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ABSTRACT

There is growing evidence that. for a fairly wide variety of database workloads and system configura-
tions, locking is the concurrency control strategy of choice. With locking, of course. comes the possibility
of deadlocks. Although the database literature is full of algorithms for dealing with deadlocks. very little in
the way of practical performance information is available to a database system designer faced with the deci-
sion of choosing a good deadlock resolution strategy. This paper is an attempt to bridge this gap in our
understanding of the behavior and performance of alternative deadlock resolution strategies. We employ a
"complete” and "realistic” model of a database environment to study the relative performance of a number
of strategies based on deadlock detection, several strategies based on deadlock prevention. and a strategy
based on timeouts. We show that the choice of the "best” deadlock resolution strategy depends upon the
level of data contention, the resource utilization levels, and the types of transactions. We provide guide-
lines for selecting a deadlock resolution strategy for different operating regions.

1. INTRODUCTION

1t was shown in a recent performance study that. for a fairly wide variety of database workloads and system
configurations, a concurrency control algorithm based on two-phase locking [Eswa76, Gray79, Bern81, Bern82]
will outperform concurrency control algorithms that use transaction restarts rather than blocking to resolve conflicts
between transactions [Agra85]. This result was found to be particularly true under models of realistic hardware
configurations with limited physical resources. With two-phase locking, of course. comes the possibility of deadlock
[Gray79. Bern81. Bern82]. Since locking realizes consistency by blocking transactions whose lock requests cannot
be granted. two (or more) transactions may hold locks needed by each other, consequently blocking each other’s

execution forever.
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Given that locking is the concurrency control strategy of choice, it is imperative that the problem of deadlock
and the performance of various deadlock resolution strategies be well understood. The database literature is full of
algorithms that either detect and resolve deadlocks or prevent deadlocks from happening [King73, Cham74.
Macr76, Lome77, Bern78. Rose78, Mena78. Gray79. Ston79. Newt79. Lome80, Glig80, Beer§81, Balt82, Ober82.
Kort82, Agra83a. Fran83. Chin84. Mitc84]. There have been several analytical studies devoted to estimating the
probability of deadlocks [Gray81. Reut83. Tay84]. but very little in the way of practical performance information is
available to the database system designer who is faced with the decision of choosing a good deadlock resolution stra-
tegy. The only significant performance studies of deadlock resolution strategies that we have seen are an early study
by Munz and Krenz [Munz77] and a more recent study by Balter. Berard and Decitre [Balt82]. In [Munz77].
eleven methods for selecting a transaction to restart once a deadlock has been detected were compared. Although
the study involved some 600 simulation runs, the paper contains little in the way of details about the simulation
model and the range of parameters considered. In [Balt82]. five deadlock resolution strategies were compared using
simulation. Unfortunately. the paper does not give any details of the simulation model used. the range of operating
regions considered. or the values of their simulation parameters. We will look more closely at the results of these

two studies later on.

The intent of this paper is to bridge the gap in our understanding of the behavior and performance of alterna-
tive strategies for dealing with the problem of deadlock in centralized database systems. We begin by establishing a
complete and (we believe) realistic model of a database management system. Our model captures the main elements
of a database environment, including both users (terminals, the source of transactions) and physical resources for
storing and processing the data (disks and CPUs) in addition to the usual components used in models for studying
deadlock (workload and database characteristics). We then study and compare the relative performance of three dif-
ferent classes of deadlock resolution strategies [Gray79. Bern81]. including a number of strategies based on
deadlock detection, several strategies based on deadlock prevention. and a strategy that deals with the problem
through the use of timeouts. Our study examines the relative performance of these strategies over a wide range of
multiprogramming levels (and thus conflict probabilities), and both non-interactive and interactive workload types

are considered.



The organization of the remainder of the paper is as follows. In Section 2 we describe the alternative deadlock
resolution strategies that are examined in this paper. Our performance study is based on simulations of a closed
queuing model of a single-site database system. The structure and characteristics of our simulator are described in
Section 3. Section 4 presents the performance experiments and our results. Finally, Section 5 summarizes the

main conclusions of this study.

2. DEADLOCK RESOLUTION STRATEGIES

Deadlocks are usually characterized in terms of a waits-for graph [Coff71. Holt72, Gray79]. In a database
context, a waits-for graph G is a directed graph where each vertex represents a transaction. and each edge of the
form (7;.7;) € G means that transaction T; is waiting for a lock owned by transaction 7. It has been shown that
there exists a deadlock if and only if there is a cycle in the waits-for graph [Coff71, Holt72]. We classify deadlock
resolution strategies into three broad classes depending upon whether they require explicit maintenance of the
waits-for graph and whether or not just transactions that are actually involved in deadlocks are restarted for deadlock
resolution purposes. These three classes of deadlock resolution strategies. detection, prevention, and timeout stra-

tegies, are described in more detail in this section. We also describe the particular instances of these three classes

of strategies whose performance is studied in this paper.

2.1. Deadlock Detection

Strategies based on deadlock detection require that the waits-for graph be explicitly built and maintained. In
continuous detection, the waits-for graph is always kept cycle-free by checking for (and breaking) cycles every time a
transaction blocks. The connected component of the waits-for graph involving the newly blocked transaction is
searched using a cycle detection algorithm [Aho75]. In periodic detection. the graph is searched only periodically
for cycles. and all connected components of the graph must be searched in this case. We will study the effect of dif-

ferent time intervals for periodic deadlock detection.

An associated problem is that of selecting a transaction or set of transactions to restart in order to break any

deadlock cycles that form. We will consider the following victim selection criteria:



(1) Current Blocker: Pick the transaction that blocked the most recently (i.e.. the one that just blocked, the current

blocker, in the case of continuous detection).
(2)  Random Blocker: Pick a transaction at random from among the participants in the deadlock cycle.
(3)  Min Locks: Pick the transaction that is holding the fewest locks.

(4)  Youngesr: Pick the transaction with the most recent initial startup time (i.e., the one that began running the

most recently).

(5) Min Worlk: Pick the transaction that has consumed the least amount of physical resources (CPU + 1/0 time)

since it first began running.

