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ABSTRACT 

This paper describes a study of the performance of cen- 

tralized concurrency control algorithms. An 

algorithm-independent simulation framework was 

developed in order to support comparative studies of 

various concurrency control algorithms. We describe 

this framework in detail and present performance 

results which were obtained for what we believe to be a 

representative cross-section of the many proposed algo- 

rithms. The basic algorithms studied include four lock- 

ing algorithms. two timestamp algorithms. and one 

optimistic algorithm. Also. we briefly summarize stu- 

dies of several multiple version algorithms and several 

hierarchical algorithms. We show that. in general, 

locking algorithms provide the best performance. 

1. INTRODUCTION 

1.1. Background 

Much research on algorithm construction has been 

done in the area of concurrency control for both cen- 

tralized (single-site) and distributed database systems. 

This research has led to the development of many con- 

currency control algorithms. most of which are based 

on one of three mechanisms: locking [ Mena78. 

Rose78. Gray79, Lind79. Ston791, rimestamps [Reed78. 

Thom79, Bern80. Bern8 I], and commit-time validation 
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(also called optimistic concurrency control or certifica- 

tion) [Bada79. Casa79. Baye80. Kung81. Ceri821. 

Bernstein and Goodman (Bern8 I ) survey many of these 

algorithms and describe how new algorithms can be 

created by combining these mechanisms. 

Given the ever-growing number of available con- 

currency control algorithms. the database system 

designer is faced with a difficult decision: Which con- 

currency control algorithm should be chosen? Several 

recent studies have evaluated concurrency control algo- 

rithm performance using qualitative. analytical. and 

simulation techniques. Bernstein and Goodman per- 

formed a comprehensive qualitative study which dis- 

cussed performance issues for several distributed lock- 

ing and timestamp algorithms [Bern80/. Results of 

analytical studies of locking performance have been 
reported by Irani and Lin [Iran 791, Potier and Leblanc 

[Poti801. and Goodman et al [Good83l. Simulation stu- 

dies of locking done by Ries and Stonebraker provide 

insight into granularity versus concurrency tradeoffs 

[ Ries77, Ries79a. Ries79bj. Analytical and simulation 

studies by Garcia-Molina (Garc791 provide some insight 

into the relative performance of several distributed vari- 

ants of locking as well as a voting algorithm and a 

-‘ring” algorithm. Simulation studies)y Lin and Nolte 

ILin82. Lin83j provide some comparative performance 

results for several distributed locking and timestamp 

algorithms. A thesis by Galler [Gall821 provides a new 

analysis technique for locking, a qualitative method for 

comparing distributed algorithms. and some simulation 

results for distributed locking versus timestamps (which 

contradict those of Lin and Nolte). A study by Robin- 

son IRobi82a. Robi82cJ includes some experimental 

results on locking versus serial validation. Finally. 

Agrawal and Dewitt recently completed a performance 

study of several integrated concurrency control and 

recovery algorithms based on a combination of analyti- 

cal and simulation techniques [ Agra83a. Agra83bl. 

These performance studies are informative.. but 

they fail to offer definitive results regarding the choice 
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of a concurrency control algorithm for several reasons. 
First. the analytical and simulation studies have mostly 
examined only one or a few alternative algorithms. 

Second, the underlying system models and assumptions 

vary from study to study. Examples include whether 
transaction sizes are fixed or random. whether there is 
one or several classes of transactions. which system 
resources are modeled and which are omitted. and what 
level of detail is used in representing resources which 

are included in the models. It is thus difficult to arrive 
at general conclusions about the many alternative algo- 

rithms. Third. the models used are in some cases 
insufficiently detailed to reveal certain important effects. 

For example. some models group the 11’0. CPU, and 
message delay times for transactions into a single ran- 

dom delay [Lin82, Lin831. in which case the perfor- 
mance benefit of achieving CPU-I/O overlap cannot be 

revealed. Finally. the few comprehensive studies of 
alternative algorithms which have been performed were 

of a non-quantitative nature. 

1.2. Our Work 

The remainder of this paper describes a 

comprehensive quantitative study of the performance of 

centralized concurrency con trnl algorithms. An 
algorithm-independent simulation framework was 
developed in order to support fair comparative studies of 
various concurrency control algorithms. We describe 

this framework in detail and present performance 

results which were obtained for what we claim to be a 

representative cross-section of the many proposed algo- 

rithms. The basic concurrency control algorithms stu- 

died include four locking algorithms. two timestamp 
algorithms, and one optimistic algorithm. Also. we 
briefly summarize the results of studies of several multi- 
ple version algorithms and several hierarchical algo- 

rithms. We show that. in general. locking algorithms 

provide the best performance. 

2. THE SIMULATI,ON MODEL 

This section outlines the structure and details of 

the simulation model which was used to evaluate the 

performance of the algorithms. The model was 

designed to support performance studies for a variety of 
centralized concurrency control algorithms [Care83cl, 

so the design was made to be as algorithm-independent 

as possible. 

