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Abstract

This paper analyzes two key issues for the empirical implementation of parametric seasonal unit
root tests, namely GLS versus OLS detrending and the selection of the lag augmentation polyno-
mial. Through an extensive Monte Carlo analysis, the performance of a battery of lag selection
techniques is analyzed, including a new extension of modified information criteria for the seasonal
unit root context. All procedures are applied for both OLS and GLS detrending for a range of data
generating processes, also including an examination of hybrid OLS-GLS detrending in conjunction
with (seasonal) modified AIC lag selection. An application to quarterly US industrial production
indices illustrates the practical implications of choices made.
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1 Introduction

In their seminal paper, Hylleberg, Engle, Granger and Yoo (1990) [HEGY] develop seasonal unit root
tests which enable separate regression-based ¢- and F-tests to be conducted for unit roots at the
zero, semi-annual and annual frequencies for quarterly data. Many subsequent papers build on this
approach, including Ghysels, Lee and Noh (1994), who extend the analysis to consider joint tests for
unit roots at the zero and all seasonal frequencies, and Smith, Taylor and del Barrio Castro (2009)

who generalise the approach to the case of an arbitrary seasonal data frequency.

*Tomds del Barrio Castro gratefully acknowledges financial support from Ministerio de Educacién y Ciencia ECO2011-
23934. Address correspondence to: Robert Taylor, School of Economics, University of Nottingham, Nottingham, NG7
2RD, UK. E-mail: Robert.Taylor@uottingham.ac.uk



The original HEGY analysis assumes that the time series under study follows a finite-order au-
toregressive (AR) process, with empirical researchers almost invariably taking the same stance when
they employ these tests. However, the AR assumption contrasts with other literature concerned with
seasonal time series. For example, seasonal adjustment is based largely on models that have impor-
tant moving average (MA) components; see Cleveland and Tiao (1976) or Burridge and Wallis (1984).
Although it has been widely conjectured that an AR approximation can be applied when conduct-
ing HEGY tests for an ARMA process (Taylor, 1997), the required theoretical justification has been
provided only very recently by del Barrio Castro and Osborn (2011) and del Barrio Castro, Osborn
and Taylor (2012) [COT]. More specifically, COT show that popular tests based on the HEGY ap-
proach remain valid for a general ARMA process, provided that the order of the AR lag augmentation
polynomial increases in proportion with the sample size at a suitable rate.

Nevertheless, empirical practice requires matters to be taken a stage further, since data-dependent
methods are used to select the lag augmentation polynomial. To our knowledge, there has been no
systematic study of the performance of different lag selection methods in this context. The present
paper fills this important gap, using Monte Carlo methods to explore the small sample performance of
a variety of methods for determining the lags to be included in a HEGY test regression. In particular,
we examine sequential test procedures similar to those employed by Hall (1994) and Ng and Perron
(1995), seasonal variants of these as suggested by Rodrigues and Taylor (2004) and Beaulieu and Miron
(1993), and methods based on information criteria including AIC, BIC and a seasonal extension we
develop for the modified information criteria [M AIC, M BIC] of Ng and Perron (2001). Further, in
addition to allowing for deterministic components in the HEGY regression, we explore whether or not
seasonal generalised least squares (GLS) detrending, developed by Rodrigues and Taylor (2007) from
the GLS approach of Elliot, Rothenberg and Stock (1996), improves results. In this last context, we
also examine whether the approach of Perron and Qu (2007), whereby lag specification is undertaken
via modified information criteria in an OLS context prior to unit root testing based on GLS detrending,
improves the power of GLS tests for alternatives distant from the respective seasonal unit root null.

Our Monte Carlo analysis allows us to make recommendations about how seasonal unit root tests
should be applied in practice. An empirical application to quarterly US industrial production series
shows how decisions made about lag specification and detrending can influence the conclusions drawn
about the presence of (seasonal) unit roots. Both of these decisions are seen to be important in
practice.

The remainder of the paper is organised as follows. Section 2 outlines the seasonal model for
quarterly data, defines the hypotheses of interest within that model, briefly reviews the augmented
HEGY-type seasonal unit root tests and their limiting null distributions, then discusses lag selection
and detrending methods. Section 3 presents our investigation of the finite sample performance of
HEGY-type tests based on a variety of data-based lag selection methods for series driven by both MA
and AR shocks. In addition to size and local power investigations of conventional ordinary least squares
(OLS) detrending versus GLS detrending, this section examines power issues arising from OLS, GLS

and hybrid OLS-GLS detrending for DGPs distant from the unit root null. The empirical application



to US industrial production indices is the focus of section 4, while section 5 concludes. Throughout
this paper we study HEGY-type tests at the quarterly data frequency, since the vast majority of
empirical applications of seasonal unit root tests employ such data. However, the recommendations

we make will also be useful in the context of other data frequencies.

2 The Seasonal Unit Root Test Framework

This section considers the model and hypotheses of interest, together with lag specification and de-
trending methods that may be employed when testing for the presence of unit roots in the seasonal

context.

2.1 The Seasonal Model and Unit Root Hypotheses

Consider a univariate seasonal time-series process {z4;+s} observed at the quarterly frequency from

the data generating process (DGP):

Tatys = fhygys T Ydtgs, 5= —3,..,0, t=1,2,...,N (2.1a)
a(L)yt+s = Uatts (2.1b)
Ugtts = P(L)Eat+s (2.1c)

where a(z) :=1— Z;Zl a;‘-zj, is an AR(4) polynomial in the conventional lag operator, L. The term

Paiys =" Zagys in (2.1a)) is purely deterministic. The DGP of (2.1a) to (2.1c) can be generalised to
any seasonal aspect S; see, for example, Smith, Taylor and del Barrio Castro (2009) or COT. Further,

Smith et al. (2009) present a typology of six cases of interest for 14, ., namely: no deterministic
component; non-seasonal intercept; non-seasonal intercept and non-seasonal trend; seasonal intercepts;
seasonal intercepts and non-seasonal trend, and seasonal intercepts and seasonal trends.

The error process w445 in is a linear process with 1(z) = 1 + Z?; 1/)ij . Following
COT and Chang and Park (2002), the polynomial ¢(z) is assumed to satisfy i (z) # 0 for all
|z < 1 and >32%, |j]" ;| < oo for some 7 > 1. Thus, us4s admits the causal and invertible
ARMA (p, q) representation, ¢(L)usss = 0(L)eqsss, such that all the roots of ¢ (z) :==1 -7 | qbpzi
and 0 (2) == 1 — Y%, 6,2 lie strictly outside the unit circle. The martingale difference innovation
sequence (e4¢+s, Fat+s) with filtration (Fyes) satisfies £ (€Zt+5|f4t+5,1) =02 and E |egis|" < K with
r > 4, where K is some constant depending only upon r. The homoskedasticity assumed here can be
weakened to allow conditional heteroscedasticity, at the cost of a stronger being required on the lag
truncation in the HEGY test; see the discussion in COT and subsection [2.2] below.

Our focus is on tests for seasonal unit roots in (L) of ; i.e., the null hypothesis of interest is

Ho:a(L)=1-L*"=: Ay (2.2)

Under Hy of (2.2)), the DGP for {z4:;5} is often referred to as a seasonally integrated process. Fac-
torizing the AR(4) polynomial a(L) as a(L) = H?:owj (L), where wy(L) := (1 — agL) associates the
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parameter o with the zero frequency, wi(L) := [1 + 28, L +(a? + %) L?] corresponds to the annual
seasonal frequency 7 /2, with associated parameters «; and f;, and we(L) := (1 + asL) associates
the parameter ay with the Nyquist (or semi-annual) frequency 7. Consequently Hy of (2.2) may be

commensurately partitioned as Hy = H?ZOHOJ, where
H(),i Oy = 1, 1= 0, 2, and H(],l 0 = 1, ,61 =0. (23)

The hypothesis Hy corresponds to a unit root at the zero frequency, Hy o yields a unit root at the
semi-annual frequency and a pair of complex conjugate unit roots at frequency 7/2 is obtained under
Hy 1. The alternative hypothesis Hj is of stationarity at one or more of the zero or seasonal frequencies;

that is, H; = U?:oﬂl,ja where
Hij:oa;<1, i=0,2, and Hyj:al+p7 <1, (2.4)

Consequently, the maintained hypothesis Hy U H; excludes all unit roots, except for a possible single
unit root at each of the zero and Nyquist frequencies and a pair of complex conjugate unit roots at

the harmonic seasonal frequency 7/2. Explosive roots in «(L) are also excluded.

2.2 Augmented HEGY Tests

Under the assumption that the DGP of (2.1a) and (2.1b) is of a purely AR form, HEGY develop a

seasonal unit root test regression for quarterly dataﬂ which can be written as

k
k
AyTatis = T0T0at+s + T2T2 4t s + TITL At s + TIT] gpig + Miprs + E diDyzypys j+ef . (2.5)
=1
where
3 3
— — i+1

L0445 1= E Tafrs—j—1, T24t+s = E (=1 " zapps—j1, (2.6a)
T1dtys = — Tdtps—2 + Tatrs—d, T) gpqs = —Tdtts—1 T Totys—3 (2.6b)

and p}, = 7" Zayys, so that the deterministic component of is appropriately specified. It is
important to notice, as shown in Smith et al. (2009), that the inclusion of seasonal intercepts renders
the resulting unit root tests similar with respect to the initial conditions y;_g, ..., yo. The regression
is estimated by OLS over observations 4t +s = k 4+ 1,...,T. The superscript & in e’iﬂ_s indicates
that this process depends on the order of augmentation applied, since our analysis does not assume
either that the test regression employs the true AR order nor, indeed, that the disturbances in the
DGP (2.1c) are of an AR form.

Tests of the hypotheses for the presence (or otherwise) of a unit root at the zero and Nyquist

frequencies may be conducted using conventional lower tailed regression t-statistics, denoted ¢y and

!The test regression and HEGY-type tests corresponding to (2.5) for a general seasonal aspect S are presented by
Smith and Taylor (1999) and COT, among others.



t2, for the exclusion of xg4s4s and x2 444, respectively, from . Similarly, the hypothesis of a
pair of complex unit roots at the annual seasonal frequency may be examined using the lower-tailed
t1 and two-tailed ¢] regression t-statistics for the exclusion of 1 4¢+s and 7 4,4, respectively, or by
the (upper-tailed) regression F-test, denoted Fi, for the exclusion of both z; 4445 and Ty 44 from
(2.5). Ghysels, Lee and Noh (1994) and Smith et al. (2009) also consider joint frequency (upper-
tail) regression F-tests from , namely Fis for the exclusion of x2 444, together with 1 4415 and
T] 4145, and Foio for the exclusion of wo¢+s, 2,41+5, and z1,4145s and z7 44 ;. The former tests the null
hypothesis of unit roots at all seasonal frequencies, while the latter tests the overall null, namely Hy
of .

Our analysis studies strategies to specify the AR augmentation order k in (2.5) such that asymp-
totically valid and empirically reliable seasonal unit root tests can be applied. As discussed by COT
(see, in particular, their Remark 9), data-based augmentation lag selection procedures are asymptot-
ically justified if the truncation lag is allowed to increase with the sample size, such that k& — oo with
k = o([T/log T]*/?) as T — oo when the innovations in the DGP (2.1c) are conditionally homoskedas-
tic. It may be noted that the faster rate k = o(T''/?) is sufficient for the asymptotic validity of the
HEGY tests, but this does not guarantee the consistency of the estimators of the coefficients, d;,
g =1,...,k, on the lagged dependent variables; see COT and the analogous discussion in Chang and
Park (2002) for the conventional ADF test. However, as also noted by COT (Remark 9), a slower rate
of k = o(Tl/ 3) rate is required for data-based lag selection in when conditional heteroscedasticity
is permitted in the innovations of .

Hence, provided that the maximum k considered in relation to the sample size T is appropriate
in the context of the innovation properties, empirical lag selection procedures can be applied and will
result in asymptotic null distributions for the HEGY test statistics identical to those for a DGP where
Ugtts 1N is serially uncorrelated and conditionally homoscedastic. In other words, the limiting
null distributions of the #g, 2, F1, F12 and Fpia statistics from are then invariant to the serial
correlation nuisance parameters {¢j 5.0:1 which characterise the serial dependence of w4y in the DGP
. Consequently, for the case of quarterly data the critical values given in Smith and Taylor (1998,
pp.279-280) can be used, with analogous results applying for other values of S. As in Burridge and
Taylor (2001), the regression t-statistics for the exclusion of 1415 and z7 4, depend on the form
of the serial correlation in the DGP and these should not be used in any case where augmentation is

required.

2.3 Lag Selection Methods

Implementation of the HEGY test requires the augmentation order k£ of to be specified. We con-
sider a variety of data-based methods for this purpose, including both information criteria and testing
strategies. In relation to the former, we employ the standard information criteria, AIC' and BIC.
Further, following Ng and Perron (2001), modified AIC and BIC [M AIC and M BIC), respectively]

are developed for the seasonal unit root context and included in our Monte Carlo comparisons.



2.3.1 Information Criteria

Under the zero frequency unit root null hypothesis of the ADF test, Ng and Perron (2001) extend the
usual information criteria to incorporate the distance from the unit root null; they argue that their
additional term is particularly important to account for the presence of a negatively autocorrelated
MA process under the null. This leads them to consider the class of modified information criteria

which select k& to minimise

Crlrr(k) + K]

MIC(k) := In(53) + T

2.7)

where 6% := RSSy/(T — kmax) in which RSSy is the residual sum of squares obtained from the unit
root test regression augmented with £ lags of the dependent variable and kp,x is the maximum value
of k considered, Cr is defined by the specific criterion (Cp := 2 for MAIC and Crp := In(T — kpax)
for MBIC), and 77(k) is sample dependent. The standard information criteria AIC and BIC set
(k) = 0.

The approach of Ng and Perron (2001, pp.1528-1529) is based on Kulback distance as embedded
in AIC. To extend this to the seasonal unit root null hypothesis of , consider the special case
of the HEGY regression (2.5) with no determinsitic component (u3,,, = 0) and define the vector of
regressors as Xagt == [T04t+s, L241+ss T1,4t+s5 T gpgsr DATAbts— 15y ooy Ayzapys—g) with corresponding
coefficient vector 0(k) := [mg, mo, 71, 7}, di, ..., di)'. Under the overall null hypothesis of , this
latter vector is 6°(k) := [0, 0, 0, 0, dy, ..., dg]'. An empirical measure of the Kulback distance of
the parametric model, with estimated coefficient vector g(k), from the true model under the null

hypothesis is given by
wr(k) = (1/63) (30) = 5°h) ) 3030 Ko Xy (3(8) — 0°(k)) (2.8)

where the double sum in ([2.8]) corresponds to observations kmax + 1, ..., T used for estimation. Noting
the asymptotic orthogonality between the regressors that are integrated and those that are stationary

under the null hypothesis and also the mutual (asymptotic) orthogonality of the regressors x;4s s,
7 =0,1,2, and z} 4 in (2.5), leads to Up(k) = 77 (k) + X}, + 0p(1), with

2

7 (k) = (63) > [W?ZZ (@ja015)?