The first of these five victim selection criteria picks the most convenient transaction to restart in the continuous
detection case. and the second criterion simply picks any transaction. The latter three criteria for victim selection
attempt to restart the least “expensive” transaction, the difference among these criteria being the metric used by each
to predict "expensiveness”. Following the lead in [Munz77]. we have not considered any victim selection criteria
that selects the most "expensive” transaction, such as the transaction that is holding largest number of locks or that
has consumed largest amount of physical resources. It was shown in [Munz77] that the least "expensive” counter-

part of these criteria always have better performance.

One detail needs to be mentioned at this point — it is possible that multiple cycles may be encountered in the
waits-for graph. in which case more than one victim may be selected. Our implementation of deadlock detection fol-
lows the advice given by Gray in [Gray79], which suggests repeatedly selecting a victim from each detected cycle
according to the victim selection criteria until the graph is free of cycles. This approach was suggested by Gray (and
adopted for our use) because the problem of selecting the least expensive set of transactions to break all cycles is

NP-hard [Gray79].

2.2. Deadlock Prevention

In deadlock prevention. the waits-for graph is not explicitly maintained. Deadlocks are prevented by never
allowing blocked states that can lead to circular waiting. We consider the following set of deadlock prevention algo-

rithms:



M
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Wound-Wait: If a transaction 7, requests a lock that conflicts with a lock held by another transaction T;.

resolve the conflict as follows: If 7; started running before T, did. then restart 7; ("7; wounds T;"): other-

wise. block 7; ("7, waits for Tj "). This algorithm is due to Rosenkrantz. Stearns, and Lewis [Rose78].
Deadlocks cannot occur. as a transaction can be blocked only by an older transaction, and therefore cycles
cannot form in the waits-for graph. Thus, wound-wait is a preemptive algorithm in which older transactions
run through the system killing any younger ones that they conflict with. waiting only for older conflicting tran-

sactions.

Wair-Die: If a transaction 7; requests a lock that conflicts with a lock held by another transaction T, resolve

the conflict as follows: If 7, started up earlier than T,-, then block 7, ("T; waits for Tj "y; otherwise, restart

T, ("T, dies”). This algorithm is also due to Rosenkrantz, Stearns. and Lewis [Rose78]. Again. deadlocks
are impossible because a transaction can only be blocked by an older transaction. Wait-die is a non-

preemptive counterpart to the wound-wait deadlock prevention algorithm.

Immediate-Restart. If a transaction 7; requires a lock that conflicts with a lock held by another transaction T;,

then simply restart 7,. In this algorithm, due to Tay [Tay84], deadlocks are impossible because no transac-

tion is ever blocked.

Running-Prioriry. If a transaction T; requests a lock that conflicts with a lock held by another transaction T;.
resolve the conflict as follows: If T, is waiting for some other transaction 7T;. restart 7;. This algorithm is
due to Franaszek and Robinson [Fran83]. and the idea is not to allow blocked transactions to impede the pro-
gress of active transactions. In this algorithm. then. a transaction is blocked only when waiting for a lock held
by an active transaction — it is similar in nature to wound-wait. except that running (instead of older) transac-

tions are favored. Deadlock cycles are impossible because no transaction ever waits for another waiting tran-

saction.

Observe that in deadlock prevention, a restarted transaction is not necessarily involved in an actual deadlock

cycle. Deadlock prevention policies are thus conservative in nature, trading more restarts for the purpose of

preventing possible deadlocks.



2.3. Timeout

In the case of the timeout strategy for dealing with deadlocks. a transaction whose lock request cannot be
granted is simply placed in the blocked queue. The transaction is later restarted if its wait time exceeds some thres-
hold value. Thus. like the detection strategies, timeout will restart transactions that are actually involved in
deadlocks: like the prevention strategies, timeout may also restart some transactions that are not involved in any
cycle (when the transaction has been waiting a long time but no cycle of waiting transactions actually exists). As we
will see in Section 4, selecting an appropriate threshold value is a problem with the timeout approach. We will

examine the effect of different threshold values on the performance of this strategy.

3. SIMULATION MODEL

Our simulator for studying the performance of the deadlock resolution strategies is based on the closed queu-
ing model of a single-site database system depicted in Figure 1. This model is the same simulation model that was
used in [Agra85]. which is a model that has its origins in the models of [Ries77. Ries79a. Ries79b] and [Care83.
Care84]. There are a fixed number of terminals from which transactions originate. There is a limit to the number
of transactions allowed to be active at anv time in the system. the multiprogramming level mp/. A transaction is con-
sidered active if it is either receiving service or waiting for service inside the database system. When a new transac-
tion originates. if the system already has a full set of active transactions. it enters the ready queue where it waits for a
currently active transaction to complete or abort (transactions in the ready queue are not considered active). The
transaction then enters the cc gueue (concurrency control queue) and makes the first of its lock requests. If the lock
request is granted. the transaction proceeds to the objecr quene and accesses its first object. If more than one object
is to be accessed the transaction re-enters the concurrency control queue and makes the lock request prior to access-
ing the object. It is assumed for modeling convenience that a transaction performs all of its reads before performing
any writes. We also examine the performance of deadlock resolution strategies under interactive workloads. The

think path in the model provides an optional random delay that follows object accesses for this purpose.

If one of the transaction’s lock requests conflicts with a lock held by another transaction, the concurrency con-

trol module takes actions that are dependent upon the deadiock resolution strategy being used. For example, in the
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Figure 1: Logical Queuing Model.

case of continuous deadlock detection. it checks whether blocking the current transaction will result in a cycle in the
waits-for graph: if so. then the victim-selection criteria is applied to select the transaction(s) to be restarted. In the
case of periodic deadlock detection, the transaction is simply added to the waits-for graph, with no check for cycles
in the graph being made at this time. In the case of deadlock prevention. no waits-for graph is maintained; a deci-
sion is taken either to block the current transaction or to restart some transaction based on the prevention scheme

being employed. In the case of timeout, the current transaction is always simply blocked.



If the result of a lock request is that the transaction must block, it enters the blocked queue until it is once
again able to proceed. If a request leads to a decision to restart a transaction, the restarted transaction goes to the
back of the ready queue after a restart delay period. It then begins making all of the same concurrency control
requests and object accesses over again. The duration of the restart delay is exponential with a mean equal to the
running average of the transaction response time — that is. the duration of the delay is adaprive, depending on the
observed average response time. We chose to employ an adaptive delay after performing a sensitivity analysis that
showed us that the performance of deadlock resolution strategies is sensitive to the restart delay time. Our experi-
ments indicated that a delay of about one transaction time is best. and that throughput begins to drop off rapidly
when the delay exceeds more than a few transaction times. To model periodic deadlock detection, an event is
scheduled at fixed time intervals that checks for cycles in the waits-for graph and selects a victim (or victims) to
break any and all cycles. To model timeouts, a timeout event is scheduled each time a transaction is blocked. If the

blocked transaction is still blocked at the end of the threshold time period, it is restarted.

