
THE PERFORMANCE OF CONCURRENCY CONTROL ALGORITHMS
FOR DATABASE MANAGEMENT SYSTEMS

Michael J. Carey

Computer Sciences Department

University of Wisconsin

Madison. WI 53706

ABSTRACT

This paper describes a study of the performance of cen-

tralized concurrency control algorithms. An

algorithm-independent simulation framework was

developed in order to support comparative studies of

various concurrency control algorithms. We describe

this framework in detail and present performance

results which were obtained for what we believe to be a

representative cross-section of the many proposed algo-

rithms. The basic algorithms studied include four lock-

ing algorithms. two timestamp algorithms. and one

optimistic algorithm. Also. we briefly summarize stu-

dies of several multiple version algorithms and several

hierarchical algorithms. We show that. in general,

locking algorithms provide the best performance.

1. INTRODUCTION

1.1. Background

Much research on algorithm construction has been

done in the area of concurrency control for both cen-

tralized (single-site) and distributed database systems.

This research has led to the development of many con-

currency control algorithms. most of which are based

on one of three mechanisms: locking [Mena78.

Rose78. Gray79, Lind79. Ston791, rimestamps [Reed78.

Thom79, Bern80. Bern8 I], and commit-time validation

This research was supported by AFOSR Grant MOSR-78-
3596. NESC Contract NESC-NOOO39-8 I -C-0569. and a California
MICRO Fellowship at the University of California. Berkeley.

Permission to copy without fee all or part of th& materiel & gmnted
provided that the copies are not made or dktributed for direct c-&o1
advantage, the VLDB copytight notice and the title of the pubknion and its
date appear, and notice Is given that cop* ir by pemdasion of the Very Large
Data Base Endowment. To copy other&w, or to mpublish, mquires a fee
ad/or special pennksion from the Endowment.

Proceedings of the Tenth Intematlonal

Conterence on Very Large Data Baeee.

Michael R. Stonebraker

Electronics Research Laboratory

University of California

Berkeley. CA 94720

(also called optimistic concurrency control or certifica-

tion) [Bada79. Casa79. Baye80. Kung81. Ceri821.

Bernstein and Goodman (Bern8 I) survey many of these

algorithms and describe how new algorithms can be

created by combining these mechanisms.

Given the ever-growing number of available con-

currency control algorithms. the database system

designer is faced with a difficult decision: Which con-

currency control algorithm should be chosen? Several

recent studies have evaluated concurrency control algo-

rithm performance using qualitative. analytical. and

simulation techniques. Bernstein and Goodman per-

formed a comprehensive qualitative study which dis-

cussed performance issues for several distributed lock-

ing and timestamp algorithms [Bern80/. Results of

analytical studies of locking performance have been
reported by Irani and Lin [Iran 791, Potier and Leblanc

[Poti801. and Goodman et al [Good83l. Simulation stu-

dies of locking done by Ries and Stonebraker provide

insight into granularity versus concurrency tradeoffs

[Ries77, Ries79a. Ries79bj. Analytical and simulation

studies by Garcia-Molina (Garc791 provide some insight

into the relative performance of several distributed vari-

ants of locking as well as a voting algorithm and a

-‘ring” algorithm. Simulation studies)y Lin and Nolte

ILin82. Lin83j provide some comparative performance

results for several distributed locking and timestamp

algorithms. A thesis by Galler [Gall821 provides a new

analysis technique for locking, a qualitative method for

comparing distributed algorithms. and some simulation

results for distributed locking versus timestamps (which

contradict those of Lin and Nolte). A study by Robin-

son IRobi82a. Robi82cJ includes some experimental

results on locking versus serial validation. Finally.

Agrawal and Dewitt recently completed a performance

study of several integrated concurrency control and

recovery algorithms based on a combination of analyti-

cal and simulation techniques [Agra83a. Agra83bl.

These performance studies are informative.. but

they fail to offer definitive results regarding the choice

Singapore, Auguet, 1984

107

of a concurrency control algorithm for several reasons.
First. the analytical and simulation studies have mostly
examined only one or a few alternative algorithms.

Second, the underlying system models and assumptions

vary from study to study. Examples include whether
transaction sizes are fixed or random. whether there is
one or several classes of transactions. which system
resources are modeled and which are omitted. and what
level of detail is used in representing resources which

are included in the models. It is thus difficult to arrive
at general conclusions about the many alternative algo-

rithms. Third. the models used are in some cases
insufficiently detailed to reveal certain important effects.

For example. some models group the 11’0. CPU, and
message delay times for transactions into a single ran-

dom delay [Lin82, Lin831. in which case the perfor-
mance benefit of achieving CPU-I/O overlap cannot be

revealed. Finally. the few comprehensive studies of
alternative algorithms which have been performed were

of a non-quantitative nature.

1.2. Our Work

The remainder of this paper describes a

comprehensive quantitative study of the performance of

centralized concurrency con trnl algorithms. An
algorithm-independent simulation framework was
developed in order to support fair comparative studies of
various concurrency control algorithms. We describe

this framework in detail and present performance

results which were obtained for what we claim to be a

representative cross-section of the many proposed algo-

rithms. The basic concurrency control algorithms stu-

died include four locking algorithms. two timestamp
algorithms, and one optimistic algorithm. Also. we
briefly summarize the results of studies of several multi-
ple version algorithms and several hierarchical algo-

rithms. We show that. in general. locking algorithms

provide the best performance.

2. THE SIMULATI,ON MODEL

This section outlines the structure and details of

the simulation model which was used to evaluate the

performance of the algorithms. The model was

designed to support performance studies for a variety of
centralized concurrency control algorithms [Care83cl,

so the design was made to be as algorithm-independent

as possible.

2.1. The Workload Model

An important component of the simulation model is
a transaction workload model. When a transaction is
initiated from a terminal in the simulator, it is assigned

a readset and a writeset. These determine the objects
that the transaction will read and write during its execu-

Proceedings of the Tenth Intematlonal

Conference on Very Large Data Bases.