2.1. The Workload Model 

An important component of the simulation model is 
a transaction workload model. When a transaction is 
initiated from a terminal in the simulator, it is assigned 

a readset and a writeset. These determine the objects 
that the transaction will read and write during its execu- 
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~zum terms 

restart- delay 

dh size 

yrart size 

smalLprob 

smalL mean 

smal Lxact- type 

smalLsizedist 

smalL write-prob 

large mean 

largesact type 

lar.pc- size dist 

large write prob 

tion. Two transaction classes. lnrge and small. are 

recognized in order to aid in the modeling of realistic 

workloads. The class of a transaction is determined at 

transaction initiation time and is used to determine the 

manner in which the readset and writeset are to be 
assigned. Transaction classes. readsets. and writesets 
are generated using the workload parameters shown in 

Table 1. 

The parameter num- terms determines the number 

of terminals. or level of muitiprogramming, for the 

workload. The parameter rrsmrt-de/a! determines the 
mean of an exponential delay time required for a termi- 
nal to resubmit a transaction after finding that its 
current transaction has been restarted. The parameter 

db-size determines the number of objects in the data- 

base. and gran-size determines the number of objects 

in each granule of the database. When a transaction 

reads or writes an object. any associated concurrency 
control request is made for the granule which contains 

the object. To model read and write requests, objects 

and granules are given integer names ranging from 1 to 

db-size and I to fdb,size /gran-size]. respectively. 

Object i is contained in granule number 

1 (i- 1) /granAze] + 1. 

The readset and writeset for a transaction are lists 

of the numbers of the objects to be read and written. 

respectively, by the transaction. These lists are 

assigned at transaction startup time. When a terminal 

initiates a transaction, small-prob is used to randomly 
determine the class of the transaction. If the class of 

the transaction is small. the workload parameters 

small, mean , small-sact-type. small-size-dist , and 

small-write-prob are used to choose the readset and 
writeset for the transaction as described below. Read- 
sets and writesets for the class of large transactions are 
determined in the same manner using the large-mean. 

large-xact- type. large-size-dist . and large- write-prob 

parameters. 

rkload Parameters 

level of multiprogramming 

mean xact restart delay 

size of database 

size of granules in database 

Pr(xact is small) 

mean size for small xacts 

type for small xacts 

size distribution for small xacts 

Pr(write X read X) for small xacts 

mean size for large xacts 

Wpe for large xacts 

size distribution for large xacts 

Pr(write X read X) for large xacts 

Table I : Workload parameters for simulation. 
Singapore, August, 1994 



The readset size distribution for small transactions 

is given by small-dist. It may be constant. uniform. or 

exponential. If it is constant. the readset size is simply 
small-mean. If it is uniform. the readset size is chosen 

from a uniform distribution on the range from I to 

2 *small-mean. The exponential case is not used in the 
experiments of this paper. The particular objects 

accessed are determined by the parameter 
small-xact-type. which determines the type (either ran- 

dom or sequential) for small transactions. If they are 
random. the readset is assigned by randomly selecting 

objects without replacement from the set of all objects in 

the database. In the sequential case. all objects in the 

readset are adjacent, so the readset is selected randomly 
from among all possible collections of adjacent objects 

of the appropriate size. Finally. given the readset. the 

writeset is determined as follows using the 
small-write-prob parameter: It is assumed that tran- 

sactions read all objects which they write (“no blind 

writes”). When an object is placed in the readset. it is 

also placed in the writeset with probability 

small- write-prob . 

Figure I : Logical database queuing model. 

Proceedings of the Tenth International 
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2.2. The Queuing Model 

Central to the detailed simulation approach used 
here is the closed queuing model of a single-site data- 

base system shown in Figure I. This model is an 

extended version of the model of Ries [Ries77. Ries79a. 
Ries79bl. There are a fixed number of terminals from 
which transactions originate. When a new transaction 
begins running, it enters the startup queue. where pro- 
cessing tasks such as query analysis. authentication. 
and other preliminary processing steps are performed. 
Once this phase of transaction processing is complete. 

the transaction enters the concurrency control queue (or 

cc queue) and makes the first of its concurrency control 

requests. If this request is granted. the transaction 

proceeds to the object queue and accesses its first 
object. If more than one object is to be accessed prior 
to the next concurrency control request. the transaction 

will cycle through this queue several times. (An exam- 
ple of this is when there are several objects per 

granule.) When the next concurrency control request 

is required. the transaction re-enters the concurrency 

control queue and makes the request. It is assumed for 
convenience that transactions which read and write 

objects perform all of their reads before performing any 

writes. 

If the result of a concurrency control request is 

that the transaction must block. it enters the blocked 

queue until it is once again able to proceed. If a 
request leads to a decision to restart the transaction, it 

goes to the back of the concurrency control queue after 
a randomly determined restart delay period of mean 

restart- delay ; it then begins making all of its con- 

currency control requests and object accesses over 

again. Eventually. the transaction may complete and 
the concurrency control algorithm may choose to com- 

mit the transaction. If the transaction is read-only. it is 

finished. If it has written one or more objects during 
its execution, however. it must first enter the update 

queue and write its deferred updates into the database. 