=0

—+

@2 (@ ass) (2.9)

where the chi-square variable with k degrees of freedom, X%, is asymptotically independent of 71 (k).
Analogously to Ng and Perron (2001), the criterion M AIC for the quarterly augmented HEGY sea-
sonal unit root test regression replaces k (namely the expected value of X%), as used in the standard
version of AIC, by 71 (k) + k with 77 (k) defined by (2.9). This 77 (k) can also be employed in ([2.7)
to define M BIC.

In practice, the test regression typically includes a deterministic component pj, , ,, which needs to
be removed when computing (2.9). Therefore, define Zasrs := Tarrs— (Yo1.9) Zarts in which 75 ¢ is

the estimated coefficient vector in a regression of 245 on Zys1s. Then T 415, = 0,1,2 and ?lﬁ,4t+s’



obtained by applying the HEGY transformations and , respectively, to the detrended
observations, are employed for the computation of when used in the context of the HEGY
rgression (2.5)).

In the light of the finding of Hall (1994) that using an information criterion to select the maximum
lag k over k = 0,1, ..., kmax may lead to size distortions in cases (such as the seasonal context) where
there are “gaps” in the d; coefficients, we propose an alternative sequential method (labelled in the
tables as SAIC, SBIC, SMAIC, SMBIC). This starts by computing the relevant criterion for
k = kmax, with the value then computed with each individual lag 1, ..., knax deleted, one-by-one. If
the criterion is improved by dropping any lag, the single lag that has the least effect on the criterion is
removed from , and the procedure is repeated from this new specification. This procedure stops

when no improvement in the criterion results from deleting any additional individual lag.

2.3.2 Sequential Testing

In addition to information criteria procedures, sequential methods based on the significance of indi-
vidual lag coefficients are also examined, using 5% and 10% critical values from the standard normal
distribution. Following Ng and Perron (1995) and Hall (1994), one procedure “tests down” from
kmax to determine the maximum lag k to be employed (with no gaps); these methods are denoted
as t-sq(5%) and t-sq(10%), respectivelyEl. Results are also reported for the approach proposed by
Beaulieu and Miron (1993), where is estimated for given maximum lag order £n,x and all lagged
values with coefficients individually insignificant at the 5% or 10% level are deleted in a single step;
we denote these as t-bm(5%) and t-bm(10%). Finally, the sequential method used in Rodrigues and
Taylor (2004) is employed, where at each stage the least significant of any lagged dependent variable

coefficient is deleted, until all remaining coefficients are significant [t-rt(5%) and t-rt(10%)].

2.4 Seasonal GLS Detrending

The HEGY approach of includes any deterministic terms required in the test regression itself.
However, in the context of conventional zero frequency unit root tests, Elliott et al. (1996) show
that important power gains can result if prior detrending is undertaken to purge the series of the
deterministic component under local to unit root asymptotics, by application of GLS detrending.
The unit root test regression is then estimated using the detrended data without any deterministic
component. Indeed, the modified information criteria of Ng and Perron (2001) were initially proposed
in this context.

Rodrigues and Taylor (2007) study optimal tests for seasonal unit roots, with these giving rise to
GLS-detrended tests which extend the zero frequency tests of Elliott et al. (1996) and also those of
Gregoir (2006) for a pair of complex unit roots. GLS detrending (for the quarterly case) is achieved by

%For this procedure, and also those suggested by Beaulieu and Miron (1993) and Rodrigues and Taylor (2004a), results
were also obtained for a significance level of 15%. These are excluded to conserve space, but exhibit qualitatively similar

patterns to the corresponding 10% ones.



regressing the seasonal quasi-difference x; vector on the quasi-difference Z; matrix for the deterministic

component, where these are defined using

c é c c & c —_— —_ /
“o— C C C C C C
Xzi=  [z1,m2 — oSz, 33 — afzy — afxy, ... w4 — afzs — afzy — oSy, Ayxs, ..., Ayzr]
Ze:=  |Zv, Zo—a§Zy, Zs— afZy — a5 2y, Zy — oS Zs — 52y — o527,
AN N !
AsZs, ..., DyZyp) (2.10)
where

s - (D) e (- )] (-7 - (1 S

When pj,, , allows (constant) seasonal means, the analyses of Elliott et al. (1996) and Gregoir (2006)
for unit root tests at the 5% level lead Rodrigues and Taylor (2007) to propose values of ¢y = ¢3 =7
and ¢; = 3.75, while trending seasonal means in 3, ; (so that Zs;4 contains both seasonally varying
intercepts and trends) lead to the recommendations ¢y = ¢z = 13.5 and ¢; = 8.65. Other cases are also
possible, such as seasonal intercepts but a common trend over quarters (¢y = 13.5, éo = 7, ¢ = 3.75).

Denoting as ¢, ¢ the estimated coefficient vector from the regression using the transformed data of
, the GLS detrended series is then given by Z4s1 s 1= Tapys— (ﬁ*GLS)' Zyi+s. For an augmentation
order k£, GLS detrended HEGY tests are applied using the test regression

)2
AuTapys = ToToat+s + T2T24t4s + T1T1dt+s + TT] 4p45 + Z djAZarss—j + iy y s (2.11)
j=1

where Zo 4+, T2,41+s, L1445 and E’{At 1 are defined analogously to 1) and , as appropriate.
Rodrigues and Taylor (2007) present critical values for the tests of interest, namely for ty, to, Fi, Fio
and Fp1o. This methodology is employed to deliver seasonal unit root tests with GLS detrending, with
the lag specification for k£ made in the context of using all the information criteria approaches
and testing down strategies as discussed in the preceding subsection. For the modified information
criteria, and analogously to Ng and Perron (2001), the additional penalty term 74 (k) of is
computed using GLS detrended data.

However, Perron and Qu (2007) note that employing GLS detrending with lags specified by modi-
fied information criteria can result in conventional zero frequency unit root tests with poor power for
alternatives that are not close to the null. To counter this, they recommend that although testing
be conducted using the GLS detrended data, the augmentation order k£ be specified using OLS de-
trended series. We investigate this methodology for the modified criteria M AIC, MBIC, SMAIC
and SM BIC. More explicitly, lags are specified using each criterion in a regression entirely analogous
to (2.11)), except that OLS detrended data Zatys = Tar+s— (Yorg) Zar+s are employed in place of T4+
and with Zo4s+s, T24i4s, T1,41+s and 3:\?7415 1, again defined in a manner corresponding to and
, as appropriate, with OLS-detrended data also used to define the additional penalty 77(k) of
. Once k is specified (together with any “gaps” for SMAIC and SM BIC), the GLS transformed



variables of ([2.10]) are used to compute the unit root test statistics in the context of (2.11)). Follow-
ing Perron and Qu (2007), the discussion below refers to this as OLS-GLS detrending; unless stated
otherwise, GLS detrending employs the Rodrigues and Taylor (2007) procedure with lag specification

made in the context of (2.11)).

3 Finite Sample Comparison

After setting out our Monte Carlo methodology, the following subsections discuss the results for the
finite sample size and power delivered by the seasonal unit root test procedures of section [2] also

drawing out implications for empirical analysis.

3.1 Methodology

Data are generated according to the modeﬁ
Tapys = (1 — C/N)5E4(t—1)+s + Uarys = ULy _1)4s + Uats, s=-3,..,0, t=1,...,N (3.1)

with initial conditions set to zero for samples with N = 60, 100 (7" = 240 and 400). Size results are
obtained with ¢ = 0 and size-adjusted local power with ¢ = 5, 10, 20; as discussed in Rodrigues and
Taylor (2004), the process is stationary at both the zero and each seasonal frequency when ¢ > 0. In
addition to white noise innovations, we consider serial correlation in wu4;. s of both MA and AR forms,

with these being special cases of
Users = (1 —OL) (1 — OL") eqpss (3.2)

and

(1 — ®LY) ugpys = earts (3.3)

respectively, where 4415 ~ NID(0,1). For (3.2)), our Monte Carlo investigation examines § = —0.8
with ® = 0 and © = £0.5 with # = 0. For (3.3)), we consider ® = £0.5. In addition to size-adjusted
local power, a fuller investigation of the power of GLS versus OLS detrending, including the OLS-GLS
procedure of Perron and Qu (2007), is undertaken for lag specification methods based on M AIC using
white noise and seasonal MA innovations.

Results are reported for the ty, to, F, F12 and Fy; 5 test statistics, with these obtained from both the
quarterly HEGY regression of and using the seasonal GLS detrended test regression of ,
with these labelled as OLS and GLS, respectively, in the tables. In both cases, the deterministic
component allows seasonal intercepts and a zero frequency trend, as commonly applied in empirical
analyses for seasonal data. Lag selection is based on the methodologies outlined in subsection As

discussed in subsection[2.4] the results using the modified information criteria after GLS detrending are

3We are grateful to a referee who suggested the inclusion of some DGPs where unit roots were present at some but
not all (zero and seasonal) frequencies of interest. However, an extension of the analysis here found that DGPs with

local departures from the unit root null at some frequencies yielded very similar results overall to those reported.



presented both for lag selection made in the test regression and in the corresponding regression
for OLS detrended data; the latter is the OLS-GLS procedure and is indicated in the tables by the
suffix PQ. To conserve space, results are not reported for the sequential BIC procedures (namely,
SBIC, SMBIC and SMBIC_PQ), but these reveal similar patterns to the corresponding sequential
AIC procedures shown.

The maximum initial lag is set as kmax = ¢ (4N/100)1/4J with £ = 4 and ¢ = 12, as employed
by Schwert (1989) and others. When applied for increasing T', this rate satisfies k& = o([T/ log T]"/?),
which is discussed in subsection as being sufficient to yield asymptotically valid data-based lag
selection for testing seasonal unit roots in the HEGY test regression when the DGP innovation process
is conditionally homoscedastic, as in our caseﬁ In practice, our focus is on ka5 defined with ¢ = 12,
which is also used by Ng and Perron (2001) for the modified information criteria. For the realistic
case in applied work of N = 60 years of data, £ = 12 implies the use of a maximum augmentation lag
of 14 quarters, whereas ¢ = 4 leads to 4 lags being considered.

All unit root tests employ a nominal 5% significance level, using asymptotic critical values.lﬂ Results
for empirical size (¢ = 0) are reported in Tables 1 to 3 (and discussed in subsection [3.2)), with
corresponding results for size-adjusted local power (¢ = 5,10 and 20) in Tables 4 to 6 (discussed in
subsection . These employ the typical postwar sample size of N = 60 years of data, which is also
effectively that used in the empirical application of section [@} analogous results for N = 100 are in the
Appendix. The results in all tables are based on 5000 replications. Finally, subsection focuses on
how detrending options (OLS, GLS and OLS-GLS) perform in power terms over the range of values
of ¢ from 0 to N when M AIC' is employed for lag specification.

3.2 Size Properties

Although the DGP employed for Table 1 is a seasonal random walk with IID innovations, and hence
no lag augmentation is required, the results show a number of interesting characteristics. Firstly, the
parameterisations resulting from the use of modified information criteria (that is, M AIC, M BIC and
SMAIC) lead to under-sized tests in this case when applied in the HEGY test regression (2.5), with
the sequential SM AIC being particularly poorly sized with £ = 12. On the other hand, conventional
AIC and BIC perform well. Secondly, the use of individual ¢-ratios to specify the lag length results
in good size with ¢ = 4 in , but over-sizing in the more highly parameterised models resulting
from ¢ = 12. Thirdly, GLS detrended statistics are often modestly over-sized, although under-sizing
results when the sequential modified information criteria are applied with £ = 12; compared with GLS
detrending, the OLS-GLS (or PQ) procedure of Perron and Qu (2007) has effectively no impact on size
for the modified information criteria methods in Table 1. Fourthly, applying hypothesis tests based on

4Applied in the context of increasing sample size, this kmax satisfies k = o(Tl/S) and hence also yields valid asymptotic
inference in (2.5) when the innovation process is conditionally heteroscedastic. Although we experimented with a variety
of non-ITD martingale difference specifications for e€4¢4s in the context of the conventional HEGY test regression, the

results were almost identical to those reported.
"These critical values were obtained by direct simulation using 100,000 replications and T' = 2000.
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t-ratios for lag selection works better in the original HEGY regression than for GLS detrending, with
the empirical size for the overall Fji2 test in the latter being around twice the nominal size. Finally,
as anticipated, and although k.« increases with N, empirical size typically improves when the larger
sample is employed. This applies not only for the seasonal random walk (compare Appendix Table
A.1 with Table 1), but also for the vast majority of other comparisons across N = 60 and N = 100,
for a given DGP and lag selection method.

Subsequent size results are presented only for £ = 12. Not surprisingly, ¢ = 4 results in better size
than those shown when the true process is an autoregression of order less than kpax, but can perform
very poorly when the DGP has an MA form or when ki, under-specifies the true AR order.