108

P --

~zum terms

restart- delay

dh size

yrart size

smalLprob

smalL mean

smal Lxact- type

smalLsizedist

smalL write-prob

large mean

largesact type

lar.pc- size dist

large write prob

tion. Two transaction classes. lnrge and small. are

recognized in order to aid in the modeling of realistic

workloads. The class of a transaction is determined at

transaction initiation time and is used to determine the

manner in which the readset and writeset are to be
assigned. Transaction classes. readsets. and writesets
are generated using the workload parameters shown in

Table 1.

The parameter num- terms determines the number

of terminals. or level of muitiprogramming, for the

workload. The parameter rrsmrt-de/a! determines the
mean of an exponential delay time required for a termi-
nal to resubmit a transaction after finding that its
current transaction has been restarted. The parameter

db-size determines the number of objects in the data-

base. and gran-size determines the number of objects

in each granule of the database. When a transaction

reads or writes an object. any associated concurrency
control request is made for the granule which contains

the object. To model read and write requests, objects

and granules are given integer names ranging from 1 to

db-size and I to fdb,size /gran-size]. respectively.

Object i is contained in granule number

1 (i- 1) /granAze] + 1.

The readset and writeset for a transaction are lists

of the numbers of the objects to be read and written.

respectively, by the transaction. These lists are

assigned at transaction startup time. When a terminal

initiates a transaction, small-prob is used to randomly
determine the class of the transaction. If the class of

the transaction is small. the workload parameters

small, mean , small-sact-type. small-size-dist , and

small-write-prob are used to choose the readset and
writeset for the transaction as described below. Read-
sets and writesets for the class of large transactions are
determined in the same manner using the large-mean.

large-xact- type. large-size-dist . and large- write-prob

parameters.

rkload Parameters

level of multiprogramming

mean xact restart delay

size of database

size of granules in database

Pr(xact is small)

mean size for small xacts

type for small xacts

size distribution for small xacts

Pr(write X read X) for small xacts

mean size for large xacts

Wpe for large xacts

size distribution for large xacts

Pr(write X read X) for large xacts

Table I : Workload parameters for simulation.
Singapore, August, 1994

The readset size distribution for small transactions

is given by small-dist. It may be constant. uniform. or

exponential. If it is constant. the readset size is simply
small-mean. If it is uniform. the readset size is chosen

from a uniform distribution on the range from I to

2 *small-mean. The exponential case is not used in the
experiments of this paper. The particular objects

accessed are determined by the parameter
small-xact-type. which determines the type (either ran-

dom or sequential) for small transactions. If they are
random. the readset is assigned by randomly selecting

objects without replacement from the set of all objects in

the database. In the sequential case. all objects in the

readset are adjacent, so the readset is selected randomly
from among all possible collections of adjacent objects

of the appropriate size. Finally. given the readset. the

writeset is determined as follows using the
small-write-prob parameter: It is assumed that tran-

sactions read all objects which they write (“no blind

writes”). When an object is placed in the readset. it is

also placed in the writeset with probability

small- write-prob .

Figure I : Logical database queuing model.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

2.2. The Queuing Model

Central to the detailed simulation approach used
here is the closed queuing model of a single-site data-

base system shown in Figure I. This model is an

extended version of the model of Ries [Ries77. Ries79a.
Ries79bl. There are a fixed number of terminals from
which transactions originate. When a new transaction
begins running, it enters the startup queue. where pro-
cessing tasks such as query analysis. authentication.
and other preliminary processing steps are performed.
Once this phase of transaction processing is complete.

the transaction enters the concurrency control queue (or

cc queue) and makes the first of its concurrency control

requests. If this request is granted. the transaction

proceeds to the object queue and accesses its first
object. If more than one object is to be accessed prior
to the next concurrency control request. the transaction

will cycle through this queue several times. (An exam-
ple of this is when there are several objects per

granule.) When the next concurrency control request

is required. the transaction re-enters the concurrency

control queue and makes the request. It is assumed for
convenience that transactions which read and write

objects perform all of their reads before performing any

writes.

If the result of a concurrency control request is

that the transaction must block. it enters the blocked

queue until it is once again able to proceed. If a
request leads to a decision to restart the transaction, it

goes to the back of the concurrency control queue after
a randomly determined restart delay period of mean

restart- delay ; it then begins making all of its con-

currency control requests and object accesses over

again. Eventually. the transaction may complete and
the concurrency control algorithm may choose to com-

mit the transaction. If the transaction is read-only. it is

finished. If it has written one or more objects during
its execution, however. it must first enter the update

queue and write its deferred updates into the database.

Underlying the logical model of Figure I are two

physical resources. the CPU and I/O (disk) resources.

Associated with each logical service depicted in the fig-

ure (startup. concurrency control. object accesses. etc.)

is some use of each of these two resources - each

involves I/O processing followed by CPU processing.
The amounts of CPU and I/O per logical service are

specified as simulation parameters. All services com-
pete for portions of the global I/O and CPU resources
for their I/O and CPU cycles. The underlying physical
system model is depicted in Figure 2. As shown. the
physical model is simply a collection of terminals. a

CPU server. and an I/O server. Each of the two
servers has one queue for concurrency control service

and another queue for all other service.

Singapore, August, 1984

109

The scheduling policy used to Allocate resources to

transactions in the concurrency control I/O and CPU
queues of the underlying physical model is FCFS
(first-come. first-served). Concurrency control requests

are thus processed one at a time. as they would be in an

actual implementation. The resource allocation policies
used for the normal t/O and CPU service queues of the

physical model are FCFS and round-robin scheduling,

respectively. These policies are again chosen to
approximately model the characteristics which a real

database system implementation would have. When

requests for both concurrency control service and nor-
mal service are present at either resource, such as when

one or more lock requests are pending while other tran-

sactions are processing objects. concurrency control

service is given priority.

