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© uture broadband distributed systems will
* have high functionality, avallablhty, reli-
ability, and performance requirements.

Their modular structure, however, can
be exploited to perform run-time enchance-
ments to increase functionality and to recover from
adecrease in availability, reliability, or performance.

Efficient and effective use of the resources and
guaranteeing a desired level of quality of service (QoS)
inadistributed environment are complex but impor-
tant tasks, not only at system initiation but also at run
time. In this paper we describe the performability
manager, a distributed system component that con-
tributes to a more effective and efficient use of sys-
tem components and prevents QoS degradation.

The performability manager dynamically recon-
figures distributed systems whenever needed, to
recover from failures and to permit the system to
evolve over time and include new functionality. Large
systems require dynamic reconfiguration to sup-
port dynamic change without shutting down the
complete system [1-4].

A distributed system monitor is needed to ver-
ify QoS. Monitoring a distributed system is diffi-
cultbecause of synchronization problems and minor
differences in clock speeds (see for example [5]).

Before we describe the functionality and the oper-
ation of the performability manager (both informally
and formally), we give an overview of our earlier and
other related work in the distributed systems
area. In the concluding section we put forward some
future researchissues. Throughout the paper we will
illustrate the approach by an example distributed
application: an ANSAware-based number trans-
lation service (NTS), from the intelligent net-
works (IN) arca.

Related Distributed-Systems
Work

or describing the functionality of the per-

formability manager we will use the “com-
mon framework” as presented in [6], which
describes the components of a distributed system
(Figs. 1 and 2):

Task: a certain amount of work to be realized by
the system.

Application: the realization of a certain amount
of work on a system (part).

System part: an independent component, capable
of independently executing an application.

Network: the complex of connections between
system parts available to the system parts for com-
munications.

Management: hardware or software components
that take care of the mapping of tasks on appli-
cations and of applications on system parts, in
order to achieve an efficient and effective use
of the applications, system parts, and the network.

Anexample of an application that uses the above
framework is described in the box on the next
page.

The distributed nature of the systems we study
makes their evaluation a complex task. Mapping
applications on system parts is driven by function-
al and quantitative arguments, many of which can
be viewed as reasons for distribution [7, 8]:

* Geographical spread of users.

* Geographical spread of information.

¢ Performance increase.

¢ Reliability increase.

* Availability increase.

The quantitative reasons, i.e., the performance,
reliability, and availability increase can be viewed
from two sides: a user point of view and a provider
point of view. A provider wants an efficient and effec-
tive use, such as high utilization, of the distribut-
ed components. To users, quantitative aspects are
reflected by the QoS. The QoS describes the user-
perceived performance [9-12). The QoS can be divid-
ed into subjective and objective elements. Sub-
jective QoSis user-oriented and hard to quantify and
measure; objective QoS, the QoS we refer to in
this paper, can be measured. Objective QoS is
related to or can be transformed into the subjec-
tive QoS, but this is not a one-to-one relation.

Service Performance Parameters (SPPs), the
generic term for provider-visible performance param-
eters [13], are quantitative parameters that indicate
howwell the system (service) is performing. Between
the objective QoS parameters and the SPPs there
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exists a one-to-one mapping |9, 10]. SPPscanbe mea-
sured at the service, and they ultimately determine
the QoS, but they do not describe the QoS in a
way thatis meaningful to users (the subjective QoS).

Because the QoS describes the user-perceived
performance, the separate evaluation of perfor-
mance, reliability, and availability during system
design, implementation, and maintenance is notsuf-
ficient. The mutual influence of these aspects is
recognized by the QoS; modeling and evaluation
techniques that can handle the combined aspects are
required. The performability manager uses per-
formability analysis because it provides a means
tomodel and evaluate distributed systems with respect
to their QoS [6, 14-17].

Functional aspects of distributed systems are gen-
erally modeled using so-called formal description
techniques (FDTs). The combined evaluation of
functional and quantitative aspects requires inte-
grated modeling techniques and tools; however,
no well-established modeling frameworks have
yet been defined for this purpose [6].

