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The results of a systematic study of molecular properties by density functional theory (DFT) 
are presented and discussed. Equilibrium geometries, dipole moments, harmonic 
vibrational frequencies, and atomization energies were calculated for a set of 32 small neutral 
molecules by six different local and gradient-corrected DFT methods, and also by the 
ab initio methods Hartree-Fock, second-order Moller-Plesset, and quadratic configuration 
interaction with single and double substitutions (QCISD). The standard 6-31G* basis set 
was used for orbital expansion, and self-consistent Kohn-Sham orbitals were obtained by all 
DFT methods, without employing any auxiliary fitting techniques. Comparison with experi- 
mental results shows the density functional geometries and dipole moments to be generally 
no better than or inferior to those predicted by the conventional ab initio methods with this 
particular basis set. The density functional vibrational frequencies compare favorably with the 
ab initio results, while for atomization energies, two of the DFT methods give excellent 
agreement with experiment and are clearly superior to all other methods considered. 

I. INTRODUCTION 

Density functional theorylm6 (DFT) is developing rap- 
idly as a cost-effective general procedure for studying phys- 
ical properties of molecules. In its common practical 
forms, DFT replaces the exchange-correlation (XC) en- 
ergy by a one-electron integral involving the local electron 
spin densities pa, pp (LSD methods) or, more recently, by 
an integral involving par, pB and their gradients VP,, Vpo 
(gradient-corrected or GCLSD methods). Many such 
fimctionals have been proposed.7-21 When used in conjunc- 
tion with the self-consistent Kohn-Sham (KS) procedure2 
and an expansion of molecular orbitals in terms of an or- 
bital basis, the techniques become analogous to conven- 
tional Hartree-Fock (HF) theories, with the additional 
feature that a description of electron correlation is in- 
cluded. 

There is a growing literature22-3’ on systematic com- 
parisons of DFT theories with experiment and also with 
HF and Merller-Plesset (MP2) treatments. Perhaps the 
most comprehensive is that of Andzelm and Wimmer,24 
who have studied structures, frequencies, energies, and di- 
pole moments for a number of molecules using the DGAUSS 

program.32 In this approach, a particular functional was 
used (Becke-Perdew’5717 or B-P) and additional basis sets 
were employed for expansion of the density and the 
exchange-correlation potential, following the work of Dun- 
lap, Connolly, and Sabin.33 Further, the self-consistent KS 
procedure was only carried out at the LSD level, the final 
energy being obtained by a single application of the B-P 
functional to the LSD density. These authors found that 
their results compared favorably with standard HF and 
MP2 results from the literature, using a different orbital 
basis. In other work, Becke25 was able to obtain excellent 
agreement (better than 4 kcal/mol) with experimental to- 
tal atomization energies with the fully numerical NUMOL 

program, 34 using his own exchange functionall and a free- 
electron (LSD) functional” for correlation. Again, the 
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self-consistent procedure, and geometry determinations 
were carried out only at the LSD level. Since no basis 
expansion is used in NUMOL, direct comparison with other 
conventional methods is difficult. 

The objective of this paper is to systematically test a 
related set of functionals, with a given orbital basis, so that 
a more direct comparison with HF and MP2 is possible. 
The basis employed is 6-31G*,35 already widely used in 
studies of moderately large organic molecules. (This basis 
has polarization functions on nonhydrogen atoms and is 
comparable to DZP bases used elsewhere.) To facilitate 
such direct comparisons, our work has the following fea- 
tures: 

1. The functionals used are separated into exchange and 
correlation parts. The’exchange part is either Slaterg 
(S), corresponding to the free-electron gas, or Beckei7 
(B), which includes a gradient correction. The correla- 
tion part is either ignored (null), treated by LSD theory 
using the Vosko, Wilk, and Nusair (VWN) parametri- 
zation” of exact uniform gas results,36 or treated using 
the gradient-corrected functional. of Lee, Yang, and 
Parrlg (LYP), as transformed by Miehlich et aL3’ 
These are combined to give the six functionals S-null 
(corresponding to Hartree-Fock-Slater or Xcl theory, 
(r: = 2/3 ) , B-null, S-VWN (corresponding to regular 
LSD theory), B-VWN, S-LYP, and B-LYP (with gra- 
dient corrections for both exchange and correlation). 
The relation between these functionals is illustrated in 
Fig. 1. 

2. As noted above, the 6-31G* basis is used for orbital 
expansion. No additional expansion of the density or 
the XC potential is employed. The results are therefore 
more directly comparable to HF/6-31G* and MP2/6- 
31G* work in the literature. 

3. The self-consistent KS equations are properly solved for 
gradient-corrected functionals, rather than applying a 
single calculation after LSD iterations, as is done in the 
work cited above. 
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Then, the exchange-correlation energy Exe is given by the 

(3) 

0 S-null - s-VWN - s-LYP 

N 0 1 

Correlation 

FIG. 1. Density functional methods used in the present study, classified 
by treatment of exchange and correlation. Moving upward along the 
vertical axis replaces a zeroth-order exchange functional with a gradient- 
corrected one. Moving along the horizontal axis corresponds to increasing 
the sophistication of the correlation treatment, from none, to zeroth or- 
der, to first order. 

A sufficiently large integration grid is used such that 
sensitivity to grid size is minimized. It may be that 
coarser grids are required for large molecules, but in 
this study our emphasis is on testing the functionals 
without the complication of numerical quadrature er- 
ror. 
The set of compounds studied is a subset of the G2 data 
set,38 including all neutral molecules with only first-row 
atoms, plus H,. These compounds have all been studied 
in the past at the HF/6-31G* and MP2/6-31G* levels. 
To further the comparison, we have also employed the 
more elaborate QCISD/6-3 lG* model. Equilibrium ge- 
ometries, dipole moments, harmonic vibrational fre- 
quencies, and total atomization energies are reported for 
the six DFT methods and these three ab initio methods, 
and the results are compared with experiment. 

II. METHOD 

We have modified the GAUSSIAN 92 quantum chemis- 
try software package3’ to incorporate the above DFT 
methods. Our DFT package currently has the following 
capabilities, each available with all six methods: 

1. Calculation of the XC energy from an arbitrary density. 
2. Calculation of self-consistent spin-restricted (RKS) 

and spin-unrestricted (UKS) orbitals and densities 
(analogous to the RHF and UHF procedures, respec- 
tively). 

3. Calculation of analytic first derivatives of the self- 
consistent KS total energy. 

4. Calculation of properties of the one-electron KS density 
such as multipole moments and electrostatic potential. 

To discuss our DFT implementation, it is convenient 
to express the general first-order functiona14’ f as 

f=f(Pa,PPfY~a,l/ap,,l/pp), (1) 

where the y’s are the gradient invariants 

YlYa=VPa * VP,, IJap’VPa * VP@ Ypfi=VPp. VPp * 
(2) 

.+ >-i ,, J;.:. -, : “ . ( ., ; .j ~ ,i.~ 
_’  -;* 

i< . 

In practice, this integral and others which arise are 
generally too complicated to be evaluated analytically, and 
numerical quadrature must be used. In particular, we em- 
ploy an atomic partitioning scheme, proposed by Satoko4* 
and subsequently developed by Becke,42 which rigorously 
separates the molecular integral into atomic contributions 
which may then be individually treated by standard single- 
center techniques. (We have not, however, adopted 
Becke’s suggested “atomic size adjustments” in the Appen- 
dix of Ref. 42.) Thus, in our implementation we have re- 
placed the definition of the XC energy by 

Exc~ C C Wd (Pa,P~,Y~YaatYa~,Ypp;rAi)t 
A i 

(4) 

where the first summation is over the atoms and the second 
is over the numerical quadrature grid points for the current 
atom. The WAi are the quadrature weights, and the grid 
points rAi are given by 

rAi=R,&ri, (5) 

where R, is the position of nucleus A, with the ri defining 
a suitable one-center integration grid, which is independent 
of the nuclear configuration. 

The single-center integrations are further separated 
into radial and angular integrations. The radial part is 
treated by the Euler-Maclaurin scheme suggested by Mur- 
ray, Handy, and Laming,43 which supports an arbitrary 
number of radial integration points. Radial scaling factors, 
or “atomic radii,” are applied to the Euler-Maclaurin for- 
mula as described in Ref. 26. 