Eventually the transaction will complete. If the transaction is read-only, it is finished. If it has written one or
more objects during its execution. however. it first enters the updare queue and writes its deferred updates into the

database. Locks are released together at end-of-transaction after the deferred updates have been performed.

Underlying the logical model of Figure 1 are two physical resource types. CPU resources and I/O (disk)
resources. Associated with the concurrency control. object access. and deferred update services in Figure 1 are
some use of one or both of these two resources. The amounts of CPU and I/0 time per logical service are specified
as simulation parameters. The physical queuing model is depicted in Figure 2. and Table 1 summarizes its associ-
ated simulation parameters. As shown, the physical model is a collection of terminals, CPU servers, and 1/0
servers. (While the model permits arbitrary numbers of each class of server. as shown in Figure 2, our experi-
ments will all be based on a configuration with one CPU server and two I/0 servers. The sufficiency of this confi-
guration for our purposes will be addressed in Section 4.) The delay paths for the think and restart delays are also
reflected in the physical queuing model. Requests in the CPU queue are serviced FCFS (first-come, first-served),
except that concurrency control requests have priority over all other service requests. Our I/O model is that of a

partitioned database, where the data in the database is spread out evenly across all of the I/O servers. There is a
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Figure 2: Physical Queuing Model.

queue associated with each of the I/0 servers. When a transaction needs service, it chooses an 1/0O server (at ran-
dom, with all I/0 servers being equally likely) and waits in an I/O queue associated with the selected server. The

service discipline for the I/O queues is also FCFS.

The parameters obj_io and obj_cpu are the amounts of I/O and CPU time associated with reading or writing
an object. Reading an object takes resources equal to obj_io followed by obj_cpu. Writing an object takes resources
equal to obj_cpu at the time of the write request and obj.io at deferred update time. as it is assumed that transactions

maintain deferred update lists in buffers in main memory. These parameters represent constant service time



Parameter Meaning

db_size number of objects in database
tran_size mean size of transaction
max_size size of largest transaction
min_size size of smallest transaction
write_prob Pr(write X | read X)
nunL_1erms number of terminals

mpl multiprogramming level

ext_think_time | mean time between transactions (per terminal)
int_think_time | mean intra-transaction think time (optional)

obj_io 1/0 time for accessing an object
obj_cpu CPU time for accessing an object
nUPL.CpUS number of CPU servers
nun_disks number of I/0 servers

Table 1: Simulation Parameters.
requirements rather than stochastic ones for simplicity. The ext ihink_time parameter is the mean of an exponential
time distribution which determines the time delay between the completion of a transaction and the initiation of a new
transaction from a terminal. Finally. the ini think_time parameter is the mean of an exponential time distribution
which determines the intra-transaction think time for the model (if any). To model interactive workloads, transac-

tions can be made to undergo a thinking period between finishing their reads and starting their writes.

A transaction is modeled according to the number of objects that it reads and writes. The parameter rran_size
is the average number of objects read by a transaction, the mean of a uniform distribution between min_size and
max_size (inclusive). These objects are randomly chosen (without replacement) from among all of the objects in the
database. The probability that an object read by a transaction will also be written is determined by the parameter

write_prob. The size of the database is assumed to be db_size.

4. PERFORMANCE EXPERIMENTS

We performed a number of simulation experiments to study the performance of the alternative deadlock reso-
lution strategies described in Section 2. Table 2 gives the simulation parameter values used for the experiments
reported here. The parameters that vary from experiment to experiment are not listed in the table, but will instead

be given in the description of the experiments.
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Parameter Value

db_size 1000 pages

tran..size 8 page readset

max._size 12 page readset (maximum)

min_size 4 page readset (minimum)

write_prob 0.25

RUML_terms 200 terminals

mp! 5. 10, 25. 50. 75. 100, and 200 transactions

ext_think_time (non-interactive) 1 second
int_think_time (non-interactive} | 0 seconds

ext_think_time (interactive} 21 seconds
int_think_time (interactive) 10 seconds
obj_io 35 milliseconds
obj_cpu 15 milliseconds
nUIM_.CPUS 1

num_disks 2

Table 2: Simulation Parameter Settings.

The database and transaction sizes were selected so as to jointly yield a region of operation which allows the
interesting performance effects to be observed without necessitating impossibly long simulation times. These sizes
are expressed in pages. as we equate objects and pages in this study. The multiprogramming level is varied between
a limit of 5 transactions and a limit of the total number of terminals, set to 200 in this study, to allow a range of con-
flict probabilities to be investigated. The object processing costs were chosen based on our notion of roughly what
realistic values might be. We employed a modified form of the batch means method [Sarg76] for our statistical data
analyses, and each simulation was run for 20 batches with a large batch time to produce sufficiently tight 90% con-
fidence intervals.! The actual batch time varied from experiment to experiment, but the throughput confidence inter-

vals were typically in the range of plus or minus a few percent of the mean value, more than sufficient for our pur-

poses. We discuss only the statistically significant performance differences when summarizing our results.

We investigated the performance of the algorithms in a configuration with one CPU server and two 1/O
servers. We considered two types of transaction workloads. a non-interactive workload, in which transactions have
no intra-transaction think time, and an interactive workload. in which transactions perform a number of reads, then

think for some period of time (their "internal think time”. during which read locks are held), and then perform their

1 More information on the details of the modified baich means method may be found in [Care83].
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writes. Besides being of interest in their own right, we found in [Agra85] that an interactive transaction mix with a
large intra-transaction (internal) think time causes a system with finite physical resources (CPUs and disks) to
behave as if the system had infinite resources. Based on the results in [Agra85]. it is safe to say that these two
workload types are representative of the results that would be obtained over a wide range of resource configurations

(i.e.. numbers of CPU and 1/O servers) and over a wide range of think times. Briefly, it was found that when the

"useful” utilization® of the bottleneck resource type is moderately high (60-70% and above), the non-interactive
workload results are good indicators of relative performance: for low utilizations (40-50% and below), interactive
workloads with high intra-transaction think times are good indicators of relative performance (regardiess of why the
utilizations are low, whether due to an interactive workload or to large numbers of CPUs and disks). We chose the
interactive transaction approach to approximating infinite resource behavior for this study because it is very expen-

sive to run simulations for system configurations that have many CPU and I/0O servers (or truly infinite resources).

