathpkl” both used by application Ai. 
We then derive a mapping algorithm in which 
the failure rate of an application A’ is optimized 
and capacity constraints must be fulfilled: 

Given TC, A and S and QoSd 
For all A’ E A and QOSAJ 
Realize M J =  [YJ, X J ]  
- Minimize the failure rate FAI E 

- Subject to capacity constraints: 
* For all Sk E S: 

With this mapping algorithm, we can create a set 
of configurations by using different cost functions 
or different heuristics for solving the optimization 
problem [38]. Two alternative mappings for the 
experimental application presented earlier are shown 
in the sidebar entitled “Describing Alternative Con- 
figurations with Graphs.” 

Evaluation of Alternative Configurations 
Performability models are required for the evalu- 
ation of alternative configurations with respect to 
QoS. Therefore, every alternative configuration CL,lt 
must be transformed into a performability model 
Valt. This is done by replacing each component of 
TC,A,andS by astochasticpetrinet (SPN) submodel 
(see the sidebar entitled “SPN Submodels”). 
These models are both flexible and relatively easy to 
solve with current software tools [41]. We use the 
mapping and the application and system graphs 
to create the overall performability model. Notice 

30 IEEE Network JanuaryiFebruary 1994 



n this case, a timed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
USERS, which is a Poisson 

the distributed environment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MI. W e  left out of the SPN 
repair behaviour of the sys- 
clusion of these aspects, 

[41], will be  discussed else- 

that we use an SPN model library for all standard 
system, application, and task components. 

Once all the alternative models have been 
constructed and solved, the optimal alternativecon- 
figuration is selected, based on the expected QoS 
derived by the model evaluation. 

Note that for this approach to be useful in a 
real-time environment, the amount of calcula- 
tions to be performed for the performability eval- 
uations must be small. The involved models must 
therefore be very simple. More information on model 
creation and solution can be found in [42]. 

Once one out of possibly many alternative con- 
figurations has been selected, the reconfiguration 
is performed by the computingplatform that supports 
the distributedsystem. How the computingplatform 
goes along with this, is not the concern of the per- 

formability manager. The only concern of the per- 
formability manager is to make sure that it does 
not request reconfigurations that cannot fulfilled. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Con cl usion 

e have presented the performability manag- W er, a distributed system components that takes 
care of guaranteeing user-requested QoS in a fail- 
ure- prone environment. It does so by carefully select- 
ing an alternative configuration, based on performa- 
bility evaluation of a number of possible alterna- 
tive configurations. The models of the alternative 
configurations are automatically constructed, using 
a library of SPN model components. Once a recon- 
figuration has been selected, it is put into effect 
by a computing platform that supports the distribut- 

IEEE Network JanuaryiFebruary 1994 31 



m m m m m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The per- 

formability 

manager 

dynamically 

reconfigures 

distributed 

systems 

whenever 

needed, to 

recover 

from 

failures and 

to permit 

the system 

to evolve 

over time. 

ed system. We illustrated the approach by describ- 
ing the role of a performability manager in an 
ANSAware-based distributed environment. 

Model creation is both crucial and difficult. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn 
overall system performability model must be cre- 
ated,  a t  run-time, ou t  of model components. 
Apart from that, the performability manager must 
also be able to create alternative configurations. The 
problem of the mapping must be solved using 
graph theoretical, linear programming, or heuris- 
tic methods. Because of the expected unstruc- 
turedness and  complexity of the  problems, 
heuristic solutions seem to be the most promising. 

The creation of alternative configurations can 
theoretically provideuswith a huge number of alter- 
native models. A solution to this problem might 
be to use the performability model of the current 
configuration for a sensitivity analysis [43,44,45]. 
The results of this analysis can guide the choice 
of sensible alternative configurations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
References 
[I1 J. Kramer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAed.. Proc. of the Intl Workshop zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Configurable Distributed 

Systems, Computing Control Division of the lnstitution of Electrical 
Engineers. IFIP. Imperial College of Science, Technology a n d  
M e d i d .  E, Mmch 1992. 

