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Abstract

This paper analyzes two key issues for the empirical implementation of parametric seasonal unit

root tests, namely GLS versus OLS detrending and the selection of the lag augmentation polyno-

mial. Through an extensive Monte Carlo analysis, the performance of a battery of lag selection

techniques is analyzed, including a new extension of modi�ed information criteria for the seasonal

unit root context. All procedures are applied for both OLS and GLS detrending for a range of data

generating processes, also including an examination of hybrid OLS-GLS detrending in conjunction

with (seasonal) modi�ed AIC lag selection. An application to quarterly US industrial production

indices illustrates the practical implications of choices made.

Keywords: seasonal unit root; HEGY tests; data-based lag selection; OLS and GLS detrending.

JEL codes: C22; C52.

1 Introduction

In their seminal paper, Hylleberg, Engle, Granger and Yoo (1990) [HEGY] develop seasonal unit root

tests which enable separate regression-based t- and F -tests to be conducted for unit roots at the

zero, semi-annual and annual frequencies for quarterly data. Many subsequent papers build on this

approach, including Ghysels, Lee and Noh (1994), who extend the analysis to consider joint tests for

unit roots at the zero and all seasonal frequencies, and Smith, Taylor and del Barrio Castro (2009)

who generalise the approach to the case of an arbitrary seasonal data frequency.

�Tom�as del Barrio Castro gratefully acknowledges �nancial support from Ministerio de Educaci�on y Ciencia ECO2011-

23934. Address correspondence to: Robert Taylor, School of Economics, University of Nottingham, Nottingham, NG7

2RD, UK. E-mail: Robert.Taylor@nottingham.ac.uk
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The original HEGY analysis assumes that the time series under study follows a �nite-order au-

toregressive (AR) process, with empirical researchers almost invariably taking the same stance when

they employ these tests. However, the AR assumption contrasts with other literature concerned with

seasonal time series. For example, seasonal adjustment is based largely on models that have impor-

tant moving average (MA) components; see Cleveland and Tiao (1976) or Burridge and Wallis (1984).

Although it has been widely conjectured that an AR approximation can be applied when conduct-

ing HEGY tests for an ARMA process (Taylor, 1997), the required theoretical justi�cation has been

provided only very recently by del Barrio Castro and Osborn (2011) and del Barrio Castro, Osborn

and Taylor (2012) [COT]. More speci�cally, COT show that popular tests based on the HEGY ap-

proach remain valid for a general ARMA process, provided that the order of the AR lag augmentation

polynomial increases in proportion with the sample size at a suitable rate.

Nevertheless, empirical practice requires matters to be taken a stage further, since data-dependent

methods are used to select the lag augmentation polynomial. To our knowledge, there has been no

systematic study of the performance of di�erent lag selection methods in this context. The present

paper �lls this important gap, using Monte Carlo methods to explore the small sample performance of

a variety of methods for determining the lags to be included in a HEGY test regression. In particular,

we examine sequential test procedures similar to those employed by Hall (1994) and Ng and Perron

(1995), seasonal variants of these as suggested by Rodrigues and Taylor (2004) and Beaulieu and Miron

(1993), and methods based on information criteria including AIC, BIC and a seasonal extension we

develop for the modi�ed information criteria [MAIC, MBIC] of Ng and Perron (2001). Further, in

addition to allowing for deterministic components in the HEGY regression, we explore whether or not

seasonal generalised least squares (GLS) detrending, developed by Rodrigues and Taylor (2007) from

the GLS approach of Elliot, Rothenberg and Stock (1996), improves results. In this last context, we

also examine whether the approach of Perron and Qu (2007), whereby lag speci�cation is undertaken

via modi�ed information criteria in an OLS context prior to unit root testing based on GLS detrending,

improves the power of GLS tests for alternatives distant from the respective seasonal unit root null.

Our Monte Carlo analysis allows us to make recommendations about how seasonal unit root tests

should be applied in practice. An empirical application to quarterly US industrial production series

shows how decisions made about lag speci�cation and detrending can in
uence the conclusions drawn

about the presence of (seasonal) unit roots. Both of these decisions are seen to be important in

practice.

The remainder of the paper is organised as follows. Section 2 outlines the seasonal model for

quarterly data, de�nes the hypotheses of interest within that model, brie
y reviews the augmented

HEGY-type seasonal unit root tests and their limiting null distributions, then discusses lag selection

and detrending methods. Section 3 presents our investigation of the �nite sample performance of

HEGY-type tests based on a variety of data-based lag selection methods for series driven by both MA

and AR shocks. In addition to size and local power investigations of conventional ordinary least squares

(OLS) detrending versus GLS detrending, this section examines power issues arising from OLS, GLS

and hybrid OLS-GLS detrending for DGPs distant from the unit root null. The empirical application
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to US industrial production indices is the focus of section 4, while section 5 concludes. Throughout

this paper we study HEGY-type tests at the quarterly data frequency, since the vast majority of

empirical applications of seasonal unit root tests employ such data. However, the recommendations

we make will also be useful in the context of other data frequencies.

2 The Seasonal Unit Root Test Framework

This section considers the model and hypotheses of interest, together with lag speci�cation and de-

trending methods that may be employed when testing for the presence of unit roots in the seasonal

context.

2.1 The Seasonal Model and Unit Root Hypotheses

Consider a univariate seasonal time-series process fx4t+sg observed at the quarterly frequency from

the data generating process (DGP):

x4t+s = �4t+s + y4t+s; s = �3; :::; 0; t = 1; 2; : : : ; N (2.1a)

�(L)y4t+s = u4t+s (2.1b)

u4t+s =  (L)"4t+s (2.1c)

where �(z) := 1�
P4

j=1 �
�

jz
j , is an AR(4) polynomial in the conventional lag operator, L. The term

�4t+s := 
0Z4t+s in (2.1a) is purely deterministic. The DGP of (2.1a) to (2.1c) can be generalised to

any seasonal aspect S; see, for example, Smith, Taylor and del Barrio Castro (2009) or COT. Further,

Smith et al. (2009) present a typology of six cases of interest for �4t+s, namely: no deterministic

component; non-seasonal intercept; non-seasonal intercept and non-seasonal trend; seasonal intercepts;

seasonal intercepts and non-seasonal trend, and seasonal intercepts and seasonal trends.

The error process u4t+s in (2.1c) is a linear process with  (z) := 1 +
P

1

j=1  jz
j . Following

COT and Chang and Park (2002), the polynomial  (z) is assumed to satisfy  (z) 6= 0 for all

jzj � 1 and
P

1

j=1 jjj
�
�� j

�� < 1 for some � � 1. Thus, u4t+s admits the causal and invertible

ARMA(p; q) representation, �(L)u4t+s = �(L)"4t+s, such that all the roots of � (z) := 1 �
Pp

i=1 �pz
i

and � (z) := 1 �
Pq

i=1 �iz
i lie strictly outside the unit circle. The martingale di�erence innovation

sequence ("4t+s;F4t+s) with �ltration (F4t+s) satis�es E
�
"24t+sjF4t+s�1

�
= �2 and E j"4t+sj

r < K with

r � 4, where K is some constant depending only upon r. The homoskedasticity assumed here can be

weakened to allow conditional heteroscedasticity, at the cost of a stronger being required on the lag

truncation in the HEGY test; see the discussion in COT and subsection 2.2 below.

Our focus is on tests for seasonal unit roots in �(L) of (2.1b); i.e., the null hypothesis of interest is

H0 : �(L) = 1� L4 =: �4: (2.2)

Under H0 of (2.2), the DGP for fx4t+sg is often referred to as a seasonally integrated process. Fac-

torizing the AR(4) polynomial �(L) as �(L) =
Q

2
j=0!j(L), where !0(L) := (1� �0L) associates the
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parameter �0 with the zero frequency, !1(L) := [1 + 2�1L +(�21 + �21)L
2] corresponds to the annual

seasonal frequency �=2, with associated parameters �1 and �1, and !2(L) := (1 + �2L) associates

the parameter �2 with the Nyquist (or semi-annual) frequency �. Consequently H0 of (2.2) may be

commensurately partitioned as H0 = \2j=0H0;j , where

H0;i : �i = 1; i = 0; 2; and H0;1 : �1 = 1; �1 = 0: (2.3)

The hypothesis H0;0 corresponds to a unit root at the zero frequency, H0;2 yields a unit root at the

semi-annual frequency and a pair of complex conjugate unit roots at frequency �=2 is obtained under

H0;1. The alternative hypothesisH1 is of stationarity at one or more of the zero or seasonal frequencies;

that is, H1 = [2j=0H1;j , where

H1;i : �i < 1; i = 0; 2; and H1;1 : �
2
1 + �21 < 1: (2.4)

Consequently, the maintained hypothesis H0 [H1 excludes all unit roots, except for a possible single

unit root at each of the zero and Nyquist frequencies and a pair of complex conjugate unit roots at

the harmonic seasonal frequency �=2. Explosive roots in �(L) are also excluded.

2.2 Augmented HEGY Tests

Under the assumption that the DGP of (2.1a) and (2.1b) is of a purely AR form, HEGY develop a

seasonal unit root test regression for quarterly data1, which can be written as

�4x4t+s = �0x0;4t+s + �2x2;4t+s + �1x1;4t+s + ��1x
�

1;4t+s + ��4t+s +
kX

j=1

dj�4x4t+s�j + ek4t+s (2.5)

where

x0;4t+s :=
3X

j=0

x4t+s�j�1; x2;4t+s :=
3X

j=0

(�1)j+1x4t+s�j�1; (2.6a)

x1;4t+s :=� x4t+s�2 + x4t+s�4; x�1;4t+s := �x4t+s�1 + x4t+s�3 (2.6b)

and ��4t+s := 
�0 Z4t+s, so that the deterministic component of (2.1a) is appropriately speci�ed. It is

important to notice, as shown in Smith et al. (2009), that the inclusion of seasonal intercepts renders

the resulting unit root tests similar with respect to the initial conditions y1�S ; :::; y0. The regression

(2.5) is estimated by OLS over observations 4t+ s = k+ 1; :::; T . The superscript k in ek4t+s indicates

that this process depends on the order of augmentation applied, since our analysis does not assume

either that the test regression employs the true AR order nor, indeed, that the disturbances in the

DGP (2.1c) are of an AR form.

Tests of the hypotheses (2.3) for the presence (or otherwise) of a unit root at the zero and Nyquist

frequencies may be conducted using conventional lower tailed regression t-statistics, denoted t0 and

1The test regression and HEGY-type tests corresponding to (2.5) for a general seasonal aspect S are presented by

Smith and Taylor (1999) and COT, among others.
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t2, for the exclusion of x0;4t+s and x2;4t+s, respectively, from (2.5). Similarly, the hypothesis of a

pair of complex unit roots at the annual seasonal frequency may be examined using the lower-tailed

t1 and two-tailed t�1 regression t-statistics for the exclusion of x1;4t+s and x
�

1;4t+s, respectively, or by

the (upper-tailed) regression F -test, denoted F1, for the exclusion of both x1;4t+s and x�1;4t+s from

(2.5). Ghysels, Lee and Noh (1994) and Smith et al. (2009) also consider joint frequency (upper-

tail) regression F -tests from (2.5), namely F12 for the exclusion of x2;4t+s, together with x1;4t+s and

x�1;4t+s, and F012 for the exclusion of x0;4t+s, x2;4t+s, and x1;4t+s and x
�

1;4t+s. The former tests the null

hypothesis of unit roots at all seasonal frequencies, while the latter tests the overall null, namely H0

of (2.2).

Our analysis studies strategies to specify the AR augmentation order k in (2.5) such that asymp-

totically valid and empirically reliable seasonal unit root tests can be applied. As discussed by COT

(see, in particular, their Remark 9), data-based augmentation lag selection procedures are asymptot-

ically justi�ed if the truncation lag is allowed to increase with the sample size, such that k !1 with

k = o([T= log T ]1=2) as T !1 when the innovations in the DGP (2.1c) are conditionally homoskedas-

tic. It may be noted that the faster rate k = o(T 1=2) is su�cient for the asymptotic validity of the

HEGY tests, but this does not guarantee the consistency of the estimators of the coe�cients, dj ,

j = 1; :::; k, on the lagged dependent variables; see COT and the analogous discussion in Chang and

Park (2002) for the conventional ADF test. However, as also noted by COT (Remark 9), a slower rate

of k = o(T 1=3) rate is required for data-based lag selection in (2.5) when conditional heteroscedasticity

is permitted in the innovations of (2.1c).

Hence, provided that the maximum k considered in relation to the sample size T is appropriate

in the context of the innovation properties, empirical lag selection procedures can be applied and will

result in asymptotic null distributions for the HEGY test statistics identical to those for a DGP where

u4t+s in (2.1b) is serially uncorrelated and conditionally homoscedastic. In other words, the limiting

null distributions of the t0, t2, F1, F12 and F012 statistics from (2.5) are then invariant to the serial

correlation nuisance parameters f jg
1

j=1 which characterise the serial dependence of u4t+s in the DGP

(2.1c). Consequently, for the case of quarterly data the critical values given in Smith and Taylor (1998,

pp.279-280) can be used, with analogous results applying for other values of S. As in Burridge and

Taylor (2001), the regression t-statistics for the exclusion of x1;4t+s and x
�

1;4t+s depend on the form

of the serial correlation in the DGP and these should not be used in any case where augmentation is

required.

2.3 Lag Selection Methods

Implementation of the HEGY test requires the augmentation order k of (2.5) to be speci�ed. We con-

sider a variety of data-based methods for this purpose, including both information criteria and testing

strategies. In relation to the former, we employ the standard information criteria, AIC and BIC.

Further, following Ng and Perron (2001), modi�ed AIC and BIC [MAIC and MBIC, respectively]

are developed for the seasonal unit root context and included in our Monte Carlo comparisons.
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2.3.1 Information Criteria

Under the zero frequency unit root null hypothesis of the ADF test, Ng and Perron (2001) extend the

usual information criteria to incorporate the distance from the unit root null; they argue that their

additional term is particularly important to account for the presence of a negatively autocorrelated

MA process under the null. This leads them to consider the class of modi�ed information criteria

which select k to minimise

MIC(k) := ln(�̂2k) +
CT [�T (k) + k]

T � kmax
(2.7)

where �̂2k := RSSk=(T � kmax) in which RSSk is the residual sum of squares obtained from the unit

root test regression augmented with k lags of the dependent variable and kmax is the maximum value

of k considered, CT is de�ned by the speci�c criterion (CT := 2 for MAIC and CT := ln(T � kmax)

for MBIC), and �T (k) is sample dependent. The standard information criteria AIC and BIC set

�T (k) = 0.

The approach of Ng and Perron (2001, pp.1528-1529) is based on Kulback distance as embedded

in AIC. To extend this to the seasonal unit root null hypothesis of (2.2), consider the special case

of the HEGY regression (2.5) with no determinsitic component (��4t+s = 0) and de�ne the vector of

regressors as X4s+t := [x0;4t+s; x2;4t+s; x1;4t+s; x
�

1;4t+s; �4x4t+s�1;, :::;, �4x4t+s�k]
0 with corresponding

coe�cient vector �(k) := [�0; �2; �1; �
�

1; d1; :::; dk]
0. Under the overall null hypothesis of (2.2), this

latter vector is �0(k) := [0; 0; 0; 0; d1; :::; dk]
0. An empirical measure of the Kulback distance of

the parametric model, with estimated coe�cient vector b�(k); from the true model under the null

hypothesis is given by

	T (k) :=
�
1=�̂2k

� �b�(k)� �0(k)
�
0X

t

X
s

X4t+sX
0

4t+s

�b�(k)� �0(k)
�

(2.8)

where the double sum in (2.8) corresponds to observations kmax+1; :::; T used for estimation. Noting

the asymptotic orthogonality between the regressors that are integrated and those that are stationary

under the null hypothesis and also the mutual (asymptotic) orthogonality of the regressors xj;4t+s,

j = 0; 1; 2, and x�1;4t+s in (2.5), leads to 	T (k) = �T (k) + �2k + op(1), with

�T (k) :=
�
�̂2k
�
�1

0@ 2X
j=0

"
�̂2j
X
t

X
s

(xj;4t+s)
2

#
+

"
(�̂�1)

2
X
t

X
s

�
x�1;4t+s

�2#1A (2.9)

where the chi-square variable with k degrees of freedom, �2k, is asymptotically independent of �T (k).

Analogously to Ng and Perron (2001), the criterion MAIC for the quarterly augmented HEGY sea-

sonal unit root test regression replaces k (namely the expected value of �2k), as used in the standard

version of AIC, by �T (k) + k with �T (k) de�ned by (2.9). This �T (k) can also be employed in (2.7)

to de�ne MBIC.

In practice, the test regression typically includes a deterministic component ��4t+s, which needs to

be removed when computing (2.9). Therefore, de�ne bx4t+s := x4t+s� (b
�OLS)
0Z4t+s in which b
�OLS is

the estimated coe�cient vector in a regression of x4t+s on Z4t+s: Then bxj;4t+s , j = 0; 1; 2 and bx�1;4t+s,
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obtained by applying the HEGY transformations (2.6a) and (2.6b), respectively, to the detrended

observations, are employed for the computation of (2.9) when used in the context of the HEGY

rgression (2.5).

In the light of the �nding of Hall (1994) that using an information criterion to select the maximum

lag k over k = 0; 1; :::; kmax may lead to size distortions in cases (such as the seasonal context) where

there are \gaps" in the dj coe�cients, we propose an alternative sequential method (labelled in the

tables as SAIC, SBIC, SMAIC, SMBIC). This starts by computing the relevant criterion for

k = kmax; with the value then computed with each individual lag 1; :::; kmax deleted, one-by-one. If

the criterion is improved by dropping any lag, the single lag that has the least e�ect on the criterion is

removed from (2.5), and the procedure is repeated from this new speci�cation. This procedure stops

when no improvement in the criterion results from deleting any additional individual lag.

2.3.2 Sequential Testing

In addition to information criteria procedures, sequential methods based on the signi�cance of indi-

vidual lag coe�cients are also examined, using 5% and 10% critical values from the standard normal

distribution. Following Ng and Perron (1995) and Hall (1994), one procedure \tests down" from

kmax to determine the maximum lag k to be employed (with no gaps); these methods are denoted

as t-sq(5%) and t-sq(10%), respectively2. Results are also reported for the approach proposed by

Beaulieu and Miron (1993), where (2.5) is estimated for given maximum lag order kmax and all lagged

values with coe�cients individually insigni�cant at the 5% or 10% level are deleted in a single step;

we denote these as t-bm(5%) and t-bm(10%). Finally, the sequential method used in Rodrigues and

Taylor (2004) is employed, where at each stage the least signi�cant of any lagged dependent variable

coe�cient is deleted, until all remaining coe�cients are signi�cant [t-rt(5%) and t-rt(10%)].

2.4 Seasonal GLS Detrending

The HEGY approach of (2.5) includes any deterministic terms required in the test regression itself.

However, in the context of conventional zero frequency unit root tests, Elliott et al. (1996) show

that important power gains can result if prior detrending is undertaken to purge the series of the

deterministic component under local to unit root asymptotics, by application of GLS detrending.

The unit root test regression is then estimated using the detrended data without any deterministic

component. Indeed, the modi�ed information criteria of Ng and Perron (2001) were initially proposed

in this context.