We also found in [Agra85] that for larger values of the database size (for 10.000 objects). conflicts became
very rare; when conflicts are rare, all concurrency control algorithms perform alike (as shown in [Agra83b,
Care83, Care84. Agra85] and a number of other studies). Since we were interested in investigating differences in
the performance of alternative deadlock resolution strategies, we have not varied the size of the database as a simula-
tion parameter. The size used here provides a wide range of conflict probabilities over the large range of multipro-
gramming levels used. We have also not varied transaction size as a simulation parameter. again because varying
the multiprogramming level as we do for a fixed size database provides us with a similar range of conflict situations

of interest.

4.1. Experiment 1: Continuous Detection

Our first experiment examined the effectiveness of the alternative victim selection algorithms for continuous
deadlock detection. Tables 3 and 4. respectively. show the throughputs (in transactions per second) obtained for the
five selection algorithms for the non-interactive type of transactions, where the resources are highly utilized, and for
the interactive workload, where the resources have low utilizations. Although we also recorded the corresponding

response time results, we omit them — they display the same relative trends, conveying no important additional

2 We will explain the difference between total and useful resource utilization in Section 4.4
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victim Multiprogramming Level
selection
criteria 5 10 25 50 75 100 200
current 4.724 5.163 5.226 4.952 4.607 4.144 3.763
random 4.740 5.173 5.228 4.920 4.639 4.101 3.852
youngest 4.741 5.186 5.245 5.043 4.708 4.180 4.040
min locks 4,744 5.172 5.275 5.099 4.839 4.581 4.342
min work 4.724 5.160 5.295 5.102 4.749 4.335 4.217
Table 3: Throughput, Continuous Detection (non-interactive workload).

Victim Multiprogramming Level
Selection

Criteria 5 10 25 50 75 100 200
current 0.439 0.779 1.341 1.435 1.205 0.968 0.783
random 0.434 0.818 1.400 1.379 1.071 0.951 0.704
younges! 0.446 0.781 1.309 1.402 1.279 0.983 0.908
min locks 0.432 0.814 1.378 1.473 1.295 1.127 1.123
min work 0.436 0.834 1.421] 1.486 1.287 1.008 0.870

Table 4: Throughput. Continuous Detection (interactive workload).

information. In both the non-interactive and interactive cases, for low levels of multiprogramming. the performance
of the different victim selection algorithms is almost identical. There are just not many deadlocks to differentiate the
algorithms. However, as the multiprogramming level is increased. the random selection criterion begins to lose out:
so does the current blocker criterion, which is also a random selection in some sense. The youngesi, min locks. and
min work selection criteria, which attempt to restart the least expensive transaction, begin providing better perfor-
mance as the multiprogramming level is increased. The reader may be surprised at first by the superior perfor-
mance of the min locks selection criterion as compared to the min work criterion. The explanation lies in the fact
that a restarted transaction that is holding a large number of locks, although it may have consumed somewhat fewer

resources as compared to some other transactions with fewer locks. would have to contend for all of its locks again

— with the possibility of getting blocked or restarted at each lock request.? Table 5 gives the blocking ratio (the ratio

of blocked lock requests to the number of transactions executed) and the restart ratio (the ratio of restarted transac-

3 1t should be noted here that all objects in our database model have the same granularity. In a system that supports granularity hierar-
chies, such as System R, the simple lock counting scheme would probably have to be modified to account for the number of objects associated
with each lock.
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tions to the number of transactions executed) for the interactive workload case. Note that the fewesr locks blocking
and restart ratios are the lowest among all of the victim selection criteria. Similar trends were seen in the non-

interactive workload case.

In examining the results of this experiment. we came to the conclusion that there are several stability proper-
ties that a given deadlock resolution mechanism might have. and we hypothesize that these properties are desirable

ones:

Guaranteed forward progress. At any time. there is at least one transaction in the system that can be

guaranteed to finish.
No repeaied resiarts. No given transaction may be restarted over and over again an indefinite number of times.

While having these properties will not guarantee superior performance for an algorithm, the absence of these
properties may make the algorithm unstable. and the algorithm would then be likely to perform poorly in high con-
flict situations. Qur results bear out this hypothesis. at least to some extent. Of the algorithms studied here, only
the youngest victim selection criterion has both of these stability properties: it performs moderately well. Both the
random and current blocker criteria lack these stability properties. and consequently they have inferior performance
at high multiprogramming levels. The min work and min locks criteria don’t have these properties in the strict

sense, as it is possible for the transaction holding the largest number of locks or having consumed the most

Victim Multiprogramming Level
Selection
Criteria 5 10 25 50 75 100 200
current block 0.055 0.148 0.422 0.886 1.399 1.833 2.431
restart 0.011 0.029 0.089 0.161 0.263 0.383 0.548
random block 0.070 0.143 0.426 0.945 1.514 2.027 3.063
restart 0.016 0.029 0.085 0.167 0.278 0.395 0.661
youngest block 0.059 0.154 0.434 0.894 1.363 1.807 2.323
' restart 0.015 0.032 0.082 0.160 0.252 0.353 0.526
min locks block 0.059 0.152 0.436 0.870 1.361 1.734 2.114
restart 0.012 0.028 0.080 0.159 0.247 0.343 0.438
min work block 0.055 0.138 0.410 0.899 1.361 1.801 2.107
restart 0.013 0.027 0.078 0.161 0.259 0.361 0.459

Table 5. Blocking and Restart Ratios. Continuous Detection (interactive workload).
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resources to be "passed” by another transaction. They do have pseudo-siability, however —— the number of locks
held and the amount of resources consumed are likely to be closely correlated with the age of the transaction. Also.
they seem probabilistically stable. For example, the transaction holding the most locks is unlikely to be passed by a
large number of other transactions, so a transaction with a large number of locks is fairly safe from being restarted

using min locks (as is an old transaction under the younges: policy).