The angular part is treated by various formulas from 
the mathematical literature for quadrature on the surface 
of a sphere; most of the ones we use are due to Lebe- 
dev.44Y45 The Lebedev grids, whose base points are invari- 
ant under the octahedral group with inversion, are highly 
efficient in terms of the number of surface harmonics inte- 
grated per degree of freedom in the formula; efficiencies 
near unity are typical, with unit efficiency surpassed in 
certain cases. The largest Lebedev grid in our program has 
302 points and is 29th degree, where nth degree indicates 
that all surface harmonics of degree n or less are exactly 
integrated. As a check on our implementation, we have 
explicitly verified the degrees of the Lebedev grids by nu- 
merically integrating the required surface -harmonics. 
Gauss-Legendre spherical product angular quadrature of 
general degree is also available. We do not recommend this 
for practical computations, though others do.43 Such grids 
are less effective than Lebedev grids of comparable size, 
having efficiency of only 2/3.46 However, Gauss-Legendre 
is useful as a mechanism of attaining arbitrary accuracy in 
the angular quadrature when desired, which is trivial to 
implement compared with the general Lebedev procedure. 
All the angular grids are oriented according to the “stan- 
dard orientation” conventions of the GAUSSIAN program.47 
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In the present work, atomic grids consisting of 50 ra- 
dial points and 194 angular points (Wrd-degree Lebedev 
formula) were used throughout. In practice, not all of the 
9700 points per atom are explicitly considered; dynamic 
cutoff schemes are used which prescreen many grid points 
which would not yield a significant contribution.48 

As mentioned previously, it is convenient to view the 
KS self-consistent procedure as strictly analogous to HF, 
except that the HF exchange potential is replaced by a 
local DFT XC potential. We have recently presented4’ an 
efficient formulation of KS self-consistant-field (SCF) and 
gradient theory within a finite basis set for the general 
first-order functional. The resulting orbital equations have 
the same form as the Roothaan-Hal150’51 (closed-shell) or 
Pople-Nesbet52 (unrestricted open-shell) equations in HF 
theory, with a differently defined Fock matrix 

Fn=H+J+FXC”, (6) 

where H is the one-electron Hamiltonian matrix and J is 
the usual Coulomb matrix. The elements of the alpha XC 
matrix FXCn are given by 

FXCa = w 

where the & are the atomic orbital basis functions. The 
beta Fock matrix is similarly defined. Note that Eq. (7) 
does not require evaluation of the spin density second de- 
rivatives as is necessary in many other formulations, a ma- 
jor computational advantage.48 The fact that these can be 
avoided has been previously noted by Kobayashi et aLS3 

We also stress that our formulation involves no auxiliary 
fitting33 of the Coulomb or XC potentials usually done in 
KS implementations. 

Some relevant points about our KS implementation are 
as follows. The integral in Eq. (7) is implemented as a 
double sum over atoms and grid points as in Eq. (4). The 
first derivatives of the functional, which are the various XC 
potentials, are straightforward to obtain, but can be tedious 
as some functionals have quite complicated forms. There- 
fore, for convenience we list in Appendix A the formulas 
for the functionals and their first derivatives as we have 
implemented them. Some of the functionals we have coded 
are special cases of the first-order functional; S and VWN 
are functionals only of pa and pp (zeroth-order function- 
als) , and B is a functional only of pa, pB, ‘yacr, and yfip LYP 
is of the fully general form. For maximum efficiency, sep- 
arate code treats each special case so that terms unneces- 
sary to the functional at hand are not evaluated. Special- 
case closed-shell code also exists to take advantage of the 
simplification in that case. The same code in GAUSSIAN 92 

controls both HF and KS SCF iterations, so the various 
features already present for aiding HF convergence, such 
as DIIS extrapolation, are equally available for KS as well. 

Once self-consistency is achieved, the KS electronic 
total energy is 
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E= c Pp,Bp,+; c P,,P,&+-a) +Exc . (8) 
I1v pvL0 

Here Ppy is an element of the total density matrix, and a 
conventional notation is used for the two-electron repul- 
sion integrals. Note that this formula is the same as the HF 
energy, except the HF exchange energy has been replaced 

by Ex,. 
Differentiation of E with respect to the displacement of 

nucleus A formally yields4’ 

VAE= c p,,(V,&) +; c p,8d?4(~~ 1 aa> 
P pdcr 

- 2 W,V(~A~,V) -2 1’ c CY j- 1% dhv~p 
P P v a 

(9) 

where the restricted sums over ,LL run only over the basis 
functions centered on A. Wpy is the energy-weighted den- 
sity matrix, as appears in HF gradient theory, and Spy is 
the overlap matrix. XpV is given by 

x,,=~,v(v~,)=+(v~lr)(v~v)T. (10) 

The implementation of the energy gradient with nu- 
merical quadrature is not as straightforward as with pre- 
vious equations, because the quadrature weights depend on 
the nuclear configuration and hence have a nonzero gradi- 
ent with respect to nuclear displacements. Therefore, in 
practice there are two parts to the gradient of Exe as de- 
fined in Eq (4) : 

VA&C= 5 T [W$‘Af(rm) + (VAWgi)f(rd I- 
(-11) 

Although the first term appears to be the numerical inte- 
gral of the XC contribution to the total energy gradient, it 
is stressed that both terms are required for consistency with 
the implementation of Exe Our gradient implementation 
is the only one of which we are aware which properly 
includes both terms. While it is true that the error in ne- 
glecting the weight derivatives can be made insignificant by 
taking a large enough number of grid points (as is the case 
with the grids in the present study), for smaller grids their 
omission is not justified.54 It is ultimately desirable to use a 
grid which is as small as possible but does not sacrifice the 
quality of the results, and this is a topic currently under 
investigation.47 There exist relatively modest grids which 
have practical utility, yet require evaluation of the weight 
derivative term to avoid significant errors in the gradient. 
A derivation of the weight first derivatives is given in Ap- 
pendix B. 
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The first term in Eq. ( 11) merits further elaboration. It 
should be made clear that the positions of the grid points 
are a central feature in the definition of the numerical XC 
energy. Therefore, differentiation of Eq. (4) to produce 
Eq. ( 11) requires explicit consideration of the grid points 
in the process, to be contrasted with first taking the gradi- 
ent of Eq. (3) to yield the analytic XC integrals in Eq. (9), 
followed by the application of numerical quadrature to 
these. As a result, the atomic contribution of A to this term 
is quite different from that of the other atomic grids. The 
atomic grids are defined such that an atom’s grid “moves 
with” a displacement of its nucleus, exactly as do the basis 
functions situated on the atom. As a result, there is a con- 
tribution on A’s grid to the gradient with respect to A from 
all basis functions except those centered on A. The formula 
for the gradient with respect to A on other atomic grids, 
however, carries over straightforwardly from Eq. (9). 
[This is easily seen, e.g., by substituting Eq. (5) into the 
expansion of the density in products of the atom-centered 
basis functions and then differentiating.] For this reason, 
and others particular to the nature of the atomic weighting 
scheme which shall soon become apparent, the gradient of 
an atomic contribution to Exe with respect to its own nu- 
clear center is never explicitly worked out; instead, it is 
more conveniently obtained at the end of the atomic com- 
putation by the translational invariance relationship 

O(N3> step, namely, diagonalization of the Fock matrix, 
but for presently feasible calculations (N<2000) this is 
not dominant. Thus, not only can the XC portion of a KS 
calculation be made to cost less than O(N3>, for well: 
implemented KS the XC cost is insignificant for large sys- 
tems. 

Finally, it should also be noted that, due to the mod- 
ular structure of our program, the addition of new func- 
tionals which are of the form of Eq. ( 1) requires that only 
one new subroutine be written, to evaluate the functional 
and its appropriate derivatives. Once this is done, all fea- 
tures present for previous functionals are immediately 
available with the new functional as well, with the full 
benefit of efficiency measures. 

III. RESULTS AND DISCUSSION 

The full set of results is presented in Tables I-V. Table 
I lists atomic total energies for the DFT and ab initio meth- 
ods, all with the 6-31G* basis. For MP2 and QCISD, it 
should be noted that full correlation is used, i.e., the 
frozen-core approximation is not applied. The best avail- 
able set of atomic energies56 is included for comparison. 

c v,=o. 
A 

Table II presents equilibrium geometries for all of the 
molecules studied, together with a mean error analysis at 
the end. The experimental data are subject to considerable 

(12) uncertainty for many of the molecules because distances 
and angles properly corrected for zero-point and anhar- 
manic effects are often unavailable. The dipole moment 
data are presented in a similar format in Table III. Here we 
should note that the comparisons are all based on the (pos- 
itive) magnitude of the dipole moment and no attempt is 
made to compare dipole directions with experiment. Table 
IV contains the complete list of computed harmonic fre- 
quencies together with corresponding experimental data. 
Again, we note that the experimental numbers are gener- 
ally not harmonic frequencies, since anharmonic correc- 
tions usually have not been applied. Finally, Table V lists 
the atomization eenergies, which we have previously 
summarized,28 and compares with experimental values al- 
ready discussed in the G15’ and G238 manuscripts. We 
now discuss these tables in turn. 