The performability manager maintains the re-
quired QoS by dynamic reconfigurations. This re-
quires that facilities for dynamic reconfiguration
should be available in the distributed system. Such
facilities would include access transparency, con-
currency transparency, federation transparency, loca-
tion transparency, migration transparency, and
replication transparency [ 18]. These facilities can be
realized at several levels in a distributed system:

* The operating system level.

* The middle-ware level (at the level of comput-
ing platforms or configuration languages).

* The application level.

The current trend in distributed systemsis to pro-
vide these facilities via computing platforms.
These platforms allow for a heterogeneous distributed
system that is transparent to the application pro-
grammer. Examples of such middle-ware facili-
ties are the configuration languages Gerel, Conic,
Argus, Rex, Darwin[1], and the computing platforms
ANSAware [19] and DCE [20]. ANSAware is the
computing platform on top of which we imple-
ment the performability manager and the NTS appli-
cation. We give more information on ANSAware
in the sidebars entitled “The ANSAware Infras-
tructure” and “An ANSAware-based NTS.”

Computing platforms and configuration languages
provide users with more or less the same set of func-
tionalities that can be used for dynamic and/or static
configuration and reconfiguration. Examples of the
use of these facilities for qualitative configuration man-
agement are described by Cole [21] and Dean [22].
Cristian [23] presents an approach for an availability
manager, which guarantees the availability of the
applications using replicated components.

Although the goal of reconfiguration is to main-
tain the desired QoS or to include new functionality
in the distributed system, most of the effort in the
area of dynamically reconfigurable distributed sys-
tems has been put in supplying facilities to perform
the reconfiguration, rather than on reconfiguration
management to guarantee adesired level of QoS. The
performability manager, however, guides reconfig-
uration by using a model-based optimization proce-
dure. Performability evaluation is used in the opti-
mization procedure. A similar, but less general and
less “automatic” approach towards resource control
has been proposed by Lee and Shin [24, 25]

Distributed systems

N

Tasks Applications System parts Network

Management
(performability manager)

M Figure 1. The components of a distributed system.

Also related to our work is the area of optimal
system design [26, 27], dynamic load balancing
[28, 29], and task allocation in distributed systems
[30]. Examples of these are presented by Bowen [31]
and Hariri [32]: Bowen presents a study on pro-
cess allocation in heterogeneous distributed systems
and compares a heuristic-algorithm with an LP-solu-
tion, whereas Hariri presents an algorithm which
takes care of optimizing reliability and communi-
cation delay. Both approaches focus only on a
single quantitative system aspect (either performance
or reliability) instead of on a combination of the
two aspects, as we propose.

The Number Translation Service

For the number translation service (NTS), as provided in intelligent networks
[46, 47}, end users submit requests or tasks for the application at a certain
rate. Because we do not have real users in our experimental application,
we use a component that mimicks user behaviour, the so-called Generat-
ing Component (GC). The GC generates the calls for the NTS. The NTS
is provided by the following application components (Fig. 2):

*The Selection Component (SC): this component selects a service
using the contents of the requests it receives (in this example, the number
translation service).

*The Number Translation Component (NTC): this component
receives requests for number translations. The NTC sends a request to a
database component for the required number and to a billing component
for the creation of a bill. The number received from the database is
returned to the SC.

*The Database Component (DBC): this component receives requests for
specific numbers. It will fetch the number from a disk and return the
number to the component that requested the number.

+The Billing Component (BC): this component receives requests for
the preparation of a billing record.

The Management Component (MC) does not belong specifically to
the NTS but provides the performability manager with the necessary
“buttons to push” for performing a reconfiguration. The other compo-
nents (SC, NTC, DBC, and BC) are components of the application and
can be controiled by the MC.

B Figure 2. The experimental N’ 7S application.
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Another important retated issue is the monitoring
of distributed systems[5]. To be able to detect degra-
dations of the QoS, the distributed system must
be monitored to detect performability degrada-
tion. The monitoring output can alsobe used to feed
the distributed system model with more accurate
parameters.