Table 2 examines MA disturbance processes. A positively autocorrelated MA(1) with coefficient
0 = —0.8, considered in Panel A, is fairly close to cancellation with the AR unit root —1, hence
distorting inference at the Nyquist frequency (t2, together with Fi9 and Fpi2). Indeed, the use of BIC
leads to a rejection probability of 50 percent at this frequency with both trending options. This near-
cancellation is the situation for which modified criteria are designed and since higher augmentation
improves the approximation to this process, M AIC performs relatively well at the Nyquist frequency
and sequential lag selection (SM AIC) further improves this performance for the HEGY test regression
, with empirical sizes of 0.072 and 0.048, respectively, in Table 2 (Panel A). Although M AIC and
SM AIC also perform better than other lag selection methods for ¢5 with GLS or OLS-GLS detrending,
the empirical sizes are nevertheless more than double their nominal sizes. At other frequencies, tests
based on modified information criteria are under-sized in the HEGY (OLS detrending) approach,
and this is sometimes substantial (note especially the empirical size of 0.005 for ¢y using SMAIC).
However, the size for ¢y and F is improved with GLS or OLS-GLS detrending. Although the use of
coefficient tests for lag selection also yield quite good size for the unit root tests at the zero and annual
frequencies in the HEGY regression, they are very substantially over-sized for the Nyquist frequency
test, with ¢-sq(10%) being the best of this group when used in (2.5). Performances of the tests at each
of these seasonal frequencies is reflected in the sizes of the joint tests Fjo and Fpia, with those using
MAIC/MBIC being well-sized in the HEGY regression due to off-setting under- and over-sizing of
the individual frequency testﬂ

Recognising that (1 — 0.5L%) = (1 — 0.84L)(1 + 0.84L)(1 + 0.71L?), the patterns implied by near-
cancellation for the simple MA(1) process of Panel A carry over to the seasonal MA with ® = 0.5 in
Panel B of Table 2, where tests at all frequencies are prone to over-sizing and the greatest distortions
apply when BIC is used. The most reliable size overall is obtained using M AIC in the HEGY
regression and SM AIC with GLS detrending, with the former often having the best size performance

for tests at individual frequencies and the latter for the overall joint statistic Fyi2. It is also notable

®We also investigated the performance of these lag selection criteria in the context of the HEGY test regression
for the MA(1) case of # = 0.8, which interchanges the roles of the zero and Nyquist frequencies. As anticipated, this leads
to over-sizing for to, as found by Hall (1994) and Ng and Perron (2001) for the Dickey-Fuller test. Analogous results
were also found for the MA(2) watys = (1 — 0.64L?)e4s+s, where near-cancellation applies at the Nyquist frequency and

hence the over-sizing relates to F3.
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that, compared with GLS detrending, the PQ (that is, OLS-GLS) version can result in a small
deterioration in size performance for the modified information criteria in Panel B. The seasonal MA
with ® = —0.5 in Panel C of Table 2 does not approximate any AR unit root in the DGP, and
the patterns of Panel B of Table 1 largely carry over to this case. Nevertheless, compared with the
white noise disturbances in Table 1 (Panel B), size distortions are typically increased for the seasonal
MA with ® = —0.5. This applies particularly for the information criteria methods, with M BIC or
SMAIC lag selection combined with OLS detrending leading to markedly under-sized tests for this
seasonal MA process. Perhaps surprisingly, across Panels B and C of Table 2, methods that allow
elimination of intermediate lags in the augmentation polynomial through hypothesis tests (t-bm and
t-rt) always lead to poorer size that the corresponding ¢-sq procedure that has no gaps, despite the
implied AR approximation having a seasonal form. Similarly, it is noteworthy that although SAIC
improves on AIC when © = 0.5, this sequential method does not have any evident size advantages
when © = —0.5. Further, such lag elimination can lead to very poor size for SMAIC, as already
noted.

The seasonal AR processes of Table 3 provide further evidence that intermediate lag elimination can
increase size distortions for tests, even when the true AR polynomials of have some intermediate
zero coefficients. This applies across SAIC, SMAIC, t-bm and t-rt and for both panels of the
table, in comparison with the corresponding procedures with no such intermediate lag elimination and
irrespective of the form of detrending. Indeed, the general patterns of results from Panel C of Table 2
are largely reproduced in the panels of Table 3, but (not surprisingly) with less marked size distortions
when the DGP is AR in form.

Finally, by comparing empirical size for N = 60 in Table 2 with the corresponding case with
N = 100 in Appendix Table A.2, it is evident that the larger sample size reduces the extent of
over-sizing in the former, but under-sizing is overall only modestly improved (compare, for example,
SMAIC in Panel C across these tables). It is also worth remarking that the often substantial under-
sizing shown by SM AIC in Table 3, especially when used in the HEGY regression, largely carries over
when the sample size increases in Appendix Table A.3. Otherwise, however, empirical size is reliable

for these seasonal AR processes when N = 100 years of data are available.

3.3 Size-Adjusted Local Power

Tables 4 to 6 mirror Tables 1 to 3, but now consider size-adjusted local power. The DGPs considered
with N = 60, the values of ¢ = 5, 10 and 20 correspond to processes with seasonal AR coefficients
ag = 0.92, 0.83 and 0.67, respectively, in . Note that, due to space constraints, some methods
included in the size comparisons of earlier tables are now omitted. Specifically, under GLS detrending,
the tables show power for M BIC using only the PQ variant (namely the OLS-GLS procedure), since
this yields typically more powerful tests than lag specification in the GLS regression itself, as illustrated
in Tables 4-6 by M AIC and SM AIC. Further, the impact on power of using a 5 percent significance
level in testing down is indicated by results for t-sq(5%) compared with ¢-sq(10%), with power for
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other sequential methods included only for the 10 percent leveﬂ

A glance at Table 4 confirms that, when the innovations in (3.1)) are white noise, GLS detrending
delivers substantial power gains against near-integrated processes (with ¢ = 5, 10) compared with the
usual practice of accounting for deterministic components by including these in the HEGY regression
. Across all methods, lower power is achieved for ¢y than ¢, due to the tests allowing for a zero
frequency trend. Although higher (size-adjusted) power is typically achieved using £ = 4 in Panel A
(compared with Panel B), such a low maximum augmentation would not, in general, be recommended
due to potential size distortions for more general disturbance processes. It is also notable that the use
of the OLS-GLS procedure has relatively little impact on power relative to GLS detrending for the
low orders in Panel A, but increases power in Panel B especially for the single parameter statistics
to and ty with M AIC lag selection and for alternatives further from the null hypothesis. However,
power is already high for the joint seasonal unit root tests Fio and Fpio with ¢ = 10 or 20 in both
panels of the table and for these the P(@) variant has little effect.

Many of the patterns revealed in Table 4 carry over to the more general processes of Tables
5 and 6. In particular, GLS detrending typically leads to power gains over OLS for near-integrated
processes, which in Tables 5 and 6 are seen particularly in the joint test statistics F}, Fi2 and Fp12 and
apply irrespective of whether lag selection is undertaken through an information criterion or testing
approach. The power gains for £ from GLS detrending are also substantial when ¢ = 5, 10, except in
Panels A and B of Table 5. The sometimes substantial power loss exhibited by GLS detrending in these
latter cases occurs when the root of the MA disturbance process at the Nyquist frequency is close to
cancelling with the corresponding AR root and tend to be more severe as distance from the unit root
null increases. However, this power loss is mitigated in the case of M AIC when OLS-GLS detrending
is employed, and this is investigated further in the following subsection. Across both Tables 5 and 6,
and in line with the white noise processes of Table 4, relatively modest (if any) size-adjusted power
gains over OLS typically apply for the zero frequency statistic typ with GLS detrending, apparently due
to the inclusion of a zero frequency trend component. Away from the unit root null (represented by
¢ = 20), the value of OLS-GLS over GLS detrending with M AIC or SM AIC lag selection is seen for
the seasonal MA process with ® = 0.5 (Panel B of Table 5), but little or no power gains are generally
evident when no near-cancellation applies across , namely in Panel C of Table 5 and both panels
of Table 6.

Although the use of a 5% (rather than 10%) significance level for lag selection based on the t-sq
testing approach improves the power of tests a little, parsiminony does not always improve size-
adjusted power for information criteria lag specification methods. For example, seasonal unit root
tests with AIC lag specification have higher power than those using BIC in Panel A of Table 6
when ¢ = 20. Nevertheless, the use of MAIC or M BIC almost always leads to tests with lower
size-adjusted power than AIC or BIC (as appropriate); indeed these modified criteria lead to some

results where power is less than size (see particularly Panel A of Table 6). The sequential approaches

"The results for other cases are available on request.
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are designed to improve power by eliminating redundant interediate lags, and this is clearly occurs for
t-bm and t-rt compared with ¢-sq. On the other hand, however, SAIC is not reliable in yielding power
improvements relative to AIC. Perron and Qu (2007) discuss the problem that M AIC can be prone
to power reversal as c¢ increases, and this is seen for size-adjusted power for both M AIC and SMAIC
for the positively autocorrelated seasonal AR process of Table 6 Panel A and also for SMAIC in
Table 5 Panel C (positively autocorrelated seasonal MA). Power reversal issues are considered further
in the next subsection.

The results of Appendix Tables A.4 to A.6, which correspond to Tables 4 to 6 but employ a
sample size of N = 100 years, overall exhibit similar patterns to those just discussed. This is the case
because we use local-to-unity DGPs, so that power is largely constant for N = 60, 100. However, the
power reversal problem for M AIC and SM AIC does not occur for positively autocorrelated seasonal
processes with the larger sample size in Appendix Tables A.5 (Panel C) and A.6 (Panel A). It is also
noteworthy that there remain cases in Panel A of Table A.6 where M BIC leads to tests with power

less than size, with this occuring for the zero frequency test with all detrending methodsﬁ.

3.4 MAIC Power Functions

The results in the tables confirm that the size and power of seasonal unit root tests depend on the
treatment of the deterministic component, in addition to the lag selection method employed, and that
relative performance can change with distance from the unit root null hypothesis. Therefore, the
present subsection further examines the implications of the treatment of p,,,, for the zero, Nyquist
and annual frequency tests in Figures 1, 2 and 3, respectively. In particular, we investigate whether
the OLS-GLS detrending method of Perron and Qu (2007) yields improved power performance relative
to GLS detrending for DGPs away from the unit root null. Those authors are concerned with zero
frequency tests and employ M AIC lag selection (developed by Ng and Perron 2001), while the seasonal
unit root extension here employs the seasonal M AIC of subsection above. As in the tables, the
regressions have kpax = |12 (4N/100)1/4J. Using an analogous notation to Perron and Qu (2007), lag
specification with deterministics included in the HEGY regression is denoted in the figures as
ols_ols, while GLS detrending as proposed by Rodrigues and Taylor (2007) for the seasonal unit root
case is denoted as gls_gls. Finally, the hybrid version of Perron and Qu (2007) is denoted in the graphs
as ols_gls.

The DGP again takes the form (3.1). To be specific, we employ 51 values of ¢ such that ¢/N =
0, 0.02N, 0.04N, ..., 1, hence moving progressively from an integrated process with seasonal AR
coefficient in of ag = (1 —¢/N) = 1 to a process with aqy = 0; 50,000 replications are used
for each c¢. White noise innovations with ug s = €441 in are employed in panels (a) and (b) of
each figure, while the seasonal MA of panels (c) and (d) specifies © = 0.5 in (3.2); note again that

the latter case has moving average roots relatively close to the AR seasonal unit roots under the null

8For both N = 60 and N = 100, the corresponding results with M BIC lag selection and GLS detrending exhibit
similar patterns to those shown with OLS-GLS detrending.
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hypothesis, and hence represents the situation for which M AIC is designed (Ng and Perron, 2001).
A direct comparison is made of the effect of N on size and power by showing results for N = 60 in
panels (a) and (c), with corresponding size results for N = 100 in panels (b) and (d). To facilitate
comparison with the results of Perron and Qu (2007), our figures show empirical size (¢/N = 0) and
power (¢/N > 0) for tests at a 5% nominal significance level throughout. Consequently, power here
cannot be directly compared with size-adjusted power presented in Table 4 (Panel B) and 5 (Panel
B), and the corresponding appendix tables. Nevertheless, as for the tables, the test regression allows
for seasonal intercepts and a zero frequency trend.

The distinctive power implications of the detrending methods are evident for the zero frequency
test and white noise disturbances (N = 60) in panel (a) of Figure 1. Thus, GLS detrending yields
substantial power advantages over OLS for near-integrated processes, but the latter has greater power
for processes further from the unit root null. Indeed, with GLS detrending power flattens off at around
0.7 for a seasonal AR coefficient of ay equal to about 0.65 or less in (3.2)). The best method is hybrid
OLS-GLS detrending, which here combines the advantages of both of the other methods. Power is, of
course, higher for a given seasonal AR coefficient for the larger sample size of N = 100 in panel (b)
compared with panel (a) and otherwise the general patterns just discussed apply also in panel (b).
Nevertheless, the flattening of power with GLS detrending now occurs for a value of a4 around 0.75
(¢ > 25) and some evidence of power reversal, as documented in the figures of Perron and Qu (2007)
for this method, can be seen for processes far from the unit root null.

As already discussed in relation to Panel B of Table 2, panel (c) of Figure 1 shows the zero
frequency unit root tests to be oversized when the DGP has a seasonal MA disturbance with © = 0.5.
As also seen in Panel B of Table 5, GLS detrending provides little or no power advantage over OLS for
small values of ¢ in this near-cancellation context. However, OLS-GLS detrending results in greater
oversizing than other methods and nominally greater power to about ay = 0.67 (¢ = 20); thereafter
OLS and OLS-GLS have effectively the same power, which is substantially above that obtained with
GLS detrending. For N = 100 in panel (d), power reversal again occurs with GLS detrending as ¢
increases. While not evident with the smaller sample size in panel (c¢), panel (d) shows an intermediate
range of values of ¢ for which OLS detrending leads to power higher than that given by the OLS-GLS
approach.

Although the tg and ¢ unit root test statistics have the same asymptotic distributions when
corresponding deterministic components are included, our test regressions allow for a trend in relation
to the former, but only an intercept for the latter. Therefore, Figure 2 relating to the test at frequency
7 (the Nyquist frequency) is analogous to a nonseasonal unit root test with constant only. For white
noise innovations, the power advantages of GLS and OLS-GLS detrending over OLS are very clear
for processes close to the unit root null in both panels (a) and (b). It is also notable that, compared
with the corresponding panels of Figure 1, GLS detrending shows clearer evidence of power reversal
with increasing ¢ when no trend is allowed at the corresponding frequency. The patterns for the
seasonal MA in panels (¢) and (d) are broadly similar to those of the corresponding panels of Figure

1. However, it may be noted that power for processes very far from the null hypothesis is worse with
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GLS detrending when N = 100 in panel (d) compared with N = 60 in panel (¢). Indeed, in the former
case, power is only around 0.65 with when the seasonal AR coefficient in is zero, whereas it is
approximately 0.75 for the smaller sample size.

The power properties of the joint F; statistic for testing seasonal unit roots at the annual frequency
in Figure 3 are generally similar to those for ¢, statistic at the Nyquist frequency (Figure 2). In
particular, panels (a) and (b) again reveal evidence of power reversal when GLS detrending is employed
with white noise innovations. There is also evidence in these panels that OLS detrending leads to
a statistic with slightly more power than GLS or OLS-GLS when the true AR parameter in is
small, with values of around ay = 0.5 or less (corresponding to ¢ greater than 30 or 50 for N = 60
or 100, respectively). Perhaps most remarkable is the low power attained by the joint test statistic
with GLS detrending in panels (c) and (d) of Figure 3 against alternatives distant from the null
hypothesis. Specifically, when the disturbances of follow the seasonal MA of with © = 0.5,
the maximum power attained is only around 0.65 when N = 60. While maximum power is a little
higher for the larger sample size of N = 100 years, power reversal as alternatives further from the null
are considered implies that it is only around 0.55 for a process with ay = 0. Panels (c) and (d) show
a fairly wide range of parameters for which OLS detrending yields tests with higher power than either
version of GLS detrending; this good performance of OLS detrending is also evident for size-adjusted
power in Panel B of Tables 5 and A.5 with ¢ = 20. Nevertheless, and as anticipated, GLS detrending

methods have substantially higher power than OLS for local-to-unity alternatives.