Rodrigues and Taylor (2007) study optimal tests for seasonal unit roots, with these giving rise to

GLS-detrended tests which extend the zero frequency tests of Elliott et al. (1996) and also those of

Gregoir (2006) for a pair of complex unit roots. GLS detrending (for the quarterly case) is achieved by

2For this procedure, and also those suggested by Beaulieu and Miron (1993) and Rodrigues and Taylor (2004a), results

were also obtained for a signi�cance level of 15%. These are excluded to conserve space, but exhibit qualitatively similar

patterns to the corresponding 10% ones.
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regressing the seasonal quasi-di�erence x�c vector on the quasi-di�erence Z�c matrix for the deterministic

component, where these are de�ned using

x�c :=
�
x1; x2 � ��c1x1; x3 � ��c1x2 � ��c2x1; : : : ; x4 � ��c1x3 � ��c2x2 � ��c3x1;�4x5; : : : ;�4xT

�
0

Z�c :=
�
Z1; Z2 � ��c1Z1; Z3 � ��c1Z2 � ��c2Z1; Z4 � ��c1Z3 � ��c2Z2 � ��c3Z1;

�4Z5; : : : ; �4Z
0

T

�
(2.10)

where

�4 :=
h
1�

�
1�

�c0
T

�
L
i h
1 +

�
1�

�c2
T

�
L
i �

1 +
�
1�

�c1
T

�2
L2
�
=

0@1�
4X

j=1

��cjL
j

1A :

When ��4t+s allows (constant) seasonal means, the analyses of Elliott et al. (1996) and Gregoir (2006)

for unit root tests at the 5% level lead Rodrigues and Taylor (2007) to propose values of �c0 = �c2 = 7

and �c1 = 3:75, while trending seasonal means in ��4t+s (so that Z4t+4 contains both seasonally varying

intercepts and trends) lead to the recommendations �c0 = �c2 = 13:5 and �c1 = 8:65. Other cases are also

possible, such as seasonal intercepts but a common trend over quarters (�c0 = 13:5, �c2 = 7; �c1 = 3:75).

Denoting as e
�GLS the estimated coe�cient vector from the regression using the transformed data of

(2.10), the GLS detrended series is then given by ex4t+s := x4t+s� (e
�GLS)
0 Z4t+s. For an augmentation

order k, GLS detrended HEGY tests are applied using the test regression

�4ex4t+s = �0ex0;4t+s + �2ex2;4t+s + �1ex1;4t+s + ��1ex�1;4t+s +
kX

j=1

dj�4ex4t+s�j + eek4t+s (2.11)

where ex0;4t+s, ex2;4t+s, ex1;4t+s and ex�1;4t+s are de�ned analogously to (2.6a) and (2.6b), as appropriate.

Rodrigues and Taylor (2007) present critical values for the tests of interest, namely for t0; t2, F1, F12

and F012. This methodology is employed to deliver seasonal unit root tests with GLS detrending, with

the lag speci�cation for k made in the context of (2.11) using all the information criteria approaches

and testing down strategies as discussed in the preceding subsection. For the modi�ed information

criteria, and analogously to Ng and Perron (2001), the additional penalty term �T (k) of (2.9) is

computed using GLS detrended data.

However, Perron and Qu (2007) note that employing GLS detrending with lags speci�ed by modi-

�ed information criteria can result in conventional zero frequency unit root tests with poor power for

alternatives that are not close to the null. To counter this, they recommend that although testing

be conducted using the GLS detrended data, the augmentation order k be speci�ed using OLS de-

trended series. We investigate this methodology for the modi�ed criteria MAIC, MBIC, SMAIC

and SMBIC: More explicitly, lags are speci�ed using each criterion in a regression entirely analogous

to (2.11), except that OLS detrended data bx4t+s = x4t+s� (b
�OLS)
0Z4t+s are employed in place of ex4t+s

and with bx0;4t+s, bx2;4t+s, bx1;4t+s and bx�1;4t+s again de�ned in a manner corresponding to (2.6a) and

(2.6b), as appropriate, with OLS-detrended data also used to de�ne the additional penalty �T (k) of

(2.9). Once k is speci�ed (together with any \gaps" for SMAIC and SMBIC), the GLS transformed
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variables of (2.10) are used to compute the unit root test statistics in the context of (2.11). Follow-

ing Perron and Qu (2007), the discussion below refers to this as OLS-GLS detrending; unless stated

otherwise, GLS detrending employs the Rodrigues and Taylor (2007) procedure with lag speci�cation

made in the context of (2.11).

3 Finite Sample Comparison

After setting out our Monte Carlo methodology, the following subsections discuss the results for the

�nite sample size and power delivered by the seasonal unit root test procedures of section 2, also

drawing out implications for empirical analysis.

3.1 Methodology

Data are generated according to the model3

x4t+s = (1� c=N)x4(t�1)+s + u4t+s = �4x4(t�1)+s + u4t+s; s = �3; :::; 0; t = 1; :::; N (3.1)

with initial conditions set to zero for samples with N = 60, 100 (T = 240 and 400). Size results are

obtained with c = 0 and size-adjusted local power with c = 5; 10; 20; as discussed in Rodrigues and

Taylor (2004), the process is stationary at both the zero and each seasonal frequency when c > 0. In

addition to white noise innovations, we consider serial correlation in u4t+s of both MA and AR forms,

with these being special cases of

u4t+s = (1� �L)
�
1��L4

�
"4t+s (3.2)

and �
1� �L4

�
u4t+s = "4t+s (3.3)

respectively, where "4t+s � NID(0; 1). For (3.2), our Monte Carlo investigation examines � = �0:8

with � = 0 and � = �0:5 with � = 0. For (3.3), we consider � = �0:5: In addition to size-adjusted

local power, a fuller investigation of the power of GLS versus OLS detrending, including the OLS-GLS

procedure of Perron and Qu (2007), is undertaken for lag speci�cation methods based onMAIC using

white noise and seasonal MA innovations.

Results are reported for the t0, t2, F1, F12 and F012 test statistics, with these obtained from both the

quarterly HEGY regression of (2.5) and using the seasonal GLS detrended test regression of (2.11),

with these labelled as OLS and GLS, respectively, in the tables. In both cases, the deterministic

component allows seasonal intercepts and a zero frequency trend, as commonly applied in empirical

analyses for seasonal data. Lag selection is based on the methodologies outlined in subsection 2.3. As

discussed in subsection 2.4, the results using the modi�ed information criteria after GLS detrending are

3We are grateful to a referee who suggested the inclusion of some DGPs where unit roots were present at some but

not all (zero and seasonal) frequencies of interest. However, an extension of the analysis here found that DGPs with

local departures from the unit root null at some frequencies yielded very similar results overall to those reported.
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presented both for lag selection made in the test regression (2.11) and in the corresponding regression

for OLS detrended data; the latter is the OLS-GLS procedure and is indicated in the tables by the

su�x PQ. To conserve space, results are not reported for the sequential BIC procedures (namely,

SBIC, SMBIC and SMBIC PQ), but these reveal similar patterns to the corresponding sequential

AIC procedures shown.

The maximum initial lag is set as kmax := b` (4N=100)1=4c with ` = 4 and ` = 12, as employed

by Schwert (1989) and others. When applied for increasing T , this rate satis�es k = o([T= log T ]1=2);

which is discussed in subsection 2.2 as being su�cient to yield asymptotically valid data-based lag

selection for testing seasonal unit roots in the HEGY test regression when the DGP innovation process

is conditionally homoscedastic, as in our case4. In practice, our focus is on kmax de�ned with ` = 12,

which is also used by Ng and Perron (2001) for the modi�ed information criteria. For the realistic

case in applied work of N = 60 years of data, ` = 12 implies the use of a maximum augmentation lag

of 14 quarters, whereas ` = 4 leads to 4 lags being considered.

All unit root tests employ a nominal 5% signi�cance level, using asymptotic critical values.5 Results

for empirical size (c = 0) are reported in Tables 1 to 3 (and discussed in subsection 3.2), with

corresponding results for size-adjusted local power (c = 5; 10 and 20) in Tables 4 to 6 (discussed in

subsection 3.3). These employ the typical postwar sample size of N = 60 years of data, which is also

e�ectively that used in the empirical application of section 4; analogous results for N = 100 are in the

Appendix. The results in all tables are based on 5000 replications. Finally, subsection 3.4 focuses on

how detrending options (OLS, GLS and OLS-GLS) perform in power terms over the range of values

of c from 0 to N when MAIC is employed for lag speci�cation.

3.2 Size Properties

Although the DGP employed for Table 1 is a seasonal random walk with IID innovations, and hence

no lag augmentation is required, the results show a number of interesting characteristics. Firstly, the

parameterisations resulting from the use of modi�ed information criteria (that is, MAIC, MBIC and

SMAIC) lead to under-sized tests in this case when applied in the HEGY test regression (2.5), with

the sequential SMAIC being particularly poorly sized with ` = 12. On the other hand, conventional

AIC and BIC perform well. Secondly, the use of individual t-ratios to specify the lag length results

in good size with ` = 4 in (2.5), but over-sizing in the more highly parameterised models resulting

from ` = 12. Thirdly, GLS detrended statistics are often modestly over-sized, although under-sizing

results when the sequential modi�ed information criteria are applied with ` = 12; compared with GLS

detrending, the OLS-GLS (or PQ) procedure of Perron and Qu (2007) has e�ectively no impact on size

for the modi�ed information criteria methods in Table 1. Fourthly, applying hypothesis tests based on

4Applied in the context of increasing sample size, this kmax satis�es k = o(T 1=3) and hence also yields valid asymptotic

inference in (2.5) when the innovation process is conditionally heteroscedastic. Although we experimented with a variety

of non-IID martingale di�erence speci�cations for "4t+s in the context of the conventional HEGY test regression, the

results were almost identical to those reported.
5These critical values were obtained by direct simulation using 100; 000 replications and T = 2000.
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t-ratios for lag selection works better in the original HEGY regression than for GLS detrending, with

the empirical size for the overall F012 test in the latter being around twice the nominal size. Finally,

as anticipated, and although kmax increases with N , empirical size typically improves when the larger

sample is employed. This applies not only for the seasonal random walk (compare Appendix Table

A.1 with Table 1), but also for the vast majority of other comparisons across N = 60 and N = 100,

for a given DGP and lag selection method.

Subsequent size results are presented only for ` = 12. Not surprisingly, ` = 4 results in better size

than those shown when the true process is an autoregression of order less than kmax, but can perform

very poorly when the DGP has an MA form or when kmax under-speci�es the true AR order.

Table 2 examines MA disturbance processes. A positively autocorrelated MA(1) with coe�cient

� = �0:8; considered in Panel A, is fairly close to cancellation with the AR unit root �1, hence

distorting inference at the Nyquist frequency (t2, together with F12 and F012). Indeed, the use of BIC

leads to a rejection probability of 50 percent at this frequency with both trending options. This near-

cancellation is the situation for which modi�ed criteria are designed and since higher augmentation

improves the approximation to this process, MAIC performs relatively well at the Nyquist frequency

and sequential lag selection (SMAIC) further improves this performance for the HEGY test regression

(2.5), with empirical sizes of 0.072 and 0.048, respectively, in Table 2 (Panel A). AlthoughMAIC and

SMAIC also perform better than other lag selection methods for t2 with GLS or OLS-GLS detrending,

the empirical sizes are nevertheless more than double their nominal sizes. At other frequencies, tests

based on modi�ed information criteria are under-sized in the HEGY (OLS detrending) approach,

and this is sometimes substantial (note especially the empirical size of 0:005 for t0 using SMAIC).

However, the size for t0 and F1 is improved with GLS or OLS-GLS detrending. Although the use of

coe�cient tests for lag selection also yield quite good size for the unit root tests at the zero and annual

frequencies in the HEGY regression, they are very substantially over-sized for the Nyquist frequency

test, with t-sq(10%) being the best of this group when used in (2.5). Performances of the tests at each

of these seasonal frequencies is re
ected in the sizes of the joint tests F12 and F012, with those using

MAIC=MBIC being well-sized in the HEGY regression due to o�-setting under- and over-sizing of

the individual frequency tests6.

Recognising that (1� 0:5L4) = (1� 0:84L)(1 + 0:84L)(1 + 0:71L2), the patterns implied by near-

cancellation for the simple MA(1) process of Panel A carry over to the seasonal MA with � = 0:5 in

Panel B of Table 2, where tests at all frequencies are prone to over-sizing and the greatest distortions

apply when BIC is used. The most reliable size overall is obtained using MAIC in the HEGY

regression and SMAIC with GLS detrending, with the former often having the best size performance

for tests at individual frequencies and the latter for the overall joint statistic F012. It is also notable

6We also investigated the performance of these lag selection criteria in the context of the HEGY test regression (2.5)

for the MA(1) case of � = 0:8; which interchanges the roles of the zero and Nyquist frequencies. As anticipated, this leads

to over-sizing for t0, as found by Hall (1994) and Ng and Perron (2001) for the Dickey-Fuller test. Analogous results

were also found for the MA(2) u4t+s = (1� 0:64L2)"4t+s, where near-cancellation applies at the Nyquist frequency and

hence the over-sizing relates to F1.
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that, compared with GLS detrending, the PQ (that is, OLS-GLS) version can result in a small

deterioration in size performance for the modi�ed information criteria in Panel B. The seasonal MA

with � = �0:5 in Panel C of Table 2 does not approximate any AR unit root in the DGP, and

the patterns of Panel B of Table 1 largely carry over to this case. Nevertheless, compared with the

white noise disturbances in Table 1 (Panel B), size distortions are typically increased for the seasonal

MA with � = �0:5. This applies particularly for the information criteria methods, with MBIC or

SMAIC lag selection combined with OLS detrending leading to markedly under-sized tests for this

seasonal MA process. Perhaps surprisingly, across Panels B and C of Table 2, methods that allow

elimination of intermediate lags in the augmentation polynomial through hypothesis tests (t-bm and

t-rt) always lead to poorer size that the corresponding t-sq procedure that has no gaps, despite the

implied AR approximation having a seasonal form. Similarly, it is noteworthy that although SAIC

improves on AIC when � = 0:5, this sequential method does not have any evident size advantages

when � = �0:5. Further, such lag elimination can lead to very poor size for SMAIC, as already

noted.

The seasonal AR processes of Table 3 provide further evidence that intermediate lag elimination can

increase size distortions for tests, even when the true AR polynomials of (3.3) have some intermediate

zero coe�cients. This applies across SAIC; SMAIC, t-bm and t-rt and for both panels of the

table, in comparison with the corresponding procedures with no such intermediate lag elimination and

irrespective of the form of detrending. Indeed, the general patterns of results from Panel C of Table 2

are largely reproduced in the panels of Table 3, but (not surprisingly) with less marked size distortions

when the DGP is AR in form.

Finally, by comparing empirical size for N = 60 in Table 2 with the corresponding case with

N = 100 in Appendix Table A.2, it is evident that the larger sample size reduces the extent of

over-sizing in the former, but under-sizing is overall only modestly improved (compare, for example,

SMAIC in Panel C across these tables). It is also worth remarking that the often substantial under-

sizing shown by SMAIC in Table 3, especially when used in the HEGY regression, largely carries over

when the sample size increases in Appendix Table A.3. Otherwise, however, empirical size is reliable

for these seasonal AR processes when N = 100 years of data are available.

3.3 Size-Adjusted Local Power

Tables 4 to 6 mirror Tables 1 to 3, but now consider size-adjusted local power. The DGPs considered

with N = 60, the values of c = 5; 10 and 20 correspond to processes with seasonal AR coe�cients

�4 = 0:92, 0.83 and 0.67, respectively, in (3.1). Note that, due to space constraints, some methods

included in the size comparisons of earlier tables are now omitted. Speci�cally, under GLS detrending,

the tables show power for MBIC using only the PQ variant (namely the OLS-GLS procedure), since

this yields typically more powerful tests than lag speci�cation in the GLS regression itself, as illustrated

in Tables 4-6 by MAIC and SMAIC. Further, the impact on power of using a 5 percent signi�cance

level in testing down is indicated by results for t-sq(5%) compared with t-sq(10%), with power for
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other sequential methods included only for the 10 percent level7.

A glance at Table 4 con�rms that, when the innovations in (3.1) are white noise, GLS detrending

delivers substantial power gains against near-integrated processes (with c = 5; 10) compared with the

usual practice of accounting for deterministic components by including these in the HEGY regression

(2.5). Across all methods, lower power is achieved for t0 than t2 due to the tests allowing for a zero

frequency trend. Although higher (size-adjusted) power is typically achieved using ` = 4 in Panel A

(compared with Panel B), such a low maximum augmentation would not, in general, be recommended

due to potential size distortions for more general disturbance processes. It is also notable that the use

of the OLS-GLS procedure has relatively little impact on power relative to GLS detrending for the

low orders in Panel A, but increases power in Panel B especially for the single parameter statistics

t0 and t2 with MAIC lag selection and for alternatives further from the null hypothesis. However,

power is already high for the joint seasonal unit root tests F12 and F012 with c = 10 or 20 in both

panels of the table and for these the PQ variant has little e�ect.

Many of the patterns revealed in Table 4 carry over to the more general processes of Tables

5 and 6. In particular, GLS detrending typically leads to power gains over OLS for near-integrated

processes, which in Tables 5 and 6 are seen particularly in the joint test statistics F1, F12 and F012 and

apply irrespective of whether lag selection is undertaken through an information criterion or testing

approach. The power gains for t2 from GLS detrending are also substantial when c = 5; 10, except in

Panels A and B of Table 5. The sometimes substantial power loss exhibited by GLS detrending in these

latter cases occurs when the root of the MA disturbance process at the Nyquist frequency is close to

cancelling with the corresponding AR root and tend to be more severe as distance from the unit root

null increases. However, this power loss is mitigated in the case of MAIC when OLS-GLS detrending

is employed, and this is investigated further in the following subsection. Across both Tables 5 and 6,

and in line with the white noise processes of Table 4, relatively modest (if any) size-adjusted power

gains over OLS typically apply for the zero frequency statistic t0 with GLS detrending, apparently due

to the inclusion of a zero frequency trend component. Away from the unit root null (represented by

c = 20), the value of OLS-GLS over GLS detrending with MAIC or SMAIC lag selection is seen for

the seasonal MA process with � = 0:5 (Panel B of Table 5), but little or no power gains are generally

evident when no near-cancellation applies across (3.1), namely in Panel C of Table 5 and both panels

of Table 6.

Although the use of a 5% (rather than 10%) signi�cance level for lag selection based on the t-sq

testing approach improves the power of tests a little, parsiminony does not always improve size-

adjusted power for information criteria lag speci�cation methods. For example, seasonal unit root

tests with AIC lag speci�cation have higher power than those using BIC in Panel A of Table 6

when c = 20. Nevertheless, the use of MAIC or MBIC almost always leads to tests with lower

size-adjusted power than AIC or BIC (as appropriate); indeed these modi�ed criteria lead to some

results where power is less than size (see particularly Panel A of Table 6). The sequential approaches

7The results for other cases are available on request.
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are designed to improve power by eliminating redundant interediate lags, and this is clearly occurs for

t-bm and t-rt compared with t-sq. On the other hand, however, SAIC is not reliable in yielding power

improvements relative to AIC. Perron and Qu (2007) discuss the problem that MAIC can be prone

to power reversal as c increases, and this is seen for size-adjusted power for both MAIC and SMAIC

for the positively autocorrelated seasonal AR process of Table 6 Panel A and also for SMAIC in

Table 5 Panel C (positively autocorrelated seasonal MA). Power reversal issues are considered further

in the next subsection.