The Performability Manager in
Perspective

B ecause a reconfiguration must be performed with
great care, the performability manager uses a
mode] of the current distributed system to prepare
a reconfiguration. For deriving a model suitable
for evaluation, a distributed system must be described
in a way that makes the creation and evaluation
of models of alternative configurations possible.
Therefore, we use the framework in the previous
section to look at a distributed system at four levels:
tasks, applications, system parts and the network,
and management. Each level consists of compo-
nents and their relations. The relations can exist
between the different levels as well as between
the components at one level (mutual relations).

The ANSAware Infrastructure T

ANSAware is a suite of programs that allows users to write apphcatlons
suitable for heterogeneous distributed environments (see also Fig. 6in
the box on the next page, although the. possxblc hetcrogencltyls not

. ANSAware essennally con-

¢ operating syst m, and
P vxd&s a uniform, technology~1nde ndent platform upon w
ons'can be exemted The infrast rkin,

ment applications, perfonmng functions i d as i
‘are provided for the user’s convenience. Aware prov
vxew ofa multwendor world, allowmg system | bmlde

block of ANSAware is a service. Cmnp ‘ents hat
‘clients. Components that provide a service are
¢ provided at interfaces: an interface is'a unit of
3). The ANSA computational model permits an
-and server. A component or object, described
3 prowdes and usesservices, isreferred toasacom-
: t can invoke an operation or servxoe at the mter—

face of a server object in'two different ways:
* By interrogation, in which the invoking client waits for the server to. pcxfonn

‘the operation and return the result (similar to an rpc);
* By announcement, in which the invoking client does not wait for the server
: n and no result is returned (remote process spawn).
C putzmonal objects or the type of machine they exe-
cute on can be.chan at run time: the ANSAware infrastructure
enables a flexible conﬂguranon of apphcatxon components and provides a
unzform way of accessing them.

3.4 cltem ob]ect and server ob;ect w:th
- its interface. :

Task level — The performability manager views
tasks as task components ¢,. A task is a certain
amount of work, initiated by a user. For each
apphcatlon Jj we define the set of task components

T={t,...,t,}, e TCwith TC = {T1, ... T}
the setof all tasks forall applications. The task com-
ponents have a relation with the application
level. We assume that there are nomutual relations
between task components.

Application level — Applications are viewed as
composed of application components ¢; € AC,
with AC = {ay, ..., a,,} the set of all application
components. In addition to their relations to the
task and system level, application components
have a mutual relation that represents the com-
munication between the application compo-
nents. Therefore, the performability manager
views an application as a structure of applica-
tion components and their mutual relations
(communication). A single application structure
is described by using a graph 4/ = (VAJ, E4)
with VA4/ ¢ AC and EA/ c VA/ x VAI. The complete
set of (created) application structures that is
active in the current distributed system is
denoted by A Thus, we have 4/ € 4, and #
= {(VA/, EA’)| j=1, ..., n}, where n is the num-
ber of applications.

System level — System level is also seen as com-
posed of components: system parts s, € SC with
SC = {s1, ..., s}, and network links, n; € NL and
NL = {ny, ... ,n,} which provide the mutual
relations between the system parts. The dis-
tributed system structure is described as a graph

= (VS, ES) with VS ¢ SC and ES c VS x VS and
F:ES—>NL.

Paths are also defined at the system level. A
path is a finite sequence of network links (arcs or
edges) between any two system parts (nodes);
that is, a finite sequence of links in which the ter-
minal node (system part) of each link coincides
with the initial node of the following link [33]. P
is the set of all paths on S; p;; is the set of paths
between the system parts sy, s; and pyy, € pyy,
where pu, = {(Sk> ) (Shs Sp) -+ (S SO (ks 1) -

(8> 57) € ES}. Every path py, € P can be mapped
on a set of links of §, by the function F: P - ES.

In addition to their mutual relation, the system
parts have a relation to the application level. The
definition of a path is used when assigning the com-
munication between the application components
tothe systemlevel. If no path exists between two sys-
tem parts, then these system parts are not connected.

Management level — The management level is
orthogonal to the other levels. It consists of man-
agement tasks, applications and systems and is
structured in asimilar way as the “normal” distributed
system.