The parameters determining the service times (I/O

and CPU) for the various logical resources in the model

are given in Table 2. The parameters startup-io and

stuartup-cpu are the amounts of I/O and CPU associated

Figure 2: Physical database queuing model.

starrup_ io

startup_ cpu

obj- io

obL CPU

ccio

cc cpu

stagger-mean I
System Parameters

I!0 time for transaction startup
CPU time for transaction startup
Ii0 time for accessing an object
CPU time for accessing an object
basic unit of concurrency control I/O time
basic unit of concurrency control CPU time
mean of exponential randomizing delav

Table 2: System parameters for simulation.
Proceedings ot ths Tenth International

Conference on Very Large Data Bases.

with transaction startup. Similarly, obj-io and
obj-cpu are the amounts of t/O and CPU associated

with reading or writing an object. Reading an object
takes resources equal to obj-io followed by obj-cpu;

Writing an object takes resources equal to obj-cpu at

the time of the write request and obj-io at deferred
update time. as it is assumed that transactions maintain
deferred update lists in buffers in main memory. The

parameters cc-io and CC-CPU are the amounts of I/O
and CPU associated with a concurrency control request.
All these parameters represent constant service time

requirements rather than stochastic ones for simplicity.

Finally. stagger-mean is the mean of an exponential

time distribution which is used to randomly stagger
transaction initiation times from terminals (not to model

user thinking) each time a new transaction is started up.
All parameters are specified in internal simulation time

units, the unit of CPU time allocated to a transaction in

one sweep of the round-robin allocation code for the
simulator.

2.3. Algorithm Descriptions

Concurrency control algorithms are described for

simulation purposes as a collection of four routines.
These are: Init- CC-Algorithm. Request- Semantics.
Commit-Semantics. and Update-Semantics. Each rou-
tine is written in SIMPAS, a simulation language based

on extending PASCAL with simulation-oriented con-
structs [BryagOl. the language in which the simulator is

implemented. Init- CC-Algorithm is called when the

simulation starts up. and it is responsible for initializing
all algorithm-dependent data structures and variables.

The other three routines are responsible for implement-
ing the semantics of the concurrency control algorithm

being modeled. Request- Semantics handles con-
currency control requests made by transactions before

they reach their commit point. Commit-Semnnrics is
invoked when a transaction reaches its commit point.
Update-Semuntics is called after a transaction has fin-
ished writing its deferred updates. Each of the latter

three routines returns information to the simulator

about how much simulation time to charge for CPU and

I/O associated with concurrency control processing.

2.4. Some Other Details

In this section. we briefly discuss two issues which
are relevant to the results presented in the remainder of

the paper. We outline the way that concurrency control
costs are modeled and the statistical methods used to
analyze the experimental results.

2.4.1. Concurrency Control Costs

In order to simulate concurrency control algo-
rithms. it is necessary to make some assumptions about

Singapore, August, 1984

110

their costs. To evaluate them fairly and determine how

their blocking and restart decisions affect performance.

the assumptions made for each of the algorithm simula-

tions are consistent. It is assumed that the unit costs for

concurrency control operations in locking, timestamps.

and validation are all the same. CC-CPU and cc-io. as a
first-order approximation. This is reasonable since the

basic steps in each algorithm, such as setting a lock or
checking a timestamp. involve doing one or two table
lookups per request. Thus. the costs of processing
requests in the various algorithms are not likely to differ

by more than small constant factors. (This is borne out

by the cost results reported in [Care83bl.)

To illustrate how concurrency control costs are

modeled, let us take as an example the 2PL algorithm to
be described subsequently. In this algorithm. transac-

tions set read locks on items which they read. and they
later upgrade read locks to write locks for items which

they also write. Consider a transaction which makes N,

granule read requests and N,, granule write requests.

A CPU cost of CC-CPU and an I/O cost of cc-io are
assessed each time the transaction makes a read or write
lock request for a granule. For 2PL. then. the total

concurrency control CPU and I!0 costs for the transac-

tion in the absence of restarts are (N,.+ N,,.)cc-cpu and

(N,.+ N,)cc- io . respectively. The concurrency control

costs for other locking algorithms. timestamp algo-

rithms, and validation algorithms are determined simi-

larly (see fCare83cl for details).

Of course. if the transaction is restarted. it will

incur the additional costs involved in executing again

from the beginning. These include all the costs associ-

ated with reading and writing the objects that the
transaction accesses. plus the costs for making all of its

concurrency control requests over again.

2.4.2. Statistical Analysis

In the simulation experiments reported here. the

performance metric used is the transaction throughput

rate. Mean throughput results and 90% confidence

intervals for these results were obtained from the simu-
lations using a variant of the barch meow ISarg76)

approach to simulation output analysis. The approach

used is due to Wolf [Wolf831: it differs from the usual
batch means approach in that an attempt is made to

account for tie correlation between adjacent batches.

Briefly, we assume that adjacent batches are positively
correlated. that non-adjacent batches are not correlated.
and that the correlation between a pair of adjacent
batches is independent of the pair under consideration.
We then estimate this correlation and use it in comput-
ing a confidence interval for the mean throughput. In
the remainder of this paper, we present only the mean
throughput results. However. we point out only perfor-

Proceedings of the Tenth International
Conference on Very Large Data Bases.

mance differences which are significant in the sense

that their confidence intervals do not overlap. More

information and data on the statistical approach used in

our experiments may be found in Appendix 3 of

[Care83cl.

3. BASIC CONCURRENCY CONTROL ALGO-
RITHMS

In this section. we describe our performance
results for basic concurrency control algorithms. The
class of basic concurrency control algorithms consists of

those algorithms which operate using the most recent

version of each data granule and a single level of granu-
larity. A later section will summarize results for multi-

ple version algorithms. which use older versions of data

items to provide greater potential concurrency (usually
for large. read-only transactions). and hiernrchical

algorithms, which use a hierarchy of two or more
granule sizes (e.g., files and pages) in an attempt to
trade lower concurrency for reduced concurrency con-

trol costs.

3.1. Algorithms Studied

Given the large number of proposed concurrency

control algorithms. it is not possible to study all (or

even a significant fraction) of them. Thus. we chose to
study a collection of algorithms which we believe to be

a representative cross-section of the proposals. We
believe our collection of algorithms to be representative
because it contains algorithms which use a range of
blocking and restarts in resolving conflicts: Some just

use blocking. some just use restarts. and some use a

mix of these two tactics. Also. the algorithms vary as to
when contlicts are detected and dealt with.

Our study of basic concurrency control algorithms
includes seven algorithms: four locking algorithms, two

timestamp algorithms. and one optimistic algorithm.
We describe each of the algorithms briefly below.