The results of Appendix Tables A.4 to A.6, which correspond to Tables 4 to 6 but employ a

sample size of N = 100 years, overall exhibit similar patterns to those just discussed. This is the case

because we use local-to-unity DGPs, so that power is largely constant for N = 60; 100. However, the

power reversal problem for MAIC and SMAIC does not occur for positively autocorrelated seasonal

processes with the larger sample size in Appendix Tables A.5 (Panel C) and A.6 (Panel A). It is also

noteworthy that there remain cases in Panel A of Table A.6 where MBIC leads to tests with power

less than size, with this occuring for the zero frequency test with all detrending methods8.

3.4 MAIC Power Functions

The results in the tables con�rm that the size and power of seasonal unit root tests depend on the

treatment of the deterministic component, in addition to the lag selection method employed, and that

relative performance can change with distance from the unit root null hypothesis. Therefore, the

present subsection further examines the implications of the treatment of �4t+s for the zero, Nyquist

and annual frequency tests in Figures 1, 2 and 3, respectively. In particular, we investigate whether

the OLS-GLS detrending method of Perron and Qu (2007) yields improved power performance relative

to GLS detrending for DGPs away from the unit root null. Those authors are concerned with zero

frequency tests and employMAIC lag selection (developed by Ng and Perron 2001), while the seasonal

unit root extension here employs the seasonal MAIC of subsection 2.3 above. As in the tables, the

regressions have kmax = b12 (4N=100)1=4c. Using an analogous notation to Perron and Qu (2007), lag

speci�cation with deterministics included in the HEGY regression (2.5) is denoted in the �gures as

ols ols, while GLS detrending as proposed by Rodrigues and Taylor (2007) for the seasonal unit root

case is denoted as gls gls. Finally, the hybrid version of Perron and Qu (2007) is denoted in the graphs

as ols gls.

The DGP again takes the form (3.1). To be speci�c, we employ 51 values of c such that c=N =

0; 0:02N , 0:04N , :::; 1; hence moving progressively from an integrated process with seasonal AR

coe�cient in (3.1) of �4 = (1 � c=N) = 1 to a process with �4 = 0; 50; 000 replications are used

for each c: White noise innovations with u4t+s = "4t+s in (3.2) are employed in panels (a) and (b) of

each �gure, while the seasonal MA of panels (c) and (d) speci�es � = 0:5 in (3.2); note again that

the latter case has moving average roots relatively close to the AR seasonal unit roots under the null

8For both N = 60 and N = 100, the corresponding results with MBIC lag selection and GLS detrending exhibit

similar patterns to those shown with OLS-GLS detrending.
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hypothesis, and hence represents the situation for which MAIC is designed (Ng and Perron, 2001).

A direct comparison is made of the e�ect of N on size and power by showing results for N = 60 in

panels (a) and (c), with corresponding size results for N = 100 in panels (b) and (d). To facilitate

comparison with the results of Perron and Qu (2007), our �gures show empirical size (c=N = 0) and

power (c=N > 0) for tests at a 5% nominal signi�cance level throughout. Consequently, power here

cannot be directly compared with size-adjusted power presented in Table 4 (Panel B) and 5 (Panel

B), and the corresponding appendix tables. Nevertheless, as for the tables, the test regression allows

for seasonal intercepts and a zero frequency trend.

The distinctive power implications of the detrending methods are evident for the zero frequency

test and white noise disturbances (N = 60) in panel (a) of Figure 1. Thus, GLS detrending yields

substantial power advantages over OLS for near-integrated processes, but the latter has greater power

for processes further from the unit root null. Indeed, with GLS detrending power 
attens o� at around

0.7 for a seasonal AR coe�cient of �4 equal to about 0.65 or less in (3.2). The best method is hybrid

OLS-GLS detrending, which here combines the advantages of both of the other methods. Power is, of

course, higher for a given seasonal AR coe�cient for the larger sample size of N = 100 in panel (b)

compared with panel (a) and otherwise the general patterns just discussed apply also in panel (b).

Nevertheless, the 
attening of power with GLS detrending now occurs for a value of �4 around 0.75

(c � 25) and some evidence of power reversal, as documented in the �gures of Perron and Qu (2007)

for this method, can be seen for processes far from the unit root null.

As already discussed in relation to Panel B of Table 2, panel (c) of Figure 1 shows the zero

frequency unit root tests to be oversized when the DGP has a seasonal MA disturbance with � = 0:5:

As also seen in Panel B of Table 5, GLS detrending provides little or no power advantage over OLS for

small values of c in this near-cancellation context. However, OLS-GLS detrending results in greater

oversizing than other methods and nominally greater power to about �4 = 0:67 (c = 20); thereafter

OLS and OLS-GLS have e�ectively the same power, which is substantially above that obtained with

GLS detrending. For N = 100 in panel (d), power reversal again occurs with GLS detrending as c

increases. While not evident with the smaller sample size in panel (c), panel (d) shows an intermediate

range of values of c for which OLS detrending leads to power higher than that given by the OLS-GLS

approach.

Although the t0 and t2 unit root test statistics have the same asymptotic distributions when

corresponding deterministic components are included, our test regressions allow for a trend in relation

to the former, but only an intercept for the latter. Therefore, Figure 2 relating to the test at frequency

� (the Nyquist frequency) is analogous to a nonseasonal unit root test with constant only. For white

noise innovations, the power advantages of GLS and OLS-GLS detrending over OLS are very clear

for processes close to the unit root null in both panels (a) and (b). It is also notable that, compared

with the corresponding panels of Figure 1, GLS detrending shows clearer evidence of power reversal

with increasing c when no trend is allowed at the corresponding frequency. The patterns for the

seasonal MA in panels (c) and (d) are broadly similar to those of the corresponding panels of Figure

1. However, it may be noted that power for processes very far from the null hypothesis is worse with
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GLS detrending when N = 100 in panel (d) compared with N = 60 in panel (c). Indeed, in the former

case, power is only around 0.65 with when the seasonal AR coe�cient in (3.1) is zero, whereas it is

approximately 0.75 for the smaller sample size.

The power properties of the joint F1 statistic for testing seasonal unit roots at the annual frequency

in Figure 3 are generally similar to those for t2 statistic at the Nyquist frequency (Figure 2). In

particular, panels (a) and (b) again reveal evidence of power reversal when GLS detrending is employed

with white noise innovations. There is also evidence in these panels that OLS detrending leads to

a statistic with slightly more power than GLS or OLS-GLS when the true AR parameter in (3.1) is

small, with values of around �4 = 0:5 or less (corresponding to c greater than 30 or 50 for N = 60

or 100, respectively). Perhaps most remarkable is the low power attained by the joint test statistic

with GLS detrending in panels (c) and (d) of Figure 3 against alternatives distant from the null

hypothesis. Speci�cally, when the disturbances of (3.1) follow the seasonal MA of (3.2) with � = 0:5,

the maximum power attained is only around 0.65 when N = 60: While maximum power is a little

higher for the larger sample size of N = 100 years, power reversal as alternatives further from the null

are considered implies that it is only around 0.55 for a process with �4 = 0. Panels (c) and (d) show

a fairly wide range of parameters for which OLS detrending yields tests with higher power than either

version of GLS detrending; this good performance of OLS detrending is also evident for size-adjusted

power in Panel B of Tables 5 and A.5 with c = 20. Nevertheless, and as anticipated, GLS detrending

methods have substantially higher power than OLS for local-to-unity alternatives.

3.5 Implications for Empirical Analysis

The Monte Carlo results of the preceding subsections have important implications for empirical anal-

ysis. Although the size results across Tables 1-3, together with Appendix Tables A.1 to A.3, indicate

that no single method always leads to good size, nevertheless our extension of MAIC for seasonal

unit root testing delivers relatively good size across a range of DGPs and irrespective of whether it

is used in the HEGY regression (2.5) or after GLS detrending in (2.11). In common with Ng and

Perron (2001), we do not recommend BIC-based procedures as they su�er more from size distortions.

If dynamic speci�cation is based on signi�cance of lag coe�cients, then t-sq(10%) has the best size

overall, although it is badly over-sized in the presence of near-cancellation with MA roots. Although it

seems intuitively plausible that deletion of intermediate lags may improve lag speci�cation for seasonal

processes, we do not recommend the use of such procedures (either information criteria or testing-

based) due to the poorly sized unit root tests that can result. It also needs to be emphasised that

all procedures we examine in detail allow the same maximum lag of b12 (4N=100)1=4c, equating to 14

quarters for N = 60 years of data. Any procedure that starts from a low maximum lag of (say) 4 or 5

quarters can have poor size in the presence of MA disturbances (even of low order) or an AR process

of order higher than kmax.

The results for size-adjusted power in Tables 4 to 6 and Appendix Tables A.4 to A.6 need to

be interpreted in the light of size considerations. The price in terms of power for the good size
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performance of MAIC is that it can have fairly substantial power loss compared with AIC for some

DGPs (for example, Panels B and C of Table 5 and Panel A of Table 6). Although this power loss

is often mitigated (or even reversed) by the use of the sequential SMAIC, the very poor size of the

latter for some processes makes empirical results di�cult to interpret in practice. Nevertheless, the

low power of zero frequency unit root tests (which allow a trend) with MAIC lag speci�cation for the

positively autocorrelated seasonal processes of Panel C of Table 5 and (especially) Panel A of Table

6 with N = 60 years of data shows that this method does not perform universally well. Our results

con�rm that GLS detrending often has power advantages over OLS detrending for near-integrated

processes, with this particularly evident in panels (a) and (b) of Figures 1 to 3. However, all �gures

show also that GLS detrending with lag speci�cation undertaken in the context of the GLS regression

has relatively poor power away from the unit root null hypothesis and is dominated by the OLS-GLS

procedure of Perron and Qu (2007). Nevertheless, when near-cancellation applies across the AR and

MA polynomials of (3.1), as in panels (c) and (d) in the �gures and Panel B of Table 5, OLS detrending

can have higher power than OLS-GLS.

Although there is some variation over the DGPs considered, the results of Tables 1 to 3 suggest that

OLS detrending with MAIC or AIC may have more reliable size overall than testing in conjunction

with GLS (or OLS-GLS detrending). On the other hand, power against local alternatives is typically

higher with GLS-based detrending. The implied size-power trade-o� indicates that test results with

OLS detrending may also contain useful information, alongside those with GLS (especially OLS-GLS)

detrending.

In summary, therefore, we recommend that our seasonal generalisation ofMAIC be routinely used

for lag speci�cation when undertaking seasonal unit root tests. In terms of detrending, the OLS-GLS

procedure generally works well, and apparently avoids the low power that can result from seasonal

GLS detrending for processes away from the unit root null. However, prior to unit root testing, it is

advisable that empirical researchers explicitly consider the properties of the series they are examining,

rather than applying seasonal unit root tests as a \black box" procedure. MAIC was designed by

Ng and Perron (2001) to deal with over-rejection of the (zero frequency) unit root null hypothesis for

an integrated process that is also subject to negatively autocorrelated disturbances. Our simulations

show that the seasonal MAIC generalisation leads to tests with good size in the corresponding case

of negatively autocorrelated innovations of a seasonal form, but also indicate that AIC has quite good

size when the process has positively autocorrelated innovations at seasonal lags (Panel C of Table 2

and Panel A of Table 3) and better size-adjusted power thanMAIC for corresponding near-integrated

local alternatives (Panel C of Table 5 and Panel A of Table 6).

4 Empirical Application

To investigate the implications of di�erent methodologies for lag selection and accounting for trends

in the context of HEGY-type seasonal unit roots, the procedures investigated in the Monte Carlo
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analysis of Section 3 are applied to observed US quarterly industrial production indices (IPI). More

speci�cally, we employ the logarithm of IPI for the component series of business equipment, business

supplies, construction supplies, durable consumer goods, durable materials goods and non-durable

consumer goods for the US over 1947Q1 to 2010Q49; in aggregate these constitute approximately 70

percent of US industrial production.

As evident from the graphs of the series in Figure 4, all IPI series exhibit trends and seasonality,

with the e�ect of the recent recession also often evident (particularly for construction supplies). Further

insight into the properties of these series is provided by Table 7, where (in the general notation of

(2.1a)) coe�cient estimates are reported for parsiminous seasonal ARMA models of the general form10

(1� �L)(1� �L4)�x4t+s = ��4t+s + (1� �1L� �2L
2)(1��L4)"4t+s: (4.1)

The need for a zero frequency unit root is relatively uncontroversial (see Table 8 below) and is imposed

in (4.1). Although they are not always explicitly allowed in such models, our speci�cation includes

deterministic seasonal dummy variables in ��4t+s, since the exclusion of deterministic seasonality

results in all estimated b� being close to unity.

Both Figure 4 and the results in Table 7 (speci�cally coe�cient estimates and R2 values) indicate

that business equipment and durable goods materials have relatively modest seasonality. While con-

struction supplies also exhibits relatively little stochastic seasonality in terms of b�, this IPI component
shows strong deterministic seasonality in Figure 4. On the other hand, the ARMA models for business

supplies, durable consumer goods and non-durable consumer goods suggest strong stochastic seasonal-

ity which may be of a nonstationary form. After imposition of a zero frequency unit root through �rst

di�erencing, all IPI components show positive �rst-order serial correlation, which is usually captured

through an MA(1).

Against this background, Table 8 shows results of HEGY tests applied to the log series (without

prior di�erencing) using a range of lag selection procedures. To illustrate the impact of decisions made

with respect to lag selection and detrending, we consider conventional AIC and BIC lag selection

procedures, together our seasonal MAIC and the corresponding sequential version SMAIC that

allows \gaps" in the lag structure. Modi�ed criteria based on BIC are not included, since they have

worse size performance in the �nite sample Monte Carlo analysis of Section 3 than the corresponding

AIC-based procedures. Similarly SAIC is not included, due to its size distortions. For comparison

purposes, results are also shown for the testing-based lag selection procedures t-sq(10%) and t-rt(10%),

the latter of which also allows some intermediate lags to be dropped from the test regression. In line

with many empirical studies, the maximum lag order is set as kmax = b12 (4N=100)1=4c , which

implies kmax = 15 for our sample of N = 64 years of data. Both OLS and GLS detrending methods

are used, with the Perron and Qu (2007) hybrid OLS-GLS method employed for the latter with

MAIC and SMAIC lag selection, in line with the generally superior performance of OLS-GLS over

9All data are from the US Federal Reserve website http://www.federalreserve.gov/releases/g17/table1 2.htm.
10This general speci�cation was adopted based on the serial correlation properties of the �rst di�erenced series. The

ARMA models were estimated in the program EViews using conditional least squares.
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GLS detrending for these criteria in the Monte Carlo analysis of the previous section. To facilitate

comparisons, Table 8 indicates the lags selected by each method.

As implied above, almost all results for t0 in Table 8 are compatible with the presence of a zero

frequency unit root, with ambiguity in this respect only for business equipment with AIC or BIC lag

selection. Note, however, that conventional AIC/BIC used in the context of HEGY tests that perform

OLS detrending through (2.5) here sometimes result in low orders of augmentation being selected;

indeed, in three cases (including business equipment) no lags are selected. These parsiminous models

also yield numerically large values for the seasonal unit root test statistics. However, given the large

oversizing of these parsiminous lag selection procedures in the presence of a positively autocorrelated

seasonal MA component (in Panel B of Table 2), such rejections may be spurious. Although the less

parsimonious methods ofMAIC or t-sq(10%) select very similar lags for both OLS and GLS detrending

in Table 8, nevertheless the seasonal unit null hypotheses are rejected more frequently using OLS than

the corresponding GLS-detrended tests of (2.11). For example, using F12, the joint null hypothesis of

unit roots at the Nyquist and annual frequencies is strongly rejected for construction supplies with

OLS detrending irrespective of the lag selection method employed, whereas this hypothesis is rejected

with GLS detrending only when the parsimonious BIC criterion is used.

Based on size and power properties, our recommendation in subsection 3.5 is that MAIC be

widely employed with OLS and OLS-GLS detrending, but also that the empirical characteristics of

the series should be considered explicitly. Using MAIC in conjunction with OLS-GLS detrending

and at the conventional 5% signi�cance level, the results in Table 8 indicate that the IPI components

of business supplies, construction supplies, durable consumer goods and non-durable consumer goods

are compatible with the seasonal integration hypothesis. Nevertheless, this conclusion is surprising for

construction supplies in relation to the estimated seasonal AR coe�cient obtained for this component

in Table 7 and is not con�rmed when OLS detrending is employed. The remaining two components,

business equipment and durable goods materials, are those for which seasonality is not very marked in

Figure 4 and these also have small b� in Table 7. For business equipment, theMAIC/GLS test results

in Table 8 are marginal, but these combined with the information from Table 7 and the higher power

that can be shown by the use of OLS detrending point to rejection of the overall seasonal integration

null hypothesis. The conclusion for durable goods materials is straightforward, namely rejection of

unit roots at both seasonal frequencies.

Overall, therefore, we conclude that modelling the IPI components of business supplies, durable

consumer goods and non-durable consumer goods may proceed on the basis that these components

are seasonally integrated, whereas the business equipment and durable goods materials are integrated

only at the zero frequency. Although the case of construction supplies is more ambiguous and more

detailed modelling is warranted to shed further light on the possible presence of seasonal unit roots,

nevertheless the results here point to only a zero frequency unit root being present. In any case,

irrespective of the particular conclusions drawn in relation to these series, our results in Table 8

illustrate the important roles played by the methodogies used for lag selection and detrending when

conducting seasonal unit root tests.
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5 Conclusions

Through Monte Carlo simulation experiments, this paper explores the small sample performance of a

variety of data-based methods for determining the lag augmentation polynomial used for conducting

HEGY seasonal unit root tests, in both the common OLS detrending context originally proposed by

Hylleberg et al. (1990) and also employing seasonal GLS detrending as proposed by Rodrigues and

Taylor (2007). A battery of techniques are compared for lag selection in these contexts, based on both

information criteria (AIC and BIC) and also hypothesis testing approaches. One contribution of our

paper is that we extend the modi�ed information criteria of Ng and Perron (2001) to the seasonal

unit root testing context and apply this for lag selection with both OLS and GLS detrending, in the

latter case implemented for modi�ed information criteria methods using both the GLS regression and

the hybrid OLS-GLS approach recommended by Perron and Qu (2007). Although Taylor (1997) drew

attention to the di�culty of lag selection for seasonal unit root tests, no comprehensive examination

of the performance of parametric seasonal unit root tests has previously been available.

Our results imply that, over a range of data generating processes, reliable size is generally delivered

by our seasonal generalisation of the modi�ed Akaike criterion, MAIC, whether applied with OLS

or GLS detrending. It is well known that the use of conventional lag selection criteria, such as AIC

or BIC, together with hypothesis testing approaches, can lead to badly over-sized unit root tests

for processes with negatively autocorrelated moving average disturbances (Schwert, 1989, Ng and

Perron, 2001), with an analogous problem applying to seasonal unit root tests in the presence of near-

cancellation of roots of the AR and MA polynomials (Ghysels et al., 1994). We also �nd this result, but

show that MAIC performs well in delivering reliable size across a range of data generating processes.

A sequential version (SMAIC) also sometimes delivers good size, but unfortunately can be badly

under-sized. Nevertheless, MAIC can have poor size when the innovations exhibit positive seasonal

autocorrelation, in which case AIC is preferred. When used in appropriate contexts, MAIC=AIC

deliver more reliable size than lag speci�cation methods based on hypothesis testing or BIC.