Mapping — The mapping is the logical alloca-
tion of higher levels to lower levels: the allocation
of application components on system parts and
the routing of the communication over the network
links. This is also reflected in Fig. 4 where the
mutual relations are represented by solid lines
and the relations between levels (the mapping of
the levels) by dotted lines. The allocation of tasks
to application components is a special case of
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allocation. Although the other allocations are
subject to change, the task components are always
allocated to the same application component of
an application. .

A mapping function is described as M’ for
eachA. The allocation and routing of amapping can
be described in a more formal way.

Allocation— There are two types of allocations: the
allocation of task components to application
components and the allocation of application
components to system parts. The allocation of
task components to application components is
described by the matrix Z/ = T/ x VA/:

j _ Jlifthes, e T/ is allocated ona, € VA
Zd,i 10, otherwise

For the allocation of application components
a; e A onsystem components, € S, the mappingcan
be described by ma/ : VA — VS. You can derive
such a function for all V4’ € A For the allocation
of a; € VA, and VA’ € #on system component
s, € VS, we define a parameterx{ 5 as follows:

xj _ )1 ifthe a; e VA’ is allocated on s, € VS
i,k 0, otherwise

For A’ you can create an allocation matrix
X/ = VA x VS, where X/[i,k] = x/,. The matrix
X/ represents the allocation part of the map-
ping M7 of A/ and still leaves the routing to be
solved.

Routing — We now present a way of describing
the routing for an application 4/. From an
application point of view, the communication
between application components is described
by (a;,aj) € EA. The routing of the communica-
tion of (a; , a;) € EA’ on a path between (s, 51) €
ES is described by mri : EA’ - ES. We derive
such a function for all EA’ € A For the routing
of (a;, a;) of EA) on the pathpy, € Pyy,v =1, ...
,nand Py ;e P,we define a parameteryi}.‘k,v,
where:

j _ | Lif(auape EA’ is routed onpy, € ;
yl,], ki, 0, otherwise

Every path py;, € P can be projected on a set
of physical links of §; that is, by the earlier derived
function F : P — ES. Thus, py, = {es,, ... , esp, |
esg, ... es, € ES} and es, = {(sy, 5,)| 51, s, € VS}.
Using this notation allows us to create a routing
matrix Y/ = EA'xES, where Y/ [{(a;,a;),pi,] :y:/',;',le'
Y/ represents the routing part of the mapping
M/ of application A’.

Overall Mapping — The mapping is determined
by the set of routing vectors Y = {Y!, ..., Y"},
and the set of allocation vectors X = {xt o, X"}
and Z = {Z', ..., Z"}, thus M/ = {Z/, X7, Y/}.
The overall mapping is defined: # = UQA,'M/.
Using the view just presented, we can state
that a configuration of a distributed environment
consists of the structures and mapping of the dis-
tributed system; that is, the constellation of com-
ponents, their physical interconnection, and their
mapping on each other. As a consequence, a
reconfiguration is the changing of the structure
or the mapping. For the creation of alternative
configurations we intend to use application place-
ment procedures as proposed in [26, 29, 30, 31,

Task level

Task component 7

MappINg -.- - cec s cor e 2ee-

Application level

Application
component -

System level

System part..._

P P RS

Mapping -

3
'
T
i
'
'
'
'
T
1
'
\

Network fink —

M Figure 4. The distributed system configuration.

An ANSAware-based NTS

In our experimental distributed environment the computational objects
are the application components of the distributed system. One or more appli-
cation components or computational objects make up a distributed appli-
cation (see Fig 5). Each computational object has been implemented as a
process. All invocations for the experimental application are announcements,
except for those between the NTC and the BC and those between the
NTC and the DBC, which are interrogations.

DBC

form.

Application
ansa ansa ansa
unix unix unix
sun 1 sun 2 sun 3

Ethernet (nl)

W Figure 6. The experimental distributed environment.

W Figure 5. The experimental application described in a computational

For the experimental application, we use a small distributed system
consisting of three SUN SPARC workstations connected by an Ethernet
as depicted in the two lower layers of Fig. 6. Within this experimental dis-
tributed environment we use two monitors: DEMON, the Distributed
Environment MONitor [48] is used to visualize the structure of the exper-
imental distributed environment and JEWEL is used to do performance mea-
surements in the experimental distributed environment [5].
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34]. Formally, the distributed system configura-
tion, Q, is a function of the task components, the
application and system structure and the map-
ping: Q = F(TC, A, S, /).