4.2. Experiment 2: Periodic Detection

As was mentioned in Section 2. a problem with periodic deadlock detection is determining the time interval at
which the detection algorithm should be periodically performed. Experiment 2 examined the performance of
periodic detection for different time intervals. Based on the results of Experiment 1. the min locks policy was used
for victim selection: we found in several earlier experiments (not reported here) that the best victim selection criteria
is the best independent of whether continuous or periodic detection is performed, which is not surprising. Experi-
ment 2 was performed for a low level of multiprogramming (10) and for a high level of multiprogramming (100).
Both the high resource utilization (non-interactive workload) and the low resource utilization (interactive workload)

cases were considered. The throughput results for this experiment are summarized in Table 6.

As the detection interval is increased, performance degrades significantly, particularly for large multiprogram-
ming levels. This is because deadlocked transactions that are blocked while holding locks required by other transac-

tions further increase contention if they are restarted later. In this experiment. we assumed that the waits-for graph

is maintained in main memory.* and hence that cycle detection can be performed very efficiently. This is why

Type of MPL Detection Interval
Transactions 250 msec. 500 msec. 1 sec. 5 sec. 10 sec. 50 sec.
Non-Interactive 10 5.170 5.166 5.159 5.080 4,840 1.675
100 4.557 4.480 4.293 1.683 0.713 0.279
Interactive 10 0.804 0.804 0.760 0.779 0.761 0.708
100 1.144 1.092 0.981 0.853 0.583 0.132

Table 6: Throughput, Periodic Detection, Varying Detection Intervals.

41n System R and IMS, for example, the lock table is held in main memory.
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throughput does not decrease as the interval becomes fairly small.

4.3. Experiment 3: Timeout Interval

We performed a sensitivity analysis to examine the impact of the timeout interval on the performance of the
timeout method for deadlock resolution, and also to see if we could discover a reasonable heuristic for selecting the
timeout interval. The sensitivity analysis was performed for a low multiprogramming level (10) and a high mul-
tiprogramming level (100) both for the non-interactive and interactive workloads. Table 7 summarizes the
throughput results. As one would expect, the shape of the timeout throughput curve is convex. There is an optimal
timeout value for a given level of multiprogramming and workload: smaller values degrade performance through
too many restarts, and larger values degrade performance by blocking too many transactions for excessively long
times. Note that the ideal timeout interval value varies with both the multiprogramming level and the nature of the

workload.

One way of choosing the timeout interval would be to relate it in some way to the waiting time of a blocked
request, W. The basis for this heuristic is that ideally the timeout interval should be just long enough to allow a
blocked request to complete its waiting. We experimented with an adaptive version of the timeout algorithm where
the timeout interval was dynamically adjusted to a running estimate of the value avg(W) + k * o (W), where o(W) is
the standard deviation of the request waiting time. We ran simulations where k was taken to be 0, 1, and 2. Table
8 summarizes the throughput results from this experiment for these three values of k. The best results were

obtained for the dynamically adjusted timeout interval of avg(W) + o(W) (i.e., for k = 1).

Type of MPL Timeout Interval
Transactions 250 msec. 500 msec. 1 sec. 5 sec. 10 sec. 50 sec.
Non-Interactive 10 4.945 4.963 5.097 5.037 4.651 2.134
100 3.195 3.204 3.193 3.385 3.521 1.054
Interactive 10 0.826 0.830 0.810 0.801 0.794 0.663
100 1.580 1.581 1.622 1.683 1.605 0.818

Table 7: Throughput, Timeout Algorithm, Varying Timeout Intervals.
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Type of . Multiprogramming Level

Transactions 5 10 25 50 75 100 200
0 4,619 4.877 4.436 3.318 3.181 3.206 3.249

Non-Interactive 1 4.666 4 886 4.784 3.777 3.165 3.244 3.327
2 4.701 5.090 4,597 3.938 2.949 2.132 2.003

0 0.434 0.810 1.498 1.602 1.565 1.619 1.574

Interactive 1 0.413 0.815 1.541 1.682 1.695 1.728 1.687
2 0.429 0.755 1.122 1.066 0.909 0.736 0.804

Table 8: Throughput, Adaptive Timeout Algorithm.

4.4. Experiment 4: Detection, Prevention, and Timeout Performance

In Experiment 4. the most important of the experiments that we ran. we compared the performance of continu-
ous and periodic deadlock detection, the four deadlock prevention strategies (wound-wait, wait-die. immediate-
restart, and running-priority). and the timeout algorithm. Based on the results of Experiment 1. min locks was
chosen to be the victim selection criteria for continuous and periodic detection. Based on the resuits of Experiment
2, the time interval for periodic detection was taken to be 500 milliseconds for the non-interactive workload case and
1 second for the interactive case. These time intervals were selected so that there was time gap between detections.
and yet the algorithm was not seriously handicapped due to a large time interval for either class of workload. The
adaptive version of the timeout algorithm was used in this experiment. with the timeout interval being dynamically
adjusted to a value equal to avg(W) + o(W). We ran this experiment for both the non-interactive and interactive
workloads. We will discuss the results for the two workload types separately here. as the results are significantly

different for the two workload types.

4.4.1. The Non-Interactive Workload

The throughputs obtained with the alternative deadlock resolution strategies are summarized in Table 9 for the
non-interactive type of transactions. We omit the response time results. as they display the same relative perfor-
mance trends. For very low levels of multiprogramming, there are not enough lock conflicts to significantly dif-
ferentiate between the alternative strategies. However, as the multiprogramming level is increased, differences
begin to appear and a number of trends can be seen. Continuous detection emerges as the best strategy, and the

immediate-restart algorithm has the worst performance of all. Periodic detection has slightly inferior performance
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as compared to continuous detection. Wound-wait outperforms wait-die. For low levels of multiprogramming.
running-priority provides somewhat better performance than wound-wait, but for high levels of multiprogramming.
both wound-wait and wait-die perform significantly better than running-priority. The timeout strategy performs
better than the immediate-restart strategy. but it performs worse than the other three deadlock prevention strategies.

We analyze each of these trends in turn below.