3.5 Implications for Empirical Analysis

The Monte Carlo results of the preceding subsections have important implications for empirical anal-
ysis. Although the size results across Tables 1-3, together with Appendix Tables A.1 to A.3, indicate
that no single method always leads to good size, nevertheless our extension of M AIC for seasonal
unit root testing delivers relatively good size across a range of DGPs and irrespective of whether it
is used in the HEGY regression ([2.5) or after GLS detrending in . In common with Ng and
Perron (2001), we do not recommend BIC-based procedures as they suffer more from size distortions.
If dynamic specification is based on significance of lag coefficients, then ¢-sq(10%) has the best size
overall, although it is badly over-sized in the presence of near-cancellation with MA roots. Although it
seems intuitively plausible that deletion of intermediate lags may improve lag specification for seasonal
processes, we do not recommend the use of such procedures (either information criteria or testing-
based) due to the poorly sized unit root tests that can result. It also needs to be emphasised that
all procedures we examine in detail allow the same maximum lag of |12 (4N/ 100)1/ %], equating to 14
quarters for N = 60 years of data. Any procedure that starts from a low maximum lag of (say) 4 or 5
quarters can have poor size in the presence of MA disturbances (even of low order) or an AR process
of order higher than kpax.

The results for size-adjusted power in Tables 4 to 6 and Appendix Tables A.4 to A.6 need to

be interpreted in the light of size considerations. The price in terms of power for the good size
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performance of M AIC is that it can have fairly substantial power loss compared with AIC' for some
DGPs (for example, Panels B and C of Table 5 and Panel A of Table 6). Although this power loss
is often mitigated (or even reversed) by the use of the sequential SM AIC, the very poor size of the
latter for some processes makes empirical results difficult to interpret in practice. Nevertheless, the
low power of zero frequency unit root tests (which allow a trend) with M AIC lag specification for the
positively autocorrelated seasonal processes of Panel C of Table 5 and (especially) Panel A of Table
6 with N = 60 years of data shows that this method does not perform universally well. Our results
confirm that GLS detrending often has power advantages over OLS detrending for near-integrated
processes, with this particularly evident in panels (a) and (b) of Figures 1 to 3. However, all figures
show also that GLS detrending with lag specification undertaken in the context of the GLS regression
has relatively poor power away from the unit root null hypothesis and is dominated by the OLS-GLS
procedure of Perron and Qu (2007). Nevertheless, when near-cancellation applies across the AR and
MA polynomials of , as in panels (¢) and (d) in the figures and Panel B of Table 5, OLS detrending
can have higher power than OLS-GLS.

Although there is some variation over the DGPs considered, the results of Tables 1 to 3 suggest that
OLS detrending with M AIC or AIC may have more reliable size overall than testing in conjunction
with GLS (or OLS-GLS detrending). On the other hand, power against local alternatives is typically
higher with GLS-based detrending. The implied size-power trade-off indicates that test results with
OLS detrending may also contain useful information, alongside those with GLS (especially OLS-GLS)
detrending.

In summary, therefore, we recommend that our seasonal generalisation of M AIC be routinely used
for lag specification when undertaking seasonal unit root tests. In terms of detrending, the OLS-GLS
procedure generally works well, and apparently avoids the low power that can result from seasonal
GLS detrending for processes away from the unit root null. However, prior to unit root testing, it is
advisable that empirical researchers explicitly consider the properties of the series they are examining,
rather than applying seasonal unit root tests as a “black box” procedure. M AIC was designed by
Ng and Perron (2001) to deal with over-rejection of the (zero frequency) unit root null hypothesis for
an integrated process that is also subject to negatively autocorrelated disturbances. Our simulations
show that the seasonal M AIC generalisation leads to tests with good size in the corresponding case
of negatively autocorrelated innovations of a seasonal form, but also indicate that AIC has quite good
size when the process has positively autocorrelated innovations at seasonal lags (Panel C of Table 2
and Panel A of Table 3) and better size-adjusted power than M AIC for corresponding near-integrated
local alternatives (Panel C of Table 5 and Panel A of Table 6).

4 Empirical Application

To investigate the implications of different methodologies for lag selection and accounting for trends

in the context of HEGY-type seasonal unit roots, the procedures investigated in the Monte Carlo
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analysis of Section 3| are applied to observed US quarterly industrial production indices (IPI). More
specifically, we employ the logarithm of IPI for the component series of business equipment, business
supplies, construction supplies, durable consumer goods, durable materials goods and non-durable
consumer goods for the US over 1947Q1 to 2010Q4ﬂ in aggregate these constitute approximately 70
percent of US industrial production.

As evident from the graphs of the series in Figure 4, all IPI series exhibit trends and seasonality,
with the effect of the recent recession also often evident (particularly for construction supplies). Further
insight into the properties of these series is provided by Table 7, where (in the general notation of

(2.1a))) coefficient estimates are reported for parsiminous seasonal ARMA models of the general fornm
(1= @L)(1 — LY Azarys = Apggys + (1 — 01 L — 02L%) (1 — OLY)eapys. (4.1)

The need for a zero frequency unit root is relatively uncontroversial (see Table 8 below) and is imposed
in . Although they are not always explicitly allowed in such models, our specification includes
deterministic seasonal dummy variables in Apuy,, ., since the exclusion of deterministic seasonality
results in all estimated ® being close to unity.

Both Figure 4 and the results in Table 7 (specifically coefficient estimates and R? values) indicate
that business equipment and durable goods materials have relatively modest seasonality. While con-
struction supplies also exhibits relatively little stochastic seasonality in terms of @, this IPI component
shows strong deterministic seasonality in Figure 4. On the other hand, the ARMA models for business
supplies, durable consumer goods and non-durable consumer goods suggest strong stochastic seasonal-
ity which may be of a nonstationary form. After imposition of a zero frequency unit root through first
differencing, all TPT components show positive first-order serial correlation, which is usually captured
through an MA(1).

Against this background, Table 8 shows results of HEGY tests applied to the log series (without
prior differencing) using a range of lag selection procedures. To illustrate the impact of decisions made
with respect to lag selection and detrending, we consider conventional AIC' and BIC lag selection
procedures, together our seasonal M AIC and the corresponding sequential version SM AIC that
allows “gaps” in the lag structure. Modified criteria based on BIC are not included, since they have
worse size performance in the finite sample Monte Carlo analysis of Section [3| than the corresponding
AIC-based procedures. Similarly SAIC is not included, due to its size distortions. For comparison
purposes, results are also shown for the testing-based lag selection procedures t-sq(10%) and ¢-rt(10%),
the latter of which also allows some intermediate lags to be dropped from the test regression. In line
with many empirical studies, the maximum lag order is set as kmax = [12 (4N/ 100)1/ 4], which
implies kmax = 15 for our sample of N = 64 years of data. Both OLS and GLS detrending methods
are used, with the Perron and Qu (2007) hybrid OLS-GLS method employed for the latter with
MAIC and SM AIC lag selection, in line with the generally superior performance of OLS-GLS over

9All data are from the US Federal Reserve website http://www.federalreserve.gov /releases/g17/tablel_2.htm.
10This general specification was adopted based on the serial correlation properties of the first differenced series. The

ARMA models were estimated in the program EViews using conditional least squares.
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GLS detrending for these criteria in the Monte Carlo analysis of the previous section. To facilitate
comparisons, Table 8 indicates the lags selected by each method.

As implied above, almost all results for ¢g in Table 8 are compatible with the presence of a zero
frequency unit root, with ambiguity in this respect only for business equipment with AIC or BIC lag
selection. Note, however, that conventional AIC'/BIC used in the context of HEGY tests that perform
OLS detrending through here sometimes result in low orders of augmentation being selected;
indeed, in three cases (including business equipment) no lags are selected. These parsiminous models
also yield numerically large values for the seasonal unit root test statistics. However, given the large
oversizing of these parsiminous lag selection procedures in the presence of a positively autocorrelated
seasonal MA component (in Panel B of Table 2), such rejections may be spurious. Although the less
parsimonious methods of M AIC or t-sq(10%) select very similar lags for both OLS and GLS detrending
in Table 8, nevertheless the seasonal unit null hypotheses are rejected more frequently using OLS than
the corresponding GLS-detrended tests of . For example, using Fis, the joint null hypothesis of
unit roots at the Nyquist and annual frequencies is strongly rejected for construction supplies with
OLS detrending irrespective of the lag selection method employed, whereas this hypothesis is rejected
with GLS detrending only when the parsimonious BIC criterion is used.

Based on size and power properties, our recommendation in subsection [3.5] is that M AIC be
widely employed with OLS and OLS-GLS detrending, but also that the empirical characteristics of
the series should be considered explicitly. Using M AIC in conjunction with OLS-GLS detrending
and at the conventional 5% significance level, the results in Table 8 indicate that the IPI components
of business supplies, construction supplies, durable consumer goods and non-durable consumer goods
are compatible with the seasonal integration hypothesis. Nevertheless, this conclusion is surprising for
construction supplies in relation to the estimated seasonal AR coefficient obtained for this component
in Table 7 and is not confirmed when OLS detrending is employed. The remaining two components,
business equipment and durable goods materials, are those for which seasonality is not very marked in
Figure 4 and these also have small ® in Table 7. For business equipment, the M AIC /GLS test results
in Table 8 are marginal, but these combined with the information from Table 7 and the higher power
that can be shown by the use of OLS detrending point to rejection of the overall seasonal integration
null hypothesis. The conclusion for durable goods materials is straightforward, namely rejection of
unit roots at both seasonal frequencies.

Overall, therefore, we conclude that modelling the ITPI components of business supplies, durable
consumer goods and non-durable consumer goods may proceed on the basis that these components
are seasonally integrated, whereas the business equipment and durable goods materials are integrated
only at the zero frequency. Although the case of construction supplies is more ambiguous and more
detailed modelling is warranted to shed further light on the possible presence of seasonal unit roots,
nevertheless the results here point to only a zero frequency unit root being present. In any case,
irrespective of the particular conclusions drawn in relation to these series, our results in Table 8
illustrate the important roles played by the methodogies used for lag selection and detrending when

conducting seasonal unit root tests.
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5 Conclusions

Through Monte Carlo simulation experiments, this paper explores the small sample performance of a
variety of data-based methods for determining the lag augmentation polynomial used for conducting
HEGY seasonal unit root tests, in both the common OLS detrending context originally proposed by
Hylleberg et al. (1990) and also employing seasonal GLS detrending as proposed by Rodrigues and
Taylor (2007). A battery of techniques are compared for lag selection in these contexts, based on both
information criteria (A/C and BIC) and also hypothesis testing approaches. One contribution of our
paper is that we extend the modified information criteria of Ng and Perron (2001) to the seasonal
unit root testing context and apply this for lag selection with both OLS and GLS detrending, in the
latter case implemented for modified information criteria methods using both the GLS regression and
the hybrid OLS-GLS approach recommended by Perron and Qu (2007). Although Taylor (1997) drew
attention to the difficulty of lag selection for seasonal unit root tests, no comprehensive examination
of the performance of parametric seasonal unit root tests has previously been available.

Our results imply that, over a range of data generating processes, reliable size is generally delivered
by our seasonal generalisation of the modified Akaike criterion, M AIC, whether applied with OLS
or GLS detrending. It is well known that the use of conventional lag selection criteria, such as AIC
or BIC, together with hypothesis testing approaches, can lead to badly over-sized unit root tests
for processes with negatively autocorrelated moving average disturbances (Schwert, 1989, Ng and
Perron, 2001), with an analogous problem applying to seasonal unit root tests in the presence of near-
cancellation of roots of the AR and MA polynomials (Ghysels et al., 1994). We also find this result, but
show that M AIC performs well in delivering reliable size across a range of data generating processes.
A sequential version (SMAIC) also sometimes delivers good size, but unfortunately can be badly
under-sized. Nevertheless, M AIC can have poor size when the innovations exhibit positive seasonal
autocorrelation, in which case AIC is preferred. When used in appropriate contexts, M AIC/AIC
deliver more reliable size than lag specification methods based on hypothesis testing or BIC.

In terms of power, the hybrid OLS-GLS detrending approach of Perron and Qu (2007) should
be employed with M AIC to avoid poor power shown by GLS detrending under alternatives distant
from the unit root null. At least for local alternatives, GLS detrending is more powerful than OLS,
but there may be parameter ranges over which OLS detrending has greater power than GLS-based
methods.