In terms of power, the hybrid OLS-GLS detrending approach of Perron and Qu (2007) should

be employed with MAIC to avoid poor power shown by GLS detrending under alternatives distant

from the unit root null. At least for local alternatives, GLS detrending is more powerful than OLS,

but there may be parameter ranges over which OLS detrending has greater power than GLS-based

methods.

An application of parametric HEGY-type seasonal unit root tests with OLS and GLS detrending

and a range of lag selection procedures to six components of quarterly seasonally unadjusted US

industrial production indices illustrates the di�erent results that can be delivered in an empirical

context. Although there is little disagreement about the presence of a zero frequency unit root, results

with OLS detrending more frequently reject the presence of seasonal unit roots at the Nyquist (semi-

annual) and annual frequencies than with GLS. Use of MAIC leads to similar conclusions for both

OLS and GLS detrending, especially in relation to the joint test of the overall seasonal integration

null hypothesis.
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To date, GLS (and, more especially, OLS-GLS) detrending does not appear to be widely used

in empirical studies that test for seasonal unit roots. However, its performance in the Monte Carlo

analysis and the di�erent results it sometimes delivers, compared with the commonly applied OLS

detrending, for US industrial production indices indicate that it may shed new light on the properties

of observed seasonal time series.
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Table 1: Empirical size of quarterly seasonal unit root tests for white noise disturbances

t0 t2 F1 F12 F012
OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel A. ` = 4
AIC 0.051 0.071 0.047 0.082 0.055 0.063 0.052 0.072 0.055 0.089
MAIC 0.039 0.053 0.040 0.075 0.047 0.052 0.042 0.063 0.042 0.070
MAIC_PQ 0.053 0.075 0.053 0.064 0.071
BIC 0.050 0.069 0.045 0.081 0.054 0.061 0.049 0.071 0.052 0.084
MBIC 0.040 0.057 0.042 0.078 0.049 0.055 0.044 0.064 0.044 0.073
MBIC_PQ 0.057 0.077 0.055 0.065 0.074
SAIC 0.056 0.072 0.048 0.081 0.053 0.064 0.056 0.077 0.060 0.096
SMAIC 0.025 0.045 0.036 0.069 0.039 0.050 0.035 0.060 0.033 0.066
SMAIC_PQ 0.045 0.069 0.050 0.060 0.067
t-sq(5%) 0.055 0.072 0.047 0.083 0.055 0.063 0.052 0.073 0.059 0.092
t-sq(10%) 0.056 0.075 0.048 0.083 0.056 0.063 0.052 0.075 0.060 0.095
t-bm(5%) 0.056 0.070 0.047 0.079 0.056 0.068 0.054 0.080 0.059 0.100
t-bm(10%) 0.058 0.073 0.049 0.081 0.057 0.070 0.055 0.081 0.062 0.104
t-rt(5%) 0.053 0.070 0.047 0.080 0.053 0.064 0.055 0.076 0.058 0.093
t-rt(10%) 0.056 0.073 0.048 0.082 0.053 0.064 0.056 0.078 0.061 0.096
Panel B. ` = 12
AIC 0.054 0.068 0.051 0.078 0.054 0.060 0.050 0.069 0.055 0.084
MAIC 0.039 0.048 0.044 0.067 0.044 0.048 0.041 0.055 0.041 0.062
MAIC_PQ 0.049 0.070 0.050 0.057 0.064
BIC 0.051 0.065 0.051 0.077 0.052 0.058 0.048 0.066 0.050 0.079
MBIC 0.042 0.052 0.046 0.074 0.047 0.054 0.043 0.060 0.043 0.068
MBIC_PQ 0.054 0.075 0.053 0.060 0.069
SAIC 0.082 0.087 0.064 0.091 0.070 0.071 0.070 0.085 0.085 0.114
SMAIC 0.008 0.022 0.021 0.049 0.017 0.031 0.015 0.037 0.010 0.033
SMAIC_PQ 0.023 0.048 0.031 0.037 0.036
t-sq(5%) 0.069 0.082 0.057 0.083 0.059 0.064 0.055 0.075 0.067 0.096
t-sq(10%) 0.070 0.081 0.056 0.086 0.053 0.061 0.051 0.077 0.065 0.094
t-bm(5%) 0.075 0.081 0.061 0.083 0.063 0.073 0.061 0.086 0.074 0.114
t-bm(10%) 0.088 0.096 0.067 0.088 0.070 0.075 0.069 0.093 0.089 0.130
t-rt(5%) 0.076 0.079 0.058 0.085 0.067 0.069 0.063 0.081 0.073 0.103
t-rt(10%) 0.085 0.088 0.064 0.092 0.071 0.072 0.072 0.086 0.086 0.116

Notes: The DGP is (3.1) with c = 0 and u4t+s="4t+s � IID N(0; 1), for quarterly data over N=60 years. Tests
and lag selection criteria as in Section 2, with kmax = int[` (4N/100)]

1=4 for ` = 4 or 12. All tests allow for seasonal

means and a zero frequency trend: OLS and GLS indicates OLS-detrending and GLS-detrending, with PQ indicating

that the latter uses the OLS-GLS method of Perron and Qu (2007). The statistics are t -type tests for unit roots at
the zero and � frequencies (t0, t2) and joint F -type statistics for unit roots at the �=2 frequency. (F 1), all seasonal
frequencies (F 12) and the zero and all seasonal frequencies (F 012). Results are based on 5000 replications for a nominal

5% level of signi�cance.
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Table 2: Empirical size of quarterly seasonal unit root tests
for moving average disturbances

t0 t2 F1 F12 F012
OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel A. MA(1) : � = �0:8; � = 0
AIC 0.057 0.080 0.301 0.322 0.059 0.069 0.247 0.238 0.241 0.235
MAIC 0.024 0.031 0.072 0.132 0.036 0.039 0.066 0.072 0.059 0.066
MAIC_PQ 0.035 0.137 0.043 0.084 0.077
BIC 0.064 0.082 0.497 0.500 0.065 0.076 0.420 0.397 0.402 0.376
MBIC 0.022 0.025 0.092 0.185 0.032 0.035 0.074 0.091 0.066 0.074
MBIC_PQ 0.031 0.180 0.041 0.099 0.086
SAIC 0.080 0.095 0.249 0.264 0.071 0.075 0.219 0.206 0.226 0.215
SMAIC 0.005 0.018 0.048 0.126 0.018 0.033 0.039 0.070 0.023 0.052
SMAIC_PQ 0.018 0.121 0.035 0.073 0.055
t-sq(5%) 0.065 0.083 0.197 0.240 0.056 0.070 0.173 0.177 0.175 0.187
t-sq(10%) 0.059 0.081 0.128 0.167 0.057 0.066 0.121 0.126 0.121 0.140
t-bm(5%) 0.063 0.074 0.277 0.276 0.061 0.072 0.225 0.214 0.217 0.214
t-bm(10%) 0.065 0.075 0.223 0.230 0.059 0.070 0.194 0.184 0.189 0.185
t-rt(5%) 0.078 0.091 0.308 0.315 0.072 0.075 0.268 0.246 0.267 0.253
t-rt(10%) 0.079 0.094 0.240 0.257 0.072 0.075 0.211 0.200 0.219 0.213
Panel B. Seasonal MA: � = 0; � = 0:5
AIC 0.267 0.260 0.192 0.233 0.209 0.140 0.265 0.228 0.363 0.348
MAIC 0.079 0.091 0.072 0.128 0.081 0.057 0.098 0.089 0.126 0.119
MAIC_PQ 0.112 0.136 0.067 0.106 0.144
BIC 0.544 0.478 0.419 0.395 0.486 0.291 0.584 0.429 0.672 0.562
MBIC 0.097 0.121 0.084 0.157 0.091 0.068 0.113 0.113 0.151 0.157
MBIC_PQ 0.130 0.158 0.075 0.123 0.175
SAIC 0.203 0.174 0.177 0.192 0.180 0.119 0.214 0.171 0.234 0.216
SMAIC 0.024 0.034 0.074 0.115 0.077 0.071 0.074 0.086 0.037 0.057
SMAIC_PQ 0.035 0.116 0.071 0.086 0.063
t-sq(5%) 0.158 0.172 0.113 0.165 0.125 0.093 0.154 0.146 0.216 0.218
t-sq(10%) 0.128 0.146 0.092 0.142 0.100 0.077 0.116 0.118 0.167 0.178
t-bm(5%) 0.214 0.178 0.192 0.210 0.199 0.143 0.246 0.206 0.264 0.257
t-bm(10%) 0.216 0.181 0.171 0.195 0.176 0.129 0.217 0.185 0.244 0.236
t-rt(5%) 0.201 0.172 0.186 0.201 0.196 0.133 0.233 0.188 0.250 0.226
t-rt(10%) 0.204 0.173 0.173 0.191 0.175 0.117 0.208 0.169 0.233 0.213
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Table 2 (continued)

t0 t2 F1 F12 F012
OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel C. Seasonal MA: � = 0;� = �0:5
AIC 0.083 0.111 0.067 0.110 0.076 0.071 0.083 0.093 0.106 0.126
MAIC 0.025 0.034 0.037 0.058 0.040 0.040 0.043 0.042 0.033 0.042
MAIC_PQ 0.034 0.058 0.042 0.044 0.044
BIC 0.098 0.131 0.078 0.135 0.084 0.075 0.097 0.111 0.126 0.156
MBIC 0.008 0.012 0.023 0.031 0.034 0.035 0.028 0.031 0.016 0.022
MBIC_PQ 0.006 0.020 0.054 0.045 0.023
SAIC 0.093 0.111 0.066 0.108 0.085 0.080 0.092 0.099 0.103 0.141
SMAIC 0.002 0.014 0.019 0.048 0.019 0.030 0.015 0.029 0.009 0.022
SMAIC_PQ 0.013 0.047 0.031 0.030 0.024
t-sq(5%) 0.063 0.080 0.056 0.088 0.065 0.063 0.069 0.072 0.077 0.094
t-sq(10%) 0.061 0.081 0.054 0.084 0.061 0.059 0.063 0.070 0.069 0.093
t-bm(5%) 0.077 0.099 0.064 0.100 0.079 0.080 0.083 0.098 0.092 0.131
t-bm(10%) 0.083 0.108 0.066 0.101 0.081 0.081 0.087 0.100 0.097 0.142
t-rt(5%) 0.088 0.106 0.064 0.106 0.083 0.078 0.088 0.096 0.098 0.134
t-rt(10%) 0.095 0.112 0.068 0.107 0.084 0.080 0.092 0.099 0.102 0.143

Notes: As for Table 1, except that the DGP has moving average disturbances, with u4t+s = (1��L)(1��L4)"4t+s
and maximum lag given by kmax = int

h
` (4N=100)1=4

i
with ` = 12.
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Table 3: Empirical size of quarterly seasonal unit root tests
for autoregressive disturbances

t0 t2 F1 F12 F012
OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel A. Seasonal AR: � = 0:5
AIC 0.047 0.070 0.048 0.086 0.053 0.064 0.059 0.075 0.060 0.087
MAIC 0.033 0.048 0.042 0.075 0.047 0.051 0.048 0.058 0.047 0.061
MAIC_PQ 0.048 0.076 0.052 0.060 0.063
BIC 0.042 0.066 0.047 0.084 0.054 0.063 0.058 0.073 0.058 0.083
MBIC 0.017 0.031 0.031 0.060 0.040 0.046 0.036 0.047 0.028 0.041
MBIC_PQ 0.020 0.041 0.057 0.051 0.035
SAIC 0.085 0.110 0.065 0.102 0.080 0.086 0.084 0.105 0.101 0.141
SMAIC 0.005 0.024 0.018 0.058 0.019 0.033 0.019 0.038 0.012 0.033
SMAIC_PQ 0.025 0.058 0.036 0.039 0.033
t-sq(5%) 0.055 0.081 0.050 0.085 0.058 0.069 0.062 0.081 0.067 0.098
t-sq(10%) 0.057 0.083 0.051 0.086 0.057 0.071 0.062 0.081 0.069 0.099
t-bm(5%) 0.067 0.095 0.055 0.095 0.067 0.078 0.071 0.095 0.082 0.119
t-bm(10%) 0.078 0.104 0.061 0.097 0.072 0.085 0.077 0.104 0.091 0.135
t-rt(5%) 0.078 0.102 0.060 0.100 0.076 0.083 0.081 0.100 0.094 0.130
t-rt(10%) 0.086 0.112 0.066 0.103 0.080 0.085 0.087 0.105 0.102 0.142
Panel B. Seasonal AR: � = �0:5
AIC 0.056 0.066 0.050 0.081 0.051 0.057 0.054 0.065 0.058 0.072
MAIC 0.033 0.037 0.040 0.069 0.038 0.048 0.041 0.053 0.039 0.048
MAIC_PQ 0.042 0.069 0.048 0.054 0.053
BIC 0.062 0.067 0.054 0.083 0.057 0.059 0.063 0.069 0.070 0.076
MBIC 0.035 0.042 0.042 0.074 0.041 0.049 0.043 0.056 0.042 0.054
MBIC_PQ 0.045 0.072 0.049 0.057 0.056
SAIC 0.088 0.088 0.079 0.096 0.075 0.072 0.079 0.090 0.077 0.096
SMAIC 0.009 0.018 0.029 0.061 0.027 0.039 0.022 0.044 0.012 0.027
SMAIC_PQ 0.020 0.060 0.037 0.044 0.028
t-sq(5%) 0.061 0.073 0.054 0.082 0.051 0.060 0.058 0.069 0.062 0.077
t-sq(10%) 0.063 0.077 0.060 0.082 0.052 0.063 0.059 0.073 0.062 0.083
t-bm(5%) 0.073 0.073 0.079 0.093 0.071 0.067 0.076 0.085 0.067 0.090
t-bm(10%) 0.089 0.090 0.088 0.096 0.075 0.074 0.082 0.093 0.081 0.104
t-rt(5%) 0.077 0.076 0.074 0.095 0.069 0.067 0.071 0.084 0.068 0.088
t-rt(10%) 0.092 0.093 0.080 0.097 0.076 0.074 0.080 0.091 0.079 0.099

Notes: As for Table 1, except that the DGP has seasonal autoregressive disturbances with (1 �
�L4)u4t+s = "4t+s and maximum lag given by kmax = int

h
` (4N=100)1=4

i
with ` = 12.
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Table 4: Size-corrected power of quarterly seasonal unit root tests
for white noise disturbances

t0 t2 F1 F12 F012
c OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel A. ` = 4
AIC 5 0.088 0.110 0.134 0.273 0.173 0.424 0.247 0.566 0.257 0.519

10 0.192 0.289 0.365 0.635 0.570 0.863 0.761 0.960 0.793 0.963
20 0.714 0.849 0.929 0.976 0.993 0.990 1.000 1.000 1.000 1.000

MAIC 5 0.086 0.116 0.136 0.290 0.164 0.433 0.236 0.580 0.255 0.536
10 0.188 0.302 0.359 0.654 0.562 0.861 0.748 0.952 0.774 0.956
20 0.694 0.811 0.912 0.957 0.986 0.980 0.998 0.999 0.999 1.000

MAIC_PQ 5 0.120 0.292 0.436 0.579 0.539
10 0.311 0.662 0.866 0.954 0.959
20 0.852 0.965 0.984 1.000 1.000

BIC 5 0.083 0.111 0.136 0.285 0.174 0.427 0.245 0.570 0.255 0.536
10 0.191 0.288 0.367 0.658 0.581 0.872 0.771 0.962 0.797 0.968
20 0.722 0.862 0.942 0.984 0.997 0.993 1.000 1.000 1.000 1.000

MBIC_PQ 5 0.090 0.118 0.133 0.282 0.164 0.438 0.238 0.580 0.253 0.541
10 0.191 0.301 0.358 0.652 0.564 0.869 0.758 0.958 0.779 0.963
20 0.699 0.845 0.913 0.968 0.987 0.985 0.998 1.000 0.999 1.000

SAIC 5 0.085 0.116 0.144 0.271 0.191 0.405 0.247 0.560 0.257 0.496
10 0.190 0.300 0.363 0.622 0.584 0.839 0.741 0.954 0.775 0.951
20 0.668 0.817 0.906 0.962 0.989 0.980 0.998 1.000 0.999 0.999

SMAIC 5 0.101 0.119 0.142 0.283 0.200 0.438 0.272 0.574 0.286 0.541
10 0.238 0.306 0.375 0.653 0.616 0.870 0.786 0.952 0.806 0.955
20 0.789 0.836 0.936 0.971 0.994 0.989 0.999 1.000 1.000 1.000

SMAIC_PQ 5 0.119 0.286 0.435 0.578 0.543
10 0.313 0.655 0.868 0.955 0.956
20 0.859 0.974 0.988 1.000 1.000

t-sq(5%) 5 0.081 0.116 0.141 0.269 0.178 0.412 0.255 0.567 0.253 0.510
10 0.187 0.293 0.368 0.627 0.574 0.854 0.765 0.959 0.786 0.955
20 0.690 0.834 0.920 0.966 0.991 0.983 0.999 1.000 0.999 0.999

t-sq(10%) 5 0.084 0.118 0.138 0.270 0.180 0.402 0.258 0.562 0.262 0.504
10 0.186 0.296 0.357 0.615 0.563 0.834 0.761 0.953 0.787 0.950
20 0.667 0.813 0.897 0.954 0.988 0.975 0.999 0.999 0.999 0.999

t-bm(10%) 5 0.085 0.116 0.143 0.272 0.180 0.403 0.255 0.565 0.259 0.500
10 0.192 0.298 0.363 0.621 0.569 0.836 0.759 0.954 0.780 0.950
20 0.677 0.811 0.910 0.961 0.989 0.978 0.999 1.000 0.999 0.999

t-rt(10%) 5 0.086 0.117 0.145 0.272 0.193 0.405 0.246 0.561 0.257 0.497
10 0.195 0.299 0.364 0.623 0.583 0.837 0.739 0.953 0.772 0.949
20 0.667 0.815 0.902 0.962 0.989 0.978 0.998 0.999 0.999 0.999
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Table 4 (continued)

t0 t2 F1 F12 F012
c OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel B. ` = 12
AIC 5 0.081 0.106 0.122 0.277 0.172 0.408 0.244 0.557 0.239 0.510

10 0.175 0.278 0.325 0.628 0.543 0.844 0.742 0.950 0.755 0.953
20 0.660 0.817 0.892 0.973 0.989 0.987 0.999 0.999 1.000 1.000

MAIC 5 0.085 0.111 0.121 0.281 0.158 0.428 0.232 0.572 0.241 0.516
10 0.179 0.274 0.316 0.615 0.523 0.817 0.701 0.919 0.724 0.910
20 0.625 0.645 0.837 0.854 0.943 0.917 0.976 0.966 0.974 0.973

MAIC _PQ 5 0.113 0.283 0.422 0.578 0.524
10 0.297 0.632 0.834 0.937 0.931
20 0.787 0.935 0.962 0.989 0.990

BIC 5 0.080 0.106 0.119 0.281 0.169 0.419 0.246 0.566 0.240 0.535
10 0.175 0.278 0.321 0.646 0.557 0.858 0.754 0.957 0.767 0.960
20 0.679 0.838 0.906 0.981 0.994 0.993 1.000 1.000 1.000 1.000