Dyamic Two-Phase Locking (ZPL). Transactions

set read locks on granules which they read. and these
locks are later upgraded to write locks for granules

which they also write. If a lock request is denied. the
requesting transaction is blocked. A waits-for graph of
transactions is maintained [Gray791. and deadlock

detection is performed each time a transaction blocks.
If a deadlock is discovered, the transaction which just

blocked and caused the deadlock is chosen as the victim

and restarted. (This may not be the best victim choice.
but it was selected initially for ease of implementation.)

Wnit-Die Two-Phase Locking (WD). This algo-
rithm is like ZPL, except that wait-die deadlock preven-
tion [Rose781 is used instead of deadlock detection.
When a lock request from transaction 7; conflicts with

Singapore, August, 1994

111

a lock held by T”, Ti is permitted to wait only if it
started running before Tj. Otherwise. c is restarted.

Dynamic Two -Phase Locking . No Upgrades

(2PLW). The only difference between this algorithm
and 2PL is that. if a transaction both reads and writes a
granule .Y. it does not request a read lock and then later
upgrade it to a write lock. Rather. for granules which
are eventually written. write locks are requested the first
time the granule is accessed. eliminating upgrades.
Full deadlock detection is employed as before.

Exclusi\v Preclaimed Two -Phase Locking (PRE).
In this algorithm. all granules read or written by a tran-
saction are locked in exclusive (write) mode at transac-
tion startup time. If a transaction cannot obtain all
required locks. it blocks without obtaining any of its
locks and waits until all required locks are available.
The use of only exclusive locks will result in more
blocking than would occur using both read and write
locks: this will aid in establishing later performance
results about the effects of blocking.

Basic Timestamp Ordering (BTO). This algorithm
is described by Bernstein and Goodman [Bern81 1:
Each transaction T has a timestamp. TS(T). which is
issued when T begins executing. Each data granule .Y
in the database has a read timestamp. R-~(X). and a
write timestamp. IV-TS(x). which record the times-
tamps of the latest reader and writer (respectively) for
.Y . A read request from T for x is granted only if
7S(T) 2 W-TS(.u). and a write request from T for x is
granted only if both TS(T) L R-TS(x) and
TSC T) 2 W-T&S(x). Transactions whose requests are
not granted are restarted. In the version of the algo-
rithm tested here. read requests are checked dynami-
cally: writes. however. go to a deferred update list. and
write timestamps are all checked together at commit
time.

Basic Timestamp Orderirtg . Thomas Write Rule

(TWW). This is BTO with a slight modification
[Bern8 1 I: When a transaction T makes a write request
for an object s and T.S(T) 2 R-TS(x) but
TS(T) < W-TS(.r). BTO will restart T. In this algo-
rithm. T’s request is instead granted. but the actual
(outdated) write is ignored. In all of our experiments.
TWW and BTO always performed identically. This is
due to the fact that. under the “no blind writes”
assumption which underlies the mechanism by which
writesets are assigned in our simulations. TWW is
identical to BTO tCare83cl. Thus. results for TWW
are not presented separately.

Serial Validation (SV). This is the optimistic con-
currency control algorithm of Kung and Robinson
[Kung81 I. Transactions record their read and write
sets. and a transaction is restarted when it reaches its

Proceedings of the Tenth International

Conference on Very Large Data Baees.

112

commit point if any granule in its readset has been writ-
ten by a transaction which committed during its life-
time. Our version differs from the original algorithm in
that we use startup and commit timestamps to enforce
the semantics of the algorithm (instead of keeping old
write sets around and explicitly checking for
readset/writeset intersections) [Care83dl. However,
transactions committed (restarted) using our version
would be committed (restarted) by the original algo-
rithm as well, so the change in implementation strategy
does not affect the outcome of our performance experi-
ments. (The only difference is a slight reduction in
toncurrency control costs using our scheme.)

3.2. Performance Experiments and Results

We performed six different performance experi-
ments on these basic concurrency control algorithms.
In this section we present some of the more interesting
experimental data and summarize the remainder of our
results. All of the experiments reported in this section
were run with settings of batch-time = 50.000 and
num- batches = 20 (for a total of 1.000.000 simulation
time units) in order to obtain tight contidence intervals.
One simulation time unit represents one millisecond of
simulated time for these experiments. so the length of
each experiment was 1.000 seconds of simulated time.

3.2.1. Experiment 1: Transaction Size

The first experiment examined the performance
characteristics of the basic algorithms under homogene-
ous workloads of fixed-size transactions. Parameters
varied in this experiment were the granularity of the
database and the size of transactions. The purpose of
this experiment was to observe the behavior of the algo-
rithms of interest under various conflict probabilities
and transaction sizes.

The system parameter settings for this experiment
are given in simulated time in Table 3. The relevant
workload parameter settings are given in Table 4.

Svstem Parameter Settings

System Time

Parameter (Milliseconds)
srarrup_ io 35

startup cpu IO

obi_ io 35

obj- cpu IO

cc.. io 0

cc- cpu I

sta~gcr- mean 20

Table 3: System parameters for experiment I.

Singapore, August, 1984

Workload Parameters

dh sire I OOCMI objects
grate size varied from I to 10000 objects/granule
num terms IO

restart delay 1 second

smalLprob 1.0

smalL mean varied from I to 30 objects
smalL.racr_ type random
smalLsizcdist fixed
smalLwriteprob 0.5

Table 4: Workload parameters for experiment I.

(These database and granularity parameters might

correspond. for example. to a 40 megabyte database

where objects are 4K byte pages and granules are
groups of one or more pages.) Transactions read a

fixed number of objects selected at random from among
all objects in the database: this number was set at I, 2,

5. IO. 15. and 30 for different simulation runs in the

experiment. Transactions update each object that they
read with 50% probability.

Tables 5 and 6 show the throughput results (in

transactionsisecond) and the number of transactions

restarted for transactions of size 2. Tables 7 and 8 give

these figures for transactions of size IO. A number of
observations can be made from these results. Examin-

ing Table 5. there is no significant performance differ-

ence between the algorithms when database is organized
as many granules. This also holds for Table 7. The

implication of this is that all algorithms perform equally

well when the probability of conflicts is low. As the

probability of conflicts increases. however. differences

do begin to appear. This is visible in the results for

coarser granularities in the two tables. We also

observed differences at finer granularities as the tran-

saction size parameter was increased to 15 and then 30.