In the sidebar entitled “Formal Description of
the ANSAware-based NTS,” we used the nota-
tion presented in this section to describe the

Formal description of the ANSAware-based NTS

We can describe the NTS using the graph notation as presented before.
The available components are:

TC = {TY}
SC = {sun2,sun3} )
AC = {GCSCNTC,DBC,BC}

P=A{py3}
NL = {n1}

W Figure 7. aph-one view of the d;stﬁbuted e’vironmeﬁ& k

We left the management level out of the description because it is not
assumed to have influence on the performance and therefore does not
contribute to the performability model to be created. Sun 1 (Fig. 7) isreserved
for management-level activities. Although the user component is includ-.
ed in the GC, we present it as a separate component at task level for
parameterization reasons. S

The task, application and system level of the environment using the
presented notation is as follows: '

T' = {USERS} S=(VS,ES)
A= {(VALEAY} VS = {sun2sun3}
Al = (Al EAY ES = {(sun2sun3)}

vA! = {GC,SC,NTC,DBC,BC} P23 = {(sun2sun3)}

EA! = {(GC,SC),(SC,NTC),(NTC,DBC),(NTC,BC)}

The only aspect that still needs to be described is the mapping # of the
different levels. Because there is only one application, 4 |, the mapping remains
simple, # = {M 1}. We use the allocation and routing matrices, M1 =
{Z x1y'):

This mapping in combination with the application, task, and system
level components results in a configuration as shown in Fig. 7, where you
can see that the application components NTC, BC, and DBC are allocat-
ed on one system part and therefore do not use any communication paths
as shown by Y 1. Although the relations between the management level
and the application components have not been shown, each of the appli-
cation components actually has a relation with all the management com-
ponents.

experimental NTS application mentioned in the
previous sidebars.

Annotation with Service Performance
Parameters

In this section we present the set of service per-
formance parameters (SPPs) used to estimate the
QoS of a distributed system. The set of SPPs is
split into performance and reliability parameters.
We annotate the graph models described in the
previous section with these parameters (see also [27,
33, 35]).

For the parameterization of the model, we
expand our notation of an application compo-
nent. An application componenta;can performone
or more operations (use services): o, € a; with a;
= {0y, ..., 0,}, the set of operations performed
by a;. Operation (or service) o, of a; is represent-
edbya, .

Letvy, be the average processing workload
requirement of operation o, of application com-
ponenta; (for example, the processing requirements
of anapplication component canbe expressed as the
number of instructions to be executed).

A system part s; has a processing capacity
expressed by g, (for example, the capacity of a
cpu can be expressed as the number of instruc-
tions executed per second). The mean service
rate of s, with respect to a;,,, is:

Vg,
“ )
Ts,

The average communicationworkload requirement,
the number of bytes transferred for communica-
tion between application components per invoca-
tion of operation a,,, by 4; can be expressed as

ik =

V(aj' aiou)‘ . . .

A'path py;, has a communication capacity
expressed by v,y (for example, expressed as the
number of bytes that can be transferred per
second). The mean service rate of py, w.r.t. (a;,
dj,,) as:

Yaj.a;,)
Hig ki, = ——— @
¥ pu,

The communicationwork capacity of a pathisbased
on the individual capacities offered by the net-
work links.

The above are generic terms to express the
load incurred by an application component and
the load of communication between two application
components as well as the capacity of system
partsand paths. Using these, we can annotate or label
the earlier defined application and system graphs
with the parameters we previously defined.