Underlying the logical model of Figure I are two 

physical resources. the CPU and I/O (disk) resources. 

Associated with each logical service depicted in the fig- 

ure (startup. concurrency control. object accesses. etc.) 

is some use of each of these two resources - each 

involves I/O processing followed by CPU processing. 
The amounts of CPU and I/O per logical service are 

specified as simulation parameters. All services com- 
pete for portions of the global I/O and CPU resources 
for their I/O and CPU cycles. The underlying physical 
system model is depicted in Figure 2. As shown. the 
physical model is simply a collection of terminals. a 

CPU server. and an I/O server. Each of the two 
servers has one queue for concurrency control service 

and another queue for all other service. 
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The scheduling policy used to Allocate resources to 

transactions in the concurrency control I/O and CPU 
queues of the underlying physical model is FCFS 
(first-come. first-served). Concurrency control requests 

are thus processed one at a time. as they would be in an 

actual implementation. The resource allocation policies 
used for the normal t/O and CPU service queues of the 

physical model are FCFS and round-robin scheduling, 

respectively. These policies are again chosen to 
approximately model the characteristics which a real 

database system implementation would have. When 

requests for both concurrency control service and nor- 
mal service are present at either resource, such as when 

one or more lock requests are pending while other tran- 

sactions are processing objects. concurrency control 

service is given priority. 

The parameters determining the service times (I/O 

and CPU) for the various logical resources in the model 

are given in Table 2. The parameters startup-io and 

stuartup-cpu are the amounts of I/O and CPU associated 

Figure 2: Physical database queuing model. 

starrup_ io 

startup_ cpu 

obj- io 

obL CPU 

ccio 

cc cpu 

stagger-mean I 
System Parameters 

I!0 time for transaction startup 
CPU time for transaction startup 
Ii0 time for accessing an object 
CPU time for accessing an object 
basic unit of concurrency control I/O time 
basic unit of concurrency control CPU time 
mean of exponential randomizing delav 

Table 2: System parameters for simulation. 
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with transaction startup. Similarly, obj-io and 
obj-cpu are the amounts of t/O and CPU associated 

with reading or writing an object. Reading an object 
takes resources equal to obj-io followed by obj-cpu; 

Writing an object takes resources equal to obj-cpu at 

the time of the write request and obj-io at deferred 
update time. as it is assumed that transactions maintain 
deferred update lists in buffers in main memory. The 

parameters cc-io and CC-CPU are the amounts of I/O 
and CPU associated with a concurrency control request. 
All these parameters represent constant service time 

requirements rather than stochastic ones for simplicity. 

Finally. stagger-mean is the mean of an exponential 

time distribution which is used to randomly stagger 
transaction initiation times from terminals (not to model 

user thinking) each time a new transaction is started up. 
All parameters are specified in internal simulation time 

units, the unit of CPU time allocated to a transaction in 

one sweep of the round-robin allocation code for the 
simulator. 

2.3. Algorithm Descriptions 

Concurrency control algorithms are described for 

simulation purposes as a collection of four routines. 
These are: Init- CC-Algorithm. Request- Semantics. 
Commit-Semantics. and Update-Semantics. Each rou- 
tine is written in SIMPAS, a simulation language based 

on extending PASCAL with simulation-oriented con- 
structs [BryagOl. the language in which the simulator is 

implemented. Init- CC-Algorithm is called when the 

simulation starts up. and it is responsible for initializing 
all algorithm-dependent data structures and variables. 

The other three routines are responsible for implement- 
ing the semantics of the concurrency control algorithm 

being modeled. Request- Semantics handles con- 
currency control requests made by transactions before 

they reach their commit point. Commit-Semnnrics is 
invoked when a transaction reaches its commit point. 
Update-Semuntics is called after a transaction has fin- 
ished writing its deferred updates. Each of the latter 

three routines returns information to the simulator 

about how much simulation time to charge for CPU and 

I/O associated with concurrency control processing. 

2.4. Some Other Details 

In this section. we briefly discuss two issues which 
are relevant to the results presented in the remainder of 

the paper. We outline the way that concurrency control 
costs are modeled and the statistical methods used to 
analyze the experimental results. 

2.4.1. Concurrency Control Costs 

In order to simulate concurrency control algo- 
rithms. it is necessary to make some assumptions about 
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their costs. To evaluate them fairly and determine how 

their blocking and restart decisions affect performance. 

the assumptions made for each of the algorithm simula- 

tions are consistent. It is assumed that the unit costs for 

concurrency control operations in locking, timestamps. 

and validation are all the same. CC-CPU and cc-io. as a 
first-order approximation. This is reasonable since the 

basic steps in each algorithm, such as setting a lock or 
checking a timestamp. involve doing one or two table 
lookups per request. Thus. the costs of processing 
requests in the various algorithms are not likely to differ 

by more than small constant factors. (This is borne out 

by the cost results reported in [Care83bl.) 