[21 J. Kramer and I. Magee. '7?mamic Configuration of Distributed Sys- 
tems,"EEE Trans. on S o h m  Engineering, 11(4):424-436, April 1985. 

[31 J. Kramer and J. Magee. 'The Evolving Philosophers Problem: Dynanuc 
Change Management."LEE€ Trans. on SoftwmeEng.. 16(11):1293- 
1306. Nov. 1990. 

[41 J. Magee. J. Kramer. and M. Sloman. "Constructing Distributed Sys 
tems inConic,"E T m .  on Sof"Eng., 15(6):663675, June 1989. 

[51 F. Lange. R. Kroeger. and M. Gergeleit. 'mL Design and Imple- 
mentation of a Distributed Measurement System," IEEE Tran. on 
Pmauel and Dishibuted Systems, 3(6):657-671, Nov. 1992. 

161 L. J. N. Franken and  B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Haverkort, "Distributed Computer Sys- 
tems and  Logistics Systems: What Do They Have in Common Be- 
sides Distribution." Research review Rovnl PTT Nederland NV. . ~ -, -- - - - ~ 

3(3):35-71, Aug. 1993. 
171 S. Ceriand G. Pelagatti, Dishibuted Databases, (McGraw-Hill, 1984). 
[81 H. Muhlhauser, Software Engineering for Distributed systems: The 

[SI L. Mejlbro. "QOSMIC-DelirsrabIe D1.3C QuS and Performance Rela- 
Design Project, IEEE. 1988. 

tionshius,"Deliverable QOSMIC R1082. RACE. 1992. 
[I01 4oSh6C. "General Aspects of Quality of SeMce and System Perfor- 

manceinIBC,"DeliverableRACED510. RACE. 1991. 
[ l l l  ITUnion, "General Characteristics of lntemational Telephone Con- 

nections and Circuits." Red Book Fsc. II.1. CCITT. 1985. 
1121 ITU, "Telegraph and Mobile Service and Quality of Service." Blue 

BookFsc. n.4. CCITT. 1989. 
1131 ETSI. "Network Aspects (NA); General Aspects of Quality of Service 

and  Network Performance in Digital Networks, Including ISDN." 
Technical Report F171003, !Zl'SI, 1990. 

[I41 N. M. van Dijk, B. R. Haverkort, and I. G. Niemegeers. Guest editorial: 
"Performability Modeling of Computer and Communication Sys- 
tems," Performance EVUIU~M. 14(34):61-78. Feb. 1992. 

1151 B. R. Haverkort. "Performability Modeling Tools, Evaluation Tech- 
niques, andAppIimtions."Ph.D.thesis. Univ.of Twente. 1990. 

I1 61 I. F. Meyer. "Performability Evaluation of Telecommunication Net- 
works," in Network Teletrdc Science for CoSt-Effective Systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 
ITC-12 Services, M. Bonotti ed.. pp. 1163-1172. IAC, (Elsevier Science 
Publishers B.V.. 1989). 

U71 1. F. Meyer. 'Wrformab*. a Retrospeaive and some Pointers to the 
Future." Performance Evaluation, 14(3-4):139-156, February 1992. 

[le] Project JTC1.21.43. "Reference Model for Open Distributed Process- 
ing," Draft Recommendation X.901: Basic Reference Model of Open 
Distributed Processing Part 1: Overview and  Guide to Reference 
SC21 N7053.1993-1-28. 

U91 APM Ltd.. Cambridge. U.K., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"AN% An Engineer's Introduction to the 
Architecture: Nov. 1989. 

[201 W. Rosenberry, D. Kenney. a n d  G. Fisher, Understanding DCE, 
(O'ReiJiy &Asscciates. Inc. 1992). 

[211 R. Cole, "Application Configuration in a Client-Server Distributed 
System," in Proceedings of the Intemational Workshop on Config- 
urable Distributed Systems, I. Kramer. ed., pp. 309-317, Computing 
Control Division of the Institution of Electrical Engineers, H P ,  Impe- 
rial College of Science. Technology and Medicine, IEE. March 1992. 