The average utilization of the disks (which happen to be the critical resource in our experiments) is shown in
Table 10. The useful utilization figures measure the total utilization minus the fraction of the resource utilization
that was used to process transactions that were later restarted. Table 10 shows that, although the total disk utiliza-
tion is basically the same for all strategies. the useful utilization is strongly correlated with throughput. Table 11
shows the blocking and restart ratios for the alternative strategies. There are clearly a spectrum of blocking and res-
tart ratios for the strategies, ranging from a combination of a zero blocking ratio and the highest restart ratio for the
immediate-restart strategy to the highest blocking ratio combined with the lowest restart ratio for the continuous
detection algorithm. The conclusion that one can draw is that, in a resource-limited situation, a deadlock resolution
strategy that attempts to minimize the number of restarts (and hence to minimize the waste of physical resources)
outperforms a strategy that relies exclusively on restarts. It is also the case that the immediate-restart strategy lacks

the stability properties that were described in Section 4.1.

Both wound-wait and wait-die offer a balance between the extreme blocking and restart ratios, and each has

intermediate performance. Note that wound-wait has both of the desirable stability properties described earlier.

Deadlock Multiprogramming Level
Resolution
Strategy 5 10 25 50 75 100 200

continuous detection 4.744 5.172 5.275 5.099 4.839 4.581 4.342
periodic detection 4.728 5.166 5.296 5.089 4.816 4.480 4.258
wound-wait 4.688 5.040 4.982 4.392 3.906 3.807 3.819
wail-die 4.677 5.047 4.813 4.168 3.721 3.748 3.761
immediaie-restart 4.588 4.794 4.368 3.315 3.158 3.208 3.281
running-priority 4.714 5.136 5.025 4.429 3.561 3.375 3.362
timeout 4.666 4.886 4.784 3.777 3.165 3.244 3.327

Table 9: Throughput, Alternative Strategies (non-interactive workload).

-18 -



Deadlock Multiprogramming Level
Resolution

Strategy 5 10 25 50 75 100 200
conlinuous total .84 .92 .97 .98 .98 .97 .98
detection useful .83 91 .93 .89 .85 .80 .76
periodic total .84 .92 .97 .98 .98 .96 .96
detection useful .83 91 .93 .89 .84 .79 .74
wound-wait total .84 .93 .98 .99 .99 .99 .99
useful .82 .88 .87 .77 .68 .66 .66
wait-die total .83 .93 .97 .98 .99 .99 .99
useful .82 .88 .84 .73 .65 .65 .65
immediate total .84 .93 .98 .99 .99 .99 .99
restart useful .80 .84 .76 .58 .54 .55 .57
running total .83 .93 .97 .99 .99 .99 .99
priority useful .83 .90 .88 .78 .62 .58 .58
imeout total .84 .93 .97 .99 .99 .99 .99
useful .82 .86 .84 .66 .55 .56 .57

Table 10: Disk Utilization, Alternative Strategies (non-interactive workload).

Victim Multiprogramming Level
Selection
Criteria 5 10 25 50 75 100 200
continuous block 0.052 0.128 0.326 0.728 1.190 1.681 2.057
detection restart 0.008 0.025 0.063 0.125 0.207 0.304 0.427
periodic block 0.064 0.145 0.388 0.860 1.368 1.921 2.310
detection restart 0.010 0.024 0.060 0.128 0.213 0.320 0.425
wound-wail block 0.023 0.046 0.130 0.305 0.480 0.521 0.519
restart 0.029 0.074 0.182 0.412 0.647 0.696 0.700
wail-dic block 0.029 0.066 0.173 0.358 0.470 0.477 0.473
restart 0.029 0.072 0.215 0.500 0.752 0.767 0.758
immediaie block 0.000 0.000 0.000 0.000 0.000 0.000 0.000
restart restart 0.060 0.131 0.337 0.846 0.948 0.934 0.901
running block 0.050 0.114 0.295 0.616 1.060 1.204 1.221
priority restart 0.011 0.032 0.111 0.300 0.648 0.750 0.764
simeout block 0.057 0.131 0.386 0.913 1.359 1.394 1.326
restart 0.034 0.103 0.180 0.553 0.889 0.863 0.832

Table 11: Blocking and Restart Ratios, Alternative Strategies (non-interactive workload).

Wait-die has the first stability property (guaranteed progress), but it suffers from the possibility of repeated transac-
tion restarts. A younger transaction may be repeatedly restarted by an older transaction in wait-die, whereas in

wound-wait the younger transaction will wait for the older transaction to complete after being wounded by it.
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However, the severity of the repeated restarts problem is alleviated somewhat by the restart delay in our model. In
both wound-wait and wait-die, the oldest transaction in the system is always guaranteed to finish. The restart ratios
for wait-die are higher than the restart ratios for wound-wait in Table 11. and wound-wait consequently has better

performance.

The running-priority strategy is in some sense like continuous detection. but with the restriction that the wait-
queue for each lock is limited to one group of compatible lock requests. It is thus not surprising that, for low mul-
tiprogramming levels where conflicts are rare and hence the average wait queue length is likely to be small,
running-priority exhibits behavior identical to continuous deadlock detection. It has high blocking ratios and low
restart ratios, and it outperforms wound-wait or wait-die in these cases. However, running-priority lacks the desired
stability properties -— a restarted transaction is random, being the transaction which happened to be waiting at the
time of a lock conflict (not a transaction chosen for age. lock, or resource related reasons). Consequently, for high
multiprogramming levels. running-priority behaves similar to wound-wait or wait-die. but with random selection of

the transaction to restart; thus, it has inferior performance as compared to these algorithms.

The poor performance of the timeout strategy reflects the inherent problem of selecting a good timeout inter-
val. Even with our adaptive version of the timeout algorithm. both the restart ratios and blocking ratios are much
higher than those of wound-wait, wait-die, or running-priority, and consequently timeout has inferior performance.

The timeout strategy also lacks the desired stability properties.

Finally, the reason that the performance of periodic detection is somewhat inferior to that of continuous detec-
tion is its relatively higher blocking and restart ratios. A deadlocked transaction that has not been restarted and that

is holding locks increases the probabilities of waiting and deadlocks.