To illustrate how concurrency control costs are 

modeled, let us take as an example the 2PL algorithm to 
be described subsequently. In this algorithm. transac- 

tions set read locks on items which they read. and they 
later upgrade read locks to write locks for items which 

they also write. Consider a transaction which makes N, 

granule read requests and N,, granule write requests. 

A CPU cost of CC-CPU and an I/O cost of cc-io are 
assessed each time the transaction makes a read or write 
lock request for a granule. For 2PL. then. the total 

concurrency control CPU and I!0 costs for the transac- 

tion in the absence of restarts are (N,.+ N,,. )cc-cpu and 

(N,.+ N,)cc- io . respectively. The concurrency control 

costs for other locking algorithms. timestamp algo- 

rithms, and validation algorithms are determined simi- 

larly (see fCare83cl for details). 

Of course. if the transaction is restarted. it will 

incur the additional costs involved in executing again 

from the beginning. These include all the costs associ- 

ated with reading and writing the objects that the 
transaction accesses. plus the costs for making all of its 

concurrency control requests over again. 

2.4.2. Statistical Analysis 

In the simulation experiments reported here. the 

performance metric used is the transaction throughput 

rate. Mean throughput results and 90% confidence 

intervals for these results were obtained from the simu- 
lations using a variant of the barch meow ISarg76) 

approach to simulation output analysis. The approach 

used is due to Wolf [Wolf831: it differs from the usual 
batch means approach in that an attempt is made to 

account for tie correlation between adjacent batches. 

Briefly, we assume that adjacent batches are positively 
correlated. that non-adjacent batches are not correlated. 
and that the correlation between a pair of adjacent 
batches is independent of the pair under consideration. 
We then estimate this correlation and use it in comput- 
ing a confidence interval for the mean throughput. In 
the remainder of this paper, we present only the mean 
throughput results. However. we point out only perfor- 
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mance differences which are significant in the sense 

that their confidence intervals do not overlap. More 

information and data on the statistical approach used in 

our experiments may be found in Appendix 3 of 

[Care83cl. 

3. BASIC CONCURRENCY CONTROL ALGO- 
RITHMS 

In this section. we describe our performance 
results for basic concurrency control algorithms. The 
class of basic concurrency control algorithms consists of 

those algorithms which operate using the most recent 

version of each data granule and a single level of granu- 
larity. A later section will summarize results for multi- 

ple version algorithms. which use older versions of data 

items to provide greater potential concurrency (usually 
for large. read-only transactions). and hiernrchical 

algorithms, which use a hierarchy of two or more 
granule sizes (e.g., files and pages) in an attempt to 
trade lower concurrency for reduced concurrency con- 

trol costs. 

3.1. Algorithms Studied 

Given the large number of proposed concurrency 

control algorithms. it is not possible to study all (or 

even a significant fraction) of them. Thus. we chose to 
study a collection of algorithms which we believe to be 

a representative cross-section of the proposals. We 
believe our collection of algorithms to be representative 
because it contains algorithms which use a range of 
blocking and restarts in resolving conflicts: Some just 

use blocking. some just use restarts. and some use a 

mix of these two tactics. Also. the algorithms vary as to 
when contlicts are detected and dealt with. 

Our study of basic concurrency control algorithms 
includes seven algorithms: four locking algorithms, two 

timestamp algorithms. and one optimistic algorithm. 
We describe each of the algorithms briefly below. 

Dyamic Two-Phase Locking (ZPL). Transactions 

set read locks on granules which they read. and these 
locks are later upgraded to write locks for granules 

which they also write. If a lock request is denied. the 
requesting transaction is blocked. A waits-for graph of 
transactions is maintained [Gray791. and deadlock 

detection is performed each time a transaction blocks. 
If a deadlock is discovered, the transaction which just 

blocked and caused the deadlock is chosen as the victim 

and restarted. (This may not be the best victim choice. 
but it was selected initially for ease of implementation. ) 

Wnit-Die Two-Phase Locking (WD). This algo- 
rithm is like ZPL, except that wait-die deadlock preven- 
tion [Rose781 is used instead of deadlock detection. 
When a lock request from transaction 7; conflicts with 
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a lock held by T”, Ti is permitted to wait only if it 
started running before Tj. Otherwise. c is restarted. 

Dynamic Two -Phase Locking . No Upgrades 

(2PLW). The only difference between this algorithm 
and 2PL is that. if a transaction both reads and writes a 
granule .Y. it does not request a read lock and then later 
upgrade it to a write lock. Rather. for granules which 
are eventually written. write locks are requested the first 
time the granule is accessed. eliminating upgrades. 
Full deadlock detection is employed as before. 

Exclusi\v Preclaimed Two -Phase Locking (PRE). 
In this algorithm. all granules read or written by a tran- 
saction are locked in exclusive (write) mode at transac- 
tion startup time. If a transaction cannot obtain all 
required locks. it blocks without obtaining any of its 
locks and waits until all required locks are available. 
The use of only exclusive locks will result in more 
blocking than would occur using both read and write 
locks: this will aid in establishing later performance 
results about the effects of blocking. 