Examining the coarser granularity results in both

Tables 5 and 7. we see that the PRE and 2PLW algo-
rithms yield the best performance. Tables 6 and 8

show that these are the two algorithms which caused the

fewest restarts*. No restarts occurred with PRE. as it is

deadlock free. and few occurred with ZPLW. In Table

5. 2PL is the next best algorithm. followed by WD, and
then finally by SV and BTO. An examination of Table

6 shows that the ordering of the algorithms by

throughput corresponds closely to the opposite of their
ordering by restart counts. This implies that having

more restarts leads to poorer performance. and there-
fore that restarts should be avoided if possible. Further

*The one exception to this statement. which occurs in Table

8. will be discussed shortly.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

Throughput versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

I 3.400 3.638 6.479 6.241 2.595 3.634

10 5.974 5.790 7.096 7.161 5. II9 5.231

100 7.039 6.966 7.161 7.163 6.906 6.714

1000 7.152 7.149 7.161 7.161 7.138 7.113

loo00 7.159 7.159 7.160 7.161 7.158 7.158

Table 5: Throughput. small_mecm = 2.

Restart Counts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV
I 6311 7638 0 0 7594 6529

IO 2366 4633 242 0 107 I 3844

loo 147 706 3 0 508 879

loo0 20 73 0 0 51 102

loo00 2 II 0 0 -I 9

Table 6: Restarts. smnll-mean = 2.

Throughput versus Granularitv

Grans 2PL WD 2PLW PRE BTO SV

I 0.281 0.240 I.518 1.425 0.001 0.336

IO 0.074 0.234 0.432 I.415 0.004 0.355

100 0.827 0.701 1.414 1.759 0.235 0.784

loo0 1.676 I .599 I.784 I.790 I.473 I .480

loo00 1.776 I.770 1.788 I.788 I .763 1.749

Table 7: Throughput. smnll-mean = IO.

Restart Counts versus Grant

I;

lla -

I

1

Table 8: Restarts. small-mean = IO.

evidence supporting this conclusion was observed in the
other cases tested, and we will see more evidence in the
remainder of these experiments as well. The main

trend observed as transaction size was increased to I5
and 30, since restarts are more costly for large transac-

tions, was that performance differences among the algo-
rithms are more’ pronounced for larger transactions.

In Table 7. 2PL outperforms WD and SV under
low conflicts. but it does worse than WD and SV at
higher conflict probabilities (when Crnrzs = 10, for

example). The poor performance of 2PL occurs

because its simplistic deadlock victim selection policy
can lead to thrashing-like restart behavior when con-
flicts are likely ICare83cl. This same effect occurred

for 2PLW when the transaction size parameter was set

Slngapore, August, 1984

113

at 15 and 30. BTO performs the worst here. especially

at higher conflict probabilities. Its poor performance is

due to a problem with the BTO algorithm: It is possible
to have “cyclic restarts”. with two or more confiicting
transactions becoming involved in cycles where they

continuously restart each other instead of making pro-

gress [Date82. Care83c. Ullm83 I. At the coarsest
granularities. SV actually outperforms WD. This is

because, using WD. a transaction which is restarted

due to a conflict can actually be restarted several times
before the conflict disappears [Rose78j: this does not
happen in SV, so SV is in some sense more “stable”

than WD.

Comparing Tables 7 and 8. we again see that

higher numbers of restarts result in lower throughputs

in most cases. There are a few exceptions. however.

One example is WD. which seems to have performed
better than its number of restarts would imply. This

occurs because WD restarts the younger transaction
when a conflict occurs, and thus tends to restart tran-

sactions which have completed Less work (wasting fewer
resources in the process). This implies that it is better
to restart a transaction which has done little work if a
restart is unavoidable. Another example is the perfor-

mance of 2PL versus that of 2PLW at Grans = IO.

2PLW outperforms 2PL even though it causes more

restarts because, in ZPLW. all restarts occur as locks

are set in response to read requests. In 2PL. restarts

can still occur as write requests are processed. Thus,

the average 2PL restart wastes more resources’ than a
2PLW restart.

3.2.2. Experiment 2: Access Patterns

This experiment investigated the performance

characteristics of the seven concurrency control algo-
rithms under two workloads consisting solely of large

transactions. One workload consisted of random tran-

sactions of mean size 30, and the other workload con-
sisted of sequential transactions of mean size 30. In

both cases. transaction sizes were chosen from a uni-
form distribution. The granularity of the database was

varied in order to vary the probability of conflicts. The

objective of this experiment was to observe the effects of

random versus sequential object access patterns on algo-
rithm performance.

The results of this experiment were similar to those

of Experiment 1. Again, restart behavior determined

performance. The main performance difference

observed between the random and sequential transaction

cases was that the 2PLW and 2PL locking algorithms
had even more of a performance advantage with

sequential transactions. This is because. with sequen-
tial transactions, 2PLW becomes deadlock-free (like
PRE), and the only source of deadlocks for 2PL in this

Proceedings of the Tenth International

Conference on Very Large Data Bases.

114

case is when read locks are upgraded to write locks.

Thus, fewer restarts occurred for these algorithms in
the sequential case. resulting in better performance.

3.2.2.1. Experiment 3: Mixed Workload

This experiment investigated the performance

characteristics of the seven concurrency control algo-
rithms under a workload consisting of a mix of large
and small transactions. The fraction of small transac-
tions in the mix was varied in steps of 20% to investi-

gate algorithm performance under different combina-
tions of small and large transactions. The granularity

of the database was also varied in order to vary the pro-
bability of conflicts. Table 9 gives the relevant work-
load parameters for this experiment.

Tables 10 and I I give the throughput results
obtained for the cases of 80% small transactions and

20% small transactions. respectively. The locking algo-

rithms are again seen to outperform the alternatives. In

particular, SV rarely outperforms a locking algorithm in

these cases. only beating 2PL at very coarse granulari-

ties where 2PL’s bad victim selection criteria causes it

to perform poorly. As before. PRE and 2PLW are the

dominant algorithms.