4.4.2. The Interactive Workload

Table 12 gives the throughput results for the alternative deadlock resolution strategies for the interactive work-
load case. As in the case of non-interactive transactions, the performance of the alternative strategies is not differen-
tiable for low multiprogramming levels. As the multiprogramming level is increased, though, results very different
from those for the non-interactive type workload are obtained. Wound-wait emerges as the overall best strategy

here, and the two deadlock detection strategies have the worst performance. Running-priority performs a bit better
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Deadlock Multiprogramming Level
Resolution
Strategy 5 10 25 50 75 100 200

continuous deiection 0.432 0.814 1.378 1.473 1.295 1.127 1.123
periodic detection 0.430 0.760 1.380 1.383 1.241 0.981 0.936
wound-wail 0.439 0.886 1.827 2.786 3.018 2.939 2.981
wail-die 0.426 0.843 1.567 1.936 1.936 1.900 1.900
immediate-restart 0.433 0.809 1.535 1.628 1.534 1.543 1.543
running-priority 0.425 0.808 1.584 2.084 1.960 2.011 1.988
1imeout 0.413 0.815 1.541 1.682 1.695 1.728 1.687

Table 12: Throughput, Alternative Strategies (interactive workload).

than wait-die, and they both perform better than the timeout or immediate-restart algorithms. Timeout has slightly

better performance than immediate-restart.

Table 13 shows the blocking and restart ratios for the alternative strategies. and Table 14 gives their total and
useful disk utilizations. On the average. transactions in our experiments require 150 milliseconds of CPU time and
350 milliseconds of disk time and, so an internal think time of 10 seconds considerably reduces the average number

of running (i.e.. non-thinking) transactions. This reduces the demand on resources. and the resource utilizations

Victim Multiprogramming Level
Selection
Criteria 5 10 25 50 75 100 200
CONIRUOUS block 0.059 0.152 0.436 0.870 1.361 1.734 2.114
detection restart 0.012 0.028 0.080 0.159 0.247 0.343 0.438
periodic block 0.082 0.178 0.512 1.023 1.511 2.016 2.358
detection restart 0.019 0.029 0.078 0.161 0.254 0.370 0.451
wound-wait block 0.033 0.073 0.221 0.458 0.529 0.549 0.545
restart 0.039 0.084 0.246 0.605 0.677 0.697 0.682
waii-die block 0.033 0.060 0.191 0.420 0.423 0.422 0.422
restart 0.043 0.091 0.301 0.846 0.905 0.912 0.912
immediate block 0.000 0.000 0.000 0.000 0.000 0.000 0.000
restart restart 0.067 0.158 0.516 1.099 1.191 1.178 1.163
runming block 0.059 0.126 0.360 0.920 1.234 1.172 1.203
priority restart 0.018 0.051 0.196 0.653 0.939 0.887 0.905
[imeout block 0.080 0.143 0.545 1.515 1.651 1.586 1.676
restart 0.072 0.112 0.350 0.972 1.024 0.998 1.022

Table 13: Blocking And Restart Ratios, Alternative Strategies (interactive workload).
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Deadlock Multiprogramming Level

Resolution

Strategy 5 10 25 50 75 100 200
continuous total .08 .15 25 .29 .27 .24 .25
detection useful .08 .14 24 .26 22 .20 .19
periodic total .08 14 .25 27 .26 21 21
detection useful .08 13 .24 .24 22 A7 .16
wound-wait total .08 17 .39 .74 .83 .82 .82
useful .08 15 .32 .49 .53 .52 .52

wair-die total .08 .16 .34 .55 .55 .54 .54
useful .07 15 .27 .34 .34 .33 .33

immediate total .08 16 .39 .57 .55 .55 .54
restar! useful .08 .14 .27 .28 .26 27 27
running total .07 15 .33 .58 .64 .63 .63
priority useful .07 .14 .28 .36 .34 .35 .34
[imeout total .08 .16 .35 .56 .56 57 .56
useful .07 .14 .27 .29 .29 .30 .29

Table 14: Disk Utilization. Alternative Strategies (interactive workload).

decrease considerably., For high levels of multiprogramming. as the probability of conflicts increases. the blocking
ratios increase: due to the fact that the transactions think while holding locks. the waiting times also increase. which
in turn further increases the amount of blocking. This excessive waiting in the system is the major reason for the
degradation of the performance of deadlock detection. Although the restart ratio increases due to deadlocks as the
multiprogramming level is increased. blocking increases at much faster rate than deadlocks. The immediate-restart
strategy, which is based purely on restarting a conflicting transaction. does somewhat better — because the resource
utilizations are so low in this environment. the benefits attained through not blocking other transactions by waiting
and holding locks outweigh the cost of wasted resources due to restarts (as reported by Tay in [Tay84]). Due to the
restart delay. which is needed to prevent transactions from being restarted repeatedly in the immediate-restart algo-
rithm. and due to the high number of restarts. a plateau is reached where increasing the multiprogramming level
does not increase the number of active transactions because all other transactions are either in a think state or a res-

tart delay state.

The best performance for the interactive workload case is achieved using a strategy that balances the restart

and the blocking ratios, as is the case with the wound-wait strategy. Observe that the total and useful disk utiliza-
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tions are also largest with this strategy (see Table 14). Wait-die has higher restart ratios than wound-wait, causing
wait-die to reach a plateau with fewer active transactions in the system than wound-wait. Running-priority attempts
to limit waiting in the system by preempting blocked transactions in favor of an active transactions. However, the
blocking and restart ratios are much higher with running-priority compared to those for wound-wait. resulting in its
relatively poorer performance. An analysis of simulation traces from running-priority and wound-wait runs showed
that. in wound-wait, the major source of restarts is from write requests restarting conflicting younger read requests.
which means that writers are pushing younger readers out of their way. In running-priority, however, it is common
for a writer to block waiting for several active readers. and then to be subsequently restarted when a new reader
arrives in the queue — this leads to starvation of write requests under high conflicts. More restarts actually occur
with wound-wait, but wound-wait has a lower restart ratio than running-priority because it also has many more com-
mits (i.e.. its restarts are productive ones). Running-priority has a higher blocking ratio because it blocks write
requests before restarting them (as just described). Finally, timeout also has restart and blocking ratios which are

higher than those of wound-wait. wait-die. and running-priority. explaining its lesser performance here.

4.5. Comparison With Other Results

It is interesting to compare our results on the performance of deadlock resolution strategies with the simulation
results of Munz and Krenz [Munz77]. and those of Balter, Berard and Decitre [Balt82]. We consider each of

these studies in turn.