And now, some comments on program efficiency. The 
literature is teeming with assertions to the effect that the 
computational cost of HF is O(fl) whiie the cost of DFT 
methods is O(N3), where N is the number of basis func- 
tions. Such statements are strictly misleading, for a variety 
of reasons. It is true that the cost of a HF calculation is 
proportional to @ for small systems; however, to assign an 
asymptotic scaling behavior of O(ti> assumes a naive-im- 
plementation in which no account is taken of the fact that, 
for large systems, most of the O(ti) two-electron repul- 
sion integrals are negligible due to insufficient basis func- 
tion overlap. Sophisticated cutoff schemes55 exist for esti- 
mating in advance which integrals are insignificant and can 
be avoided; this reduces the cost of the HF integral pro- 
cessing to O(N2), and for practical computations this is the 
rate-determining step. The statement that the cost of a KS 
calculation is O(N3), on the other hand, is deceptive for 
two reasons. Again, it assumes an inefficient implementa- 
tion, in which all of the O(N2) XC matrix elements must 
be represented on a grid of size O(N). In our implemen- 
tation, however, the calculation of these scales only as 
O(N) , with a small quadratic cost which is insignificant for 
practical purposes. Details of this scheme will be presented 
in a future publication.48 Furthermore, it ignores the fact 
that in conventional KS calculations treatment of the Cou- 
lomb interactions (without fitting) requires the same two- 
electron integrals as in HF (though once they have been 
constructed they contribute to fewer Fock matrix ele- 
ments), the cost of which is O(N2> in the best case by 
conventional algorithms. Both HF and KS contain an 
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A. Atomic energies 

The HF, MP2, and QCISD total atomic energies fall 
somewhat short of the most accurate values listed. This is 
primarily due to the limitations of the 6-3 lG* basis, which 
leads to HF energies significantly above the HF limit and 
which also recovers only a limited part of the correlation 
energy. In particular, very little account is taken of corre- 
lation energy involving the 1s core. 

Density functional methods do purport to compute the 
whole correlation energy. It is worth pointing out, how- 
ever, that KS energies are not variational with respect to 
the Schrodinger Hamiltonian, and hence are not guaran- 
teed to lie above the exact values. (There does of course 
exist an analogous variational principle for the true KS 

’ eigenfunctions. ) 
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TABLE I. Absolute total energies of neutral atoms (hartrees). Theoretical values were obtained with the 6-31G* basis. 

Atom HF S-null S-VWN s-LYP B-null B-VWN B-LYP MP2 QCISD Exact’ 

H 0.4982 0.4540 0.4760 0.4540 0.4954 0.5178 

He 2.8552 2.7146 2.8267 2.7582 2.8540 2.9671 

Li 7.4314 7.1896 7.3410 7.2433 7.4264 7.5781 

Be 14.5669 14.2164 14.4420 14.3119 14.5606 14.7869 

B 24.5220 24.0532 24.3441 24.1798 24.5145 24.8061 

C 37.6809 37.0950 37.4537 37.2237 37.6723 38.0318 

N 54.3854 53.6840 54.1125 53.8760 54.3761 54.8053 

0 74.7839 73.9544 74.4884 74.2105 74.7890 75.3238 

F 99.3650 98.4097 99.0490 98.7290 99.3803 100.0220 

Ne 128.4744 127.3950 128.1419 12727777 128.4964 129.2442 

0.4954 

2.8978 

7.4801 
14.6563 
24.6413 

37.8320 i- 
54.5684’ _ 
75.0470 

.99.7021 

128.8796 

0.4982 0.4982 0.5ooo 
2.8664 2.8702 2.9037 
7.4319 7.4319 7.4781 

14.5964 14.6165 14.6674 
24.5625 24.5826 24.6539 
37.7365 31.7552 37.8450 

54.4595 54.4754 54.5893 
74.8820 74.8977 75.067 

99.4890 99.4995 99.734 
128.6262 128.6285 128.939 

‘From Ref. 56. 

The B-LYP energies do approach the estimated precise 
values quite well. Errors, relative to the best values, range 
from 5 mhartree (H) to 57 mhartree (Ne) . However, this 
is partly due to error cancellation. For the Ne atom, the 
HF limit is approximately - 128.5471 hartrees,56 so that 
the 6-31G* value is 73 mhartree too positive; the B-LYP 
correlation energy ( -405 mhartree), on the other hand, is 
15 mhartree too negative. 

The other functionals tested do not give satisfactory 
total energies. S-null fails to reproduce atomic energies of 
sufficient magnitude. B-null, which adds a gradient correc- 
tion to S-null exchange, gives energies which are generally 
within a few mhartree of HF. B-VWN, while giving rea- 
sonable exchange energies, overestimates the correlation 
energy by using the free-electron gas approximation and 
hence gives total energies which are far too negative for 
every atom listed, illustrating the nonvariational character 
mentioned above. These functional deficiencies are well 
known. 

B. Bond lengths 

It has long been recognized that HF theory frequently 
gives bond lengths which are too short, while MP2, the 
simplest perturbation correlation theory, often gives values 
which are too long. Mean deviations for our data set are 
-0.011 and +O.OlO A, respectively. The performance of 
QCISD theory is comparabie to MP2 within this basis. The 
bond lengths by the various DFT methods are mostly too 
long, with some methods always giving long bond lengths. 
The mean deviations vary from +0.012 A for the S-VWN 
(LSD) functional to +0.036 A for B-null (HF exchange 
replaced by the Becke-88 functional). The simplest density 
functional (S-null or Hartree-Fock-Slater theory)0 gives 
long bond lengths with a mean error of +0.032 A. All 
three functionals with gradient-corrected exchange (B- 
null, .B-VWN, and B-LYP) give bond lengths which are 
consistently long, while S-LYP is similar to S-VWN. 

Some of our results parallel others already in the liter- 
ature. Andzelm and Wimmeg4 (AW) have published an 
extensive study of equilibrium geometries with the S-VWN 
functional, using an orbital basis comparable to ours. 
(They also use additional basis sets to represent the density 
and exchange-correlation potentials.) They find, as we do, 
that single bonds between nonhydrogen atoms are too 

short, double bonds are approximately correct, and triple 
bonds are too long. This is true for C-C, C=C, and CrC, 
as also noted by Salahub et al. 58 Our. further results show 
that proceeding to the gradient-corrected B-LYP func- 
tional. (the most complete in our study) leads to carbon- 
carbon lengths which are too long by about 0,Ol A. 

‘In common with AW, we find that bonds to hydrogen 
are usually too long at the S-VWN level by 0.01 to 0.02 A. 
This trend is apparently unaltered with the more elaborate 
gradient-corrected functionals such as B-LYP. 

Carbon-oxygen bonds behave. similarly to carbon- 
carbon. At the S-VWN level, single bonds are short, double 
bonds are good, and carbon monoxide is long, in agree- 
ment with AW. With the B-LYP functional, all become 
too long by 0.01 to 0.02 A. A similar pattern is shown by 
carbon-nitrogen bonds. Thus it appears that the B-LYP 
functional is fairly systematic in predicting bond lengths 
which are too long by a mean of 0.018 A at the 6-31G* 
basis level. However, we should note that a very recent 
study on a smaller molecular set by Handy and co- 
workers2’ indicates that this overestimation is reduced if a 
larger orbital basis is employed. 

C. Bond angles 

Some general trends can also be discerned for bond 
angles, particularly the HOH angle in water, which is sen- 
sitive to the level of theory used. We find that all of the 
density functionals give values in the range 102X-103.6, 
somewhat below the HF value of 105.5” (AW report an 
S-VWN value of ld5.2’, which differs significantly from 
our result, even though a comparable orbital basis was 
used; the reason for this discrepancy is not clear). Similar 
trends are found with singlet methylene, but other bond 
angles are fairly close to the HF values. This also applies to 
the dihedral twist angles in hydrazine and hydrogen per- 
oxide. 