MBIC_PQ 5 0.086 0.108 0.119 0.281 0.166 0.423 0.236 0.576 0.254 0.532
10 0.177 0.281 0.313 0.631 0.541 0.849 0.722 0.947 0.758 0.944
20 0.630 0.787 0.848 0.946 0.958 0.971 0.983 0.992 0.983 0.993

SAIC 5 0.076 0.107 0.124 0.261 0.160 0.366 0.229 0.499 0.208 0.460
10 0.159 0.260 0.306 0.559 0.482 0.753 0.676 0.901 0.674 0.908
20 0.555 0.718 0.805 0.907 0.956 0.944 0.996 0.991 0.996 0.992

SMAIC 5 0.118 0.119 0.145 0.290 0.204 0.442 0.291 0.569 0.307 0.521
10 0.283 0.280 0.367 0.620 0.596 0.821 0.761 0.919 0.777 0.907
20 0.777 0.688 0.902 0.924 0.980 0.964 0.996 0.991 0.993 0.990

SMAIC_PQ 5 0.123 0.302 0.434 0.576 0.521
10 0.310 0.640 0.816 0.924 0.907
20 0.780 0.944 0.972 0.994 0.991

t-sq(5%) 5 0.070 0.100 0.113 0.258 0.170 0.364 0.244 0.499 0.220 0.444
10 0.145 0.243 0.276 0.564 0.463 0.739 0.671 0.885 0.671 0.885
20 0.496 0.662 0.729 0.858 0.903 0.888 0.971 0.966 0.982 0.979

t-sq(10%) 5 0.068 0.100 0.106 0.237 0.173 0.353 0.234 0.477 0.213 0.437
10 0.137 0.233 0.240 0.500 0.435 0.683 0.610 0.836 0.625 0.847
20 0.420 0.566 0.632 0.771 0.853 0.838 0.951 0.946 0.967 0.972

t-bm(10%) 5 0.085 0.108 0.135 0.261 0.186 0.372 0.241 0.504 0.217 0.470
10 0.181 0.250 0.316 0.556 0.508 0.759 0.686 0.904 0.689 0.909
20 0.587 0.705 0.826 0.902 0.966 0.940 0.996 0.992 0.996 0.991

t-rt(10%) 5 0.079 0.110 0.127 0.264 0.164 0.363 0.234 0.492 0.212 0.451
10 0.164 0.262 0.307 0.557 0.482 0.746 0.675 0.896 0.676 0.902
20 0.555 0.710 0.796 0.899 0.956 0.939 0.996 0.990 0.996 0.991

Notes: As for Table 1, except that the DGP is (3.1) with c = 5; 10 and 20.
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Table 5: Size-corrected power of quarterly sesonal unit root tests
for moving average disturbances

t0 t2 F1 F12 F012
c OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel A. MA(1): � = �0:8; � = 0
AIC 5 0.087 0.104 0.164 0.161 0.161 0.365 0.205 0.297 0.223 0.337

10 0.179 0.239 0.398 0.334 0.472 0.692 0.589 0.587 0.640 0.675
20 0.554 0.630 0.862 0.534 0.963 0.906 0.975 0.788 0.989 0.908

MAIC 5 0.085 0.111 0.147 0.152 0.127 0.341 0.190 0.401 0.203 0.399
10 0.158 0.225 0.328 0.290 0.359 0.631 0.502 0.687 0.554 0.716
20 0.438 0.495 0.694 0.412 0.829 0.797 0.911 0.833 0.945 0.897

MAIC_PQ 5 0.118 0.155 0.355 0.385 0.388
10 0.248 0.298 0.658 0.680 0.716
20 0.597 0.513 0.854 0.866 0.924

BIC 5 0.076 0.107 0.166 0.159 0.157 0.359 0.171 0.188 0.187 0.192
10 0.148 0.253 0.404 0.342 0.457 0.690 0.451 0.454 0.516 0.500
20 0.470 0.671 0.889 0.581 0.975 0.938 0.952 0.764 0.974 0.837

MBIC_PQ 5 0.083 0.123 0.140 0.156 0.131 0.367 0.191 0.374 0.205 0.394
10 0.161 0.263 0.309 0.295 0.371 0.672 0.501 0.663 0.552 0.723
20 0.444 0.618 0.671 0.503 0.843 0.862 0.905 0.858 0.941 0.925

SAIC 5 0.081 0.101 0.175 0.165 0.159 0.329 0.226 0.304 0.239 0.305
10 0.162 0.207 0.407 0.320 0.427 0.620 0.590 0.569 0.624 0.618
20 0.457 0.529 0.863 0.485 0.913 0.820 0.958 0.751 0.978 0.851

SMAIC 5 0.115 0.124 0.163 0.134 0.168 0.358 0.235 0.398 0.277 0.408
10 0.230 0.251 0.348 0.257 0.432 0.641 0.588 0.678 0.681 0.749
20 0.521 0.536 0.720 0.377 0.846 0.805 0.951 0.833 0.982 0.939

SMAIC_PQ 5 0.129 0.142 0.355 0.386 0.408
10 0.265 0.283 0.642 0.665 0.749
20 0.575 0.478 0.813 0.847 0.940

t-sq(5%) 5 0.082 0.107 0.159 0.161 0.159 0.340 0.216 0.310 0.239 0.333
10 0.159 0.224 0.330 0.288 0.435 0.630 0.507 0.560 0.572 0.638
20 0.450 0.528 0.658 0.410 0.883 0.806 0.875 0.727 0.934 0.845

t-sq(10%) 5 0.079 0.099 0.152 0.158 0.139 0.324 0.195 0.339 0.209 0.330
10 0.159 0.198 0.316 0.275 0.383 0.597 0.505 0.601 0.567 0.637
20 0.413 0.452 0.649 0.393 0.821 0.765 0.900 0.752 0.945 0.847

t-bm(10%) 5 0.084 0.098 0.178 0.166 0.162 0.337 0.236 0.310 0.255 0.322
10 0.164 0.213 0.410 0.320 0.459 0.636 0.613 0.578 0.655 0.655
20 0.491 0.520 0.888 0.473 0.953 0.830 0.972 0.751 0.985 0.852

t-rt(10%) 5 0.083 0.101 0.176 0.167 0.156 0.333 0.230 0.302 0.245 0.320
10 0.165 0.204 0.410 0.318 0.425 0.619 0.592 0.570 0.629 0.628
20 0.458 0.518 0.864 0.483 0.905 0.818 0.957 0.750 0.977 0.854
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Table 5 (continued)

t0 t2 F1 F12 F012
c OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel B. Seasonal MA: � = 0; � = 0:5
AIC 5 0.202 0.151 0.282 0.253 0.339 0.377 0.361 0.475 0.342 0.425

10 0.580 0.350 0.685 0.482 0.739 0.614 0.756 0.738 0.724 0.744
20 0.962 0.665 0.982 0.731 0.994 0.717 0.997 0.852 0.995 0.881

MAIC 5 0.083 0.083 0.133 0.178 0.204 0.328 0.263 0.400 0.213 0.316
10 0.194 0.163 0.338 0.354 0.527 0.520 0.648 0.653 0.550 0.604
20 0.616 0.376 0.808 0.579 0.944 0.617 0.981 0.792 0.966 0.818

MAIC_PQ 5 0.094 0.192 0.323 0.420 0.308
10 0.227 0.401 0.540 0.688 0.602
20 0.625 0.735 0.755 0.879 0.882

BIC 5 0.168 0.209 0.283 0.303 0.371 0.420 0.457 0.518 0.430 0.513
10 0.459 0.489 0.691 0.612 0.874 0.697 0.938 0.779 0.932 0.787
20 0.957 0.844 0.995 0.843 1.000 0.821 1.000 0.875 1.000 0.877

MBIC_PQ 5 0.078 0.087 0.132 0.183 0.208 0.329 0.259 0.383 0.211 0.304
10 0.178 0.196 0.336 0.382 0.526 0.534 0.624 0.644 0.531 0.584
20 0.590 0.587 0.788 0.721 0.937 0.749 0.975 0.856 0.952 0.866

SAIC 5 0.137 0.132 0.222 0.233 0.306 0.356 0.353 0.426 0.308 0.343
10 0.414 0.309 0.596 0.468 0.746 0.576 0.803 0.681 0.751 0.611
20 0.916 0.600 0.958 0.694 0.984 0.639 0.996 0.811 0.987 0.760

SMAIC 5 0.207 0.170 0.243 0.283 0.307 0.412 0.355 0.476 0.334 0.421
10 0.550 0.365 0.649 0.531 0.762 0.667 0.823 0.741 0.793 0.720
20 0.963 0.610 0.979 0.755 0.992 0.789 0.999 0.856 0.998 0.896

SMAIC_PQ 5 0.187 0.304 0.411 0.482 0.421
10 0.416 0.573 0.665 0.755 0.720
20 0.764 0.824 0.827 0.907 0.896

t-sq(5%) 5 0.124 0.105 0.196 0.206 0.280 0.341 0.356 0.407 0.318 0.349
10 0.332 0.241 0.485 0.398 0.662 0.523 0.755 0.633 0.736 0.608
20 0.738 0.468 0.845 0.594 0.936 0.580 0.980 0.742 0.980 0.773

t-sq(10%) 5 0.110 0.095 0.180 0.201 0.246 0.293 0.317 0.405 0.281 0.318
10 0.264 0.205 0.425 0.382 0.584 0.469 0.703 0.635 0.673 0.592
20 0.627 0.420 0.784 0.573 0.924 0.533 0.981 0.753 0.977 0.779

t-bm(10%) 5 0.144 0.132 0.231 0.241 0.322 0.365 0.378 0.431 0.317 0.338
10 0.440 0.304 0.611 0.490 0.764 0.574 0.831 0.692 0.778 0.608
20 0.931 0.608 0.966 0.710 0.985 0.640 0.996 0.818 0.989 0.762

t-rt(10%) 5 0.133 0.128 0.221 0.238 0.304 0.350 0.349 0.424 0.302 0.339
10 0.400 0.301 0.586 0.468 0.739 0.567 0.798 0.681 0.742 0.606
20 0.906 0.591 0.954 0.693 0.982 0.630 0.995 0.812 0.986 0.758
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Table 5 (continued)

t0 t2 F1 F12 F012
c OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel C. Seasonal MA: � = 0: � = �0:5
AIC 5 0.097 0.114 0.137 0.242 0.179 0.413 0.236 0.539 0.244 0.449

10 0.179 0.230 0.304 0.519 0.469 0.750 0.589 0.863 0.618 0.810
20 0.465 0.524 0.675 0.786 0.863 0.903 0.923 0.968 0.918 0.955

MAIC 5 0.059 0.086 0.068 0.226 0.091 0.344 0.105 0.473 0.105 0.400
10 0.056 0.141 0.101 0.454 0.179 0.649 0.232 0.843 0.223 0.807
20 0.161 0.339 0.328 0.766 0.628 0.908 0.795 0.985 0.825 0.989

MAIC_PQ 5 0.079 0.218 0.331 0.454 0.373
10 0.109 0.412 0.611 0.807 0.753
20 0.333 0.766 0.916 0.986 0.990

BIC 5 0.098 0.113 0.141 0.258 0.193 0.489 0.259 0.605 0.263 0.511
10 0.193 0.244 0.309 0.544 0.513 0.824 0.657 0.904 0.680 0.873
20 0.469 0.508 0.669 0.772 0.868 0.940 0.915 0.979 0.903 0.952

MBIC_PQ 5 0.048 0.083 0.035 0.216 0.065 0.190 0.070 0.254 0.070 0.254
10 0.084 0.206 0.103 0.540 0.164 0.477 0.240 0.703 0.266 0.764
20 0.377 0.711 0.505 0.939 0.714 0.924 0.915 0.994 0.956 1.000

SAIC 5 0.094 0.103 0.144 0.235 0.164 0.347 0.197 0.453 0.188 0.361
10 0.170 0.207 0.293 0.497 0.400 0.680 0.481 0.820 0.442 0.742
20 0.434 0.466 0.665 0.793 0.816 0.889 0.885 0.969 0.853 0.954

SMAIC 5 0.118 0.122 0.135 0.279 0.158 0.442 0.206 0.580 0.216 0.480
10 0.171 0.259 0.231 0.571 0.334 0.780 0.420 0.888 0.431 0.775
20 0.042 0.092 0.089 0.338 0.168 0.600 0.192 0.688 0.151 0.473

SMAIC_PQ 5 0.130 0.290 0.417 0.563 0.480
10 0.229 0.523 0.694 0.823 0.775
20 0.080 0.315 0.526 0.637 0.473

t-sq(5%) 5 0.083 0.100 0.110 0.227 0.143 0.346 0.187 0.475 0.195 0.406
10 0.143 0.197 0.230 0.470 0.345 0.655 0.452 0.827 0.473 0.781
20 0.337 0.412 0.520 0.738 0.728 0.859 0.864 0.967 0.876 0.968

t-sq(10%) 5 0.079 0.094 0.107 0.225 0.130 0.339 0.173 0.462 0.190 0.400
10 0.133 0.179 0.212 0.467 0.315 0.646 0.428 0.828 0.459 0.791
20 0.297 0.384 0.480 0.720 0.694 0.847 0.859 0.966 0.890 0.972

t-bm(10%) 5 0.111 0.103 0.151 0.240 0.163 0.367 0.211 0.482 0.212 0.384
10 0.198 0.211 0.309 0.521 0.402 0.697 0.515 0.837 0.480 0.770
20 0.499 0.486 0.689 0.805 0.826 0.897 0.912 0.976 0.891 0.965

t-rt(10%) 5 0.095 0.097 0.148 0.234 0.166 0.349 0.198 0.451 0.184 0.354
10 0.172 0.200 0.292 0.496 0.396 0.681 0.481 0.819 0.437 0.737
20 0.430 0.450 0.658 0.790 0.814 0.884 0.889 0.969 0.853 0.953

Notes: As for Table 2, except that the DGP is (3.1) with c = 5; 10 and 20.
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Table 6: Size-corrected power of quarterly seasonal unit root tests
for autoregressive disturbances

t0 t2 F1 F12 F012
c OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel A. Seasonal AR: � = 0:5
AIC 5 0.082 0.094 0.107 0.244 0.142 0.355 0.170 0.461 0.161 0.437

10 0.141 0.197 0.225 0.492 0.333 0.712 0.445 0.856 0.454 0.856
20 0.328 0.461 0.517 0.793 0.768 0.937 0.887 0.987 0.910 0.989

MAIC 5 0.078 0.092 0.098 0.248 0.124 0.363 0.159 0.495 0.158 0.445
10 0.089 0.162 0.147 0.443 0.228 0.661 0.322 0.804 0.315 0.769
20 0.033 0.077 0.084 0.380 0.225 0.712 0.284 0.856 0.229 0.798

MAIC_PQ 5 0.096 0.250 0.363 0.494 0.447
10 0.149 0.408 0.622 0.751 0.708
20 0.070 0.359 0.697 0.841 0.775

BIC 5 0.083 0.096 0.108 0.246 0.135 0.359 0.166 0.470 0.157 0.442
10 0.143 0.201 0.219 0.488 0.331 0.710 0.443 0.845 0.447 0.839
20 0.296 0.375 0.442 0.660 0.649 0.850 0.742 0.919 0.734 0.897

MBIC_PQ 5 0.015 0.016 0.018 0.066 0.055 0.148 0.041 0.161 0.031 0.117
10 0.014 0.023 0.017 0.135 0.086 0.263 0.067 0.328 0.044 0.238
20 0.065 0.165 0.133 0.550 0.269 0.674 0.359 0.874 0.346 0.883

SAIC 5 0.074 0.090 0.116 0.222 0.140 0.301 0.181 0.418 0.158 0.370
10 0.132 0.176 0.234 0.436 0.309 0.619 0.444 0.789 0.409 0.789
20 0.290 0.404 0.509 0.735 0.704 0.885 0.857 0.972 0.857 0.973

SMAIC 5 0.120 0.092 0.139 0.258 0.171 0.432 0.224 0.546 0.234 0.486
10 0.179 0.188 0.249 0.513 0.355 0.778 0.474 0.872 0.465 0.791
20 0.049 0.090 0.111 0.348 0.195 0.657 0.253 0.745 0.210 0.554

SMAIC_PQ 5 0.093 0.270 0.401 0.541 0.486
10 0.181 0.494 0.721 0.828 0.791
20 0.060 0.306 0.568 0.683 0.554

t-sq(5%) 5 0.077 0.086 0.107 0.225 0.139 0.325 0.166 0.448 0.165 0.390
10 0.133 0.179 0.221 0.448 0.313 0.653 0.417 0.819 0.436 0.806
20 0.286 0.404 0.471 0.730 0.697 0.876 0.839 0.966 0.877 0.974

t-sq(10%) 5 0.076 0.084 0.107 0.216 0.137 0.306 0.162 0.423 0.163 0.377
10 0.124 0.174 0.214 0.420 0.304 0.616 0.401 0.783 0.411 0.780
20 0.269 0.379 0.432 0.680 0.647 0.836 0.801 0.947 0.841 0.961

t-bm(10%) 5 0.085 0.091 0.122 0.223 0.143 0.319 0.186 0.446 0.171 0.376
10 0.149 0.185 0.238 0.450 0.338 0.646 0.458 0.823 0.447 0.795
20 0.348 0.434 0.529 0.748 0.745 0.894 0.873 0.978 0.890 0.974

t-rt(10%) 5 0.077 0.089 0.115 0.227 0.140 0.299 0.180 0.413 0.161 0.369
10 0.135 0.179 0.227 0.442 0.307 0.613 0.439 0.785 0.410 0.784
20 0.294 0.409 0.498 0.733 0.697 0.877 0.851 0.970 0.855 0.971
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Table 6 (continued)

t0 t2 F1 F12 F012
c OLS GLS OLS GLS OLS GLS OLS GLS OLS GLS

Panel B. Seasonal AR: � = �0:5
AIC 5 0.072 0.098 0.107 0.220 0.159 0.306 0.204 0.452 0.201 0.397

10 0.164 0.237 0.287 0.479 0.503 0.620 0.667 0.819 0.688 0.834
20 0.583 0.676 0.841 0.815 0.983 0.810 0.998 0.964 0.999 0.989

MAIC 5 0.069 0.094 0.100 0.216 0.153 0.296 0.196 0.434 0.201 0.414
10 0.158 0.226 0.270 0.434 0.490 0.587 0.635 0.762 0.653 0.779
20 0.536 0.502 0.775 0.686 0.935 0.687 0.972 0.866 0.974 0.912

MAIC_PQ 5 0.097 0.219 0.302 0.437 0.410
10 0.250 0.465 0.609 0.789 0.806
20 0.649 0.771 0.766 0.921 0.956

BIC 5 0.111 0.105 0.150 0.226 0.194 0.307 0.224 0.436 0.208 0.374
10 0.278 0.262 0.386 0.488 0.527 0.626 0.648 0.812 0.642 0.815
20 0.766 0.693 0.893 0.830 0.985 0.824 0.998 0.971 0.999 0.991

MBIC_PQ 5 0.072 0.100 0.103 0.216 0.158 0.307 0.196 0.441 0.206 0.414
10 0.158 0.249 0.274 0.461 0.495 0.616 0.638 0.794 0.666 0.815
20 0.541 0.651 0.780 0.769 0.941 0.769 0.974 0.922 0.976 0.958

SAIC 5 0.094 0.113 0.136 0.231 0.207 0.329 0.230 0.444 0.206 0.370
10 0.237 0.282 0.368 0.511 0.582 0.618 0.689 0.798 0.662 0.779
20 0.777 0.687 0.887 0.808 0.973 0.762 0.997 0.925 0.996 0.932

SMAIC 5 0.135 0.135 0.160 0.269 0.237 0.384 0.302 0.484 0.281 0.446
10 0.390 0.322 0.472 0.572 0.675 0.704 0.770 0.809 0.751 0.815
20 0.901 0.631 0.955 0.820 0.990 0.841 0.997 0.917 0.994 0.940

SMAIC_PQ 5 0.147 0.285 0.391 0.491 0.446
10 0.370 0.605 0.711 0.826 0.815
20 0.767 0.856 0.861 0.944 0.940

t-sq(5%) 5 0.072 0.102 0.104 0.218 0.157 0.286 0.199 0.417 0.205 0.376
10 0.155 0.232 0.275 0.445 0.488 0.564 0.634 0.757 0.668 0.779
20 0.502 0.582 0.754 0.726 0.929 0.701 0.982 0.888 0.991 0.937

t-sq(10%) 5 0.072 0.096 0.100 0.214 0.144 0.265 0.189 0.387 0.202 0.354
10 0.150 0.216 0.249 0.409 0.443 0.513 0.592 0.701 0.634 0.734
20 0.446 0.502 0.668 0.667 0.882 0.628 0.967 0.837 0.984 0.906

t-bm(10%) 5 0.100 0.113 0.136 0.255 0.197 0.334 0.219 0.450 0.203 0.380
10 0.249 0.276 0.380 0.534 0.581 0.626 0.687 0.797 0.669 0.783
20 0.804 0.692 0.913 0.820 0.973 0.763 0.997 0.928 0.997 0.935

t-rt(10%) 5 0.093 0.110 0.136 0.225 0.207 0.323 0.227 0.435 0.204 0.363
10 0.237 0.280 0.365 0.498 0.575 0.613 0.679 0.791 0.661 0.769
20 0.769 0.680 0.880 0.800 0.970 0.752 0.996 0.920 0.995 0.925

Notes: As for Table 3, except that the DGP is (3.1) with c = 5; 10 and 20.