3.2.3. Experiment 4: Multiprogramming Level

This experiment investigated the effects of the mul-

tiprogramming level on the results of the previous

experiments. A portion of Experiment 3 was repeated

with the multiprogramming level set to 5 and then 20

transactions. It was found that the multiprogramming

level affects performance in an absolure sense. as

changing it changes the probability of contlicts. but the

relative performance of the basic concurrency control
algorithms was not affected by changes in the multipro-
gramming level. Also, the effect of the level of mul-

tiprogramming on throughput without a concurrency

control algorithm was investigated for the same portion

Workload Parameters

db- size 10000 objects

gran- size varied from I lo IOOOO objects/granule
mm terms IO

restarL delay I second

smalLprob varied from 0.2 to 0.8
smalL mean 2 objects

smalLxacL type random

ma1 L size dist fixed
smalL write prob 0.5

large mean 30 objects

1argexacL type sequential

largesize dist uniform

large writeprob 0. I

Table 9: Workload parameters for experiment 3.

Singapore, August, 1994

7

Throuehtmt versus Granularitv

Gram 2PL WD 2PLW PRE BTO SV

I 0.101 0.450 2.521 2.371 0.022 0.333

10 0.853 I.551 2.830 2.860 0.338 0.963

100 2.352 2.580 2.865 2.861 1.246 2.185

1000 2.675 2.752 2.859 2.864 2.415 2.504

10000 2.803 2.777 2.860 2.864 2.634 2.554

Table 10: Throughput. small-prob = 0.8.

Throuehout versus Granularitv

Grans 2PL WD 2PLW PRJZ BTO SV

I 0.066 0.091 0.919 0.771 o.ooo 0.111

IO 0.464 0.517 0.967 0.963 0.124 0.450

100 0.883 0.893 0.966 0.964 0.691 0.858

1000 0.930 0.945 0.966 0.969 0.775 0.905

~ 10000 0.942 0.944 0.966 0.967 0.874 0.913

Table I I: Throughput. small-prob = 0.2.

of Experiment 3. It was found that having 4 or more
non-conflicting transactions ready to run was sufficient
to allow the system to reach its maximum throughput
capacity.

3.2.4. Experiment 5: System Balance

This experiment investigated the effects of system
balance on the results of the previous experiments. A
portion of Experiment 3 was repeated with the system
parameters set to yield I/O-boundedness. CPU-
boundedness, and then good balance. It was found that
system balance is another factor which is not significant
with respect to the relative performance of the algo-
rithms.

3.2.5. Experiment 6: Concurrency Control Cost

In this experiment. a portion of Experiment 3 was
repeated with the concurrency control cost parameters
modified to investigate their importance. Experiments
were run with concurrency control being free
(CC-CPU = 0. cc-i0 = 0). expensive in terms of CPU
cost (CC-CPU = 5 milliseconds. cc-io = 0). and expen-
sive in terms of l/O cost (CC-CPU = I millisecond,
cc-io = 35 milliseconds). We found that the effects of
concurrency control cost are negligible as long as they
are small compared to the costs associated with access-
ing objects (i.e.. when cc-io = 0). In the last case.
where concurrency control was very expensive. we
observed results similar to those of Ries [Ries771: A
medium granularity was optimal for all algorithms
rather than the finest granularity. as coarse granulari-
ties led to high contlict probabilities and fine granulari-
ties led to high concurrency control overhead. The
relative performance of the algorithms. however. was

Proceedings of the Tenth International
Conference on Very Large Data Sases.

not affected by changes in the concurrency control cost
parameters.

4. MULTIPLE VERSION AND HIERARCHICAL
ALGORITHMS

In addition to the basic concurrency control algo-
rithm studies which have been described. studies were
performed on several multiple version algorithms and
several hierarchical algorithms. Space precludes a
detailed description of these studies. but the main
results are summarized in this section. The interested
reader can find a detailed description of these experi-
ments and results in [Care83cl.

4.1. Multiple Version Algorithms

The multiple version algorithms which were stu-
died include the CCA version pool algorithm [Chan821.
which is based on locking, the multiple version times-
tamp ordering algorithm of Reed (Reed78j. and a multi-
ple version optimistic algorithm [Care83d]. In model-
ing the costs associated with these algorithms. we made
the simplistic assumption that the cost of accessing any
version of a granule is the same as the cost of accessing
its most recent version. We intend to investigate algo-
rithm performance using a more realistic cost model in
the future.

We performed several experiments. comparing the
performance of the multiple version algorithms with
each other and with their single version counterparts.
For workloads consisting of large read-only transactions
and small update transactions. all of the multiple ver-
sion algorithms vrformed alike. enabling transactions
to execute with little interference. Multiple versions did
little to improve the performance of locking for the
cases studied. but they did help improve performance
both for timestamp ordering and optimistic concurrency
control. The performance of mixes with mostly small
update transactions and a small fraction of large read-
only transactions was improved the most using multiple
versions.

4.2. Hierarchical Algorithms

The hierarchical algorithms studied include
hierarchical variants of preclaimed exclusive locking,
basic timestamp ordering, serial validation. and mul-
tiversion timestamp ordering. Descriptions of the latter
three hierarchical algorithms may be found in
[Care83al. The performance of the algorithms in a
two-level granularity hierarchy was investigated under
the assumption that the cost of processing a con-
currency control request for fine granules was twice
that for coarse granularity requests.

We performed several experiments. comparing the
performance of the hierarchical algorithms with each

Singapore, August, 1984

115

other and with their single granularity counterparts for

a mix of large and small transactions. No performance

improvements were obtained using the hierarchical

algorithms under normal concurrency control costs

(i.e.. those used in evaluating the basic concurrency

control algorithms). However. under very high con-

currency control cost settings. a!! four of the hierarchi-
ca! algorithms improved system performance by reduc-

ing concurrency control costs. Hierarchical preclaimed

locking performed the best of the algorithms examined.