D. Dipole moments 

The dipole moments calculated with the various den- 
sity functionals are often significantly in error, by amounts 
comparable to the errors for the conventional procedures 
HF, MP2, and QCISD. These discrepancies are most prob- 
ably due to the deficiencies in the 6-31G* orbital basis set. 
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TABLE II. Theoretical and experimental geometries. Bond distances in angstroms, bond and dihedral angles in degrees. Theoretical values were 
obtained with the 6-3 lG* basis. 

Molecule S-null S-VWN s-LYP B-null B-VWN B-LYP HF MP2 QCISD Expt.” 

H2 

r(HH) 
LiH 

r( LiH) 
BeH 

r(BeH) 
CH 

r(CH) 

CH2C3J’+) 

r(CH) 
a(HCH) 

-2(‘A,) 

r(CH) 
a(HCH) 

CH3 

r(CW 
CH4 

r(CH) 
NH 

r(NH) 

NH, 
r(NH) 
a(HNH) 

NH, 
r(NH) 
a(HNH) 

OH 

r(OH) 

OH2 

r(0I-U 
n(HOH) 

FH 

r(FH) 
Li, 
r( LiLi) 

LiF 
r( LiF) 

HCCH 

r(CC) 
r(CW 

H,CCH, 

r(CC) 

r(CH) 
a(HCH) 

H,CCH, 

r(CC) 
r(CH) 
a(HCH) 

CN 

r(CN) 
HCN 

r(CN) 
r(CH) 

co 

r(CO) 
HCO 

r(CO) 
r(CH) 
a(HC0) 

H2C0 

r(CO) 
r(CH) 
u(HCH) 

0.781 0.765 0.774 0.755 0.740 0.748 0.730 0.738 0.746 0.741 

1.683 1.640 1.646 1.663 1.624 1.628 1.636 1.640 1.653 1.595 

1.392 1.370 1.377 1.371 1.349 1.355 1.348 1.348 1.357 1.343 

1.175 1.152 1.159 1.162 1.140 1.146 1.108 1.120 1.131 1.120 

1.110 1.093 1.097 1.101 1.085 1.089 1.071 1.077 1.082 1.078 
132.9 134.8 135.3 131.7 133.1 133.5 130.7 131.6 132.2 136.0 

1.158 1.135 1.141 1.148 1.127 1.132 1.097 1.109 1.117 1.111 

98.3 99.1 98.7 98.7 99.5 99.1 103.0 102.1 101.5 102.4 

1.109 1.093 1.097 1.102 1.086 1.090 1.073 1.078 1.083 1.079 

1.118 1.101 1.105 1.114 1.097 1.100 1.084 1.090 1.094 1.086 

1.083 1.063 1.068 1.074 1.055 1.060 1.024 1.039 1.048 1.045 

1.064 1.045 1.050 1.060 1.042 1.046 1.013 1.028 1.034 1.024 

100.9 101.7 101.4 100.6 101.4 101.1 104.4 103.4 102.9 103.4 

1.044 1.027 1.031 1.043 1.026 1.030 1.002 1.017 1.020 1.012 

104.9 106.0 105.8 104.0 105.0 104.8 107.2 106.4 106.0 106.0 

1.008 0.993 0.997 1.006 0.991 0.995 0.959 0.979 0.984 0.971 

0.991 0.976 0.980 0.991 0.976 0.980 0.947 0.969 0.970 0.959 
102.9 103.6 103.4 102.2 102.9 102.7 105.5 104.0 104.0 103.9 

0.953 0.940 0.944 0.954 0.941 0.945 0.911 0.934 0.934 0.917 

2.849 2.750 2.750 2.826 2.728 2.728 2.807 2.773 2.725 2.67 

1.559 1.544 1.534 1.588 1.571 1.561 1.555 1.567 1.567 1.564 

1.225 1.212 1.214 1.226 1.213 1.215 1.185 1.216 1.211 1.203 
1.093 1.078 1.082 1.083 1.069 1.073 1.057 1.066 1.069 1.061 

1.346 1.331 1.331 1.356 1.341 1.341 1.317 1.335 1.337 1.339 

1.115 1.098 1.102 1.107 1.091 1.095 1.076 1.085 1.088 
116.3 

1.085 
116.4 116.5 116.0 116.1 116.2 116.4 116.6 116.3 117.8 

1.534 1.513 1.509 1.569 1.546 1.541 1.527 1.524 1.528 1.526 
1.123 1.105 1.109 1.117 1.100 1.104 1.086 1.093 1.097 1.088 
107.2 107.2 107.2 107.6 107.6 107.5 107.7 107.7 107.7 107.4 

1.191 1.179 1.181 1.198 1.186 1.187 1.162 1.135 1.180 1.172b 

1.175 1.163 1.165 1.180 1.168 1.169 1.133 1.176 1.165 1.153 
1.098 1.083 1.087 1.088 1.073 1.077 1.059 1.069 1.072 1.065 

1.153 1.142 1.143 1.161 1.150 1.150 1.114 1.150 1.145 1.128 

1.196 1.185 1.185 1.207 1.196 1.196 1.159 1.191 1.191 1.117c 
1.167 1.143 1.150 1.157 1.134 1.141 1.106 1.123 1.125 1.110 

123.3 123.1 122.9 123.4 123.1 122.9 126.3 123.4 124.3 127.4 

1.218 1.206 1.207 1.230 1.218 1.218 1.184 1.220 1.216 1.208 
1.145 1.125 1.131 1.135 1.116 1.121 1.092 1.104 1.107 1.116 
114.9 115.1 115.2 114.7 114.9 114.9 115.7 115.6 115.7 116.5 

HsCOH (H, in-plane, Hb out-of-plane) 

r(CO) 1.419 1.400 

r(CH,) 1.121 1.104 
1.397 1.462 1.440 1.435 1.400 1.423 1.423 1.421 
1.109 1.113 1.097 1.101 1.081 1.090 1.093 1.093 
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TABLE II. (Continued. 1 

Molecule S-null S-VWN s-LYP B-null B-VWN B-LYP HF MP2 QCISD Expt.’ 

r(CHb) 
r(OW 
4OWJ 
u(COH) 

u(HbCHb) 

N2 

f-W9 

H,NNfb 

r(NN) 

r(mb) 

r(NH,) 

dNNH,) 

dNNH,) 

a(H,NHd 

d(H,NNH,) 

NO 

rW0) 

02 

400) 

HOOH 

r(OO) 

r(0I-U 
u(OOH) 

d(HOOH) 

F2 

r(FF) 

co2 

r(CO) 

Bond distances: 

Mean deviation 

Mean absolute 
deviation 

Bond angles: 

Mean deviation 
Mean absolute 

deviation 

1.132 1.114 1.119 1.123 

0.992 0.977 0.98 1 0.99 1 
106.8 107.0 107.0 106.1 
107.2 107.7 107.6 106.3 
107.7 107.8 107.6 108.4 

1.122 1.111 1.113 1.128 

1.434 1.406 1.401 1.507 
1.048 1.031 1.035 1.047 
1.042 1.026 1.029 1.041 
112.8 113.6 113.9 109.8 
107.0 108.3 108.5 103.9 
106.4 107.6 107.7 104.5 
89.6 90.2 90.0 90.7 

1.174 1.161 1.162 1.189 

1.230 1.215 1.215 1.257 

1.461 1.436. 1.430 1.532 
0.998 0.983 0.988 0.996 
99.4 99.9 100.0 97.9 
117.0 117.1 116.1 122.0 

1.407 1.389 1.383 1.462 

1.185 

0.033 

0.035 

-1.37 

2.39 

1.173 

0.014 

0.021 

-0.74 

1.93 

1.173 1.195 

0.016 0.037 

0.025 0.037 

-0.76 

1.99 
-2.19 
2.68 

1.105 

0.976 

106.3 

106.9 
108.5 

1.117 

1.470 
1.029 
1.024 
110.7 
105.3 
105.7 

90.9 

_ 

1.502 
0.982 

98.3 
121.8 

1.110 
0.980 
106.4 

106.8 
108.3 

1.118 1.078 

1.463 1.413 

1.033 1.003 
1.028 0.999 
111.1 112.2 
105.5 107.9 
105.7 108.1 
90.4 90.4 

1.176 1.176 

1.240 

l-i 

1.240 

1.494 
0.986 

98.5 
120.5 

1.442 1.434 

1.182 1.183 

0.018 

0.018 

0.020 

0.020 

-1.59 -1.61 

2.24 2.33 

1.087 1.097 1.100 1.093 
0.946 0.970 0.970 0.963 
107.2 106.3 106.4 107.0 
109.4 107.4 107.6 108.0 
108.7 108.8 108.8 108.5 

1.130 1.114 1.098 

1.438 1.443 1.447 
1.020 1.022 1:OOS 
1.016 1.018 1.008 
111.5 111.1 109.2 
106.4 106.1 109.2 
107.0 106.6 113.3 
90.6 90.9 88.F 

1.127 

1.168 

.; 

1.143 

1.246 

1.174 1.151b 

1.221 1.207 

1.397 
0.949 

102.1 
116.0 

1.345 

1.143 

1.468 1.464 1.475 
0.976 0.975 0.950 

98.7 99.4 94.8 
121.2 119.3 120.0 

1.421 1.425 1.417 

1.179 1.172 1.162* 

-0.010 
0.020 

0.11 
1.99 

0.010 
0.014 

0.012 

0.013 

-0.87 -0.89 
1.78 1.79 

aFrom Ref. 63 unless otherwise noted. 
bFrom Ref. 64. 
‘From Ref. 65. 
*From Ref. 35. 