In [Munz77], the relative performance of 11 victim selection algorithms were studied. They found the follow-
ing three methods, each of which uses some sort of minimal cost criteria, to be considerably better than the other
criteria examined — pick the transaction with the fewest locks, pick the transaction with the smallest number of
exclusive locks, and pick the transaction that has done the least work (using a cost function based on CPU time.
main storage occupation, and I/0 activity). No clear winner among these algorithms was found. They also exam-
ined strategies where the current blocker and the most costly transaction were chosen as the victim. Our victim
selection results for the non-interactive workload case concur well with theirs. For the interactive case, we found
that the criterion based on the number of locks was by far the best. whereas it was just marginally best in the non-

interactive case.
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In [Balt82], the relative performance of deadlock detection (with an unspecified victim selection algorithm).
wound-wait, an "improved” version of wound-wait, wait-die, and a "modified deadlock detection” scheme was com-
pared. Their modified deadlock detection scheme was a non-preemptive version of the running-priority scheme that
we have considered in this paper. It allows a transaction to wait only for an active transaction. restarting transac-
tions that request locks that conflict with those held by waiting transactions. (Running-priority would restart the
waiting transactions instead.) It was concluded that. under all conditions. for high multiprogramming levels, simple
deadlock detection had the worst performance; wound-wait outperformed "improved” wound-wait and wait-die; and
the modified deadlock detection performed the best of all algorithms studied. Unfortunately. neither the details of

the simulation model nor any simulation parameters were specified in [Balt§2].

Our conclusions on the relative performance of deadlock detection, wound-wait. and wait-die are similar to
theirs under interactive workloads. but for transactions with no internal think times, our conclusions are very dif-
ferent. We conjecture that Balter. Berard and Decitre either did not consider physical resources in their model.
assumed them to be infinite. or studied only interactive workloads. As for the overall better performance of the
modified deadlock detection algorithm in their paper. we found in our interactive workload experiments that wound-
wait consistently outperformed a similar algorithm. running-priority. Our result here also seems to contradict the
result of Franaszek and Robinson that running-priority outperforms wound-wait [Fran83]. The explanation lies in
the lock modes considered in the studies — in our experiments, both read and write locks were used, whereas the
studies by Balter et al and by Franaszek and Robinson considered only exclusive locks [Balt§2, Fran83]. The star-
vation problem that we described will not arise if transactions just use exclusive locks. Since real database systems
usually provide both read locks and write locks, we feel that our results are probably more indicative of the real per-

formance of the algorithms.

One further note on our performance results for wound-wait versus running-priority is in order. In our stu-
dies. all transactions were similar — they each read a number of objects, then wrote a subset of these objects,
upgrading their read locks to write locks when making their write requests. Thus, virtually all transactions eventu-
ally needed to obtain one or more write locks, and write requests tended to be older than conflicting read requests.

Wound-wait is favored by such a situation, and running-priority’s starvation problem is particularly significant
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under these conditions. In order to rule out the possibility that our results were situation-specific, we ran another
interactive workload experiment with two classes of transactions, pure readers and pure writers. We again found
that wound-wait outperformed running-priority, but the difference was a bit less pronounced in this case (wound-
wait was 40% better than running-priority instead of 50% better at high multiprogramming levels). As a result of
this experiment. we are quite confident that our results are indeed due to our having both read and write locks, and

not to our particular choice of workload.

5. CONCLUSIONS

A major conclusion of this study is that the choice of the best deadlock resolution strategy is dependent upon
the system’s operating region. In a low conflict situation. the performance of all deadlock resolution strategies is
basically identical. There are just not enough deadlocks in such situations to distinguish between the algorithms. In
a situation where resources are fairly heavily utilized, continuous deadlock detection is the deadlock resolution stra-
tegy of choice. In this situation it is best to choose an algorithm that minimizes transaction restarts and hence
wastes little in the way of resources. Such situations arise in database systems that have finite physical resources
and workloads such that a number of transactions tend to be competing for these resources at all times (i.e., pri-
marily non-interactive workloads). If the transactions are primarily interactive. however. with long think times dur-
ing which locks are held. then a deadlock detection strategy causes excessive blocking and performs poorly. In such
situations, an algorithm like wound-wait, which balances the blocking and restart ratios, provides the best perfor-
mance. A deadlock resolution strategy such as immediate-restart. which exclusively relies on transaction restarts,
was found to perform relatively poorly in both situations. Finally. continuous deadlock detection consistently out-
performed periodic deadlock detection due to the higher blocking and restart ratios associated with periodic detec-

tion.

We presented two stability properties that we claim are desirable for deadlock resolution strategies, the first
being that at any time there exists some transaction in the system that is guaranteed not to be restarted (guaranieed
progress), and the second being that transactions cannot be restarted over and over arbitrarily many times (no
repeated restarts). The absence of these properties may cause an algorithm to become unstable in high conflict situa-

tions. Among the victim-selection algorithms that we considered, the random and current victim selection criteria
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lack these properties, the youngest criteria has both of these properties. and the minimum locks and the minimum
resources selection have approximately these stability properties. Consequently. the performance of the random and
current criteria were found to be inferior to that of the other victim selection criteria. The minimum number of
locks criteria was was found 1o be better than the other critera because if a transaction that is holding a large
number of locks is restarted. it has to contend for all of its locks again, increasing the probabiity of blocking and
restarts. The wound-wait algorithm has both of the desired stability properties. whereas there may be repeated res-
tarts with wait-die. Wound-wait was found to be consistently superior to wait-die. Running-priority has the nice
property that it always chooses a blocked transaction in favor of a running transaction for restarting, but it lacks the
stability properties. It thus has higher blocking and restart ratios as compared to wound-wait for high multipro-

gramming levels, resulting in inferior performance for high contention situations.

Our study highlighted the difficulty in choosing an appropriate timeout interval for the timeout strategy. It was
demonstrated that the performance of timeout is very sensitive to the timeout interval, and that the "right” timeout
interval varies with the multiprogramming level and the transaction workload characteristics. We experimented with
an adaptive version of the timeout strategy that outperformed the simple timeout strategy with its fixed timeout inter-

val, but in no situation did timeout become the strategy of choice.

Our experiments were confined to the case of centralized database systems. An interesting open problem is
the extent to which these results will extend to the distributed database case. The tradeoffs are less clear there, as

message overhead adds a new dimension to the problem.
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