An application of parametric HEGY-type seasonal unit root tests with OLS and GLS detrending
and a range of lag selection procedures to six components of quarterly seasonally unadjusted US
industrial production indices illustrates the different results that can be delivered in an empirical
context. Although there is little disagreement about the presence of a zero frequency unit root, results
with OLS detrending more frequently reject the presence of seasonal unit roots at the Nyquist (semi-
annual) and annual frequencies than with GLS. Use of M AIC leads to similar conclusions for both
OLS and GLS detrending, especially in relation to the joint test of the overall seasonal integration

null hypothesis.
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To date, GLS (and, more especially, OLS-GLS) detrending does not appear to be widely used
in empirical studies that test for seasonal unit roots. However, its performance in the Monte Carlo
analysis and the different results it sometimes delivers, compared with the commonly applied OLS
detrending, for US industrial production indices indicate that it may shed new light on the properties

of observed seasonal time series.
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Table 1: Empirical size of quarterly seasonal unit root tests for white noise disturbances

to t2 Fy Fio Fo12

OLS GLS | OLS GLS | OLS GLS | OLS GLS | OLS GLS
Panel A. { =4
AIC 0.051 0.071 | 0.047 0.082 | 0.055 0.063 | 0.052 0.072 | 0.055 0.089
MAIC 0.039 0.053 | 0.040 0.075 | 0.047 0.052 | 0.042 0.063 | 0.042 0.070
MAIC PQ 0.053 0.075 0.053 0.064 0.071
BIC 0.050 0.069 | 0.045 0.081 | 0.054 0.061 | 0.049 0.071 | 0.052 0.084
MBIC 0.040 0.057 | 0.042 0.078 | 0.049 0.055 | 0.044 0.064 | 0.044 0.073
MBIC PQ 0.057 0.077 0.055 0.065 0.074
SAIC 0.056 0.072 | 0.048 0.081 | 0.053 0.064 | 0.056 0.077 | 0.060 0.096
SMAIC 0.025 0.045 | 0.036 0.069 | 0.039 0.050 | 0.035 0.060 | 0.033 0.066
SMAIC PQ 0.045 0.069 0.050 0.060 0.067
t-sq(5%) 0.055 0.072 | 0.047 0.083 | 0.055 0.063 | 0.052 0.073 | 0.059 0.092
t-sq(10%) 0.056 0.075 | 0.048 0.083 | 0.056 0.063 | 0.052 0.075 | 0.060 0.095
t-bm(5%) 0.056 0.070 | 0.047 0.079 | 0.056 0.068 | 0.054 0.080 | 0.059 0.100
t-bm(10%) 0.058 0.073 | 0.049 0.081 | 0.057 0.070 | 0.055 0.081 | 0.062 0.104
t-rt(5%) 0.053 0.070 | 0.047 0.080 | 0.053 0.064 | 0.055 0.076 | 0.058 0.093
t-rt(10%) 0.056 0.073 | 0.048 0.082 | 0.053 0.064 | 0.056 0.078 | 0.061 0.096
Panel B. ¢ =12
AIC 0.054 0.068 | 0.051 0.078 | 0.054 0.060 | 0.050 0.069 | 0.055 0.084
MAIC 0.039 0.048 | 0.044 0.067 | 0.044 0.048 | 0.041 0.055 | 0.041 0.062
MAIC PQ 0.049 0.070 0.050 0.057 0.064
BIC 0.051 0.065 | 0.051 0.077 | 0.052 0.058 | 0.048 0.066 | 0.050 0.079
MBIC 0.042 0.052 | 0.046 0.074 | 0.047 0.054 | 0.043 0.060 | 0.043 0.068
MBIC PQ 0.054 0.075 0.053 0.060 0.069
SAIC 0.082 0.087 | 0.064 0.091 | 0.070 0.071 | 0.070 0.085 | 0.085 0.114
SMAIC 0.008 0.022 | 0.021 0.049 | 0.017 0.031 | 0.015 0.037 | 0.010 0.033
SMAIC PQ 0.023 0.048 0.031 0.037 0.036
t-sq(5%) 0.069 0.082 | 0.057 0.083 | 0.059 0.064 | 0.055 0.075 | 0.067 0.096
t-sq(10%) 0.070 0.081 | 0.056 0.086 | 0.053 0.061 | 0.0561 0.077 | 0.065 0.094
t-bm(5%) 0.075 0.081 | 0.061 0.083 | 0.063 0.073 | 0.061 0.086 | 0.074 0.114
t-bm(10%) 0.088 0.096 | 0.067 0.088 | 0.070 0.075 | 0.069 0.093 | 0.089 0.130
t-rt(5%) 0.076 0.079 | 0.058 0.085 | 0.067 0.069 | 0.063 0.081 | 0.073 0.103
t-rt(10%) 0.085 0.088 | 0.064 0.092 | 0.071 0.072 | 0.072 0.086 | 0.086 0.116

Notes: The DGP is (3.1) with ¢ = 0 and Ugss=€4¢+s ~ 1D N(0, 1), for quarterly data over N=60 years. Tests
and lag selection criteria as in Section 2, with kmax = int[€ (4N/100)]1/4 for £ = 4 or 12. All tests allow for seasonal
means and a zero frequency trend: OLS and GLS indicates OLS-detrending and GLS-detrending, with PQ indicating
that the latter uses the OLS-GLS method of Perron and Qu (2007). The statistics are {-type tests for unit roots at
the zero and T frequencies (fg, ¢2) and joint F-type statistics for unit roots at the 7I'/2 frequency. (F'1), all seasonal
frequencies (F12) and the zero and all seasonal frequencies (Fg12). Results are based on 5000 replications for a nominal

5% level of significance.
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Table 2: Empirical size of quarterly seasonal unit root tests

for moving average disturbances

to t2 Fy Fio Fo12

OLS GLS | OLS GLS | OLS GLS | OLS GLS | OLS GLS
Panel A. MA(1): 0 =-038, 0 =
AIC 0.057 0.080 | 0.301 0.322 | 0.059 0.069 | 0.247 0.238 | 0.241 0.235
MAIC 0.024 0.031 | 0.072 0.132 | 0.036 0.039 | 0.066 0.072 | 0.059 0.066
MAIC PQ 0.035 0.137 0.043 0.084 0.077
BIC 0.064 0.082 | 0.497 0.500 | 0.065 0.076 | 0.420 0.397 | 0.402 0.376
MBIC 0.022 0.025 | 0.092 0.185 | 0.032 0.035 | 0.074 0.091 | 0.066 0.074
MBIC PQ 0.031 0.180 0.041 0.099 0.086
SAIC 0.080 0.095 | 0.249 0.264 | 0.071 0.075 | 0.219 0.206 | 0.226 0.215
SMAIC 0.005 0.018 | 0.048 0.126 | 0.018 0.033 | 0.039 0.070 | 0.023 0.052
SMAIC PQ 0.018 0.121 0.035 0.073 0.055
t-sq(5%) 0.065 0.083 | 0.197 0.240 | 0.056 0.070 | 0.173 0.177 | 0.175 0.187
t—sq(lo%) 0.059 0.081 | 0.128 0.167 | 0.057 0.066 | 0.121 0.126 | 0.121 0.140
t-bm(5%) 0.063 0.074 | 0.277 0.276 | 0.061 0.072 | 0.225 0.214 | 0.217 0.214
t-bm(10%) 0.065 0.075 | 0.223 0.230 | 0.059 0.070 | 0.194 0.184 | 0.189 0.185
t-rt(5%) 0.078 0.091 | 0.308 0.315 | 0.072 0.075 | 0.268 0.246 | 0.267 0.253
t-rt(10%) 0.079 0.094 | 0.240 0.257 | 0.072 0.075 | 0.211 0.200 | 0.219 0.213
Panel B. Seasonal MA: 6 =0, © =0.5
AIC 0.267 0.260 | 0.192 0.233 | 0.209 0.140 | 0.265 0.228 | 0.363 0.348
MAIC 0.079 0.091 | 0.072 0.128 | 0.081 0.057 | 0.098 0.089 | 0.126 0.119
MAIC PQ 0.112 0.136 0.067 0.106 0.144
BIC 0.544 0.478 | 0.419 0.395 | 0.486 0.291 | 0.584 0.429 | 0.672 0.562
MBIC 0.097 0.121 | 0.084 0.157 | 0.091 0.068 | 0.113 0.113 | 0.151 0.157
MBIC PQ 0.130 0.158 0.075 0.123 0.175
SAIC 0.203 0.174 | 0.177 0.192 | 0.180 0.119 | 0.214 0.171 | 0.234 0.216
SMAIC 0.024 0.034 | 0.074 0.115 | 0.077 0.071 | 0.074 0.086 | 0.037 0.057
SMAIC _PQ 0.035 0.116 0.071 0.086 0.063
t-sq(5%) 0.158 0.172 | 0.113 0.165 | 0.125 0.093 | 0.154 0.146 | 0.216 0.218
t-sq(10%) 0.128 0.146 | 0.092 0.142 | 0.100 0.077 | 0.116 0.118 | 0.167 0.178
t-bm(5%) 0.214 0.178 | 0.192 0.210 | 0.199 0.143 | 0.246 0.206 | 0.264 0.257
t-bm(10%) 0.216 0.181 | 0.171 0.195 | 0.176 0.129 | 0.217 0.185 | 0.244 0.236
t-rt(5%) 0.201 0.172 | 0.186 0.201 | 0.196 0.133 | 0.233 0.188 | 0.250 0.226
t-rt(10%) 0.204 0.173 | 0.173 0.191 | 0.175 0.117 | 0.208 0.169 | 0.233 0.213
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Table 2 (continued)

to t2 Fy Fio Fo12

OLS GLS | OLS GLS | OLS GLS | OLS GLS | OLS GLS
Panel C. Seasonal MA: 6 =0,0 = —-0.5
AIC 0.083 0.111 | 0.067 0.110 | 0.076 0.071 | 0.083 0.093 | 0.106 0.126
MAIC 0.025 0.034 | 0.037 0.058 | 0.040 0.040 | 0.043 0.042 | 0.033 0.042
MAIC PQ 0.034 0.058 0.042 0.044 0.044
BIC 0.098 0.131 | 0.078 0.135 | 0.084 0.075 | 0.097 0.111 | 0.126 0.156
MBIC 0.008 0.012 | 0.023 0.031 | 0.034 0.035 | 0.028 0.031 | 0.016 0.022
MBIC PQ 0.006 0.020 0.054 0.045 0.023
SAIC 0.093 0.111 | 0.066 0.108 | 0.085 0.080 | 0.092 0.099 | 0.103 0.141
SMAIC 0.002 0.014 | 0.019 0.048 | 0.019 0.030 | 0.015 0.029 | 0.009 0.022
SMAIC PQ 0.013 0.047 0.031 0.030 0.024
t-sq(5%) 0.063 0.080 | 0.056 0.088 | 0.065 0.063 | 0.069 0.072 | 0.077 0.094
t-sq(10%) 0.061 0.081 | 0.054 0.084 | 0.061 0.059 | 0.063 0.070 | 0.069 0.093
t-bm(5%) 0.077 0.099 | 0.064 0.100 | 0.079 0.080 | 0.083 0.098 | 0.092 0.131
t-bm(10%) 0.083 0.108 | 0.066 0.101 | 0.081 0.081 | 0.087 0.100 | 0.097 0.142
t-rt(5%) 0.088 0.106 | 0.064 0.106 | 0.083 0.078 | 0.088 0.096 | 0.098 0.134
t-rt(10%) 0.095 0.112 | 0.068 0.107 | 0.084 0.080 | 0.092 0.099 | 0.102 0.143

Notes: As for Table 1, except that the DGP has moving average disturbances, with U445 = (1 — 9L)(1 — @L4)€4t+5
and maximum lag given by kmax = 0t [E (4N/100)1/4 with £ = 12.
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Table 3: Empirical size of quarterly seasonal unit root tests
for autoregressive disturbances

to t2 Fy Fio Fo12

OLS GLS | OLS GLS | OLS GLS | OLS GLS | OLS GLS
Panel A. Seasonal AR: ® = 0.5
AIC 0.047 0.070 | 0.048 0.086 | 0.053 0.064 | 0.059 0.075 | 0.060 0.087
MAIC 0.033 0.048 | 0.042 0.075 | 0.047 0.051 | 0.048 0.058 | 0.047 0.061
MAIC PQ 0.048 0.076 0.052 0.060 0.063
BIC 0.042 0.066 | 0.047 0.084 | 0.054 0.063 | 0.058 0.073 | 0.058 0.083
MBIC 0.017 0.031 | 0.031 0.060 | 0.040 0.046 | 0.036 0.047 | 0.028 0.041
MBIC PQ 0.020 0.041 0.057 0.051 0.035
SAIC 0.085 0.110 | 0.065 0.102 | 0.080 0.086 | 0.084 0.105 | 0.101 0.141
SMAIC 0.005 0.024 | 0.018 0.058 | 0.019 0.033 | 0.019 0.038 | 0.012 0.033
SMAIC PQ 0.025 0.058 0.036 0.039 0.033
t-sq(5%) 0.055 0.081 | 0.050 0.085 | 0.058 0.069 | 0.062 0.081 | 0.067 0.098
t-sq(10%) 0.057 0.083 | 0.051 0.086 | 0.057 0.071 | 0.062 0.081 | 0.069 0.099
t-bm(5%) 0.067 0.095 | 0.055 0.095 | 0.067 0.078 | 0.071 0.095 | 0.082 0.119
t-bm(10%) 0.078 0.104 | 0.061 0.097 | 0.072 0.085 | 0.077 0.104 | 0.091 0.135
t-rt(5%) 0.078 0.102 | 0.060 0.100 | 0.076 0.083 | 0.081 0.100 | 0.094 0.130
t-rt(10%) 0.086 0.112 | 0.066 0.103 | 0.080 0.085 | 0.087 0.105 | 0.102 0.142
Panel B. Seasonal AR: ® = —-0.5
AIC 0.056 0.066 | 0.050 0.081 | 0.051 0.057 | 0.054 0.065 | 0.058 0.072
MAIC 0.033 0.037 | 0.040 0.069 | 0.038 0.048 | 0.041 0.053 | 0.039 0.048
MAIC PQ 0.042 0.069 0.048 0.054 0.053
BIC 0.062 0.067 | 0.054 0.083 | 0.057 0.059 | 0.063 0.069 | 0.070 0.076
MBIC 0.035 0.042 | 0.042 0.074 | 0.041 0.049 | 0.043 0.056 | 0.042 0.054
MBIC PQ 0.045 0.072 0.049 0.057 0.056
SAIC 0.088 0.088 | 0.079 0.096 | 0.075 0.072 | 0.079 0.090 | 0.077 0.096
SMAIC 0.009 0.018 | 0.029 0.061 | 0.027 0.039 | 0.022 0.044 | 0.012 0.027
SMAIC _PQ 0.020 0.060 0.037 0.044 0.028
t-sq(5%) 0.061 0.073 | 0.054 0.082 | 0.051 0.060 | 0.058 0.069 | 0.062 0.077
t-sq(10%) 0.063 0.077 | 0.060 0.082 | 0.052 0.063 | 0.059 0.073 | 0.062 0.083
t-bm(5%) 0.073 0.073 | 0.079 0.093 | 0.071 0.067 | 0.076 0.085 | 0.067 0.090
t-bm(10%) 0.089 0.090 | 0.088 0.096 | 0.075 0.074 | 0.082 0.093 | 0.081 0.104
t-rt(5%) 0.077 0.076 | 0.074 0.095 | 0.069 0.067 | 0.071 0.084 | 0.068 0.088
t-rt(10%) 0.092 0.093 | 0.080 0.097 | 0.076 0.074 | 0.080 0.091 | 0.079 0.099

Notes: As for Table 1, except that the DGP has seasonal autoregressive disturbances with (1 —
®LMugry s = €414 and maximum lag given by kpay = int [f (4]\7/100)1/4] with ¢ = 12.
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Table 4: Size-corrected power of quarterly seasonal unit root tests
for white noise disturbances

to to F Fio Fo12
c | OLS GLS | OLS GLS | OLS GLS | OLS GLS | OLS GLS

Panel A. ¢/ =14

AIC 51 0.088 0.110 | 0.134 0.273 | 0.173 0.424 | 0.247 0.566 | 0.257 0.519
10 | 0.192 0.289 | 0.365 0.635 | 0.570 0.863 | 0.761 0.960 | 0.793 0.963
201 0.714 0.849 | 0.929 0.976 | 0.993 0.990 | 1.000 1.000 | 1.000 1.000

MAIC 510.086 0.116 | 0.136 0.290 | 0.164 0.433 | 0.236 0.580 | 0.255 0.536
10 | 0.188 0.302 | 0.359 0.654 | 0.562 0.861 | 0.748 0.952 | 0.774 0.956
20 1 0.694 0.811 | 0.912 0.957 | 0.986 0.980 | 0.998 0.999 | 0.999 1.000