For the lone-pair molecules NHs, H,O, and HF, the- 
oretical dipole moments are too long by almost all meth- 
ods. The theoretical values for ammonia, for example, are 
all in the narrow range 1,885-1.980 D, far above the ex- 
perimental value of 1.47 D. On the other hand, for the 
more polar ionic species such as LiH and LiF, the theoret- 
ical values are all too small, both ab initio and DFT. This 
can probably be attributed to the failure of the 6-31G* 
basis to provide a satisfactory description of the incipient 
anions H- and F-. We note that Krijn and Fei15’ have 
obtained a good S-VWN dipole moment for water using a 
large basis. 

The density functional theories have some success in 
computing the sign of dipole moments with values close to 
zero, as already noted in the case of CO.5g HF theory gives 
incorrect directions for both CO and NO. The proper di- 
pole direction is predicted by all of the DFT calculations, 
as it is by MP2 for both of these and by QCISD for NO. _ 

E. Vibrqtional frequencies 

As noted earlier, the computed frequencies are har- 

monic and should properly be compared with harmonic 

experimental frequencies, deduced, where possible, from 
appropriate fundamentals and anharmonic corrections. 
Such data, where available, are displayed in the final col- 
umn of Table IV. The observed fundamentals (usually 
lower frequencies) are listed for all of the molecules con- 
sidered. 

All of the density functionals are remarkably success- 
ful in reproducing the known fundamental frequencies. 
The HF results are well known to be systematically large, 
and the same is clearly true for MP2 and QCISD. How- 
ever, the very precise agreement with observed fundamen- 
tals is somewhat fortuitous, since comparison with known 
harmonic frequencies shows that the DFT values are gen- 
erally too low. QCISD gives results closest to the experi- 
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TABLE III. Theoretical and experimental dipole moments (debye). Theoretical values were obtained with 
the 6-31G* basis. 

Molecule S-null S-VWN S-LYP B-null B-VWN B-LYP HF MP2 QCISD Expt.a 

LiH 5.357 5.514 5.346 5.521 5.662 5.501 5.981 5.776 5.563 5.88 
BeH 0.222 0.216 0.194 0.298 0.293 0.273 0.337 0.218 0.167 

CH 1.285 1.368 1.349 1.234 1.314 1.296 1.582 1.507 1.371 1.46b 

CHd’A,) 1.814 1.903 1.895 1.702 1.789 1.783 2.016 1.965 1.802 

CH,C3B,) 0.610 0.689 0.694 0.547 0.631 0.638 0.582 0.636 0.635 
NH 1.522 1.599 1.580 1.458 1.529 1.511 1.750 1.709 1.658 1.389’ 

NH2 1.999 2.067 2.057 1.875 1.945 1.937 2.135 2.120 2.080 

NH3 1.979 1.969 1.980 1.885 1.893 1.902 ‘1.920 1.965 1.959 1.47 
OH 1.745 1.793 1.784 1.652 1.701 1.693 1.884 1.862 1.833 1.66 
0% 2.109 2.146 2.141 2.rJlO 2.042 -2.037 2.199 2.200 2.179 1.85 

FH 1.860 1.894 1.886 1.776 1.812 1.805 1.972 1.948 1.934 1.82 

LiF 5.216 5.386 5.239 5.330 5.510 5.359 6.173 5.850 5.864 6.33 

CN 1.168 1.048 1.025 1.149 1.031 1.009 2.182 2.113 1.378 1.15b 
HCN 2.827 2.873 2.860 2.762 2.808 2.796 3.209 2.949 2.976 2.98 

co* 0.214 0.189 0.209 0.148 0.122 0.145 -0.264 -0.192 -0.011 0.112 

HCO 1.349 1.436 1.401 1.355 1.438 1.401 2.083 1.584 1.665 

H,CO 1.932 2.039 1.994 1.964 2.069 2.022 2.666 2.275 2.333 2.33 
H,COH 1.592 1.643 1.619 1.601 1.651 1.622 1.867 1.834 1.830 1.70 

H,NNH, 2.196 2.148 2.129 2.214 2.206 2.200 2.243 2.312 2.302 1.75 

NO* 0.195 0.201 0.217 0.121 0.130 0.147 -0.210 0.078 0.057 0.153 
HOOH 1.826 1.858 1.878 1.608 1.650 1.680 1.951 1.796 1.825 2.2 

Mean deviation -0.076 -0.035 -0.062 -0.113 -0.069 -0.094 0.239 0.133 0.052 

Mean absolute 0.280 0.252 0.278 0.255 0.227 0.251 0.289 0.277 0.233 
deviation 

“From Ref. 66 unless otherwise noted. 
bFrom Ref. 67. 
‘From Ref. 68. 
*Negative value means the dipole vector points away from the 0 atom. 

TABLE IV. Theoretical and experimental vibrational frequencies (cm-‘). Theoretical values were obtained 

with the 6-31G* basis. 

Expt. 

Molecule S-null S-VWN S-LYP B-null B-VWN B-LYP HF MP2 QCISD Ohs.” Harm.b 

H2 (Dash) 

4 4035 

LiH CC,,) 
z 1270 

BeH CC,J 
): 1919 

CH CC,,) 
z 2534 

CH, (‘4) (‘%a) 

AI 2961 
1015 

B2 3173 

CH2 (‘A,) (G,) 

Al 2614 

1363 

B2 2694 

CH, (4/h 

Ai 2950 

A; 396 
E’ 3123 

1320 

CH, (Td) 

AI 2879 

E 1487 
7-2 3000 

1260 

NH (C,,,) 
z 2941 

4461 4373 4646 4534 4367 4160 4401 

1385 1373 1416 1392 1331 1360 1406 

2049 2023 2151 2135 2059 1986 2059 

2718 ,2684 3058 2944 2818 2733 2862 

3102 3073 3325 3250 3186 

1093 1069 1239 1192 1149 
3327 3301 3525 3471 3398 

963’ 

3190 

2784 2754 3129 3001 2903 2806’ 

1457 1437 1564 1499 1470 1353 
2847 2819 3192 3085 2980 2865 

3092 3068 3285 3220 3159 3o05c 

449 456 308 406 434 606 
3260 3237 3461 3409 3336 3161 
1416 1395 1540 1481 1454 1396 

2999 2980 3197 3li2 3066 
1576 1557 1703 1626 1603 
3098 3083 3302 3250 3188 
1362 1339 1488 1414 1400 

2917 3137 
1534 1567 
3019 3158 
1306 .1357 

3135 3099 3528 3366 3225.. . 3300 

4207 4119 4286 

1338 1304 

1958 1981 

2647 2569 

3048 2989 
985 1089 
3284 3192 

2726 2639 

1374 1425 

2814 ’ 2695 

3044 2971 

492 346 
3227 3129 
1337 1378 

2969 2887 
1508 1535 
3104 2974 
1272 1327 

3080 2966 

1353 

1984 

2682 

3078 
1010 
3311 

2757 

1392 
2844 

3069 

488 
3252 
1356 

2988 

1526 
3121 
1293 

3116 
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TABLE IV. (Continued.) 

Expt. 