33



T
ab
le
7:
E
st
im
at
ed
A
R
M
A
m
od
el
s
fo
r
U
S
in
du
st
ri
al
pr
od
uc
ti
on
gr
ow
th

C
om
p
on
en
t
se
ri
es

b �
b � 1

b � 2
b �

b �
R
2

s
L
M
(4
)

B
us
in
es
s
E
qu
ip
m
en
t

0
:4
9
1

(0
:0
9
2
)

0:
1
3
5

(0
:0
6
3
)

�
0
:1
6
9

(0
:1
0
5
)

0
:4
9
2

0:
98
5

0
:2
45

B
us
in
es
s
Su
pp
lie
s

�
0:
4
6
8

(0
:0
6
4
)

�
0:
1
3
0

(0
:0
6
4
)

0:
9
2
3

(0
:0
1
6
)

0
:6
1
0

(0
:0
5
5
)

0
:7
2
4

0:
46
3

0
:7
02

C
on
st
ru
ct
io
n
Su
pp
lie
s

�
0:
5
3
0

(0
:0
5
4
)

0:
1
6
7

(0
:0
6
3
)

0
:7
3
9

0:
76
3

0
:4
91

D
ur
ab
le
C
on
su
m
er
G
oo
ds

�
0:
2
0
6

(0
:0
6
4
)

0:
9
2
0

(0
:0
4
4
)

0
:7
5
2

(0
:0
7
2
)

0
:4
5
0

1:
66
4

0
:5
42

D
ur
ab
le
G
oo
ds
M
at
er
ia
ls

�
0:
2
0
4

(0
:0
6
3
)

�
0
:0
9
2

(0
:0
2
9
)

0
:2
1
0

1:
77
0

0
:4
88

N
on
-D
ur
ab
le
C
on
su
m
er
G
oo
ds

�
0:
1
0
5

(0
:0
6
4
)

0:
8
9
2

(0
:0
3
4
)

0
:5
9
1

(0
:0
6
7
)

0
:7
9
0

0:
36
1

0
:3
23

N
ot
es
:
A
R
M
A
m
od
el
s
ar
e
es
ti
m
at
ed
fo
r
co
m
p
on
en
t
qu
ar
te
ly
U
S
in
du
st
ri
al
pr
od
uc
ti
on
gr
ow
th
se
ri
es
,
co
m
pu
te
d
as
10
0
ti
m
es

th
e
�r
st
di
¤
er
en
ce
of
th
e
lo
ga
ri
th
m
of
th
e
co
rr
es
p
on
di
ng
in
de
x.
E
st
im
at
ed
m
od
el
s
ha
ve
th
e
fo
rm

(1
�
�
L
)(
1
�
�
L
4
)�
x
4
t+
s
=

�
�
4
t+
s
+
(1
�
� 1
L
�
� 2
L
2
)(
1
�
�
L
4
)"
4
t+
s
,
w
he
re
x
4
t+
s
is
th
e
ob
se
rv
ed
se
ri
es
,
th
e
de
te
rm
in
is
ti
c
co
m
p
on
en
t
�
�
4
t+
s
in
cl
ud
es
a

co
ns
ta
nt
an
d
th
re
e
se
as
on
al
du
m
m
y
va
ri
ab
le
s,
" t
is
w
hi
te
no
is
e;
va
lu
es
in
pa
re
nt
he
se
s
ar
e
st
an
da
rd
er
ro
rs
;
R
2
an
d
s
ar
e
th
e

co
nv
en
ti
on
al
co
e¢
ci
en
t
of
de
te
rm
in
at
io
n
an
d
th
e
re
si
du
al
st
an
da
rd
er
ro
r,
re
sp
ec
ti
ve
ly
;
L
M
(4
)
is
th
e
p
-v
al
ue
fo
r
th
e
F
-t
es
t

ve
rs
io
n
of
th
e
L
ag
ra
ng
e-
M
ul
ti
pl
er
te
st
fo
r
au
to
co
rr
el
at
io
n
to
4
la
gs
.

34



T
ab
le
8:
U
ni
t
ro
ot
te
st
re
su
lt
s
fo
r
U
S
in
du
st
ri
al
pr
od
uc
ti
on
in
di
ce
s

t 0
t 2

F
1

F
1
2

F
0
1
2

A
ug
m
en
ta
ti
on
la
gs

A
.
B
us
in
es
s
E
qu
ip
m
en
t

A
I
C

-3
.7
87
��

-1
1.
13
3�
��

88
.6
66
��
�

94
5.
63
4�
��

70
9.
56
4�
��

0
B
I
C

-3
.7
87
��

-1
1.
13
3�
��

88
.6
66
��
�

94
5.
63
4�
��

70
9.
56
4�
��

0
O
L
S

M
A
I
C

-2
.3
99

-3
.6
35
��
�

6.
76
0�
�

9.
23
9�
��

9.
02
7�
��

1-
13

S
M
A
I
C

-2
.2
22

-3
.8
84
��
�

9.
12
9�
��

7.
92
1�
��

7.
47
4�
�

1-
2,
4,
7-
15

t-
sq
(1
0%
)

-1
.8
89

-4
.1
54
��
�

5.
43
4

9.
59
6�
��

8.
26
8�
��

1-
15

t-
rt
(1
0%
)

-2
.5
26

-7
.6
58
��
�

18
.5
25
��
�

32
.6
43
��
�

27
.1
61
��
�

1,
3,
7,
9,
12
-1
5

A
I
C

-2
.6
23

-2
.2
24
��
�

1.
90
4

2.
96
0�

4.
11
1�

1-
13

B
I
C

-2
.8
48

-4
.5
80
��
�

17
.7
73
��
�

18
.5
76
��
�

16
.6
14
��
�

1-
2

G
L
S

M
A
I
C
_
P
Q

-2
.6
23

-2
.2
24

��
1.
90
4

2.
96
0�

4.
11
1�

1-
13

S
M
A
I
C
_
P
Q

-2
.1
63

-2
.4
12

��
2.
86
5�

3.
26
8�
�

3.
78
8�

1-
2,
4,
7-
15

t-
sq
(1
0%
)

-2
.0
90

-2
.4
37

��
1.
46
0

2.
93
8�

3.
34
4

1-
15

t-
rt
(1
0%
)

-2
.2
48

-2
.7
01

��
3.
66
8�
�

4.
11
5�
�

4.
53
8�
�

1-
2,
4-
5,
7,
10
-1
5

B
.
B
us
in
es
s
Su
pp
lie
s

A
I
C

0.
74
3

-2
.0
22

8.
66
8�
�

7.
32
3�
�

5.
67
7

1-
11

B
I
C

-0
.2
58

-2
.0
00

9.
80
3�
��

8.
06
1�
��

6.
06
0

1-
5

O
L
S

M
A
I
C

0.
16
7

-2
.0
34

8.
52
5�
�

7.
22
5�
�

5.
44
2

1-
7

S
M
A
I
C

-0
.3
68

-1
.4
68

4.
61
7

3.
78
6

2.
87
2

1-
2,
4,
9-
15

t-
sq
(1
0%
)

0.
47
7

-1
.9
60

9.
18
7�
��

7.
63
3�
�

5.
80
7

1-
13

t-
rt
(1
0%
)

0.
35
8

-1
.3
44

9.
64
1�
��

7.
13
2�
�

5.
38
5

1-
5,
8,
13
-1
5

A
I
C

-0
.5
95

-0
.2
70

0.
39
4

0.
28
7

0.
30
7

1-
5

B
I
C

-0
.5
95

-0
.2
70

0.
39
4

0.
28
7

0.
30
7

1-
5

G
L
S

M
A
I
C
_
P
Q

-0
.2
97

-0
.3
26

0.
29
9

0.
23
4

0.
19
8

1-
7

S
M
A
I
C
_
P
Q

-0
.5
38

-0
.1
70

0.
06
1

0.
05
0

0.
11
1

1-
2,
4,
9-
15

t-
sq
(1
0%
)

-0
.5
73

-0
.1
76

0.
19
0

0.
13
6

0.
18
4

1-
15

t-
rt
(1
0%
)

-0
.5
38

-0
.1
70

0.
06
1

0.
05
0

0.
11
1

1-
2,
4,
6,
9,
11
-1
5

35



T
ab
le
8
(c
on
ti
nu
ed
)

t 0
t 2

F
1

F
1
2

F
0
1
2

A
ug
m
en
ta
ti
on
la
gs

C
.
C
on
st
ru
ct
io
n
Su
pp
lie
s

A
I
C

-2
.5
77

-1
5.
50
7�
��

47
.0
24
��
�

48
3.
21
1�
��

36
5.
78
2�
��

0
B
I
C

-2
.5
77

-1
5.
50
7�
��

47
.0
24
��
�

48
3.
21
1�
��

36
5.
78
2�
��

0
O
L
S

M
A
I
C

-0
.7
73

-3
.4
28
��
�

5.
23
6

7.
88
9�
��

6.
07
3

1-
15

S
M
A
I
C

-1
.1
10

-5
.7
03
��
�

6.
59
1�

13
.9
37
��
�

10
.7
32
��
�

1-
2,
4-
5,
11
-1
3,
15

t-
sq
(1
0%
)

-0
.6
92

-4
.4
66
��
�

6.
09
0�

11
.5
99
��
�

8.
83
5�
��

1-
11

t-
rt
(1
0%
)

-0
.8
64

-1
5.
55
2�
��

46
.8
09
��
�

44
0.
95
7�
��

33
4.
16
7�
��

4-
5,
7,
9,
12
-1
5

A
I
C

-0
.9
16

-1
.0
59

0.
85
3

0.
94
1

0.
93
0

1-
13

B
I
C

-1
.4
67

-2
.1
54
�

4.
49
3�
�

4.
57
1�
��

4.
10
7�

1-
5

G
L
S

M
A
I
C
_
P
Q

-0
.9
08

-0
.8
95

0.
93
9

0.
89
8

0.
87
9

1-
15

S
M
A
I
C
_
P
Q

-0
.7
39

-2
.5
19
�

0.
22
0

2.
29
7

1.
85
4

1-
2,
4-
9,
11
-1
3,
15

t-
sq
(1
0%
)

-0
.9
16

-1
.0
59

0.
85
3

0.
94
1

0.
93
0

1-
13

t-
rt
(1
0%
)

-0
.9
26

-1
.7
18

0.
88
3

1.
54
3

1.
40
5

1-
5,
8-
9,
12
,1
4

D
.
D
ur
ab
le
C
on
su
m
er
G
oo
ds

A
I
C

-1
.5
51

-2
.4
88

14
.6
81
��
�

11
.9
99
��
�

10
.0
30
��
�

1-
5

B
I
C

-1
.9
37

-3
.5
84
��
�

30
.6
41
��
�

24
.9
17
��
�

20
.5
56
��
�

1-
2

O
L
S

M
A
I
C

-1
.2
62

-1
.6
13

6.
44
7�

5.
20
8�

4.
43
7

1-
13

S
M
A
I
C

-1
.6
71

-2
.6
41
�

4.
84
4

4.
69
5

4.
36
8

1-
2,
4,
7-
10
,1
3-
15

t-
sq
(1
0%
)

-1
.5
35

-1
.8
56

7.
37
7�
�

6.
04
0�
�

5.
20
6

1-
14

t-
rt
(1
0%
)

-1
.2
77

-2
.6
74
�

5.
64
0�

5.
23
3�

4.
42
2

1-
2,
4-
5,
8,
12
-1
4

A
I
C

-1
.4
61

-1
.5
19

1.
81
3

1.
98
2

2.
02
9

1-
11

B
I
C

-1
.7
28

-2
.1
10
�

4.
72
8�
�

4.
66
9�
��

4.
41
1�
�

1-
5

G
L
S

M
A
I
C
_
P
Q

-1
.5
19

-1
.3
44

1.
59
5

1.
66
2

1.
86
2

1-
13

S
M
A
I
C
_
P
Q

-1
.6
32

-2
.0
46
�

1.
39
5

2.
12
0

2.
30
9

1-
2,
4,
7-
10
,1
3-
15

t-
sq
(1
0%
)

-1
.7
15

-1
.5
25

1.
90
3

2.
01
7

2.
25
6

1-
14

t-
rt
(1
0%
)

-1
.4
29

-2
.0
90
�

1.
57
8

2.
29
1

2.
26
9

1-
2,
4-
5,
10
-1
1,
13
,1
5

36



T
ab
le
8
(c
on
ti
nu
ed
)

t 0
t 2

F
1

F
1
2

F
0
1
2

A
ug
m
en
ta
ti
on
la
gs

E
.
D
ur
ab
le
G
oo
ds
M
at
er
ia
ls

A
I
C

-2
.7
80

-1
0.
71
7�
��

81
.8
93
��
�

35
0.
36
7�
��

26
4.
99
6�
��

0
B
I
C

-2
.7
80

-1
0.
71
7�
��

81
.8
93
��
�

35
0.
36
7�
��

26
4.
99
6�
��

0
O
L
S

M
A
I
C

-2
.2
15

-2
.4
68

7.
97
4�
�

7.
59
6�
�

7.
27
3�
�

1-
13

S
M
A
I
C

-2
.1
29

-3
.0
79

��
6.
91
0�
�

6.
69
9�
�

6.
23
3

1-
6,
8-
9,
10
-1
5

t-
sq
(1
0%
)

-2
.2
15

-2
.4
68

7.
97
4�
�

7.
59
6�
�

7.
27
3�
�

1-
13

t-
rt
(1
0%
)

-2
.3
63

-3
.0
68

��
20
.8
86
��
�

17
.5
56
��
�

14
.9
19
��
�

1-
5,
7,
9,
11
,1
4-
15

A
I
C

-2
.2
62

-2
.4
85

��
3.
60
8�
�

4.
58
1�
��

4.
89
5�
��

1-
13

B
I
C

-2
.7
22

-1
1.
72
3�
��

64
.8
76
��
�

31
1.
20
5�
��

23
5.
56
7�
��

0
G
L
S

M
A
I
C
_
P
Q

-2
.2
62

-2
.4
85

��
3.
60
8�
�

4.
58
1�
��

4.
89
5�
��

1-
13

S
M
A
I
C
_
P
Q

-2
.0
36

-4
.2
29
��
�

1.
85
0

6.
11
3�
��

5.
55
8�
��

1-
2,
4-
8,
10
-1
1,
13
-1
5

t-
sq
(1
0%
)

-2
.2
62

-2
.4
85

��
3.
60
8�
�

4.
58
1�
��

4.
89
5�
��

1-
13

t-
rt
(1
0%
)

-2
.4
57

-3
.3
12
��
�

6.
48
3�
��

7.
95
5�
��

7.
99
6�
��

1-
5,
8-
9,
13
-1
5

F
.
N
on
-D
ur
ab
le
C
on
su
m
er
G
oo
ds

A
I
C

-0
.8
17

-2
.8
55
�

4.
58
2

5.
66
8

4.
44
9

1-
5

B
I
C

-0
.7
89

-4
.2
77
��
�

7.
51
6�
�

12
.0
63
��
�

9.
26
1�
��

1-
3

O
L
S

M
A
I
C

-0
.6
58

-1
.4
78

2.
53
9

2.
45
0

1.
95
3

1-
15

S
M
A
I
C

-0
.3
59

-2
.3
30

2.
66
1

3.
12
1

2.
37
4

1,
3,
7-
9,
11
,1
4-
15

t-
sq
(1
0%
)

-0
.6
19

-1
.8
18

2.
41
4

2.
73
8

2.
15
4

1-
12

t-
rt
(1
0%
)

-0
.4
83

-2
.2
43

2.
31
1

2.
78
7

2.
15
4

1,
6,
9,
11
-1
5

A
I
C

-0
.2
48

-2
.6
66

��
0.
73
4

2.
79
8�

2.
12
0

1-
5

B
I
C

-0
.2
48

-2
.6
66

��
0.
73
4

2.
79
8�

2.
12
0

1-
5

G
L
S

M
A
I
C
_
P
Q

-0
.5
43

-1
.4
56

0.
29
3

0.
89
8

0.
75
1

1-
15

S
M
A
I
C
_
P
Q

-0
.5
11

-1
.9
99
�

0.
41
4

1.
57
1

1.
24
7

1,
5,
7-
9,
10
,1
4-
15

t-
sq
(1
0%
)

-0
.5
43

-1
.4
56

0.
29
3

0.
89
8

0.
75
1

1-
15

t-
rt
(1
0%
)

-0
.5
11

-1
.9
99
�

0.
41
4

1.
57
1

1.
24
7

1,
3,
5,
7,
9,
11
-1
5

37



T
ab
le
8
(c
on
ti
nu
ed
)

C
ri
ti
ca
l
V
al
ue
s

t 0
t 2

F
1

F
1
2

F
0
1
2

1
0
%

-3
.1
14

-2
.5
55

5.
59
6

5.
13
1

6.
27
8

O
L
S

5
%

-3
.4
01

-2
.8
51

6.
63
0

5.
94
7

6.
97
0

1
%

-3
.9
54

-3
.4
21

8.
83
7

7.
68
5

7.
82
6

1
0
%

-2
.7
75

-1
.8
79

2.
60
9

2.
52
6

3.
70
9

G
L
S

5
%

-3
.0
55

-2
.1
79

3.
38
0

3.
07
8

4.
17
9

1
%

-3
.6
02

-2
.7
77

5.
03
7

4.
32
7

4.
78
3

N
ot
es
:
�
��
an
d
��
�
in
di
ca
te
st
at
is
ti
ca
lly
si
g�
ca
nt
at
10
%
,5
%
an
d
1%

le
ve
ls
,r
es
p
ec
ti
ve
ly
.
A
ll
te
st
s
al
lo
w
fo
r
se
as
on
al
in
te
rc
ep
ts

an
d
a
ze
ro
fr
eq
ue
nc
y
tr
en
d,
an
d
ar
e
co
m
pu
te
d
ov
er
th
e
sa
m
pl
e
19
47
Q
1
to
20
10
Q
4,
w
it
h
P
Q
in
di
ca
ti
ng
us
e
of
th
e
O
L
S-
G
L
S

m
et
ho
d
of
P
er
ro
n
an
d
Q
u
(2
00
7)
.
T
he
m
ax
im
um

la
g
le
ng
th
co
ns
id
er
ed
is
gi
ve
n
by
k
m
a
x
=
b1
2
(4
N
=
10
0)
1
=
4
c
=
15
.
C
ri
ti
ca
l

va
lu
es
ha
ve
b
ee
n
ob
ta
in
ed
by
si
m
ul
at
io
n
ba
se
d
on
1
0
0;
0
0
0
re
pl
ic
at
io
ns
fo
r
a
sa
m
pl
e
of
6
4
ye
ar
s
of
qu
ar
te
rl
y
da
ta
.