Basic Timestamp Ordering (BTO). This algorithm 
is described by Bernstein and Goodman [Bern81 1: 
Each transaction T has a timestamp. TS(T). which is 
issued when T begins executing. Each data granule .Y 
in the database has a read timestamp. R-~(X). and a 
write timestamp. IV-TS(x). which record the times- 
tamps of the latest reader and writer (respectively) for 
.Y . A read request from T for x is granted only if 
7S( T) 2 W-TS(.u ). and a write request from T for x is 
granted only if both TS(T) L R-TS(x) and 
TSC T) 2 W-T&S(x). Transactions whose requests are 
not granted are restarted. In the version of the algo- 
rithm tested here. read requests are checked dynami- 
cally: writes. however. go to a deferred update list. and 
write timestamps are all checked together at commit 
time. 

Basic Timestamp Orderirtg . Thomas Write Rule 

(TWW). This is BTO with a slight modification 
[ Bern8 1 I: When a transaction T makes a write request 
for an object s and T.S(T) 2 R-TS(x) but 
TS(T) < W-TS(.r). BTO will restart T. In this algo- 
rithm. T’s request is instead granted. but the actual 
(outdated) write is ignored. In all of our experiments. 
TWW and BTO always performed identically. This is 
due to the fact that. under the “no blind writes” 
assumption which underlies the mechanism by which 
writesets are assigned in our simulations. TWW is 
identical to BTO tCare83cl. Thus. results for TWW 
are not presented separately. 

Serial Validation (SV). This is the optimistic con- 
currency control algorithm of Kung and Robinson 
[ Kung81 I. Transactions record their read and write 
sets. and a transaction is restarted when it reaches its 
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commit point if any granule in its readset has been writ- 
ten by a transaction which committed during its life- 
time. Our version differs from the original algorithm in 
that we use startup and commit timestamps to enforce 
the semantics of the algorithm (instead of keeping old 
write sets around and explicitly checking for 
readset/writeset intersections) [Care83dl. However, 
transactions committed (restarted) using our version 
would be committed (restarted) by the original algo- 
rithm as well, so the change in implementation strategy 
does not affect the outcome of our performance experi- 
ments. (The only difference is a slight reduction in 
toncurrency control costs using our scheme.) 

3.2. Performance Experiments and Results 

We performed six different performance experi- 
ments on these basic concurrency control algorithms. 
In this section we present some of the more interesting 
experimental data and summarize the remainder of our 
results. All of the experiments reported in this section 
were run with settings of batch-time = 50.000 and 
num- batches = 20 (for a total of 1.000.000 simulation 
time units) in order to obtain tight contidence intervals. 
One simulation time unit represents one millisecond of 
simulated time for these experiments. so the length of 
each experiment was 1.000 seconds of simulated time. 

3.2.1. Experiment 1: Transaction Size 

The first experiment examined the performance 
characteristics of the basic algorithms under homogene- 
ous workloads of fixed-size transactions. Parameters 
varied in this experiment were the granularity of the 
database and the size of transactions. The purpose of 
this experiment was to observe the behavior of the algo- 
rithms of interest under various conflict probabilities 
and transaction sizes. 

The system parameter settings for this experiment 
are given in simulated time in Table 3. The relevant 
workload parameter settings are given in Table 4. 

Svstem Parameter Settings 

System Time 

Parameter (Milliseconds) 
srarrup_ io 35 

startup cpu IO 

obi_ io 35 

obj- cpu IO 

cc.. io 0 

cc- cpu I 

sta~gcr- mean 20 

Table 3: System parameters for experiment I. 
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Workload Parameters 

dh sire I OOCMI objects 
grate size varied from I to 10000 objects/granule 
num terms IO 

restart delay 1 second 

smalLprob 1.0 

smalL mean varied from I to 30 objects 
smalL.racr_ type random 
smalLsizcdist fixed 
smalLwriteprob 0.5 

Table 4: Workload parameters for experiment I. 

(These database and granularity parameters might 

correspond. for example. to a 40 megabyte database 

where objects are 4K byte pages and granules are 
groups of one or more pages.) Transactions read a 

fixed number of objects selected at random from among 
all objects in the database: this number was set at I, 2, 

5. IO. 15. and 30 for different simulation runs in the 

experiment. Transactions update each object that they 
read with 50% probability. 

Tables 5 and 6 show the throughput results (in 

transactionsisecond) and the number of transactions 

restarted for transactions of size 2. Tables 7 and 8 give 

these figures for transactions of size IO. A number of 
observations can be made from these results. Examin- 

ing Table 5. there is no significant performance differ- 

ence between the algorithms when database is organized 
as many granules. This also holds for Table 7. The 

implication of this is that all algorithms perform equally 

well when the probability of conflicts is low. As the 

probability of conflicts increases. however. differences 

do begin to appear. This is visible in the results for 

coarser granularities in the two tables. We also 

observed differences at finer granularities as the tran- 

saction size parameter was increased to 15 and then 30. 