Molecule S-null S-VWN S-LYP B-null B-VWN B-LYP HF MP2 QCISD Ohs.’ Harm.b 

NH, CC,,) 
Al 3058 

1501 

B2 3172 

NH, CC,,) 
Al 3218 

1060 
E 3359 

1622 

OH CC,,) 
P 3402 

OH, (C,,) 
Al 3504 

1623 
B2 3632 

FH CC,,) 
z 3772 

Liz (Dd,) 
=g 301 

LiF ( C, J 
B 981 

HCCH (DA 
=, 3338 

1985 
P” 3236 
% 420 
l-L, 711 

3216 
1530 

3337 

3372 
1045 
3520 
1654 

3556 

3657 

1646 
3789 

3912 

331 

1014 

3452 

2041 
3349 

475 
730 

H,CCH, ( 4,) 

4 2971 

1634 

1311 

4 1007 

B 3g 3026 
1162 

B3u 902 
B 2g 877 
B2u 3052 

782 
4, 2956 

1383 

H,CCH, CD,,) 

A k? 2863 
1351 
997 

A lu 312 

A 2” 2868 
1326 

E&T 2922 
1424 
1149 

Eu 2947 

1428 
780 

CN CC,,) 
z 2079 

HCN ( C, .) 
H 3265 

2097 
II 711 

co CC,“) 
P 2105 

HCO CC,) 
A’ 2386 

1872 
1059 

3089 
1685 

1345 
1036 
3151 
1187 

926 
910 

3175 

800 
3073 
1417 

2978 

1390 
1038 
317 

2982 
1360 
3045 
1463 
1178 
3069 
1466 

800 

2143 

3381 
2163 
732 

2169 

2570 
1928 
1087 

3183 3039 

1513 1557 
3303 3135 

3342 3174 
1036 1151 

3490 3294 
1636 1674 

3522 ,59 

3625 3439 

1631 1672 

3755 3558 

3877 3696 

325 305 

1034 933 

34.25 3370 
2035 1967 
3320 3277 

455 376 
723 729 

3065 2985 
1682 1621 

1330 1334 
1028 1018 

3128 3028 
1173 1205 

916 925 
900 880 

3152 3057 

790 806 
3050 2971 

1397 1443 

2956 2871 

1374 1394 
1047 921 
321 298 

2962 2871 
1341 1381 

3025 2906 
1443 1475 
1163 1186 
3049 2933 
1447 1482 

788 803 

2143 2009 

3352 3296 

2158 2057 

727 709 

2169 2040 

2519 2390 
1932 1789 
1073 1082 

3199 3169 3607 3423 3332 3219’ 

1589 1570 1711 1632 1625 1497 

3302 3272 3708 3545 3441 3301 

, 3332 3305 3689m 3504 3457 3337 3506 

1140 1128 1209 1161 1178 950 1022 

3459 3433 3822 3660 3596 3444 3577 

1710- 1690 1849 lj56 1751 1627 1691 

3516 3485 3997 3740 3652 3570 

3597 3568 4070 3176 3751 3657 3832 

1698 1682 1827 1735 1745 1595 1648 

3721 3690 4189 3918 3878 3756 3943 

3841 3810 4358 4041 4020 3962 4139 

338 333 340 346 

966 984 

340 339, 

1031 1002 1002 89Sb 

351 

914 

3486 3460 3719 3570 3541 3374 3497 

2025 2019 2247 2005 2056 1974 2011 
3392 3364 3607 3482 3444 3289 3415’ 

439 420 794 394 435 612 624 
750 743 883 752 754 730 747 

3104 3082 3344 3231 3189 3026 3153 
1672 1664 1856 1721 1719 1623 1655 

1371 1360 1497 1415 1403 1342 1370 

1047 1040 1155 1085 1059 1023 1044 

3155 3134 3395 3300 3247 3103 3232 
1232 1217 1352 1266 1260 1236 1245 

950 940 1095 990 979 949 969 
915 907 1099 942 939 943 959 
3182 3160 3421 3323 3270 3 106 3234 

825 814 897 851 847 826 843 

3091 3069 33il 3214 31_70 2989 3147 

1479 ‘1458 1610 1521 1511 1444 1473 

2987 2967 3206 3113 3068 2954 3043 
1433 1414 1580 1493 1484 1388 1449 

964 975 1061 1051 1040 995 1016 

304 307 326 332 -323 289 303 

2988 2969 3200 3114 3066 2986 3061 

1419 1398 1548 ~1466 1457 1379 1438 

3032 3014 3249 3189 3129 2969 3175 

1516 1495 1644 1569 1552 1468 1552 
1217 1203 1338 1271 1261 1190 1246 
3057 3039 3274 3209 3150 2985 3140 

1522 1502 1650 1573 1557 1469 1526 

825 813 889 850 844 822 822 

2074 2075 1982 2869 2181 2042 2069 

3415 3387 3680 3514 3489 3311 3442 
2123 2119 2438 2046 2172 2097 2129 

732 727 889 730 738 712 727 

2105 2105 2439 2125 2176 2143 2170 

2580 2528 2918 2752 2715 2434’ 
1846 1852 2144 2021 1896 1868 
1112 1098 1251 1136 1160 1081 
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TABLE IV. (Continued.) 

Expt. 

Molecule S-null S-VWN S-LYP B-null B-VWN B-LYP HF MP2 QCISD Obs.” Harm.b 

&CO (C,,) 
Al 2833 

1773 

1537 

2867 

1254. 

1162 

3160 3014 2672 2801 2773 2702 

1786 1838 1841 1719 

1464 1502 1486 1495 

2704 2842 2816 2727 

1199 1232 1219 1220 

1112 1143 1132 1128 

2806 

1774 

1522 

2841 

1242 

1151 

2976 2783 2944 

1823 1746 1764 

1575 1500 1563 

3039 2843 3009 

1293 1249 1287 

1202 1167 1191 

2028 1792 

1680 1585 

3232 3085 

1385 1297 

1336 1213 

B2 

4 
WOH CC,) 
A’ 3676 3642 3459 3618 3589 4118 3796 3777 3681 

3025 2949 3072 3046. 3305 3223 3166 3OOq 

2874 2811 2931 2905 3185 3077 3034 2844 

1459 1479 1521 1502 1663 1579 1562 1477 

1428 1448 1489 1470 1638 1540 1528 1455 

1331 1352 1378 1366 1508 1418 1423 1345 

1137 1040 1069 1061 1189 1114 1110 1060 

1034 945 998 1012 1164 1085 1085 1033 

2917 2838 2966 2940; 3231 3144 3088 2960~ 

1432 1462 1504 1483 1’652 1566 1548 1477 

1131 1120 1157 1145 1290 1205 1198 ,1165 

359 342 343 347 348 351 345 250 

3522 

2929 

2780 

1437 

1408 

1320 

1075 

1017 

2815 

1411 
1110 

356 

2899 

1476 

1446 

1344 

1124 

1045 

2943 

1452 

1143 
356 

A” 

Nz CD,/,) 

I$kJNH2 (C,) 
A 

2332 2401 2398 2269 2340 2337 2758 2180 2400 2331 2360 

3305 3459 3429 3258 3419 3392 3819 3617 3565 3325b 

3180 3334 3303 3148 3305 3277 3718 3494 3456 3280 

1621 1663 1645 1645 1694 1675 1871 1751 1749 1587 

1283 1311 1301 1303 1332 1320 1468 1383 1383 12i5 

1117 1167 1174 1083 1105 1103 1226 1170 1161 1098 

756 760 745 730 779 780 979 893 903 780 

443 489 498 328 377 388 474 430 413 377 

3314 3465 3435 3267 3426 3400 3826 3621 3569 3350 

3164 3327 3297 3119 3284 3256 3706 3488 3443 3314 

1605 1649 1631 1629 1678 1660 1854 1738 1735 1628 

1243 1275 1261 1263 1296 1283 1436 1345 1347 1275 

963 942 924 1060 1056 1040 1112 1081 1090 966 

B 

NWC,,) 
L 

02 (DA 
% 

HOOH (C,) 
A 

1891 1960 1963 1784 1855 1859 2221 3895 1949 1876 1904 

1581 1642 1652 1444 1505 1518 1998 1413 1639 1556 1580 

3453 3602 3563 3425 3577 3543 4091 3738 3726 3618' 

1383 1428 1416 1363 1412 1400 1635 1465 1477 1394 

927 975 991 810 853 872 1151 929 931 864 

354 371 379 289 307 318 399 338 350' 371 

3457 3605 3567 3429 3579 3546 4093 3741 3729 3619 

1253 1295 1284 1220 1266 1259 1493 1324 1338:m 1274 

B 

F2 (Deed 

4 
co2 (Dccch) 

=* 
I;,, 

1052 1087 1110 928 962 987 1245 1008 969 923 891 

1312 1354 1355 1258 1303 1304 1518 1336 1368 1333 

2371 2450 2452 2260 2342 2345 2585 2455 2425. 2349 

603 623 619 585 607 602 746 642 658 667 

Observed: 

-~ Mean deviation -46 28 12 -49 28 13 243 138 ’ 95 
_.. 