5. CONCLUSIONS

We have described a study of the performance of

centralized concurrency control algorithms. An
algorithm-independent simulation framework was
presented and used to study the performance of a

number of basic algorithms: four locking dgorithms.

two timestamp algorithms. and one optimistic algorithm.
All were found to perform equally well when contlicts

are rare. When conflicts are not rare, it was shown

that blocking is the preferred tactic for handling con-
flicts. as restarts waste resources and consequently lead

to poorer performance. Hence. locking algorithms
appear to be the concurrency control method of choice

for centralized database systems. Preclaimed Locking
(PRE) consistently outperformed the other alternatives.

and dynamic two-phase locking without lock upgrades
(2PLW) also performed very well.

In some systems, especially those in which con-
currency control is handled entirely at the physical data

level. it may be impossible to accurately preclaim only

the required locks or to predict writes at the time when

reads are performed. In such systems, PRE and 2PLW

will not be viable. Based on our results. dynamic two-

phase locking (2PL) is recommended in this situation.
However. the simple “pick the current blocker” cri-

teria for deadlock victim selection is not recommended.

as it led to poor performance under high contlict proba-

bilities*. Instead. our results indicate that better poli-

cies will choose transactions which have completed little

work. In situations where deadlock-free locking proto-

cols are a feasible alternative [Si!b80. Kort82.
Moha82). such protocols are of course recommended.

The results of studies of the performance of several

multiple version and hierarchical algorithms were sum-

marized. For workloads consisting of large read-only

transactions and small update transactions. the multiple
version algorithms studied performed alike. Multiple
versions did little to improve the performance of locking

for the cases studied, but they were beneficial for times-

tamp ordering and optimistic concurrency control. Of
the hierarchical algorithms examined. hierarchical lock-

*This also applies to victim selection for ZPLW.

Proceedings of the Tenth lnternatlonal

Conference on Very Large Data Bases.
116

ing performed the best. However . none of the

hierarchical algorithms studied were beneficial under

normal concurrency control costs.

A number of questions remain for future research.

First of all. our results only apply directly to centralized

database systems. We hypothesize that locking algo-

rithms will also provide the best performance in distri-

buted database systems. and we plan to investigate this
hypothesis through further simulation modeling and

experimentation. Second. it appears worthwhile to

make a thorough study of alternative deadlock-handling
strategies for database systems. We intend to use our
current simulation environment to perform such a

study. Finally. we would like to verify our simulation

results by adding an algorithm-independent concurrency
control module to WiSS (the Wisconsin Storage System)

[Chou83] and running performance experiments on this

actual system.

ACKNOWLEDGEMENTS

Discussions with Rakesh Agrawa! intluenced the

cost modeling aspects of this work. David Dewitt and
Toby Lehman made suggestions that helped to improve

the presentation.

REFERENCES

[Agra83aJ

[Agra83b]

[Bada

[Baye801

[Bern801

Agrawa!, R., and Dewitt. D..

“Integrated Concurrency Control and

Recovery Mechanisms: Design and Per-

formance Evaluation”. Technical Report

No. 497, Computer Sciences Department,
University of Wisconsin-Madison, Febru-
ary 1983.

Agrawal. R.. “Concurrency Control and

Recovery in Multiprocessor Database

Machines: Design and Performance

Evaluation ’ ’ . Ph.D. Thesis. Computer

Sciences Department. University of

Wisconsin-Madison. 1983.

Bada!. D.. “Correctness of Concurrency

Control and Implications in Distributed

Databases’ ’ . Proceedings of the COMP-

SAC ‘79 Conference. Chicago. Illinois.

November 1979.

Bayer, R.. Heller. H.. and Reiser. A..
“Pa.ra.!lelism and Recovery in Database

Systems”. ACM Transactions on Data-

base Systems 5(2). June 1980.

Bernstein, P., and Goodman. N.. “Fun-
damental Algorithms for Concurrency
Control in Distributed Database Sys-

Singapore, August, 1984

[Bern8 I]

PwW,

[Care83a)

[Care83bl

(Care83cl

[Care83dJ

[Casa791

[Ceri82]

IChan821

[Chou83dl

terns”. Technical Report. Computer Cor-

poration of America. 1980.

Bernstein. P.. and Goodman. N.. “Con-

currency Control in Distributed Database

Systems”. ACM Computing Surveys

13(2). June 1981.

Bryant. R.. ‘.SIMPAS - A Simulation

Language Based on PASCAL”. Techni-

cal Report No. 390. Computer Sciences

Department. University of Wisconsin.

Madison. June 1980.

Carey. M.. “Granularity Hierarchies in

Concurrency Control”. Proceedings of

the Second ACM SIGACT-SIGMOD

Symposium on Principles of Database

Systems. Atlanta. Georgia. March 1983.

Carey. M.. “An Abstract Model of Data-

base Concurrency Control Algorithms”

Proceedings of the ACM SIGMOD Inter-

national Conference on Management of

Data, San Jose. California. May 1983.

Carey, M.. “Modeling and Evaluation of

Database Concurrency Control Algo-

rithms” . Ph.D. Thesis. Computer Sci-

ence Division (EECS). University of Cali-

fornia. Berkeley. September 1983.

Carey. M.. **Multiple Versions and the

Performance of Optimistic Concurrency

Control * ’ . Technical Report No. 5 17.

Computer Sciences Department. Univer-

sity of Wisconsin. Madison. October

1983.

Casanova. M.. “The Concurrency Con-

trol Problem for Database Systems”.

Ph.D. Thesis, Computer Science Depart-

ment. Harvard Universit?. 1979.

Ceri. S.. and Owicki. S.. .‘On the Use of

Optimistic Methods fc- Concurrency

Control in Distributed Databases’ ’ .

Proceedings of the Sixth Berkeley

Workshop on Distributed Data Manage-

ment and Computer Networks. February

1982.

Chan. A.. Fox. S.. Lin. W.. Nori. A..

and Ries. D.. ‘.The Implementation of

An Integrated Concurrenq Control and

Recover) Scheme”. Procecdingc of the

ACM SIGMOD International Conference

on Management of Data. March 1982.

Chou. H.. Dewitt. D.. Katz. R.. and

Klug. A.. *‘Design and Implementation

of the Wisconsin Storage System”.