1221 G. Dean et al., "Cooperation and Configuration within Distribut- 
ed  System Management," in Proceedings of the International 
Workshop on Configurable Distributed Systems,J. Kramer. ed.. 
pp. 274-285, Computing Control Division of the Institution of Elec- 
trical Engineers. IFIP. Imperial College of Science, Technology 
and Medicine, IEE. March 1992. 

[231 F. Cristian. "Automatic Reconfiguration in the Precence of Failures," 
m P " p o f  t h e l n t e m o t i o n a l W o r ~ o p o n C o ~ l e D i  
Systems, editor, J. Kramer. pages 4-17. Computing Control Division of 
the Institution of Electrical Engineers. IFIP, Imperial College of Sci- 
ence. Technology and Medicine, IEE. March 1992. 

[241 Y. H. Lee and  K. G. Shin, "Optimal Reconfiguration Strategy for a 
Desradable Multimodule Comuutina Svstem." 1. of the ACM. 34121: . ~ . - 1 . - ~~~~ 

326348, April 1987. 
[251 K. G. Shin. C. M. Krishna. and Y. Lee. "Optimal Dynamic Control of 

RemurcesinaLMributed Svstem."IEEETransoctionSofhvareEnai 
neering. 15(10):1188-1197,&. 1989. 

[261 hGe&t andR.Weihmayer,"Jomt Optimizationof DataNetworkDesign 
andFacilitySelectios"E1SAC. 8(9):1667-1681, Dec. 1990. 

[271 K Kant. Introduction to Computer System Performance Evaluation, 
(McGraw-Hill, 1992). 

[281 Y. Berders a n d  P. Dickman, eds., Workshop on Dynamic Object 
Placement andLoodBalancing inparallel andDistributed Systems, 
The Sixth European Conference on Objectoriented Program- 
ming, ECOOP '92, 1992. 

[291 N. G. Shivaratri. P. Kreuger. and  M. Singhal. "Load Distributing 
for Locally Distributed Systems."lEE€ Computer, 25(12):33-44, 
Dec. 1992. 

[301 S. M. Shatz a n d  1. Wang. eds.. Tutorial: Distributed Software 
Engineering. IEEE Computer Sodety Press, 1989. 

[311 N. S. Bowen, C. N. Nikolaou, and A. Ghaioor. "On the Assignment 
Problem of Arbitrary Process Systems to Hetrogeneous Distribut- 
ed  Computer Systems," zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIE€€ Trans. on Computers, 41(3):257-273, 
March 1992. 

[321 S. Hariri and  C. S. Raghavendra, "Distributed Functions Alloca- 
tion for Reliability and Delay Optimization," Proceedings of the 
Fall Joint Computer Conference (IEEE). pp. 344.352. 1986. 

[331 B. Cane. Graphs and Networks. (Clarendon Press, OxIord, 1979). 
[341 S. M. Shatz, J. Wang. and M. Goto. 'Task Allocation for Mmdmizing 

Reliability of M u t e d  Computer Systems," IEEE Trans.on Compui- 
ers, 41(9):1156-1168, Dec. 1992. 

1351 J. Laprie a n d  K. Kanoun, "X-Ware Reliability a n d  Availability 
Modeling."JEEETrm. o n S o h E n g i n e e r i n g .  18(2):130-147, Febm- 
ary 1992. 

I361 W. Chu and L. Lan, 'Task Allocotion and Precedence Relations for 
Dishibuted Real-Time Systems,"EEE Trans. on Computers, 36(6):667- 
679, June 1987. 

1371 W. W. Chu. LJ. Holloway, M. Lan. and K Be, 'Task Allocation in Dis- 
tributed Pracessing."EEE Computer. 13(11):5769. November 1980. 

[381 K Efe, "Heuristic Models of Task Assignment Scheduling in Distribut- 
ed Systems."i€EEComputer. 15(6):5056. June 1982. 