Examining the coarser granularity results in both 

Tables 5 and 7. we see that the PRE and 2PLW algo- 
rithms yield the best performance. Tables 6 and 8 

show that these are the two algorithms which caused the 

fewest restarts*. No restarts occurred with PRE. as it is 

deadlock free. and few occurred with ZPLW. In Table 

5. 2PL is the next best algorithm. followed by WD, and 
then finally by SV and BTO. An examination of Table 

6 shows that the ordering of the algorithms by 

throughput corresponds closely to the opposite of their 
ordering by restart counts. This implies that having 

more restarts leads to poorer performance. and there- 
fore that restarts should be avoided if possible. Further 

*The one exception to this statement. which occurs in Table 

8. will be discussed shortly. 
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Throughput versus Granularity 

Grans 2PL WD 2PLW PRE BTO SV 

I 3.400 3.638 6.479 6.241 2.595 3.634 

10 5.974 5.790 7.096 7.161 5. II9 5.231 

100 7.039 6.966 7.161 7.163 6.906 6.714 

1000 7.152 7.149 7.161 7.161 7.138 7.113 

loo00 7.159 7.159 7.160 7.161 7.158 7.158 

Table 5: Throughput. small_mecm = 2. 

Restart Counts versus Granularity 

Grans 2PL WD 2PLW PRE BTO SV 
I 6311 7638 0 0 7594 6529 

IO 2366 4633 242 0 107 I 3844 

loo 147 706 3 0 508 879 

loo0 20 73 0 0 51 102 

loo00 2 II 0 0 -I 9 

Table 6: Restarts. smnll-mean = 2. 

Throughput versus Granularitv 

Grans 2PL WD 2PLW PRE BTO SV 

I 0.281 0.240 I.518 1.425 0.001 0.336 

IO 0.074 0.234 0.432 I.415 0.004 0.355 

100 0.827 0.701 1.414 1.759 0.235 0.784 

loo0 1.676 I .599 I.784 I.790 I.473 I .480 

loo00 1.776 I.770 1.788 I.788 I .763 1.749 

Table 7: Throughput. smnll-mean = IO. 

Restart Counts versus Grant 

I; 

lla - 

I 

1 

Table 8: Restarts. small-mean = IO. 

evidence supporting this conclusion was observed in the 
other cases tested, and we will see more evidence in the 
remainder of these experiments as well. The main 

trend observed as transaction size was increased to I5 
and 30, since restarts are more costly for large transac- 

tions, was that performance differences among the algo- 
rithms are more’ pronounced for larger transactions. 

In Table 7. 2PL outperforms WD and SV under 
low conflicts. but it does worse than WD and SV at 
higher conflict probabilities (when Crnrzs = 10, for 

example). The poor performance of 2PL occurs 

because its simplistic deadlock victim selection policy 
can lead to thrashing-like restart behavior when con- 
flicts are likely ICare83cl. This same effect occurred 

for 2PLW when the transaction size parameter was set 
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at 15 and 30. BTO performs the worst here. especially 

at higher conflict probabilities. Its poor performance is 

due to a problem with the BTO algorithm: It is possible 
to have “cyclic restarts”. with two or more confiicting 
transactions becoming involved in cycles where they 

continuously restart each other instead of making pro- 

gress [ Date82. Care83c. Ullm83 I. At the coarsest 
granularities. SV actually outperforms WD. This is 

because, using WD. a transaction which is restarted 

due to a conflict can actually be restarted several times 
before the conflict disappears [Rose78j: this does not 
happen in SV, so SV is in some sense more “stable” 

than WD. 

Comparing Tables 7 and 8. we again see that 

higher numbers of restarts result in lower throughputs 

in most cases. There are a few exceptions. however. 

One example is WD. which seems to have performed 
better than its number of restarts would imply. This 

occurs because WD restarts the younger transaction 
when a conflict occurs, and thus tends to restart tran- 

sactions which have completed Less work (wasting fewer 
resources in the process). This implies that it is better 
to restart a transaction which has done little work if a 
restart is unavoidable. Another example is the perfor- 

mance of 2PL versus that of 2PLW at Grans = IO. 

2PLW outperforms 2PL even though it causes more 

restarts because, in ZPLW. all restarts occur as locks 

are set in response to read requests. In 2PL. restarts 

can still occur as write requests are processed. Thus, 

the average 2PL restart wastes more resources’ than a 
2PLW restart. 

3.2.2. Experiment 2: Access Patterns 

This experiment investigated the performance 

characteristics of the seven concurrency control algo- 
rithms under two workloads consisting solely of large 

transactions. One workload consisted of random tran- 

sactions of mean size 30, and the other workload con- 
sisted of sequential transactions of mean size 30. In 

both cases. transaction sizes were chosen from a uni- 
form distribution. The granularity of the database was 

varied in order to vary the probability of conflicts. The 

objective of this experiment was to observe the effects of 

random versus sequential object access patterns on algo- 
rithm performance. 

The results of this experiment were similar to those 

of Experiment 1. Again, restart behavior determined 

performance. The main performance difference 

observed between the random and sequential transaction 

cases was that the 2PLW and 2PL locking algorithms 
had even more of a performance advantage with 

sequential transactions. This is because. with sequen- 
tial transactions, 2PLW becomes deadlock-free (like 
PRE), and the only source of deadlocks for 2PL in this 
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case is when read locks are upgraded to write locks. 