For each o, of a; € A’ we can derive the aver-
age number of invocations per task submitted to
A7 [36-39], which is expressed as A/, ., . The
average request rate A’foran app]icationAf 1sgiven
by task component ;€ T/,

Using Yy, Vai,, and x{lj,amu, for example, we
can derive the utilization of py;, by a;€ 4/ as:

Al N
4; Va;"a; 28,

Mi Kk

(&)

i =
Pi,sk -
Vo,

U

Using Yy, V(ajdiow) and A/ , we can derive the

aj aioy

28
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utilization of p,; by a;, a; € A/ for operation o, of
a; as:
j
. M

a;

i o

J
L) e @
Ui P, vo, l—liu okl
For the reliability aspects it is assumed that only
the hardware can fail and can be repaired [40]. There-
fore, we only have to assign failure and repair
rates to system parts and the paths between them.
For each system part s; we define the failure and
repair rate of that system part as fy, and ry;,
respectively. The failure and repair rate of a path py,
is defined as fp,;, and r,, , respectively.

Performability Manager Functionality
and Environment

The performability manager should become
active whenever the QoS isviolated orwhen a degra-
dation of performance, reliability or availability
occurs. We will describe some of these situations
in more detail below.

Actaskinitiated by a user can either be completed
using already running applications or a new
application must be created and placed in the sys-
tem. This leads to two situations in which a recon-
figuration can occur.

In the first situation, there is only an increase
of the workload for the existing distributed sys-
tem configuration. An increase of the workload
might lead to a violation of the QoS of other tasks.
When this is the case, a reconfiguration by the
performability manager of the distributed system
might be necessary so that the QoS is restored
and remains guaranteed. The second situation leads
to a change in the distributed system configura-
tion, which consequently leads to a distributed
system reconfiguration.

Anothersituation inwhich the support of the per-
formability managerisdesired iswhen afault occurs
in the distributed system that leads to a violation
of the QoS.

Reconfigurations can either be performed
statically (stop the distributed system, perform
the reconfiguration, and start the system again),
or dynamically (on the fly). The performability man-
ager we present in this paper focuses on dynamic
reconfiguration.

More generally, the performability manager must
perform reconfigurations of the distributed sys-
tem configuration, whenever necessary to recover
from and prevent degradation of QoS.

To fulfill its task, the performability manager
needs supporting facilities. A global description
of these facilities is given in Fig. 8; the performability
manager is situated between them.

In future environments, users must be able to
compose new applications. Therefore, a trader facil-
ity is needed to communicate or negotiate with
users. With the trader, users will agree upon the
functionality of the application and the desired QoS
and costs. The trader will ask the performability
manager if it is possible to realize the QoS and
cost requirements.

New applications are composed of application
components from the component library, which
contains, apart from a description of the application
components, a description of the system parts
and network components. The performability
manager needs a description of all these components

B Figure 8. The environment of the performability manager.

to create a distributed system model suitable for per-
formability evaluation.

The preparation of the dynamic reconfigura-
tion by the performability manager is performed
by using a model according to the current distributed
system configuration. With this model, the per-
formability manager can create and evaluate
alternative configurations and choose the optimal
configuration.

To detect aviolation of the QoS, a performability
monitor is needed to check the applications of
the distributed system with respect to their QoS.
If this performability monitor detects a violation,
it must report it to the performability manager.

Operation of the Performability
Manager

nce triggered, the performability manager estab-
lishes a reconfiguration in three steps fol-
lowing the trigger:
0: Trigger for a reconfiguration.
1: Creation of alternative configurations.
2: Evaluation of the alternative configurations.
3: Performing the reconfiguration.

Triggers for a Reconfiguration
The need for a reconfiguration can arise because
of the introduction of a new application or to a
perceived degradation of the QoS. The latter can
be due to a failure or due to the first.

When a reconfiguration occurs, Q¢ prens
will change. This means that TC, A4, S or #/ will
change. When a new application application is
introduced, TC, A4, and # will change. For a new
application new tasks will be generated, so that
TC « TC U TC,,,,- The set of applications will
of course be expanded, # < AU 4,,,, and the
mapping will change. Consequently, the addition
of a new application results in a new mapping,
M — MO My,

The second possible trigger is a perceived degra-
dation of the QoS, such as that resulting from a
failure. This can be coped with by rerouting of
communication or reallocation of applications. If
this happens, only the mapping is subject to
change. Ifasystem part failure occurs, the set of avail-
able system components becomes smaller, S < §
— Staitea> and therefore the mapping must be
changed. If an applicationis to be removed, then the
set of tasks, applications and the mapping will change.
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Creation of Alternative Configurations

The performability manager creates a set of con-
figurations in order to select the optimal configu-
ration. The current configuration, Q. e, and the
trigger for reconfiguration serve as inputs for
this creation process. As explained in the previ-
ous section, first the component sets 7C, #, and S of
Qmensare adjusted according to the trigger for recon-
figuration. Then the decision upon the mapping
for the new configuration Q,,,, must be made.