MAIC PQ 5 0.120 0.292 0.436 0.579 0.539
10 0.311 0.662 0.866 0.954 0.959
20 0.852 0.965 0.984 1.000 1.000
BIC 510.083 0.111 | 0.136 0.285 | 0.174 0.427 | 0.245 0.570 | 0.255 0.536

10 | 0.191 0.288 | 0.367 0.658 | 0.581 0.872 | 0.771 0.962 | 0.797 0.968
20 1 0.722 0.862 | 0.942 0.984 | 0.997 0.993 | 1.000 1.000 | 1.000 1.000

MBIC PQ 510.090 0.118 | 0.133 0.282 | 0.164 0.438 | 0.238 0.580 | 0.253 0.541
10 | 0.191 0.301 | 0.358 0.652 | 0.564 0.869 | 0.758 0.958 | 0.779 0.963
20 1 0.699 0.845 | 0.913 0.968 | 0.987 0.985 | 0.998 1.000 | 0.999 1.000

SAIC 510.08 0.116 | 0.144 0.271 | 0.191 0.405 | 0.247 0.560 | 0.257 0.496
10 | 0.190 0.300 | 0.363 0.622 | 0.584 0.839 | 0.741 0.954 | 0.775 0.951
20 | 0.668 0.817 | 0.906 0.962 | 0.989 0.980 | 0.998 1.000 | 0.999 0.999

SMAIC 510.101 0.119 | 0.142 0.283 | 0.200 0.438 | 0.272 0.574 | 0.286 0.541
10 | 0.238 0.306 | 0.375 0.653 | 0.616 0.870 | 0.786 0.952 | 0.806 0.955
20 | 0.789 0.836 | 0.936 0.971 | 0.994 0.989 | 0.999 1.000 | 1.000 1.000

SMAIC PQ | 5 0.119 0.286 0.435 0.578 0.543
10 0.313 0.655 0.868 0.955 0.956
20 0.859 0.974 0.988 1.000 1.000
t-sq(5%) 5 1 0.081 0.116 | 0.141 0.269 | 0.178 0.412 | 0.255 0.567 | 0.253 0.510

10 | 0.187 0.293 | 0.368 0.627 | 0.574 0.854 | 0.765 0.959 | 0.786 0.955
20 | 0.690 0.834 | 0.920 0.966 | 0.991 0.983 | 0.999 1.000 | 0.999 0.999

t-sq(10%) 5 | 0.084 0.118 | 0.138 0.270 | 0.180 0.402 | 0.258 0.562 | 0.262 0.504
10 | 0.186 0.296 | 0.357 0.615 | 0.563 0.834 | 0.761 0.953 | 0.787 0.950
20 | 0.667 0.813 | 0.897 0.954 | 0.988 0.975 | 0.999 0.999 | 0.999 0.999

t-bm(10%) 5 | 0.085 0.116 | 0.143 0.272 | 0.180 0.403 | 0.255 0.565 | 0.259 0.500
10 1 0.192 0.298 | 0.363 0.621 | 0.569 0.836 | 0.759 0.954 | 0.780 0.950
20 | 0.677 0.811 | 0.910 0.961 | 0.989 0.978 | 0.999 1.000 | 0.999 0.999

t-rt(10%) 5 [ 0.08 0.117 | 0.145 0.272 | 0.193 0.405 | 0.246 0.561 | 0.257 0.497
10 | 0.195 0.299 | 0.364 0.623 | 0.583 0.837 | 0.739 0.953 | 0.772 0.949
20 | 0.667 0.815| 0.902 0.962 | 0.989 0.978 | 0.998 0.999 | 0.999 0.999
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Table 4 (continued)

to t2 Fy Fio Fo12
c | OLS GLS | OLS GLS | OLS GLS | OLS GLS | OLS GLS
Panel B. ¢ =12
AIC 5 10.081 0.106 | 0.122 0.277 | 0.172 0.408 | 0.244 0.557 | 0.239 0.510

10 | 0.175 0.278 | 0.325 0.628 | 0.543 0.844 | 0.742 0.950 | 0.755 0.953
20 | 0.660 0.817 | 0.892 0.973 | 0.989 0.987 | 0.999 0.999 | 1.000 1.000

MAIC 5 | 0.08 0.111 | 0.121 0.281 | 0.158 0.428 | 0.232 0.572 | 0.241 0.516
10 | 0.179 0.274 | 0.316 0.615 | 0.523 0.817 | 0.701 0.919 | 0.724 0.910
20 1 0.625 0.645 | 0.837 0.854 | 0.943 0.917 | 0.976 0.966 | 0.974 0.973

MAIC PQ 5 0.113 0.283 0.422 0.578 0.524
10 0.297 0.632 0.834 0.937 0.931
20 0.787 0.935 0.962 0.989 0.990
BIC 5 [ 0.080 0.106 | 0.119 0.281 | 0.169 0.419 | 0.246 0.566 | 0.240 0.535

10 | 0.175 0.278 | 0.321 0.646 | 0.557 0.858 | 0.754 0.957 | 0.767 0.960
20 | 0.679 0.838 | 0.906 0.981 | 0.994 0.993 | 1.000 1.000 | 1.000 1.000

MBIC PQ 5 1 0.08 0.108 | 0.119 0.281 | 0.166 0.423 | 0.236 0.576 | 0.254 0.532
10 | 0.177 0.281 | 0.313 0.631 | 0.541 0.849 | 0.722 0.947 | 0.758 0.944
20 | 0.630 0.787 | 0.848 0.946 | 0.958 0.971 | 0.983 0.992 | 0.983 0.993

SAIC 510.076 0.107 | 0.124 0.261 | 0.160 0.366 | 0.229 0.499 | 0.208 0.460
10 | 0.159 0.260 | 0.306 0.559 | 0.482 0.753 | 0.676 0.901 | 0.674 0.908
20 | 0.555 0.718 | 0.805 0.907 | 0.956 0.944 | 0.996 0.991 | 0.996 0.992

SMAIC 510118 0.119 | 0.145 0.290 | 0.204 0.442 | 0.291 0.569 | 0.307 0.521
10 | 0.283 0.280 | 0.367 0.620 | 0.596 0.821 | 0.761 0.919 | 0.777 0.907
20 | 0.777 0.688 | 0.902 0.924 | 0.980 0.964 | 0.996 0.991 | 0.993 0.990

SMAIC PQ | 5 0.123 0.302 0.434 0.576 0.521
10 0.310 0.640 0.816 0.924 0.907
20 0.780 0.944 0.972 0.994 0.991
t-sq(5%) 51 0.070 0.100 | 0.113 0.258 | 0.170 0.364 | 0.244 0.499 | 0.220 0.444

10 | 0.145 0.243 | 0.276 0.564 | 0.463 0.739 | 0.671 0.885 | 0.671 0.885
20 | 0.496 0.662 | 0.729 0.858 | 0.903 0.888 | 0.971 0.966 | 0.982 0.979

t-sq(10%) 51 0.068 0.100 | 0.106 0.237 | 0.173 0.353 | 0.234 0.477 | 0.213 0.437
10 | 0.137 0.233 | 0.240 0.500 | 0.435 0.683 | 0.610 0.836 | 0.625 0.847
20 | 0.420 0.566 | 0.632 0.771 | 0.853 0.838 | 0.951 0.946 | 0.967 0.972

t-bm(10%) 510.08 0.108 | 0.135 0.261 | 0.186 0.372 | 0.241 0.504 | 0.217 0.470
10 | 0.181 0.250 | 0.316 0.556 | 0.508 0.759 | 0.686 0.904 | 0.689 0.909
20 | 0.587 0.705 | 0.826 0.902 | 0.966 0.940 | 0.996 0.992 | 0.996 0.991

t-rt(10%) 51 0.079 0.110 | 0.127 0.264 | 0.164 0.363 | 0.234 0.492 | 0.212 0.451
10 | 0.164 0.262 | 0.307 0.557 | 0.482 0.746 | 0.675 0.896 | 0.676 0.902
20 | 0.555 0.710 | 0.796 0.899 | 0.956 0.939 | 0.996 0.990 | 0.996 0.991

Notes: As for Table 1, except that the DGP is (3.1) with ¢ = 5, 10 and 20.
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Table 5: Size-corrected power of quarterly sesonal unit root tests
for moving average disturbances

to to P Fio Fo12
c | OLS GLS | OLS GLS | OLS GLS | OLS GLS | OLS GLS

Panel A. MA(1): # =—-0.8,© =0

AIC 51 0.087 0.104 | 0.164 0.161 | 0.161 0.365 | 0.205 0.297 | 0.223 0.337
10 | 0.179 0.239 | 0.398 0.334 | 0.472 0.692 | 0.589 0.587 | 0.640 0.675
20 | 0.554 0.630 | 0.862 0.534 | 0.963 0.906 | 0.975 0.788 | 0.989 0.908

MAIC 510.085 0.111 | 0.147 0.152 | 0.127 0.341 | 0.190 0.401 | 0.203 0.399
10 | 0.158 0.225 | 0.328 0.290 | 0.359 0.631 | 0.502 0.687 | 0.554 0.716
20 | 0.438 0.495 | 0.694 0.412 | 0.829 0.797 | 0.911 0.833 | 0.945 0.897

MAIC PQ 5 0.118 0.155 0.355 0.385 0.388
10 0.248 0.298 0.658 0.680 0.716
20 0.597 0.513 0.854 0.866 0.924
BIC 51 0.076 0.107 | 0.166 0.159 | 0.157 0.359 | 0.171 0.188 | 0.187 0.192

10 | 0.148 0.253 | 0.404 0.342 | 0.457 0.690 | 0.451 0.454 | 0.516 0.500
20 | 0.470 0.671 | 0.889 0.581 | 0.975 0.938 | 0.952 0.764 | 0.974 0.837

MBIC PQ 510.083 0.123 | 0.140 0.156 | 0.131 0.367 | 0.191 0.374 | 0.205 0.394
10 |1 0.161 0.263 | 0.309 0.295 | 0.371 0.672 | 0.501 0.663 | 0.552 0.723
20 | 0.444 0.618 | 0.671 0.503 | 0.843 0.862 | 0.905 0.858 | 0.941 0.925

SAIC 510.081 0.101 | 0.175 0.165 | 0.159 0.329 | 0.226 0.304 | 0.239 0.305
10 | 0.162 0.207 | 0.407 0.320 | 0.427 0.620 | 0.590 0.569 | 0.624 0.618
20 | 0.457 0.529 | 0.863 0.485 | 0.913 0.820 | 0.958 0.751 | 0.978 0.851

SMAIC 510115 0.124 | 0.163 0.134 | 0.168 0.358 | 0.235 0.398 | 0.277 0.408
10 | 0.230 0.251 | 0.348 0.257 | 0.432 0.641 | 0.588 0.678 | 0.681 0.749
20 | 0.521 0.536 | 0.720 0.377 | 0.846 0.805 | 0.951 0.833 | 0.982 0.939

SMAIC PQ | 5 0.129 0.142 0.355 0.386 0.408
10 0.265 0.283 0.642 0.665 0.749
20 0.575 0.478 0.813 0.847 0.940
t-sq(5%) 510.082 0.107 | 0.159 0.161 | 0.159 0.340 | 0.216 0.310 | 0.239 0.333

10 | 0.159 0.224 | 0.330 0.288 | 0.435 0.630 | 0.507 0.560 | 0.572 0.638
20 | 0.450 0.528 | 0.658 0.410 | 0.883 0.806 | 0.875 0.727 | 0.934 0.845

t-sq(10%) 510079 0.099 | 0.152 0.158 | 0.139 0.324 | 0.195 0.339 | 0.209 0.330
10 | 0.159 0.198 | 0.316 0.275 | 0.383 0.597 | 0.505 0.601 | 0.567 0.637
20 | 0.413 0.452 | 0.649 0.393 | 0.821 0.765 | 0.900 0.752 | 0.945 0.847

t-bm(10%) 510084 0.098 | 0.178 0.166 | 0.162 0.337 | 0.236 0.310 | 0.255 0.322
10 | 0.164 0.213 | 0.410 0.320 | 0.459 0.636 | 0.613 0.578 | 0.655 0.655
20 | 0.491 0.520 | 0.888 0.473 | 0.953 0.830 | 0.972 0.751 | 0.985 0.852

t-rt(10%) 510.083 0.101 | 0.176 0.167 | 0.156 0.333 | 0.230 0.302 | 0.245 0.320
10 | 0.165 0.204 | 0.410 0.318 | 0.425 0.619 | 0.592 0.570 | 0.629 0.628
20 | 0.458 0.518 | 0.864 0.483 | 0.905 0.818 | 0.957 0.750 | 0.977 0.854
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Table 5 (continued)

Cc

to
OLS GLS

OLS

to
GLS

OLS

GLS

OLS

GLS

Panel B. Seasonal MA: § =0, © =

0.5

AIC

)
10
20

0.202
0.580
0.962

0.151
0.350
0.665

0.282
0.685
0.982

0.253
0.482
0.731

0.339
0.739
0.994

0.377
0.614
0.717

0.361
0.756
0.997

0.475
0.738
0.852

0.342
0.724
0.995

0.425
0.744
0.881

MAIC

)
10
20

0.083
0.194
0.616

0.083
0.163
0.376

0.133
0.338
0.808

0.178
0.354
0.579

0.204
0.527
0.944

0.328
0.520
0.617

0.263
0.648
0.981

0.400
0.653
0.792

0.213
0.550
0.966

0.316
0.604
0.818

MAIC_PQ

)
10
20

0.094
0.227
0.625

0.192
0.401
0.735

0.323
0.540
0.755

0.420
0.688
0.879

0.308
0.602
0.882

BIC

)
10
20

0.168
0.459
0.957

0.209
0.489
0.844

0.283
0.691
0.995

0.303
0.612
0.843

0.371
0.874
1.000

0.420
0.697
0.821

0.457
0.938
1.000

0.518
0.779
0.875

0.430
0.932
1.000

0.513
0.787
0.877

MBIC_PQ

)
10
20

0.078
0.178
0.590

0.087
0.196
0.587

0.132
0.336
0.788

0.183
0.382
0.721

0.208
0.526
0.937

0.329
0.534
0.749

0.259
0.624
0.975

0.383
0.644
0.856

0.211
0.531
0.952

0.304
0.584
0.866

SAIC

)
10
20

0.137
0.414
0.916

0.132
0.309
0.600

0.222
0.596
0.958

0.233
0.468
0.694

0.306
0.746
0.984

0.356
0.576
0.639

0.353
0.803
0.996

0.426
0.681
0.811

0.308
0.751
0.987

0.343
0.611
0.760

SMAIC

)
10
20

0.207
0.550
0.963

0.170
0.365
0.610

0.243
0.649
0.979

0.283
0.531
0.755

0.307
0.762
0.992

0.412
0.667
0.789

0.355
0.823
0.999

0.476
0.741
0.856

0.334
0.793
0.998

0.421
0.720
0.896

SMAIC_PQ

)
10
20

0.187
0.416
0.764

0.304
0.573
0.824

0.411
0.665
0.827

0.482
0.755
0.907

0.421
0.720
0.896

t-sq(5%)