Mean absolute 63 46 47 69 51 45 250 153 103 
‘, 

deviation 

Mean deviation - 126 -51 -68 -123 -47 -63 165 69 12 

Mean absolute 135 75 93 130 61 73 168 99 42 

deviation 

‘Diatomic values from Ref. 64 and polyatomic values from Ref. 69 unless othetiise noted. 
bFrom Ref. 35. 
‘From Ref. 70. 
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TABLE V. Theoretical and experimental atomization energies (kcal/mol). Theoretical values were obtained with the 6-31G* basis. 

Molecule S-null S-VWN s-LYP B-null B-VWN B-LYP HF MP2 QCISD Expt.” 

HZ 76.8 107.5 loo.2 

LiH 31.4 57.5 52.5 

BeH 46.4 57.7 54.4 

CH 61.0 86.7 85.4 

CJW3B,) 163.8 201.0 198.1 

CH2(‘A,) 135.6 185.1 181.7 

CH3 255.2 320.5 316.7 

CH4 347.5 436.8 432.1 

NH 58.8 87.7 86.2 

NH, 133.2 189.1 186.6 

NH, 224.9 306.0 302.6 

OH 85.5 112.9 112.8 

OH2 188.1 240.8 239.9 

FH 119.3 146.2 145.6 

Liz 5.6 22.5 21.8 

LiF 125.9 151.3 152.6 

HCCH 363.9 438.6 444.0 
H,CCHz 489.8 600.9 603.0 

H3CCH3 604.7 752.1 751.2 
CN 172.9 213.5 221.5 

HCN 281.6 346.5 352.6 

co 258.2 293.4 301.9 

HCO 273.1 323.4 331.4 

H,CO 345.1 417.6 423.3 

H,COH 441.4 551.2 554.2’ 

NZ 202.6 257.3 264.3 

H,NNH, 340.8 470.6 472.7 

NO 153.5 193.8 202.8 

02 149.0 174.6 185.8 

HOOH 240.6 310.4 317.3 

F2 68.8 83.6 91.8 

co2 406.3 464.3 481.0 

Mean deviation 
Mean absolute 

deviation 

-19.1 35.6 37.7 
25.0 35.7 38.3 

79.5 110.8 
33.6 60.3 
46.1 57.6 
56.6 82.4 

144.7 181.8 
121.0 170.8 
227.2 .:‘~ 1 292.5 _ 

306.6 -396.0 .~ 
54.4 83.3 

117.6 173.4 
192.7 273.5 _- 

72.4 99.7 
156.6 209.1 
99.5 125.3 
3.4 20.5 

110.5 134.9 

305.5 380.1 
417.5 528.5 __ 
5 17.7 664.9 

138.8 179.1 
236.5 301.2 ~_ 
215.9 250.9 

222.4 272.4 
286.0 358.4 

365.7 m-s 475.0 
169.9 224.3 
272.4 400.9 

114.9 154.8 
102.7 127.6 

179.6 248.2 
35.3 47.4 

321.8 379.2 

-54.2 0.1 
54.2 4.4 

103.2 75.9 86.6 91.2 103.3 

i 54.9 30.4 39.8 44.1 56.0 
53.9 48.8 45.3 38.3 46.9 
79,9 50.0 63.6 66.6 79.9 
177.7 142.9 161.7 160.7 179.6 
166.1 112.3 141.2 145.0 170.6 

287.3 223.3 259.4 259.4 289.2 

389.9 3bo.4 354.2 353.9 392.5 
81.8 43.0 60.6 62.5 79.0 

170.8 98.8 137.8 139.0 170.0 
270.1 170.2 232.4 230.7 276.7 
98.6 57.7 84.7 83.9 101.3 
207.3 131.7 188.8 183.7 219.3 
124.4 82.1 118.2 114.0 135.2 
19.8 2.2 14.1 20.9 24.0 
135.6 85.2 129.5 123.5 137.6 

383.4 271.9 365.6 351.2 388.9 
528.1 394.2 489.4 481.7 531.9 

660.9 506.0 608.5 603.1 666.3 

186.0 84.4 150.6 155.4 176.6 
306.2 184.9 287.3 269.7 301.8 
257.4 168.3 254.3 237.4 256.2 

27813 170.6 258.0 243.6 270.3 
361.8 237.8 335.5 321.9 357.2 

475.3 331.5 434.8 425.3 480.8 

231.3 -105.1 212.1 192.3 225.1 

402.4 222.0 339.9 332.5 405.4 

162.8 46.4 134.8 124.8 150.1 

136.8 28.9 117.6 99.0 118.0 

252.8 109.4 219.6 206.8 252.3 

54.4 -34.3 36.8 27.9 36.9 
392.9 234.7 381.0 347.8 381.9 

1.0 -85.8 -22.4 -28.8 
5.6 85.9 22.4 28.8 

aFrom Ref. 38. 

mental harmonic frequencies. The DFT results are still 
quite good, with S-VWN, B-VWN, and B-LYP giving 
mean absolute errors less than MP2. The mean absolute 
error of S-LYP is essentially the same as that of MP2, 
while those of S-null and B-null are between HF and MP2. 

Certain particular failures should be noted. The fre- 
quency of the out-of-plane symmetric vibration of CH3 is 
found to be too low for all the DFT methods. The same is 
true for the three ab initio methods as well. For the um- 
brella motion of NH,, too high a value is found by all 
theoretical methods. For the I$ vibration of C,H,, all of 
the theoretical values except HF are too low. 

Finally, we note that some of our results (for Nf, I?$,, 
and CO) have been obtained independently by Murray 
et aLz9 They have also used a larger basis for these mole- 
cules but found only small changes in the calculated fre- 
quencies. 

F. Atomization energies 

The atomization energies listed in Table V show a 
large variation with the theoretical method. The ab initio 

methods HF, MP2, and QCISD all give binding energies 

which are too low, primarily because of inadequate treat- 

ment of electron correlation. The functionals S-null and 

B-null also give binding energies which are generally too 
low. B-null, with a mean absolute error of 54.2 kcal/mol, is 
the worst performer among the DFT methods, better only 
than HF. The S-VWN and S-LYP functionals give binding 

energies which are almost always too large. The two func- 
tionals B-VWN and B-LYP, on the other hand, perform 
very well and give binding energies with a mean error (rel- 
ative to experiment) close to zero. 

The B-VWN functional is that used by Becke25 in his 
important recent paper on density functional thermochem- 
istry. His numerical program (no orbital basis) actually 

uses the S-VWN density for a single calculation at the 
B-VWN level. This hybrid method is denoted B-VWN/S- 

VWN. He gave results for all of these compounds and 
others. He achieved an overall mean absolute error of 3.7 

kcal/mol with a general tendency for the magnitudes to be 
too large. In general, our self-consistent B-VWN results 
show somewhat less binding than this, probably because of 
the limitations of the 6-31G* orbital basis. 

The B-LYP binding energies listed in Table V are gen- 
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where the constant a is taken as a parameter (not to be 
confused with a spin). Its derivatives are trivial, but for 
completeness we include them: 

erally satisfactory, particularly when it is noted that they 
are associated with excellent total energies (Table I). The 
mean error is 1.0 kcal/mol and the mean absolute error is 
5.6 kcal/mol. The molecules which are underbound at this 
theoretical level are the simple hydrides with lone-pair 
electrons (Hz0 and NH3, for example). Molecules with 
multiple bonds, together with H20, and Fz, on the other 
hand, tend to be overbound. Taken together, these two 
tendencies lead to a low mean error. It should be noted, 
however, that this is partly due to the fairly small basis set 
used. In other studies, we have examined the same set of 
molecules with a large basis [6-3 11 f G (3df ,2p)] and have 
found, not surprisingly, that almost all theoretical bindings 
become larger whether the DFT energies are calculated 
post-HF3’ or KS energies are used.60 The mean error in the 
latter case becomes 4.1 kcal/mol and the mean absolute 
error 5.2 kcal/mol. Thus, the overall conclusion is that 
B-LYP theory leads to some overbinding with a large basis, 
but the effect is ameliorated in this study by the use of 
6-3 lG*. 