The mapping is a complex function. If we allo-
cate m application components on n system parts,
then there are n™™ possible allocations. This num-
ber even increases if we allow for component
replication or if we take into account the routing
of the communication between components, The
optimal mapping is a problem of exponential
complexity.

In general, the goal is to find the mapping that
minimizes some cost function but fulfills other
constraints. The constraints can have various ori-
gins, such asresource constraints (memory, cpu, disk,
communication), availability and reliability con-
straints, or dependency constraints.

These constraints have a direct (cpu capacity)
or indirect (precedence relations) relation with
the SPPs and therefore with the established or
required QoS. Using these constraints we can
create various cost functions, which will in gener-
al lead to different mappings. Our specific goal is

Describing Alternative Configurations

Changing the mapping of application to system parts results in altematlve :
configurations of the distributed system. The mapping algorithm pre-'
sented can lead to alternative configurations with two alternative map-
pings, M % and M3, In the first alternative configuration’ (represented by,
M?={z%Xx? Y2}) we moved all the application components to the
same system part, sun2. For this configuration the application does not -
use the communication paths. In the second alternative configuration
(representedby M3 = {Z3,X 3, ¥ %}),replicated components are used (NTC’,
DBC’, and BC'). For this aiternative configuration we also have to change‘
(cxpand) the set of application components and the application graph
= {GC,SCNTC,DBC,BCNTC',DBC'BC} - =
= {GC,SC,NTC,DBC,BCNTC’,DBC',BC’} '
= {(GC,SC),(SC,NTC),(NTC,DBC), (NTC,BC),(SC NTC’),
(NTC',DBC), (NTC',BC)} - :
The replicated components are treated as mdependent cnmpone ts E
The corresponding allocation matrices are:

to fulfill the required QoS related constraints and
optimize the other QoS related constraints.

We define c; ; as the incurred cost for the allo-
cation of appllcatlon component g; to system part
s and ¢;; ey AS the cost for the routmg of the com-
munication (a;,4;) if path py,, is used. The costs
must be derived from the QoS-related require-
ments. For each type of application Al there are
different QoS requirements QoS4i. From the
required QoS for A/, we derive QoS bounds
By, for example on performance and reliability,
B i{Bperpyis Breti}- This results in a general cost
function:

S vA'

> Y ikl

Vs, Va,

P EA j
+ X > Ciikt, Ya, La)) P, < BAJ
Yp, Vla; ,a;)
The costs in such a function can represent the fail-
urerate of application A/. If we assume that no appli-
cation (software) failures occur and that the system
partsand network links (hardware) are never turned
off [35], then the failure rate of A/ is expressed
using the failure rate of the system components, as
shown in the algorithm below. In the cost function,
s isthefailure rate of system parts; and fpkl the fail-
ure rate of path py;, both used by applncatlon Al
We then derive a mapping algorithm in which
the failure rate of an application 4’ is optimized
and capacity constraints must be fulfilled:
e Given TC,A and S and QoS,
* Forall 4/ € Aand QoSj
* Realize M/= Y/, X/

— Minimize the failure rate Fuj € B4

S vA’'
ZVsk Va; fSA
) .
B ZVpk,“ zv(a, ,aj)fpkl,. Ve, ,a;) P, < FA’

— Subject to capacity constraints:
* For all sk es:

EVAJ ZV& ISLXI k <1
* For all pklv epP

DY) A

With this mapping algorithm, we can create a set
of configurations by using different cost functions
or different heuristics for solving the optimization
problem [38]. Two alternative mappings for the
experimental application presented earlier are shown
in the sidebar entitled “Describing Alternative Con-
figurations with Graphs.”