1391 J. P. Huang, "Modeling of Software P d t i o n  for M u t e d  Real-Time 
Applicotions."EEE Trans. on Softwme Eng.. 11(10):1113-1126. 1985. 

[401 L I. M. Nieuwenhuis, "Fault Tolerance Through Prqram T r d o r m a -  
ti0s"PhDthesis. F ' l T R d ,  1992. 

1411 B.RHcnrerkortandK S . T r i ~ " S ~ o n a n d G e n e r o t i o n o f M m k o v  
Reward Models." Discrete-Event Dynamic Systems: Theory and  
Applications, 3219-247.1993. 

1421 L. J. N. Franken, R. H. F'ijjrs, and B. R. Haverkort. "Modeling Aspects 
of Model Based Dynamic 40s Management by the Performability 
Manager."submittedtothe 7thIntlConferenceonModehgTechniques 
and Tools for Computer Performance Evaluation. May 1994. 

1431 J. T. Blake. A. L. Reibman. and K. S. Trivedi. "Sensitivity Analysis of 
Reliability and Performability Measures for Multiprocessor Systems," 
ACMPed E d .  Review, 16(1):177-186.1988. 

(441 P. Heidelberg and K Goyal, Sensitivity Analysis of Continuous Time 
Markov Chains Using Unifonnization. in Computer Performance and 
Reliability. G. Iazeolla, P. 1. Courtois and 0.1. Boxma. eds.. pp. 93- 
104, (Elsevier Science Publishers B.V., 1988). 

[451 R. Mane, A. L. Reibman, and K. S. Trivedi. "Transient Analysis of 
Acyclic Markov Chaim,"Perf. Eval., 7175-194, April 1987. 

[461 L. 1. N. Franken and I. W. Spee. "INiANSAware." PIT Research report 
TI-RA-93.154. F'lT Resecoch, the Netherlands. Feb.1993. 

[471 Studygroup XI. 4.1200, Draft recommendations. Tech1 report, CCllT, 
1991. 

[481 MAFU Computer Systems Ltd., DEMON W.0 User's Guide and Refer- 
ence Manual, 1993. 

Biographies 
LEO" J. N. FRANKEN [M '901 received a Bachelor's degree at the H.T.S 
Rijswijk a n d  a n  M.Sc. from Delft University of Technology, both in 
electrical engineering. He joined PTT Research Groningen. the 
Netherlands in 1990, where h e  started in the field of performance 
modeling and  evaluation of telecommunication services. He is cur- 
rently active in the field of distributed system design, in particular 
withdistributed-system management andthe application of performance. 
dependability, a n d  performability modeling a n d  evaluation. He is 
working on his Ph.D. in a joined research with the Tele-Informatics 
a n d  Open Systems group of the University of Twente. His email  
adress is l.j.n.franken@research.ptt.nl. 

BOUD'ix" R. HAVERKORT [M '881 received MSc. and his Ph.D. degrees in 
computer science. both from the University of Twente in 1986 and 1991, 
respectively. Since January 1990 he has been an assistant professor in 
the Tele-Informatics and  Open Systems group of the department of 
computer science at the University of Twente. Enschede. the Netherlands, 
where he teaches courses on performance analysis of communica- 
tion networks a n d  computer systems. From lanuary through April 
1993 he was a visiting professor at the Teletraffic Research Centre of 
theUniversityofAdehide, Australia. Hiscurrent researchinterestsinclude 
performance. dependability, and  performability evaluation of fault- 
tolerant and  distributed computer and  communication systems and  
software tools to support these evaluations. He served as a guest 
editor for a special issue of Performance Evaluation devoted to per- 
formability modeling of computer a n d  communication systems in 
1992. He is a member of the IEEE Computer Society and  the ACM. 
He received a KoninklijkeiShell research prize early 1991. His e-mail 
address is b.r.h.m.haverkort@cs.utwente.nl. 

32 

- -  

IEEE Network JanuaryIFebruary 1994 