38



E
m
pi
ri
ca
l
p
ow
er
fu
nc
ti
on
s
fo
r
ze
ro
fr
eq
ue
nc
y
un
it
ro
ot
te
st

39



E
m
pi
ri
ca
l
p
ow
er
fu
nc
ti
on
s
fo
r
N
yq
ui
st
fr
eq
ue
nc
y
un
it
ro
ot
te
st

40



E
m
pi
ri
ca
l
p
ow
er
fu
nc
ti
on
s
fo
r
jo
in
t
an
nu
al
fr
eq
ue
nc
y
un
it
ro
ot
te
st

41



In
du
st
ri
al
P
ro
du
ct
io
n
In
di
ce
s
(i
n
lo
gs
)

42



Appendix Table A1: Empirical size of quarterly seasonal unit root tests

for white noise disturbances with  = 100

0 2 1 12 012
         

Panel A.  = 4

 0.050 0.063 0.049 0.072 0.050 0.059 0.048 0.064 0.048 0.077

 0.040 0.049 0.046 0.066 0.041 0.052 0.042 0.056 0.040 0.062

_ 0.050 0.066 0.053 0.056 0.062

 0.048 0.060 0.048 0.071 0.045 0.058 0.046 0.062 0.044 0.073

 0.043 0.053 0.047 0.069 0.042 0.055 0.043 0.058 0.041 0.066

_ 0.054 0.069 0.055 0.058 0.066

 0.055 0.069 0.051 0.073 0.049 0.060 0.052 0.067 0.053 0.081

 0.030 0.041 0.038 0.064 0.036 0.049 0.038 0.052 0.033 0.057

_ 0.042 0.064 0.050 0.053 0.057

-(5%) 0.053 0.067 0.050 0.071 0.051 0.060 0.049 0.064 0.049 0.079

-(10%) 0.053 0.068 0.050 0.071 0.052 0.059 0.050 0.066 0.052 0.079

-(5%) 0.054 0.067 0.050 0.071 0.050 0.062 0.050 0.068 0.051 0.084

-(10%) 0.057 0.069 0.052 0.072 0.054 0.061 0.051 0.070 0.055 0.085

-(5%) 0.052 0.067 0.049 0.071 0.048 0.061 0.051 0.066 0.052 0.081

-(10%) 0.056 0.069 0.052 0.073 0.050 0.060 0.053 0.068 0.054 0.080

Panel B.  = 12

 0.051 0.059 0.044 0.073 0.046 0.057 0.045 0.063 0.050 0.077

 0.040 0.044 0.041 0.067 0.039 0.050 0.039 0.050 0.042 0.056

_ 0.045 0.066 0.051 0.051 0.057

 0.047 0.058 0.044 0.072 0.045 0.055 0.044 0.059 0.048 0.074

 0.044 0.051 0.043 0.069 0.042 0.054 0.041 0.054 0.045 0.065

_ 0.051 0.069 0.053 0.054 0.065

 0.068 0.081 0.057 0.082 0.060 0.067 0.061 0.076 0.071 0.096

 0.011 0.023 0.024 0.051 0.022 0.033 0.019 0.034 0.014 0.032

_ 0.022 0.052 0.036 0.036 0.032

-(5%) 0.059 0.069 0.049 0.078 0.051 0.061 0.050 0.064 0.058 0.084

-(10%) 0.058 0.068 0.049 0.080 0.050 0.061 0.049 0.066 0.057 0.080

-(5%) 0.064 0.072 0.054 0.078 0.055 0.067 0.054 0.072 0.064 0.094

-(10%) 0.073 0.082 0.059 0.080 0.063 0.070 0.061 0.080 0.075 0.103

-(5%) 0.063 0.072 0.053 0.077 0.054 0.062 0.054 0.071 0.063 0.091

-(10%) 0.070 0.083 0.059 0.081 0.061 0.068 0.063 0.077 0.074 0.099

Notes: As for Table 1, except that  = 100.
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Appendix Table A.2: Empirical size of quarterly seasonal unit root tests

for moving average disturbances with  = 100

0 2 1 12 012
         

Panel A. (1) :  = −08 Θ = 0
 0.055 0.067 0.212 0.225 0.051 0.061 0.158 0.160 0.147 0.145

 0.029 0.037 0.069 0.105 0.037 0.044 0.057 0.065 0.053 0.053

_ 0.037 0.106 0.046 0.068 0.058

 0.059 0.069 0.387 0.372 0.064 0.066 0.304 0.275 0.280 0.250

 0.025 0.027 0.093 0.170 0.033 0.037 0.063 0.083 0.058 0.062

_ 0.030 0.153 0.041 0.083 0.066

 0.069 0.078 0.173 0.182 0.062 0.063 0.137 0.135 0.140 0.135

 0.011 0.023 0.056 0.106 0.028 0.038 0.040 0.061 0.030 0.044

_ 0.024 0.100 0.041 0.063 0.047

-(5%) 0.059 0.073 0.147 0.168 0.056 0.061 0.117 0.122 0.109 0.117

-(10%) 0.056 0.068 0.100 0.120 0.054 0.056 0.087 0.093 0.085 0.095

-(5%) 0.057 0.065 0.188 0.189 0.056 0.063 0.136 0.139 0.129 0.130

-(10%) 0.056 0.064 0.156 0.161 0.053 0.063 0.122 0.124 0.113 0.118

-(5%) 0.067 0.075 0.211 0.220 0.061 0.066 0.161 0.156 0.159 0.152

-(10%) 0.070 0.076 0.167 0.175 0.061 0.063 0.131 0.132 0.135 0.133

Panel B. Seasonal :  = 0 Θ = 05

 0.197 0.206 0.144 0.167 0.140 0.101 0.196 0.156 0.285 0.257

 0.067 0.083 0.061 0.096 0.058 0.050 0.072 0.066 0.094 0.089

_ 0.087 0.097 0.051 0.070 0.096

 0.304 0.323 0.222 0.248 0.226 0.143 0.309 0.238 0.436 0.402

 0.087 0.121 0.077 0.130 0.069 0.060 0.089 0.090 0.126 0.136

_ 0.112 0.117 0.056 0.085 0.127

 0.131 0.122 0.124 0.129 0.119 0.084 0.143 0.115 0.149 0.141

 0.022 0.035 0.062 0.088 0.059 0.055 0.060 0.061 0.034 0.045

_ 0.036 0.088 0.055 0.060 0.046

-(5%) 0.112 0.129 0.084 0.114 0.082 0.068 0.106 0.095 0.145 0.142

-(10%) 0.091 0.113 0.071 0.098 0.069 0.062 0.088 0.084 0.118 0.123

-(5%) 0.136 0.126 0.131 0.134 0.129 0.088 0.157 0.124 0.160 0.153

-(10%) 0.140 0.130 0.119 0.127 0.117 0.085 0.142 0.113 0.152 0.145

-(5%) 0.133 0.124 0.127 0.135 0.127 0.088 0.154 0.121 0.163 0.144

-(10%) 0.132 0.123 0.123 0.128 0.117 0.083 0.138 0.114 0.147 0.139
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Appendix Table A.2 (continued)

0 2 1 12 012
         

Panel C. Seasonal :  = 0 Θ = −05
 0.061 0.068 0.065 0.078 0.060 0.064 0.062 0.072 0.077 0.084

 0.027 0.026 0.041 0.051 0.034 0.044 0.034 0.043 0.032 0.042

_ 0.025 0.051 0.045 0.043 0.041

 0.107 0.126 0.094 0.119 0.074 0.065 0.090 0.094 0.129 0.143

 0.018 0.029 0.031 0.056 0.029 0.038 0.028 0.040 0.023 0.038

_ 0.015 0.039 0.041 0.037 0.029

 0.074 0.082 0.066 0.083 0.064 0.071 0.069 0.081 0.074 0.105

 0.007 0.018 0.031 0.048 0.020 0.034 0.020 0.034 0.012 0.027

_ 0.018 0.047 0.034 0.034 0.028

-(5%) 0.053 0.064 0.058 0.071 0.052 0.062 0.054 0.064 0.061 0.076

-(10%) 0.052 0.065 0.058 0.073 0.050 0.059 0.052 0.064 0.058 0.080

-(5%) 0.066 0.072 0.062 0.080 0.059 0.071 0.065 0.079 0.070 0.091

-(10%) 0.070 0.078 0.064 0.081 0.062 0.072 0.067 0.081 0.074 0.103

-(5%) 0.069 0.080 0.066 0.083 0.064 0.069 0.067 0.078 0.071 0.098

-(10%) 0.075 0.083 0.066 0.084 0.065 0.071 0.071 0.082 0.076 0.106

Notes: As for Table 2, except that  = 100.
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Appendix Table A.3: Empirical size of quarterly seasonal unit root tests

for autoregressive disturbances with  = 100

0 2 1 12 012
         

Panel A. Seasonal : Φ = 05

 0.047 0.063 0.050 0.073 0.049 0.054 0.050 0.062 0.051 0.072

 0.035 0.047 0.043 0.067 0.043 0.046 0.041 0.051 0.042 0.051

_ 0.048 0.066 0.047 0.052 0.053

 0.045 0.060 0.048 0.072 0.048 0.052 0.047 0.060 0.049 0.069

 0.034 0.052 0.041 0.068 0.041 0.048 0.039 0.054 0.038 0.054

_ 0.047 0.064 0.047 0.051 0.049

 0.072 0.089 0.064 0.082 0.066 0.073 0.069 0.084 0.084 0.108

 0.011 0.019 0.026 0.056 0.020 0.031 0.019 0.032 0.015 0.028

_ 0.022 0.057 0.033 0.032 0.031

-(5%) 0.052 0.069 0.052 0.073 0.051 0.057 0.052 0.064 0.059 0.078

-(10%) 0.053 0.068 0.054 0.072 0.053 0.059 0.052 0.067 0.062 0.080

-(5%) 0.057 0.072 0.057 0.077 0.058 0.064 0.059 0.075 0.064 0.091

-(10%) 0.064 0.078 0.059 0.077 0.060 0.070 0.065 0.080 0.074 0.099

-(5%) 0.066 0.083 0.063 0.083 0.060 0.068 0.065 0.080 0.075 0.099

-(10%) 0.073 0.090 0.064 0.082 0.067 0.073 0.071 0.084 0.086 0.109

Panel B. Seasonal : Φ = −05
 0.046 0.056 0.047 0.066 0.054 0.057 0.055 0.059 0.053 0.066

 0.030 0.040 0.040 0.062 0.047 0.050 0.047 0.050 0.041 0.050

_ 0.040 0.062 0.051 0.051 0.051

 0.042 0.053 0.046 0.066 0.053 0.056 0.053 0.059 0.051 0.064

 0.033 0.043 0.043 0.064 0.049 0.053 0.050 0.054 0.044 0.054

_ 0.044 0.064 0.053 0.054 0.055

 0.070 0.074 0.067 0.080 0.072 0.070 0.075 0.076 0.067 0.081

 0.010 0.021 0.031 0.056 0.036 0.042 0.032 0.044 0.017 0.029

_ 0.021 0.054 0.043 0.044 0.030

-(5%) 0.053 0.064 0.049 0.069 0.056 0.061 0.059 0.063 0.058 0.072

-(10%) 0.053 0.067 0.049 0.073 0.056 0.061 0.059 0.065 0.058 0.075

-(5%) 0.061 0.064 0.064 0.077 0.069 0.069 0.070 0.077 0.061 0.078

-(10%) 0.073 0.072 0.067 0.082 0.070 0.071 0.073 0.079 0.072 0.088

-(5%) 0.063 0.062 0.062 0.077 0.068 0.067 0.069 0.075 0.062 0.073

-(10%) 0.072 0.074 0.069 0.082 0.073 0.071 0.078 0.076 0.071 0.082

Notes: As for Table 3, except that  = 100.
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Appendix Table A.4: Size-corrected power of quarterly seasonal unit root tests

for white noise disturbances with  = 100

0 2 1 12 012
          

Panel A.  = 4

 5 0.081 0.109 0.118 0.262 0.195 0.449 0.264 0.592 0.268 0.521

10 0.195 0.302 0.323 0.663 0.555 0.870 0.749 0.974 0.795 0.968

20 0.664 0.843 0.891 0.971 0.994 0.995 1.000 1.000 1.000 1.000

 5 0.086 0.115 0.114 0.272 0.191 0.460 0.253 0.604 0.267 0.548

10 0.199 0.321 0.308 0.668 0.552 0.876 0.733 0.974 0.781 0.974

20 0.675 0.833 0.877 0.967 0.989 0.993 1.000 0.999 1.000 1.000

_ 5 0.118 0.270 0.458 0.604 0.550

10 0.326 0.670 0.875 0.975 0.976

20 0.850 0.970 0.995 0.999 1.000

 5 0.085 0.109 0.118 0.267 0.204 0.458 0.268 0.601 0.274 0.540

10 0.203 0.307 0.325 0.671 0.575 0.880 0.759 0.974 0.803 0.974

20 0.689 0.853 0.900 0.976 0.996 0.997 1.000 1.000 1.000 1.000

_ 5 0.085 0.113 0.116 0.266 0.197 0.458 0.260 0.610 0.270 0.547

10 0.201 0.317 0.314 0.667 0.561 0.878 0.744 0.977 0.784 0.977

20 0.674 0.843 0.881 0.969 0.991 0.995 1.000 0.999 1.000 1.000

 5 0.087 0.104 0.124 0.270 0.207 0.435 0.265 0.586 0.263 0.524

10 0.200 0.288 0.320 0.662 0.559 0.856 0.736 0.973 0.781 0.965

20 0.650 0.806 0.869 0.963 0.991 0.993 0.999 0.999 1.000 1.000

 5 0.093 0.120 0.130 0.283 0.208 0.458 0.276 0.608 0.293 0.541

10 0.222 0.339 0.338 0.687 0.587 0.882 0.761 0.976 0.801 0.972

20 0.736 0.864 0.907 0.972 0.995 0.996 1.000 1.000 1.000 1.000

_ 5 0.120 0.285 0.454 0.605 0.546

10 0.339 0.690 0.880 0.977 0.974

20 0.866 0.975 0.995 1.000 1.000

-(5%) 5 0.083 0.108 0.118 0.265 0.197 0.439 0.264 0.578 0.273 0.525

10 0.192 0.289 0.318 0.663 0.548 0.859 0.745 0.971 0.793 0.967

20 0.646 0.812 0.878 0.964 0.992 0.993 1.000 0.999 1.000 1.000

-(10%) 5 0.085 0.107 0.120 0.261 0.193 0.432 0.267 0.574 0.265 0.523

10 0.193 0.287 0.313 0.651 0.536 0.851 0.736 0.970 0.777 0.964

20 0.629 0.794 0.860 0.956 0.987 0.992 0.999 0.999 1.000 1.000

-(10%) 5 0.082 0.105 0.122 0.267 0.196 0.435 0.272 0.579 0.266 0.520

10 0.197 0.290 0.316 0.658 0.546 0.856 0.746 0.971 0.778 0.964

20 0.640 0.804 0.864 0.961 0.990 0.994 1.000 0.999 1.000 1.000

-(10%) 5 0.085 0.105 0.126 0.265 0.208 0.435 0.264 0.578 0.255 0.522

10 0.200 0.289 0.315 0.659 0.558 0.854 0.732 0.971 0.771 0.964

20 0.643 0.803 0.863 0.961 0.991 0.993 0.999 0.999 1.000 1.000
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Appendix Table A.4 (continued)

0 2 1 12 012
          

Panel B.  = 12

 5 0.086 0.109 0.122 0.268 0.203 0.451 0.280 0.578 0.257 0.529

10 0.183 0.296 0.327 0.657 0.564 0.866 0.754 0.971 0.774 0.970

20 0.643 0.829 0.885 0.969 0.993 0.995 1.000 1.000 1.000 1.000

 5 0.086 0.116 0.120 0.270 0.196 0.452 0.265 0.612 0.252 0.549

10 0.177 0.316 0.308 0.644 0.542 0.854 0.727 0.963 0.743 0.961

20 0.610 0.734 0.842 0.916 0.963 0.968 0.991 0.996 0.989 0.997

_ 5 0.117 0.269 0.449 0.608 0.555

10 0.321 0.656 0.860 0.967 0.967

20 0.804 0.948 0.983 0.998 0.998

 5 0.088 0.105 0.121 0.270 0.207 0.460 0.286 0.598 0.264 0.535

10 0.187 0.298 0.328 0.663 0.569 0.878 0.767 0.976 0.783 0.971

20 0.662 0.836 0.894 0.975 0.995 0.997 1.000 1.000 1.000 1.000

_ 5 0.085 0.112 0.120 0.266 0.205 0.455 0.277 0.610 0.264 0.548

10 0.177 0.314 0.312 0.658 0.559 0.874 0.748 0.977 0.765 0.974

20 0.612 0.814 0.859 0.959 0.977 0.992 0.995 0.999 0.995 0.999

 5 0.093 0.104 0.135 0.253 0.198 0.416 0.268 0.543 0.251 0.478

10 0.190 0.281 0.317 0.593 0.519 0.811 0.692 0.945 0.722 0.934

20 0.589 0.735 0.811 0.918 0.975 0.982 0.997 0.998 0.998 0.999

 5 0.111 0.120 0.139 0.279 0.209 0.456 0.257 0.602 0.282 0.546

10 0.247 0.318 0.339 0.648 0.558 0.851 0.692 0.954 0.746 0.951

20 0.740 0.760 0.872 0.939 0.980 0.984 0.994 0.997 0.995 0.998

_ 5 0.127 0.280 0.437 0.596 0.546

10 0.342 0.659 0.846 0.955 0.951

20 0.815 0.946 0.986 0.998 0.998

-(5%) 5 0.084 0.111 0.129 0.252 0.186 0.413 0.261 0.543 0.241 0.493

10 0.167 0.266 0.302 0.589 0.496 0.789 0.676 0.931 0.705 0.929

20 0.515 0.700 0.777 0.883 0.938 0.953 0.987 0.992 0.992 0.996

-(10%) 5 0.081 0.108 0.127 0.239 0.179 0.389 0.252 0.526 0.242 0.484

10 0.158 0.256 0.281 0.554 0.454 0.747 0.629 0.909 0.662 0.908

20 0.453 0.625 0.714 0.838 0.903 0.928 0.978 0.989 0.986 0.993

-(10%) 5 0.088 0.100 0.131 0.260 0.202 0.415 0.277 0.545 0.259 0.486

10 0.185 0.267 0.307 0.615 0.528 0.811 0.710 0.942 0.739 0.936

20 0.579 0.722 0.826 0.922 0.974 0.976 0.998 0.998 0.998 0.999

-(10%) 5 0.092 0.101 0.134 0.249 0.193 0.405 0.264 0.547 0.256 0.471

10 0.193 0.268 0.310 0.583 0.509 0.801 0.682 0.943 0.724 0.932

20 0.593 0.718 0.803 0.912 0.970 0.979 0.997 0.998 0.998 0.999

Notes: As for Table 4, except that  = 100.
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Appendix Table A.5: Size-corrected power of quarterly sesonal unit root tests

for moving average disturbances with  = 100

0 2 1 12 012
          

Panel A. (1):  = −08 Θ = 0
 5 0.079 0.102 0.187 0.201 0.162 0.375 0.255 0.389 0.266 0.405