[Date821

[ElIi

[Gal1821

IGarc791

[Good831

[Gray791

[Iran791

I Kort82 1

I Kung8 I I

I Lin821

[Lin83]

Proceedings of the Tenth International

Conference on Very Large Data Bases.

Technical Report No. 521. Computer Sci-

ences Department. University of Wiscon-

sin. Madison. November 1983.

Date. C.. An Introduction to Database

Systems (Volume II). Addison-Wesley

Publishing Company. 1982.

Ellis. C.. “A Robust Algorithm for

Updating Duplicate Databases’ ’ . Proceed-

ings of the 2nd Berkeley Workshop on

Distributed Databases and Computer Net-

works, May 1977.

Galler. B.. “Concurrency Control Per-

formance Issues” Ph.D. Thesis. Com-

puter Science Department. University of

Toronto. September 1982.

Garcia-Molina. H.. “Performance of

Update Algorithms for Replicated Data in

a Distributed Database”. Ph.D. Thesis.

Computer Science Department. Stanford

University. June 1979.

Goodman. N.. Suri. R.. and Tay. Y..

“A Simple Analytic Model for Perfor-

mance of Exclusive Locking in Database

Systems”. Proceedings of the Second

ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems. Atlanta.

Georgia. March 1983.

Grav. J.. “Notes On Database Operating

Systems”. in Operating Systems: An

Advanced Course. Springer-Verlag.

1979.

Irani. K.. and Lin. H.. “Queuing Net-

work Models for Concurrent Transaction

Processing in a Database System”,

Proceedings of the ACM SIGMOD Inter-

national Symposium on Management of

Data. 1979.

Korth. H.. “Deadlock Freedom Using

Edge Locks”. ACM Transactions on

Database Systems 7(4). December 1982.

Kung. H.. and Robinson. J.. “On

Optimistic Methods for Concurrency

Control“. ACM Transactions on Data-

base Systems 6(2). June 198 I.

Lin. W.. and Nolte. J.. “Distributed

Database Control and Allocation: Semi-

Annual Report”. Technical Report. Com-

puter Corporation of America. Cam-

bridge. Massachusetts. January 1982.

Lin, W.. and Nolte. J.. “Basic Times-

tamp. Multiple Version Timestamp. and

Singapore, August, 1984

117

(Lind791

[Mena

[Moha821

(Poti

[Reed781

[Ries771

[Ries79al

[Ries79bl

[Robi82al

Two-Phase Locking”. Proceedings of the

Ninth International Conference on Very

Large Data Bases. Florence, Italy,
November 1983.

Lindsay. B.. Selinger, P.. Galtieri, C..

Gray. J.. Lorie, R.. Price. T.. Putzolu.

F.. Traiger. I.. and Wade. B.. “Notes
on Distributed Databases”. Report No.

RJ2571. IBM San Jose Research Labora-
tory. 1979.

Menasce. D.. and Muntz. R.. -‘Locking
and Deadlock Detection in Distributed

Databases ’ ’ . Proceedings of the Third
Berkeley Workshop on Distributed Data

Management and Computer Networks.

August 1978.

Mohan. C.. Fussel. D.. and Silberschatz.

A.. “Compatibility and Commutativity in

Non-Two-Phase Locking Protocols”.
Proceedings of the ACM SIGACT-

SIGMOD Symposium on Principles of

Database Systems. Los Angeles. Califor-
nia. March 1982.

Potier, D.. and LeBlanc. P.. “Analysis
of Locking Policies in Database Manage-

ment Systems’ * . Communications of the

ACM 23(10). October 1980.

Reed. D., “Naming and Synchronization

in a Decentralized Computer System”.
Ph.D. Thesis. Department of Electrical

Engineering and Computer Science, Mas-

sachusetts Institute of Technology. 1978.

Ries. D.. and Stonebraker. M., *‘Effects
of Locking Granularity on Database

Management System Performance’ ’ .
ACM Transactions on Database Systems
2(3), September 1977.

Ries. D.. “The Effects of Concurrency

Control on Database Management System

Performance”. Ph.D. Thesis. Depart-

ment of Electrical Engineering and Com-

puter Science. University of California at

Berkeley. 1979.

Ries. D.. and Stonebraker. M.. “Lock-
ing Granularity Revisited”. ACM Tran-

sactions on Database Systems 4(2). June

1979.

Robinson. J., * * Design of Concurrency

Controls for Transaction Processing Sys-

terns”, Ph.D. Thesis. Department of

Computer Science. Carnegie-Mellon

University. 1982.

[Robi82bl

[Robi82cl

(Rose781

[Sarg76)

[Silb8Oj

[Ston79]

(Thorn791

[Ullm83]

[Wolf831

Robinson. J.. *‘Separating Policy from

Correcmess in Concurrency Control

Design”, Report No. RC9308. IBM Tho-

mas J. Watson Research Center. March

1982.

Robinson, J.. “Experiments with Tran-

saction Processing on a Multi-

Microprocessor”. Report No. RC9725.
IBM Thomas J. Watson Research Center.

December 1982.

Rosenkrantz. D.. Stearns. R.. and Lewis.

P . . “System Level Concurrency Control

for Distributed Database Systems”. ACM

Transactions on Database Systems 3(2),

June 1978.

Sargent. R.. “Statistical Analysis of

Simulation Output Data”. Proceedings of

the Fourth Annual Symposium on the

Simulation of Computer Systems. August

1976.

Silberschatz. A., and Kedem. Z.. “Con-

sistency in Hierarchical Database Sys-

tems”. Journal of the ACM 27(I). Janu-

ary 1980.

Stonebraker. M.. .‘Concurrency Control
and Consistency of Multiple Copies of

Data in Distributed INGRES”. IEEE

Transactions on Software Engineering

X3). May 1979.

Thomas. R.. “A Majority Consensus

Approach to Concurrency Control for

Multiple Copy Databases”. ACM Tran-
sactions on Database Systems 4(2), June
1979.

Ullman. J.. Principles of Database Sys-
tems, Second Edition. Computer Science
Press, Rockville. Maryland. 1983.

Wolff. R.. personal communication.

Singapore, August, 1994
Proceedings of the Tenth International

Conference on Very Large Data Bases.

118