Va (m :J Pu, y(a, 145} Py,

Evaluation of Alternative Configurations

Performability models are required for the evalu-
ation of alternative configurations with respect to
QoS. Therefore, every alternative configuration Q,
must be transformed into a performability model
¥, This is done by replacing each component of
TC,A,and S by astochastic Petrinet (SPN) submodel
(see the sidebar entitled “SPN Submodels”).
These models are both flexible and relatively easy to
solve with current software tools [41]. We use the
mapping and the application and system graphs
to create the overall performability model. Notice
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SPN Submodels

- durationofan operatxon isrepresented by atimed tran-
hese transitions represent the work demanded
) tesource, for example the CPU busy time (/1 4,
- the average service time of operation u of application com-
. ponentionsystem oomponentk) We can estimate these param-
eters by running and monitoring the component in isolation
(one-component on a single workstation), or use a more
theoretical wayasdiscussedin the section conceming the anno-
-+ tation with SPPs of the performability manager’s view.
he system- -level components of the distributed envi-
ronment are the resources in the SPN model (Fig. 10). In
model, forexample, the CPU of aworkstation is the resource
hlch must be: aﬂmted For communication, the resources
e network links.
' 'The communication between components can be repre-
.. sented in similar way as the operations. Per (remote) oper-
/- -ation; or communication between two application components
~allocated to different system parts, a path, and subsequent-
1y a'network link or a set of network links must be allocat-
- ed. The duration of a communication operation is also
X esented by a timed transition. In this case, a timed
nsition represents the communication time.
- The generation of requests by USERS, which is a Poisson
artival process, is modeled as a timed transition.
.- The SPN representation of the distributed environment
X 10 uses configuration M. We left out of the SPN
representation the failure and repair behaviour of the sys-
-temlevel components. The inclusion of these aspects,
- along the lines presented in [41] will be discussed else-
o where in this article.”

- We presenta genenc way to transfarm each component of

is represented by puttin
“sewmemputplace 2 R&sawces, uchasa

computamml object or applica i
Fig. 9. The output of th trar

service pmvzszbn I( teft)

that we use an SPN model library for all standard
system, application, and task components.

Once all the alternative models have been
constructed and solved, the optimal alternative con-
figuration is selected, based on the expected QoS
derived by the model evaluation.

Note that for this approach to be useful in a
real-time environment, the amount of calcula-
tions to be performed for the performability eval-
uations must be small. The involved models must
therefore be very simple. More information on model
creation and solution can be found in [42).

Once one out of possibly many alternative con-
figurations has been selected, the reconfiguration
isperformed by the computing platform that supports
the distributed system. How the computing platform
goes along with this, is not the concern of the per-

formability manager. The only concern of the per-
formability manager is to make sure that it does
not request reconfigurations that cannot fulfilled.

Conclusion

W’ e have presented the performability manag-
er, a distributed system components that takes
care of guarantecing user-requested QoS in a fail-
ure- prone environment. It does so by carefully select-
ingan alternative configuration, based on performa-
bility evaluation of a number of possible alterna-
tive configurations. The models of the alternative
configurations are automatically constructed, using
a library of SPN model components. Once a recon-
figuration has been selected, it is put into effect
by a computing platform that supports the distribut-
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The per-
formability
manager
dynamically
reconfigures
distributed
systems
whenever
needed, to
recover
from
failures and
to permit
the system
to evolve

over time.

ed system. We illustrated the approach by describ-
ing the role of a performability manager in an
ANSAware-based distributed environment.

Model creation is both crucial and difficult. An
overall system performability model must be cre-
ated, at run-time, out of model components,
Apart from that, the performability manager must
alsobe able to create alternative configurations. The
problem of the mapping must be solved using
graph theoretical, linear programming, or heuris-
tic methods. Because of the expected unstruc-
turedness and complexity of the problems,
heuristic solutions seem to be the most promising.

The creation of alternative configurations can
theoretically provide us with a huge number of alter-
native models. A solution to this problem might
be to use the performability model of the current
configuration for a sensitivity analysis [43, 44, 45].
The results of this analysis can guide the choice
of sensible alternative configurations.
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