(-1 

The Becke gradient-corrected exchange functional” 
has the form 

B=p:‘3dx,) +#g(xp,, (A3) 

where 

bx2 

-1+6bxsinh-lx’ 
i (A4) 

with 

In summary, we have presented the results of a sys- 
tematic study of properties of small neutral molecules by a 
variety of DFT and ab initio methods. Since fully self- 
consistent KS densities were obtained for all the DFT 
methods, local and gradient-corrected, without auxiliary 
fitting, direct comparison of the DFT and ab initio results 
is facilitated. Within the 6-3 lG* basis, the DFT geometries 
generally compare slightly less favorably with experiment 
than do the ab initio values. The theoretical dipole mo- 
ments are in error by roughly comparable amounts by all 
nine methods, and are not satisfactory. DFT harmonic vi- 
brational frequencies agree quite well with experimental 
fundamentals, and also with experimental harmonic fre- 
quencies for the systems where they are known. For atom- 
ization energies, the B-VWN and B-LYP methods gave 
excellent agreement with experiment and were in fact the 
only acceptable theoretical methods. For the various prop- 
erties studied here, the B-LYP method is the DFT method 
with the best overall performance. 

Yaa rm 
x,=q/j, Xp’-473, (A5) 

PC7 PP 

and b being an empirical parameter. The relevant deriva- 
tives are 

E-t p~~3k(x,)--x&t~cx,)], ah-3 (A61 

g’(x) = 
6b2x2[x/(x2+1)1’2-sinh-1 x] -2bx 

(1+6bxsinh-1x)2 ;L (A81 

and similarly for the fi derivatives. 
The version of the Vosko-Wilk-Nusair correlation 

functional” we have implemented is 

VWN=pdx,C), (A9) 

where 

l/6 

P=Pa+m x= 
) f=Pa--PR 

P . 
(A101 

The correlation potential is 

l c(X,O =&) +&x)g(g) 
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APPENDIX A: FIRST DERIVATIVES OF THE 
FUNCTIONALS 

The simplest exchange functional is the Slater (Xa) 
functional:’ 

I 
x2 2b Q bxo 

E,(x) =A In x(x)+jy tan-’ 2x+b--I In 
(x-x,>2 

X(x) 

S=+ ; 

( 1 

l/3 

,(P:“+pyA 

X&,+6) Q 
+ 

Q 
tan-’ 2x+b 

11 
, (A13) 

(Al) 
where 

where 

gm=i [(l+~)4’3+(l-g)4’3-21, 

and the various ec have the form 

(All) 

(A121 
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X(x) =x2+bx+c, Q= (4c-b2)1’2, (A14) 

and A, b, c, and x0 are parameters assuming different values 
for each individual E,. Introducing 

4 

h(x)‘9(21/3-1j 
&) &lx) 

4(x) -,I9 

the derivatives are expressible as 

dvwN adm 
-=&,S) +p - 

aPi aPi 3 
i=a,p, (Ale) 

a+,43 
-=-+3x) +q%>g(fHl+hW~l 

aPi 

+~(x)g(5)h’(x)~3+E(x){g’(f) 

x [ 1 +w)~l+4g(s‘)~(x)~33 5, (A17) 
I 

(A15) 

amp 4a 

dp,- 1 -tdp-I”‘- 

( 
11 

+w(P)pL? Tj- fY3+Pr 
)I 

a2LYP 
+aPaayua Yaa 

I 

2 2xfb 4b 
E;(X) =A 

bxo 2 
;--- _- - 

X(x) (2x+bj%@ X(x,) x-x, I 

2x+b 4(2x,+6) 
--- 

X(x) CW-b)2-t@ ’ 11 (-418) 

4 

h’(X)=9(21’3-1)E;4(~) I 
<‘(x> -&x) 

a2LYP W'(P) amp 

a2rm a2mp 
+ahieaR ~y~~+aPaa~~~ - "Jpp ' 

(A19) 

-$=; (l-C), t-421) 
a 

&$ (l+C). 

As previously mentioned, we use a transformed3’ ver- 
sion of the Lee-Yang-Parr correlation functional.t9 The 
first-order arguments y are linear in this functional, so it 
may be written as 

4a 
LYP=- 

PaPP -_ 
l+dp-“f p 

-21”3 &, (3~?)~‘~abco(p)p~p~(p~‘~+p~‘~) 

where 

aup amp amp 
f ayaYaa yaa + ayaR Y~R+ ayRR Y/V 9 (A22) 

arx 
-=--abw(p) 
ah 

-[6(p)-111 7 -p; , 
I I 

C-423) 

aLv 
-=-abw(p) 
ayaR I 

~p,pp[47--7~(p)l-~P2 3 
I 

(~24) 

(A25) 

e-CP 
-l/3 

W(P) = 
-11/3 

l+dp-‘/3 P ’ (A261 

6(p) =cp-‘“f 

dp- 1/3 

1 +dp-“3 ’ 
(A27) 

with a, b, c, d constants. It now remains only to find the 
derivative with respect to pn (the pB derivative is obtained 
by simply interchanging a and 8) : 

t-428) 

-~6~p~--lll j-;pcP43+$9 

XS’(p)+EHp)--1113 9 11 (A291 

a2Lyp w'(p) aLm -=- --abo(p) 
apaayaR O(P) ay,, 

x [b pp[47-76(p)] -a p&‘(p)-! PI, 

(A30) 

a2Lyp W'(P) aLYP 
-=-- 
apaayRR 4~) ay,, 

---aMpI 

1-36(p)-[ES(p)-111 y 
1 

1 
-y-p& 

-IQ)-111 9-2P4 

1 
o’(p)=-5p -4’3m( p) 1 lp”s-c- 

(A31) 

& -5/3 
P 

(l+dp-‘/3)2-P %p) . 
I 

(A33) 
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Note that the pa correlation potential requires three of 
the second partial derivatives of the functional, Eqs. 
(A29 )-( A3 1) . These are necessary when computing such 
properties as molecular polarizabilities and harmonic vi- 
brational frequencies analytically by DFT methods.61 This 
illustrates the convenience of the way the LYP functional 
is written in Eq. (A22). 

APPENDIX B: FIRST DERIVATIVES OF THE 
QUADRATURE WEIGHTS 

The weights WA; may be expressed as 

wAf= WiwA (rAi) e (Bl) 

The Wi are simply the weights of the one-center quadrature 
formula and are independent of the nuclear configuration. 
The w,, as indicated, contain the explicit nuclear depen- 
dence. The definition of these is due to Becke,42 who gives 
a thorough discussion of the theory of the atomic parti- 
tioning scheme and a derivation of the weights; accord- 
ingly, we merely present the formulas we have imple- 
mented. Again, we point out that we have not considered 
Becke’s proposed “atomic size adjustments.” 

The Becke weight of a point r with respect to nucleus 
A is 

PA(r) PA(r) 
wA(r) ~~~~~~~~ =z(r) ;- 032) 

where the P’s are unnormalized “cell functions” and Z 
serves as a normalization factor to ensure the relative nu- 
clear weights sum to unity. The cell functions are com- 
posed of independent pairwise contributions as follows: 

PA(r)= n dpAB), 
B#A 

with 

(B3) 

~(p)=fw-P3(tLn 

where p,(p) is an iterated function defined by 

U34) 

The arguments /LAB are the hyperbolic coordinates 

rAArB 
PABE- 

RAB 
, (J36) 

where rA and rs are the respective distances from r to 
nuclei A and B, and RAB is the A-B internuclear distance. 
In Eqs. (B2)-(B6), P and p should not be confused with 
the prior usage of these for the density matrix and as a 
basis function index, respectively. We have closely fol- 
lowed Becke’s notation42 here for consistency. 

Having defined the Becke weights, we are now ready to 
differentiate them. The gradient of a weight WA with re- 
spect to its own nuclear center A has the most complicated 
form, since the grid points depend on RA through Eq. (5) 
and thus every individual s(p) in WA has a nonzero gradi- 
ent. So, as when differentiating the functional values on the 

grid, these are avoided through use of translational invari- 
ance. In the following formulas, therefore, this special case 
has not been considered. 

The result is 

vBpA vBz 
-- - vBwA= z pA z2 9 037) 

which requires the gradients of the cell functions 

VA~A=~A c @AB)V&AB, 
B#A 

vBp,= -PAt(,%B)VB~BA, B#A, w3) 

where we have introduced the auxiliary function t(,u),62 
defined by 

1 ds 
t(p) =- 

27 [1-~~(~1)11.1-P:(~)1[1-~~1 -= __~ 
S(P) dp 16 s(p) 

U39) 

Finally, the gradient of the arguments completes the first 
derivative evaluation. 

1 
~APAB=-~A- 

(YA-rB) 

RAB 
R2 UAB~ @lOI 

AB 

where uA is a unit vector in the direction from the grid 
point to RA, and uAB is a unit vector in the direction from 
RB to RA. 
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