10 0.174 0.258 0.405 0.371 0.475 0.769 0.630 0.754 0.704 0.826

20 0.527 0.671 0.857 0.557 0.960 0.954 0.989 0.930 0.997 0.980

 5 0.079 0.110 0.134 0.198 0.137 0.377 0.199 0.470 0.205 0.465

10 0.163 0.262 0.320 0.359 0.392 0.753 0.580 0.821 0.608 0.859

20 0.440 0.588 0.741 0.506 0.893 0.922 0.973 0.942 0.982 0.980

_ 5 0.113 0.204 0.375 0.469 0.463

10 0.274 0.364 0.754 0.818 0.858

20 0.633 0.521 0.927 0.945 0.983

 5 0.082 0.108 0.172 0.188 0.170 0.396 0.239 0.335 0.257 0.358

10 0.183 0.272 0.392 0.361 0.474 0.787 0.643 0.664 0.688 0.740

20 0.544 0.699 0.886 0.575 0.953 0.965 0.988 0.876 0.995 0.962

_ 5 0.084 0.124 0.136 0.201 0.140 0.384 0.205 0.467 0.214 0.466

10 0.170 0.293 0.325 0.359 0.407 0.769 0.588 0.807 0.619 0.853

20 0.455 0.662 0.715 0.495 0.903 0.934 0.971 0.939 0.981 0.980

 5 0.083 0.099 0.165 0.186 0.149 0.353 0.237 0.390 0.247 0.401

10 0.168 0.236 0.380 0.344 0.414 0.735 0.619 0.744 0.666 0.804

20 0.472 0.565 0.828 0.517 0.918 0.921 0.982 0.909 0.991 0.964

 5 0.107 0.118 0.139 0.202 0.153 0.386 0.236 0.466 0.257 0.457

10 0.217 0.280 0.321 0.347 0.412 0.765 0.627 0.818 0.684 0.859

20 0.518 0.616 0.757 0.500 0.904 0.923 0.984 0.943 0.992 0.982

_ 5 0.123 0.200 0.378 0.457 0.457

10 0.290 0.342 0.756 0.809 0.859

20 0.628 0.511 0.923 0.938 0.982

-(5%) 5 0.077 0.098 0.152 0.173 0.154 0.373 0.236 0.395 0.229 0.403

10 0.167 0.242 0.321 0.323 0.428 0.749 0.593 0.742 0.628 0.803

20 0.459 0.577 0.704 0.482 0.915 0.919 0.967 0.906 0.980 0.965

-(10%) 5 0.083 0.100 0.133 0.192 0.147 0.366 0.208 0.415 0.221 0.412

10 0.160 0.236 0.302 0.336 0.403 0.741 0.581 0.774 0.630 0.813

20 0.420 0.535 0.717 0.492 0.886 0.911 0.971 0.918 0.981 0.969

-(10%) 5 0.082 0.105 0.166 0.188 0.156 0.360 0.228 0.405 0.237 0.424

10 0.164 0.244 0.385 0.346 0.438 0.746 0.627 0.764 0.672 0.828

20 0.485 0.582 0.852 0.503 0.942 0.929 0.985 0.910 0.991 0.968

-(10%) 5 0.081 0.101 0.161 0.187 0.156 0.347 0.237 0.392 0.243 0.404

10 0.164 0.237 0.377 0.349 0.418 0.726 0.620 0.744 0.662 0.809

20 0.463 0.565 0.821 0.517 0.919 0.914 0.981 0.908 0.991 0.965
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Appendix Table A.5 (continued)

0 2 1 12 012
          

Panel B. Seasonal :  = 0 Θ = 05

 5 0.112 0.111 0.172 0.249 0.304 0.434 0.401 0.504 0.372 0.443

10 0.311 0.270 0.473 0.507 0.744 0.695 0.840 0.792 0.826 0.764

20 0.827 0.617 0.942 0.717 0.991 0.798 0.997 0.897 0.997 0.922

 5 0.077 0.080 0.133 0.210 0.196 0.379 0.250 0.467 0.229 0.400

10 0.180 0.174 0.328 0.426 0.544 0.599 0.658 0.750 0.637 0.731

20 0.523 0.426 0.768 0.615 0.952 0.701 0.987 0.871 0.988 0.907

_ 5 0.086 0.216 0.385 0.476 0.383

10 0.205 0.456 0.622 0.764 0.739

20 0.524 0.677 0.755 0.900 0.927

 5 0.217 0.139 0.273 0.257 0.344 0.478 0.354 0.588 0.314 0.515

10 0.554 0.365 0.647 0.568 0.758 0.772 0.802 0.896 0.754 0.895

20 0.972 0.760 0.986 0.822 0.999 0.901 1.000 0.973 1.000 0.983

_ 5 0.065 0.080 0.118 0.199 0.203 0.390 0.249 0.469 0.206 0.364

10 0.148 0.175 0.289 0.416 0.544 0.623 0.652 0.748 0.591 0.706

20 0.466 0.469 0.728 0.636 0.947 0.751 0.984 0.884 0.975 0.904

 5 0.131 0.128 0.194 0.254 0.293 0.400 0.334 0.483 0.293 0.395

10 0.368 0.314 0.508 0.532 0.721 0.661 0.790 0.779 0.740 0.722

20 0.873 0.620 0.950 0.729 0.989 0.769 0.997 0.893 0.991 0.872

 5 0.184 0.151 0.202 0.267 0.270 0.433 0.323 0.526 0.289 0.476

10 0.506 0.358 0.578 0.566 0.727 0.718 0.791 0.822 0.759 0.808

20 0.962 0.647 0.984 0.780 0.996 0.852 0.999 0.928 0.998 0.942

_ 5 0.155 0.276 0.424 0.526 0.476

10 0.388 0.582 0.709 0.827 0.808

20 0.731 0.802 0.853 0.938 0.942

-(5%) 5 0.105 0.100 0.159 0.219 0.250 0.379 0.305 0.462 0.289 0.406

10 0.271 0.226 0.411 0.457 0.630 0.617 0.731 0.757 0.725 0.742

20 0.680 0.492 0.840 0.638 0.967 0.715 0.990 0.865 0.988 0.899

-(10%) 5 0.097 0.099 0.148 0.227 0.224 0.356 0.281 0.446 0.274 0.389

10 0.232 0.216 0.371 0.461 0.595 0.584 0.715 0.740 0.724 0.735

20 0.609 0.463 0.805 0.638 0.959 0.681 0.991 0.855 0.990 0.894

-(10%) 5 0.138 0.128 0.200 0.256 0.303 0.396 0.337 0.476 0.300 0.398

10 0.379 0.315 0.535 0.541 0.738 0.656 0.801 0.775 0.750 0.726

20 0.895 0.637 0.959 0.737 0.993 0.759 0.998 0.890 0.992 0.882

-(10%) 5 0.135 0.126 0.191 0.256 0.290 0.396 0.331 0.479 0.290 0.389

10 0.368 0.312 0.507 0.532 0.719 0.652 0.788 0.774 0.735 0.716

20 0.865 0.617 0.945 0.730 0.988 0.760 0.997 0.891 0.991 0.869

50



Appendix Table A.5 (continued)

0 2 1 12 012
          

Panel C. Seasonal :  = 0 Θ = −05
 5 0.085 0.118 0.106 0.250 0.178 0.373 0.219 0.490 0.220 0.429

10 0.164 0.242 0.234 0.539 0.422 0.743 0.532 0.870 0.530 0.836

20 0.432 0.568 0.607 0.864 0.847 0.958 0.936 0.996 0.949 0.998

 5 0.069 0.103 0.079 0.260 0.122 0.360 0.165 0.505 0.161 0.444

10 0.129 0.238 0.188 0.564 0.341 0.751 0.480 0.908 0.501 0.897

20 0.352 0.601 0.535 0.885 0.833 0.966 0.945 0.997 0.963 0.998

_ 5 0.107 0.257 0.354 0.506 0.442

10 0.255 0.563 0.747 0.910 0.897

20 0.605 0.886 0.966 0.998 0.998

 5 0.090 0.113 0.134 0.268 0.239 0.529 0.297 0.644 0.283 0.561

10 0.180 0.271 0.307 0.599 0.606 0.898 0.734 0.950 0.743 0.934

20 0.538 0.684 0.769 0.918 0.967 0.989 0.986 0.998 0.984 0.996

_ 5 0.027 0.039 0.031 0.170 0.067 0.262 0.070 0.350 0.052 0.267

10 0.037 0.096 0.064 0.389 0.170 0.582 0.206 0.777 0.173 0.720

20 0.197 0.460 0.358 0.882 0.718 0.968 0.879 0.998 0.906 0.999

 5 0.083 0.100 0.128 0.248 0.180 0.383 0.219 0.479 0.195 0.390

10 0.168 0.214 0.282 0.534 0.438 0.766 0.549 0.873 0.509 0.819

20 0.447 0.551 0.676 0.872 0.886 0.957 0.953 0.993 0.942 0.989

 5 0.093 0.115 0.103 0.273 0.166 0.416 0.194 0.552 0.210 0.473

10 0.199 0.275 0.246 0.597 0.442 0.812 0.534 0.923 0.557 0.887

20 0.372 0.600 0.479 0.867 0.685 0.948 0.718 0.973 0.710 0.845

_ 5 0.121 0.277 0.399 0.554 0.473

10 0.298 0.607 0.797 0.924 0.887

20 0.503 0.747 0.855 0.898 0.845

-(5%) 5 0.077 0.100 0.101 0.268 0.158 0.360 0.210 0.487 0.196 0.443

10 0.141 0.211 0.213 0.546 0.383 0.722 0.519 0.877 0.523 0.860

20 0.372 0.512 0.546 0.850 0.835 0.944 0.942 0.990 0.952 0.994

-(10%) 5 0.078 0.096 0.100 0.263 0.160 0.373 0.209 0.484 0.197 0.437

10 0.139 0.205 0.212 0.531 0.384 0.727 0.523 0.873 0.528 0.856

20 0.360 0.489 0.528 0.832 0.827 0.939 0.936 0.988 0.950 0.992

-(10%) 5 0.085 0.104 0.125 0.246 0.184 0.383 0.218 0.507 0.195 0.415

10 0.170 0.222 0.283 0.536 0.456 0.757 0.554 0.887 0.523 0.841

20 0.471 0.562 0.682 0.871 0.891 0.957 0.954 0.993 0.946 0.989

-(10%) 5 0.084 0.101 0.130 0.250 0.183 0.383 0.218 0.477 0.195 0.385

10 0.169 0.215 0.283 0.534 0.444 0.762 0.543 0.871 0.509 0.812

20 0.442 0.548 0.677 0.874 0.885 0.956 0.951 0.992 0.941 0.988

Notes: As for Table 5, except that  = 100.
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Appendix Table A.6: Size-corrected power of quarterly seasonal unit root tests

for autoregressive disturbances with  = 100

0 2 1 12 012
          

A. Seasonal :  = 0 Φ = 05

 5 0.087 0.105 0.110 0.274 0.150 0.434 0.196 0.576 0.208 0.502

10 0.157 0.245 0.249 0.581 0.423 0.839 0.573 0.950 0.603 0.938

20 0.426 0.595 0.626 0.910 0.886 0.994 0.971 0.999 0.986 0.999

 5 0.088 0.110 0.103 0.270 0.133 0.440 0.195 0.587 0.198 0.532

10 0.157 0.250 0.244 0.577 0.395 0.841 0.564 0.946 0.571 0.937

20 0.356 0.561 0.544 0.871 0.787 0.982 0.901 0.997 0.901 0.997

_ 5 0.112 0.278 0.440 0.593 0.535

10 0.258 0.594 0.843 0.948 0.940

20 0.548 0.865 0.976 0.995 0.996

 5 0.087 0.108 0.108 0.280 0.147 0.444 0.203 0.588 0.213 0.513

10 0.160 0.250 0.256 0.593 0.423 0.848 0.593 0.956 0.611 0.942

20 0.435 0.609 0.639 0.918 0.897 0.995 0.975 0.999 0.987 0.999

_ 5 0.032 0.049 0.048 0.172 0.082 0.318 0.095 0.404 0.075 0.343

10 0.011 0.022 0.022 0.114 0.093 0.359 0.096 0.383 0.067 0.262

20 0.016 0.039 0.058 0.335 0.225 0.749 0.273 0.883 0.182 0.810

 5 0.085 0.093 0.114 0.247 0.155 0.381 0.203 0.518 0.197 0.434

10 0.152 0.214 0.250 0.533 0.405 0.777 0.546 0.915 0.545 0.886

20 0.383 0.535 0.595 0.863 0.839 0.977 0.946 0.996 0.955 0.994

 5 0.108 0.122 0.117 0.247 0.177 0.462 0.231 0.603 0.241 0.557

10 0.205 0.289 0.285 0.586 0.489 0.854 0.618 0.950 0.623 0.932

20 0.459 0.649 0.606 0.884 0.816 0.985 0.873 0.993 0.870 0.959

_ 5 0.127 0.251 0.461 0.594 0.557

10 0.303 0.589 0.855 0.947 0.932

20 0.626 0.846 0.956 0.972 0.959

-(5%) 5 0.084 0.104 0.114 0.265 0.148 0.405 0.200 0.549 0.206 0.482

10 0.150 0.232 0.238 0.551 0.401 0.792 0.556 0.924 0.571 0.914

20 0.384 0.543 0.572 0.867 0.828 0.975 0.942 0.997 0.960 0.997

-(10%) 5 0.080 0.099 0.108 0.252 0.142 0.382 0.197 0.525 0.190 0.446

10 0.140 0.221 0.223 0.536 0.377 0.760 0.542 0.903 0.541 0.886

20 0.348 0.498 0.526 0.834 0.784 0.962 0.923 0.995 0.937 0.994

-(10%) 5 0.101 0.104 0.119 0.257 0.160 0.390 0.217 0.523 0.211 0.469

10 0.164 0.225 0.258 0.549 0.420 0.781 0.581 0.916 0.579 0.903

20 0.423 0.564 0.614 0.864 0.849 0.978 0.953 0.997 0.960 0.996

-(10%) 5 0.091 0.089 0.114 0.245 0.154 0.379 0.203 0.518 0.197 0.432

10 0.159 0.210 0.248 0.527 0.404 0.765 0.545 0.909 0.544 0.884

20 0.394 0.516 0.588 0.852 0.829 0.974 0.943 0.996 0.953 0.994

52



Appendix Table A.6 (continued)

0 2 1 12 012
          

Panel B. Seasonal :  = 0 Φ = −05
 5 0.088 0.124 0.122 0.265 0.159 0.340 0.212 0.496 0.234 0.474

10 0.186 0.273 0.318 0.554 0.485 0.681 0.678 0.873 0.729 0.900

20 0.627 0.739 0.842 0.864 0.980 0.889 0.999 0.989 1.000 0.997

 5 0.090 0.121 0.119 0.258 0.153 0.343 0.195 0.492 0.221 0.475

10 0.183 0.268 0.305 0.538 0.467 0.666 0.636 0.849 0.688 0.869

20 0.591 0.608 0.798 0.786 0.955 0.819 0.987 0.948 0.988 0.971

_ 5 0.130 0.265 0.333 0.492 0.478

10 0.287 0.551 0.662 0.855 0.876

20 0.711 0.834 0.855 0.967 0.983

 5 0.094 0.125 0.126 0.270 0.158 0.346 0.217 0.498 0.235 0.477

10 0.195 0.281 0.321 0.563 0.489 0.689 0.689 0.877 0.733 0.903

20 0.650 0.751 0.862 0.877 0.985 0.903 0.999 0.991 1.000 0.998

_ 5 0.095 0.128 0.120 0.265 0.155 0.344 0.205 0.497 0.223 0.484

10 0.183 0.282 0.310 0.552 0.476 0.676 0.655 0.861 0.703 0.891

20 0.606 0.710 0.814 0.840 0.959 0.866 0.989 0.972 0.990 0.986

 5 0.106 0.124 0.138 0.266 0.187 0.357 0.216 0.481 0.236 0.438

10 0.236 0.284 0.373 0.563 0.545 0.690 0.686 0.849 0.711 0.852

20 0.740 0.714 0.883 0.852 0.974 0.861 0.997 0.968 0.998 0.977

 5 0.125 0.144 0.152 0.290 0.186 0.405 0.232 0.530 0.249 0.493

10 0.329 0.338 0.423 0.596 0.590 0.740 0.715 0.865 0.727 0.878

20 0.875 0.709 0.947 0.859 0.989 0.894 0.997 0.960 0.997 0.980

_ 5 0.152 0.297 0.398 0.524 0.493

10 0.363 0.618 0.737 0.871 0.878

20 0.795 0.884 0.911 0.977 0.980

-(5%) 5 0.083 0.110 0.120 0.246 0.156 0.317 0.198 0.469 0.231 0.440

10 0.173 0.243 0.308 0.499 0.457 0.625 0.622 0.822 0.693 0.850

20 0.554 0.617 0.779 0.787 0.947 0.804 0.989 0.948 0.995 0.976

-(10%) 5 0.083 0.107 0.120 0.228 0.155 0.309 0.193 0.444 0.220 0.416

10 0.166 0.232 0.292 0.458 0.431 0.599 0.589 0.790 0.659 0.815

20 0.502 0.559 0.729 0.736 0.922 0.759 0.983 0.925 0.991 0.962

-(10%) 5 0.102 0.134 0.141 0.268 0.194 0.341 0.218 0.476 0.233 0.436

10 0.231 0.294 0.376 0.561 0.563 0.672 0.692 0.849 0.704 0.854

20 0.741 0.730 0.891 0.849 0.980 0.848 0.999 0.965 0.999 0.974

-(10%) 5 0.110 0.120 0.139 0.268 0.187 0.353 0.214 0.485 0.229 0.435

10 0.238 0.273 0.369 0.558 0.541 0.683 0.686 0.848 0.697 0.850

20 0.734 0.701 0.878 0.846 0.972 0.853 0.997 0.966 0.998 0.975

Notes: As for Table 6, except that  = 100.
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