)
10
20

0.124
0.332
0.738

0.105
0.241
0.468

0.196
0.485
0.845

0.206
0.398
0.594

0.280
0.662
0.936

0.341
0.523
0.580

0.356
0.755
0.980

0.407
0.633
0.742

0.318
0.736
0.980

0.349
0.608
0.773

t-sq(10%)

)
10
20

0.110
0.264
0.627

0.095
0.205
0.420

0.180
0.425
0.784

0.201
0.382
0.573

0.246
0.584
0.924

0.293
0.469
0.533

0.317
0.703
0.981

0.405
0.635
0.753

0.281
0.673
0.977

0.318
0.592
0.779

t-bm(10%)

)
10
20

0.144
0.440
0.931

0.132
0.304
0.608

0.231
0.611
0.966

0.241
0.490
0.710

0.322
0.764
0.985

0.365
0.574
0.640

0.378
0.831
0.996

0.431
0.692
0.818

0.317
0.778
0.989

0.338
0.608
0.762

t-rt(10%)

)
10
20

0.133
0.400
0.906

0.128
0.301
0.591

0.221
0.586
0.954

0.238
0.468
0.693

0.304
0.739
0.982

0.350
0.567
0.630

0.349
0.798
0.995

0.424
0.681
0.812

0.302
0.742
0.986

0.339
0.606
0.758
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Table 5 (continued)

Cc

to
OLS GLS

OLS

to
GLS

OLS

GLS

OLS

GLS

Panel C. Seasonal MA: 6 =0. © =

-0.5

AIC

)
10
20

0.097
0.179
0.465

0.114
0.230
0.524

0.137
0.304
0.675

0.242
0.519
0.786

0.179
0.469
0.863

0.413
0.750
0.903

0.236
0.589
0.923

0.539
0.863
0.968

0.244
0.618
0.918

0.449
0.810
0.955

MAIC

)
10
20

0.059
0.056
0.161

0.086
0.141
0.339

0.068
0.101
0.328

0.226
0.454
0.766

0.091
0.179
0.628

0.344
0.649
0.908

0.105
0.232
0.795

0.473
0.843
0.985

0.105
0.223
0.825

0.400
0.807
0.989

MAIC_PQ

)
10
20

0.079
0.109
0.333

0.218
0.412
0.766

0.331
0.611
0.916

0.454
0.807
0.986

0.373
0.753
0.990

BIC

)
10
20

0.098
0.193
0.469

0.113
0.244
0.508

0.141
0.309
0.669

0.258
0.544
0.772

0.193
0.513
0.868

0.489
0.824
0.940

0.259
0.657
0.915

0.605
0.904
0.979

0.263
0.680
0.903

0.511
0.873
0.952

MBIC_PQ

)
10
20

0.048
0.084
0.377

0.083
0.206
0.711

0.035
0.103
0.505

0.216
0.540
0.939

0.065
0.164
0.714

0.190
0.477
0.924

0.070
0.240
0.915

0.254
0.703
0.994

0.070
0.266
0.956

0.254
0.764
1.000

SAIC

)
10
20

0.094
0.170
0.434

0.103
0.207
0.466

0.144
0.293
0.665

0.235
0.497
0.793

0.164
0.400
0.816

0.347
0.680
0.889

0.197
0.481
0.885

0.453
0.820
0.969

0.188
0.442
0.853

0.361
0.742
0.954

SMAIC

)
10
20

0.118
0.171
0.042

0.122
0.259
0.092

0.135
0.231
0.089

0.279
0.571
0.338

0.158
0.334
0.168

0.442
0.780
0.600

0.206
0.420
0.192

0.580
0.888
0.688

0.216
0.431
0.151

0.480
0.775
0.473

SMAIC_PQ

)
10
20

0.130
0.229
0.080

0.290
0.523
0.315

0.417
0.694
0.526

0.563
0.823
0.637

0.480
0.775
0.473

t-sq(5%)

)
10
20

0.083
0.143
0.337

0.100
0.197
0.412

0.110
0.230
0.520

0.227
0.470
0.738

0.143
0.345
0.728

0.346
0.655
0.859

0.187
0.452
0.864

0.475
0.827
0.967

0.195
0.473
0.876

0.406
0.781
0.968

t-sq(10%)

)
10
20

0.079
0.133
0.297

0.094
0.179
0.384

0.107
0.212
0.480

0.225
0.467
0.720

0.130
0.315
0.694

0.339
0.646
0.847

0.173
0.428
0.859

0.462
0.828
0.966

0.190
0.459
0.890

0.400
0.791
0.972

t-bm(10%)

)
10
20

0.111
0.198
0.499

0.103
0.211
0.486

0.151
0.309
0.689

0.240
0.521
0.805

0.163
0.402
0.826

0.367
0.697
0.897

0.211
0.515
0.912

0.482
0.837
0.976

0.212
0.480
0.891

0.384
0.770
0.965

t-rt(10%)

)
10
20

0.095
0.172
0.430

0.097
0.200
0.450

0.148
0.292
0.658

0.234
0.496
0.790

0.166
0.396
0.814

0.349
0.681
0.884

0.198
0.481
0.889

0.451
0.819
0.969

0.184
0.437
0.853

0.354
0.737
0.953

Notes: As for Table 2, except that the DGP is (3.1) with ¢ = 5, 10 and 20.
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Table 6: Size-corrected power of quarterly seasonal unit root tests

for autoregressive disturbances

Cc

to
OLS GLS

to
OLS

GLS

Fy
OLS

GLS

Fia

OLS

GLS

Fo12

OLS

GLS

Panel A. Seasonal AR: ® = 0.5

AIC

)
10
20

0.082
0.141
0.328

0.094
0.197
0.461

0.107
0.225
0.517

0.244
0.492
0.793

0.142
0.333
0.768

0.355
0.712
0.937

0.170
0.445
0.887

0.461
0.856
0.987

0.161
0.454
0.910

0.437
0.856
0.989

MAIC

)
10
20

0.078
0.089
0.033

0.092
0.162
0.077

0.098
0.147
0.084

0.248
0.443
0.380

0.124
0.228
0.225

0.363
0.661
0.712

0.159
0.322
0.284

0.495
0.804
0.856

0.158
0.315
0.229

0.445
0.769
0.798

MAIC_PQ

5
10
20

0.096
0.149
0.070

0.250
0.408
0.359

0.363
0.622
0.697

0.494
0.751
0.841

0.447
0.708
0.775

BIC

)
10
20

0.083
0.143
0.296

0.096
0.201
0.375

0.108
0.219
0.442

0.246
0.488
0.660

0.135
0.331
0.649

0.359
0.710
0.850

0.166
0.443
0.742

0.470
0.845
0.919

0.157
0.447
0.734

0.442
0.839
0.897

MBIC_PQ

5
10
20

0.015
0.014
0.065

0.016
0.023
0.165

0.018
0.017
0.133

0.066
0.135
0.550

0.055
0.086
0.269

0.148
0.263
0.674

0.041
0.067
0.359

0.161
0.328
0.874

0.031
0.044
0.346

0.117
0.238
0.883

SAIC

)
10
20

0.074
0.132
0.290

0.090
0.176
0.404

0.116
0.234
0.509

0.222
0.436
0.735

0.140
0.309
0.704

0.301
0.619
0.885

0.181
0.444
0.857

0.418
0.789
0.972

0.158
0.409
0.857

0.370
0.789
0.973

SMAIC

)
10
20

0.120
0.179
0.049

0.092
0.188
0.090

0.139
0.249
0.111

0.258
0.513
0.348

0.171
0.355
0.195

0.432
0.778
0.657

0.224
0.474
0.253

0.546
0.872
0.745

0.234
0.465
0.210

0.486
0.791
0.554

SMAIC_PQ

)
10
20

0.093
0.181
0.060

0.270
0.494
0.306

0.401
0.721
0.568

0.541
0.828
0.683

0.486
0.791
0.554

t-sq(5%)

)
10
20

0.077
0.133
0.286

0.086
0.179
0.404

0.107
0.221
0.471

0.225
0.448
0.730

0.139
0.313
0.697

0.325
0.653
0.876

0.166
0.417
0.839

0.448
0.819
0.966

0.165
0.436
0.877

0.390
0.806
0.974

t-5q(10%)

)
10
20

0.076
0.124
0.269

0.084
0.174
0.379

0.107
0.214
0.432

0.216
0.420
0.680

0.137
0.304
0.647

0.306
0.616
0.836

0.162
0.401
0.801

0.423
0.783
0.947

0.163
0.411
0.841

0.377
0.780
0.961

t-bm(10%)

)
10
20

0.085
0.149
0.348

0.091
0.185
0.434

0.122
0.238
0.529

0.223
0.450
0.748

0.143
0.338
0.745

0.319
0.646
0.894

0.186
0.458
0.873

0.446
0.823
0.978

0.171
0.447
0.890

0.376
0.795
0.974

t-rt(10%)

)
10
20

0.077
0.135
0.294

0.089
0.179
0.409

0.115
0.227
0.498

0.227
0.442
0.733

0.140
0.307
0.697

0.299
0.613
0.877

0.180
0.439
0.851

0.413
0.785
0.970

0.161
0.410
0.855

0.369
0.784
0.971
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Table 6 (continued)

Cc

to
OLS GLS

to
OLS

GLS

OLS

GLS

OLS

GLS

Panel B. Seasonal AR: ® = —0.5

AIC

5
10
20

0.072
0.164
0.583

0.098
0.237
0.676

0.107
0.287
0.841

0.220
0.479
0.815

0.159
0.503
0.983

0.306
0.620
0.810

0.204
0.667
0.998

0.452
0.819
0.964

0.201
0.688
0.999

0.397
0.834
0.989

MAIC

5
10
20

0.069
0.158
0.536

0.094
0.226
0.502

0.100
0.270
0.775

0.216
0.434
0.686

0.153
0.490
0.935

0.296
0.587
0.687

0.196
0.635
0.972

0.434
0.762
0.866

0.201
0.653
0.974

0.414
0.779
0.912

MAIC_PQ

)
10
20

0.097
0.250
0.649

0.219
0.465
0.771

0.302
0.609
0.766

0.437
0.789
0.921

0.410
0.806
0.956

BIC

)
10
20

0.111
0.278
0.766

0.105
0.262
0.693

0.150
0.386
0.893

0.226
0.488
0.830

0.194
0.527
0.985

0.307
0.626
0.824

0.224
0.648
0.998

0.436
0.812
0.971

0.208
0.642
0.999

0.374
0.815
0.991

MBIC_PQ

)
10
20

0.072
0.158
0.541

0.100
0.249
0.651

0.103
0.274
0.780

0.216
0.461
0.769

0.158
0.495
0.941

0.307
0.616
0.769

0.196
0.638
0.974

0.441
0.794
0.922

0.206
0.666
0.976

0.414
0.815
0.958

SAIC

)
10
20

0.094
0.237
0.777

0.113
0.282
0.687

0.136
0.368
0.887

0.231
0.511
0.808

0.207
0.582
0.973

0.329
0.618
0.762

0.230
0.689
0.997

0.444
0.798
0.925

0.206
0.662
0.996

0.370
0.779
0.932

SMAIC

)
10
20

0.135
0.390
0.901

0.135
0.322
0.631

0.160
0.472
0.955

0.269
0.572
0.820

0.237
0.675
0.990

0.384
0.704
0.841

0.302
0.770
0.997

0.484
0.809
0.917

0.281
0.751
0.994

0.446
0.815
0.940

SMAIC_PQ

)
10
20

0.147
0.370
0.767

0.285
0.605
0.856

0.391
0.711
0.861

0.491
0.826
0.944

0.446
0.815
0.940

t-sq(5%)

)
10
20

0.072
0.155
0.502

0.102
0.232
0.582

0.104
0.275
0.754

0.218
0.445
0.726

0.157
0.488
0.929

0.286
0.564
0.701

0.199
0.634
0.982

0.417
0.757
0.888

0.205
0.668
0.991

0.376
0.779
0.937

t-sq(10%)

)
10
20

0.072
0.150
0.446

0.096
0.216
0.502

0.100
0.249
0.668

0.214
0.409
0.667

0.144
0.443
0.882

0.265
0.513
0.628

0.189
0.592
0.967

0.387
0.701
0.837

0.202
0.634
0.984

0.354
0.734
0.906

t-bm(10%)

)
10
20

0.100
0.249
0.804

0.113
0.276
0.692

0.136
0.380
0.913

0.255
0.534
0.820

0.197
0.581
0.973

0.334
0.626
0.763

0.219
0.687
0.997

0.450
0.797
0.928

0.203
0.669
0.997

0.380
0.783
0.935

t-rt(10%)