Thus, fewer restarts occurred for these algorithms in 
the sequential case. resulting in better performance. 

3.2.2.1. Experiment 3: Mixed Workload 

This experiment investigated the performance 

characteristics of the seven concurrency control algo- 
rithms under a workload consisting of a mix of large 
and small transactions. The fraction of small transac- 
tions in the mix was varied in steps of 20% to investi- 

gate algorithm performance under different combina- 
tions of small and large transactions. The granularity 

of the database was also varied in order to vary the pro- 
bability of conflicts. Table 9 gives the relevant work- 
load parameters for this experiment. 

Tables 10 and I I give the throughput results 
obtained for the cases of 80% small transactions and 

20% small transactions. respectively. The locking algo- 

rithms are again seen to outperform the alternatives. In 

particular, SV rarely outperforms a locking algorithm in 

these cases. only beating 2PL at very coarse granulari- 

ties where 2PL’s bad victim selection criteria causes it 

to perform poorly. As before. PRE and 2PLW are the 

dominant algorithms. 

3.2.3. Experiment 4: Multiprogramming Level 

This experiment investigated the effects of the mul- 

tiprogramming level on the results of the previous 

experiments. A portion of Experiment 3 was repeated 

with the multiprogramming level set to 5 and then 20 

transactions. It was found that the multiprogramming 

level affects performance in an absolure sense. as 

changing it changes the probability of contlicts. but the 

relative performance of the basic concurrency control 
algorithms was not affected by changes in the multipro- 
gramming level. Also, the effect of the level of mul- 

tiprogramming on throughput without a concurrency 

control algorithm was investigated for the same portion 

Workload Parameters 

db- size 10000 objects 

gran- size varied from I lo IOOOO objects/granule 
mm terms IO 

restarL delay I second 

smalLprob varied from 0.2 to 0.8 
smalL mean 2 objects 

smalLxacL type random 

ma1 L size dist fixed 
smalL write prob 0.5 

large mean 30 objects 

1argexacL type sequential 

largesize dist uniform 

large writeprob 0. I 

Table 9: Workload parameters for experiment 3. 
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Throuehtmt versus Granularitv 

Gram 2PL WD 2PLW PRE BTO SV 

I 0.101 0.450 2.521 2.371 0.022 0.333 

10 0.853 I.551 2.830 2.860 0.338 0.963 

100 2.352 2.580 2.865 2.861 1.246 2.185 

1000 2.675 2.752 2.859 2.864 2.415 2.504 

10000 2.803 2.777 2.860 2.864 2.634 2.554 

Table 10: Throughput. small-prob = 0.8. 

Throuehout versus Granularitv 

Grans 2PL WD 2PLW PRJZ BTO SV 

I 0.066 0.091 0.919 0.771 o.ooo 0.111 

IO 0.464 0.517 0.967 0.963 0.124 0.450 

100 0.883 0.893 0.966 0.964 0.691 0.858 

1000 0.930 0.945 0.966 0.969 0.775 0.905 

~ 10000 0.942 0.944 0.966 0.967 0.874 0.913 

Table I I: Throughput. small-prob = 0.2. 

of Experiment 3. It was found that having 4 or more 
non-conflicting transactions ready to run was sufficient 
to allow the system to reach its maximum throughput 
capacity. 

3.2.4. Experiment 5: System Balance 

This experiment investigated the effects of system 
balance on the results of the previous experiments. A 
portion of Experiment 3 was repeated with the system 
parameters set to yield I/O-boundedness. CPU- 
boundedness, and then good balance. It was found that 
system balance is another factor which is not significant 
with respect to the relative performance of the algo- 
rithms. 

3.2.5. Experiment 6: Concurrency Control Cost 

In this experiment. a portion of Experiment 3 was 
repeated with the concurrency control cost parameters 
modified to investigate their importance. Experiments 
were run with concurrency control being free 
(CC-CPU = 0. cc-i0 = 0). expensive in terms of CPU 
cost (CC-CPU = 5 milliseconds. cc-io = 0). and expen- 
sive in terms of l/O cost (CC-CPU = I millisecond, 
cc-io = 35 milliseconds). We found that the effects of 
concurrency control cost are negligible as long as they 
are small compared to the costs associated with access- 
ing objects (i.e.. when cc-io = 0). In the last case. 
where concurrency control was very expensive. we 
observed results similar to those of Ries [Ries771: A 
medium granularity was optimal for all algorithms 
rather than the finest granularity. as coarse granulari- 
ties led to high contlict probabilities and fine granulari- 
ties led to high concurrency control overhead. The 
relative performance of the algorithms. however. was 
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not affected by changes in the concurrency control cost 
parameters. 

4. MULTIPLE VERSION AND HIERARCHICAL 
ALGORITHMS 

In addition to the basic concurrency control algo- 
rithm studies which have been described. studies were 
performed on several multiple version algorithms and 
several hierarchical algorithms. Space precludes a 
detailed description of these studies. but the main 
results are summarized in this section. The interested 
reader can find a detailed description of these experi- 
ments and results in [Care83cl. 

4.1. Multiple Version Algorithms 

The multiple version algorithms which were stu- 
died include the CCA version pool algorithm [ Chan821. 
which is based on locking, the multiple version times- 
tamp ordering algorithm of Reed (Reed78j. and a multi- 
ple version optimistic algorithm [Care83d]. In model- 
ing the costs associated with these algorithms. we made 
the simplistic assumption that the cost of accessing any 
version of a granule is the same as the cost of accessing 
its most recent version. We intend to investigate algo- 
rithm performance using a more realistic cost model in 
the future. 

We performed several experiments. comparing the 
performance of the multiple version algorithms with 
each other and with their single version counterparts. 
For workloads consisting of large read-only transactions 
and small update transactions. all of the multiple ver- 
sion algorithms vrformed alike. enabling transactions 
to execute with little interference. Multiple versions did 
little to improve the performance of locking for the 
cases studied. but they did help improve performance 
both for timestamp ordering and optimistic concurrency 
control. The performance of mixes with mostly small 
update transactions and a small fraction of large read- 
only transactions was improved the most using multiple 
versions. 

4.2. Hierarchical Algorithms 

The hierarchical algorithms studied include 
hierarchical variants of preclaimed exclusive locking, 
basic timestamp ordering, serial validation. and mul- 
tiversion timestamp ordering. Descriptions of the latter 
three hierarchical algorithms may be found in 
[ Care83al. The performance of the algorithms in a 
two-level granularity hierarchy was investigated under 
the assumption that the cost of processing a con- 
currency control request for fine granules was twice 
that for coarse granularity requests. 

We performed several experiments. comparing the 
performance of the hierarchical algorithms with each 
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other and with their single granularity counterparts for 

a mix of large and small transactions. No performance 

improvements were obtained using the hierarchical 

algorithms under normal concurrency control costs 

(i.e.. those used in evaluating the basic concurrency 

control algorithms). However. under very high con- 

currency control cost settings. a!! four of the hierarchi- 
ca! algorithms improved system performance by reduc- 

ing concurrency control costs. Hierarchical preclaimed 

locking performed the best of the algorithms examined. 

5. CONCLUSIONS 

We have described a study of the performance of 

centralized concurrency control algorithms. An 
algorithm-independent simulation framework was 
presented and used to study the performance of a 

number of basic algorithms: four locking dgorithms. 

two timestamp algorithms. and one optimistic algorithm. 
All were found to perform equally well when contlicts 

are rare. When conflicts are not rare, it was shown 

that blocking is the preferred tactic for handling con- 
flicts. as restarts waste resources and consequently lead 

to poorer performance. Hence. locking algorithms 
appear to be the concurrency control method of choice 

for centralized database systems. Preclaimed Locking 
(PRE) consistently outperformed the other alternatives. 

and dynamic two-phase locking without lock upgrades 
(2PLW) also performed very well. 

In some systems, especially those in which con- 
currency control is handled entirely at the physical data 

level. it may be impossible to accurately preclaim only 

the required locks or to predict writes at the time when 

reads are performed. In such systems, PRE and 2PLW 

will not be viable. Based on our results. dynamic two- 

phase locking (2PL) is recommended in this situation. 
However. the simple “pick the current blocker” cri- 

teria for deadlock victim selection is not recommended. 

as it led to poor performance under high contlict proba- 

bilities*. Instead. our results indicate that better poli- 

cies will choose transactions which have completed little 

work. In situations where deadlock-free locking proto- 

cols are a feasible alternative [Si!b80. Kort82. 
Moha82). such protocols are of course recommended. 

The results of studies of the performance of several 

multiple version and hierarchical algorithms were sum- 

marized. For workloads consisting of large read-only 

transactions and small update transactions. the multiple 
version algorithms studied performed alike. Multiple 
versions did little to improve the performance of locking 

for the cases studied, but they were beneficial for times- 

tamp ordering and optimistic concurrency control. Of 
the hierarchical algorithms examined. hierarchical lock- 

*This also applies to victim selection for ZPLW. 

Proceedings of the Tenth lnternatlonal 

Conference on Very Large Data Bases. 
116 

ing performed the best. However . none of the 

hierarchical algorithms studied were beneficial under 

normal concurrency control costs. 

A number of questions remain for future research. 

First of all. our results only apply directly to centralized 

database systems. We hypothesize that locking algo- 

rithms will also provide the best performance in distri- 

buted database systems. and we plan to investigate this 
hypothesis through further simulation modeling and 

experimentation. Second. it appears worthwhile to 

make a thorough study of alternative deadlock-handling 
strategies for database systems. We intend to use our 
current simulation environment to perform such a 

study. Finally. we would like to verify our simulation 

results by adding an algorithm-independent concurrency 
control module to WiSS (the Wisconsin Storage System) 

[Chou83] and running performance experiments on this 

actual system. 
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