)
10
20

0.093
0.237
0.769

0.110
0.280
0.680

0.136
0.365
0.880

0.225
0.498
0.800

0.207
0.575
0.970

0.323
0.613
0.752

0.227
0.679
0.996

0.435
0.791
0.920

0.204
0.661
0.995

0.363
0.769
0.925

Notes: As for Table 3, except that the DGP is (3.1) with ¢ = 5, 10 and 20.
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Appendix Table Al: Empirical size of quarterly seasonal unit root tests
for white noise disturbances with N = 100

to t2 Fy Fio Fo12

OLS GLS | OLS GLS | OLS GLS|OLS GLS | OLS GLS
Panel A. { =4
AIC 0.050 0.063 | 0.049 0.072 | 0.050 0.059 | 0.048 0.064 | 0.048 0.077
MAIC 0.040 0.049 | 0.046 0.066 | 0.041 0.052 | 0.042 0.056 | 0.040 0.062
MAIC PQ 0.050 0.066 0.053 0.056 0.062
BIC 0.048 0.060 | 0.048 0.071 | 0.045 0.058 | 0.046 0.062 | 0.044 0.073
MBIC 0.043 0.053 | 0.047 0.069 | 0.042 0.055 | 0.043 0.058 | 0.041 0.066
MBIC PQ 0.054 0.069 0.055 0.058 0.066
SAIC 0.055 0.069 | 0.051 0.073 | 0.049 0.060 | 0.052 0.067 | 0.053 0.081
SMAIC 0.030 0.041 | 0.038 0.064 | 0.036 0.049 | 0.038 0.052 | 0.033 0.057
SMAIC PQ 0.042 0.064 0.050 0.053 0.057
t-sq(5%) 0.053 0.067 | 0.050 0.071 | 0.051 0.060 | 0.049 0.064 | 0.049 0.079
t-sq(10%) 0.053 0.068 | 0.050 0.071 | 0.052 0.059 | 0.050 0.066 | 0.052 0.079
t-bm(5%) 0.054 0.067 | 0.050 0.071 | 0.050 0.062 | 0.050 0.068 | 0.051 0.084
t-bm(10%) 0.057 0.069 | 0.052 0.072 | 0.054 0.061 | 0.051 0.070 | 0.055 0.085
t-rt(5%) 0.052 0.067 | 0.049 0.071 ] 0.048 0.061 | 0.051 0.066 | 0.052 0.081
t-rt(10%) 0.056 0.069 | 0.052 0.073 | 0.050 0.060 | 0.0563 0.068 | 0.054 0.080
Panel B. /=12
AIC 0.051 0.059 | 0.044 0.073 | 0.046 0.057 | 0.045 0.063 | 0.050 0.077
MAIC 0.040 0.044 | 0.041 0.067 | 0.039 0.050 | 0.039 0.050 | 0.042 0.056
MAIC PQ 0.045 0.066 0.051 0.051 0.057
BIC 0.047 0.058 | 0.044 0.072 | 0.045 0.055 | 0.044 0.059 | 0.048 0.074
MBIC 0.044 0.051 | 0.043 0.069 | 0.042 0.054 | 0.041 0.054 | 0.045 0.065
MBIC PQ 0.051 0.069 0.053 0.054 0.065
SAIC 0.068 0.081 | 0.057 0.082 | 0.060 0.067 | 0.061 0.076 | 0.071 0.096
SMAIC 0.011 0.023 | 0.024 0.051 ] 0.022 0.033 | 0.019 0.034 | 0.014 0.032
SMAIC PQ 0.022 0.052 0.036 0.036 0.032
t-sq(5%) 0.059 0.069 | 0.049 0.078 | 0.051 0.061 | 0.050 0.064 | 0.058 0.084
t-sq(10%) 0.058 0.068 | 0.049 0.080 | 0.050 0.061 | 0.049 0.066 | 0.057 0.080
t-bm(5%) 0.064 0.072 | 0.054 0.078 | 0.055 0.067 | 0.054 0.072 | 0.064 0.094
t-bm(10%) 0.073 0.082 | 0.059 0.080 | 0.063 0.070 | 0.061 0.080 | 0.075 0.103
t-rt(5%) 0.063 0.072 | 0.053 0.077 | 0.054 0.062 | 0.054 0.071 | 0.063 0.091
t-rt(10%) 0.070 0.083 | 0.059 0.081 | 0.061 0.068 | 0.063 0.077 | 0.074 0.099

Notes: As for Table 1, except that N = 100.
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Appendix Table A.2: Empirical size of quarterly seasonal unit root tests

for moving average disturbances with N = 100

to t2 Fy Fio Fo12

OLS GLS | OLS GLS |OLS GLS|OLS GLS|OLS GLS
Panel A. MA(1): 0 =-0.8,0©=0
AlIC 0.055 0.067 | 0.212 0.225 ] 0.051 0.061 | 0.158 0.160 | 0.147 0.145
MAIC 0.029 0.037 | 0.069 0.105 | 0.037 0.044 | 0.057 0.065 | 0.053 0.053
MAIC PQ 0.037 0.106 0.046 0.068 0.058
BIC 0.059 0.069 | 0.387 0.372 | 0.064 0.066 | 0.304 0.275 | 0.280 0.250
MBIC 0.025 0.027 | 0.093 0.170 | 0.033 0.037 | 0.063 0.083 | 0.058 0.062
MBIC PQ 0.030 0.153 0.041 0.083 0.066
SAIC 0.069 0.078 | 0.173 0.182 ] 0.062 0.063 | 0.137 0.135 | 0.140 0.135
SMAIC 0.011 0.023 | 0.056 0.106 | 0.028 0.038 | 0.040 0.061 | 0.030 0.044
SMAIC PQ 0.024 0.100 0.041 0.063 0.047
t-sq(5%) 0.059 0.073 | 0.147 0.168 | 0.056 0.061 | 0.117 0.122 | 0.109 0.117
t-sq(10%) 0.056 0.068 | 0.100 0.120 | 0.054 0.056 | 0.087 0.093 | 0.085 0.095
t-bm(5%) 0.057 0.065 | 0.188 0.189 | 0.056 0.063 | 0.136 0.139 | 0.129 0.130
t-bm(10%) 0.056 0.064 | 0.156 0.161 | 0.053 0.063 | 0.122 0.124 | 0.113 0.118
t-rt(5%) 0.067 0.075 | 0.211 0.220 | 0.061 0.066 | 0.161 0.156 | 0.159 0.152
t-rt(10%) 0.070 0.076 | 0.167 0.175 ] 0.061 0.063 | 0.131 0.132 | 0.135 0.133
Panel B. Seasonal MA: 6 =0, © =0.5
AIC 0.197 0.206 | 0.144 0.167 | 0.140 0.101 | 0.196 0.156 | 0.285 0.257
MAIC 0.067 0.083 | 0.061 0.096 | 0.058 0.050 | 0.072 0.066 | 0.094 0.089
MAIC PQ 0.087 0.097 0.051 0.070 0.096
BIC 0.304 0.323 | 0.222 0.248 | 0.226 0.143 | 0.309 0.238 | 0.436 0.402
MBIC 0.087 0.121 | 0.077 0.130 | 0.069 0.060 | 0.089 0.090 | 0.126 0.136
MBIC PQ 0.112 0.117 0.056 0.085 0.127
SAIC 0.131 0.122 | 0.124 0.129 | 0.119 0.084 | 0.143 0.115 | 0.149 0.141
SMAIC 0.022 0.035 | 0.062 0.088 | 0.059 0.055 | 0.060 0.061 | 0.034 0.045
SMAIC PQ 0.036 0.088 0.055 0.060 0.046
t-sq(5%) 0.112 0.129 | 0.084 0.114 | 0.082 0.068 | 0.106 0.095 | 0.145 0.142
t-sq(10%) 0.091 0.113 | 0.071 0.098 | 0.069 0.062 | 0.088 0.084 | 0.118 0.123
t-bm(5%) 0.136 0.126 | 0.131 0.134 | 0.129 0.088 | 0.157 0.124 | 0.160 0.153
t-bm(10%) 0.140 0.130 | 0.119 0.127 | 0.117 0.085 | 0.142 0.113 | 0.152 0.145
t-rt(5%) 0.133 0.124 | 0.127 0.135 | 0.127 0.088 | 0.154 0.121 | 0.163 0.144
t-rt(10%) 0.132 0.123 | 0.123 0.128 | 0.117 0.083 | 0.138 0.114 | 0.147 0.139
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Appendix Table A.2 (continued)

to t2 Fy Fio Fo12

OLS GLS | OLS GLS |OLS GLS|OLS GLS|OLS GLS
Panel C. Seasonal MA: § =0, © = —0.5
AIC 0.061 | 0.068 | 0.065 | 0.078 | 0.060 | 0.064 | 0.062 | 0.072 | 0.077 | 0.084
MAIC 0.027 | 0.026 | 0.041 | 0.051 | 0.034 | 0.044 | 0.034 | 0.043 | 0.032 | 0.042
MAIC PQ 0.025 0.051 0.045 0.043 0.041
BIC 0.107 | 0.126 | 0.094 | 0.119 | 0.074 | 0.065 | 0.090 | 0.094 | 0.129 | 0.143
MBIC 0.018 | 0.029 | 0.031 | 0.056 | 0.029 | 0.038 | 0.028 | 0.040 | 0.023 | 0.038
MBIC PQ 0.015 0.039 0.041 0.037 0.029
SAIC 0.074 | 0.082 | 0.066 | 0.083 | 0.064 | 0.071 | 0.069 | 0.081 | 0.074 | 0.105
SMAIC 0.007 | 0.018 | 0.031 | 0.048 | 0.020 | 0.034 | 0.020 | 0.034 | 0.012 | 0.027
SMAIC PQ 0.018 0.047 0.034 0.034 0.028
t-sq(5%) 0.053 | 0.064 | 0.058 | 0.071 | 0.052 | 0.062 | 0.054 | 0.064 | 0.061 | 0.076
t-sq(10%) 0.052 | 0.065 | 0.058 | 0.073 | 0.050 | 0.059 | 0.052 | 0.064 | 0.058 | 0.080
t-bm(5%) 0.066 | 0.072 | 0.062 | 0.080 | 0.059 | 0.071 | 0.065 | 0.079 | 0.070 | 0.091
t-bm(10%) 0.070 | 0.078 | 0.064 | 0.081 | 0.062 | 0.072 | 0.067 | 0.081 | 0.074 | 0.103
t-rt(5%) 0.069 | 0.080 | 0.066 | 0.083 | 0.064 | 0.069 | 0.067 | 0.078 | 0.071 | 0.098
t-rt(10%) 0.075 | 0.083 | 0.066 | 0.084 | 0.065 | 0.071 | 0.071 | 0.082 | 0.076 | 0.106

Notes: As for Table 2, except that N = 100.
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Appendix Table A.3: Empirical size of quarterly seasonal unit root tests

for autoregressive disturbances with N = 100

to t2 Fy Fio Fo12

OLS GLS | OLS GLS | OLS GLS | OLS GLS | OLS GLS
Panel A. Seasonal AR: ® = 0.5
AIC 0.047 0.063 | 0.050 0.073 | 0.049 0.054 | 0.050 0.062 | 0.051 0.072
MAIC 0.035 0.047 | 0.043 0.067 | 0.043 0.046 | 0.041 0.051 | 0.042 0.051
MAIC PQ 0.048 0.066 0.047 0.052 0.053
BIC 0.045 0.060 | 0.048 0.072 | 0.048 0.052 | 0.047 0.060 | 0.049 0.069
MBIC 0.034 0.052 | 0.041 0.068 | 0.041 0.048 | 0.039 0.054 | 0.038 0.054
MBIC PQ 0.047 0.064 0.047 0.051 0.049
SAIC 0.072 0.089 | 0.064 0.082 | 0.066 0.073 | 0.069 0.084 | 0.084 0.108
SMAIC 0.011 0.019 | 0.026 0.056 | 0.020 0.031 | 0.019 0.032 | 0.015 0.028
SMAIC PQ 0.022 0.057 0.033 0.032 0.031
t-sq(5%) 0.052 0.069 | 0.052 0.073 | 0.051 0.057 | 0.052 0.064 | 0.059 0.078
t-sq(10%) 0.053 0.068 | 0.054 0.072 | 0.053 0.059 | 0.052 0.067 | 0.062 0.080
t-bm(5%) 0.057 0.072 | 0.057 0.077 | 0.058 0.064 | 0.059 0.075 | 0.064 0.091
t-bm(10%) 0.064 0.078 | 0.059 0.077 | 0.060 0.070 | 0.065 0.080 | 0.074 0.099
t-rt(5%) 0.066 0.083 | 0.063 0.083 | 0.060 0.068 | 0.065 0.080 | 0.075 0.099
t-rt(10%) 0.073 0.090 | 0.064 0.082 | 0.067 0.073 | 0.071 0.084 | 0.086 0.109
Panel B. Seasonal AR: ® = —0.5
AIC 0.046 0.056 | 0.047 0.066 | 0.054 0.057 | 0.055 0.059 | 0.053 0.066
MAIC 0.030 0.040 | 0.040 0.062 | 0.047 0.050 | 0.047 0.050 | 0.041 0.050
MAIC PQ 0.040 0.062 0.051 0.051 0.051
BIC 0.042 0.053 | 0.046 0.066 | 0.053 0.056 | 0.053 0.059 | 0.051 0.064
MBIC 0.033 0.043 | 0.043 0.064 | 0.049 0.053 | 0.050 0.054 | 0.044 0.054
MBIC PQ 0.044 0.064 0.053 0.054 0.055
SAIC 0.070 0.074 | 0.067 0.080 | 0.072 0.070 | 0.075 0.076 | 0.067 0.081
SMAIC 0.010 0.021 | 0.031 0.056 | 0.036 0.042 | 0.032 0.044 | 0.017 0.029
SMAIC PQ 0.021 0.054 0.043 0.044 0.030
t-sq(5%) 0.053 0.064 | 0.049 0.069 | 0.056 0.061 | 0.059 0.063 | 0.058 0.072
t-sq(10%) 0.053 0.067 | 0.049 0.073 | 0.056 0.061 | 0.059 0.065 | 0.058 0.075
t-bm(5%) 0.061 0.064 | 0.064 0.077 | 0.069 0.069 | 0.070 0.077 | 0.061 0.078
t-bm(10%) 0.073 0.072 | 0.067 0.082 | 0.070 0.071 | 0.073 0.079 | 0.072 0.088
t-rt(5%) 0.063 0.062 | 0.062 0.077 | 0.068 0.067 | 0.069 0.075 | 0.062 0.073
t-rt(10%) 0.072 0.074 | 0.069 0.082 | 0.073 0.071 | 0.078 0.076 | 0.071 0.082

Notes: As for Table 3, except that N = 100.
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Appendix Table A.4: Size-corrected power of quarterly seasonal unit root tests
for white noise disturbances with N = 100

to to Fy Fia Foi2
c | OLS GLS|OLS GLS | OLS GLS|OLS GLS|OLS GLS

Panel A. /=14

AIC 5 | 0.081 0.109 | 0.118 0.262 | 0.195 0.449 | 0.264 0.592 | 0.268 0.521
10 1 0.195 0.302 | 0.323 0.663 | 0.555 0.870 | 0.749 0.974 | 0.795 0.968
201 0.664 0.843]0.891 0.971 | 0.994 0.995 | 1.000 1.000 [ 1.000 1.000

MAIC 5 | 0.08 0.115 | 0.114 0.272 | 0.191 0.460 | 0.253 0.604 | 0.267 0.548
10 1 0.199 0.321 | 0.308 0.668 | 0.552 0.876 | 0.733 0.974 | 0.781 0.974
201 0.675 0.833 | 0.877 0.967 | 0.989 0.993 | 1.000 0.999 | 1.000 1.000

MAIC PQ 5 0.118 0.270 0.458 0.604 0.550
10 0.326 0.670 0.875 0.975 0.976
20 0.850 0.970 0.995 0.999 1.000
BIC 5 | 0.08 0.109 | 0.118 0.267 | 0.204 0.458 | 0.268 0.601 | 0.274 0.540

10 | 0.203 0.307 | 0.325 0.671 | 0.575 0.880 | 0.759 0.974 | 0.803 0.974
201 0.689 0.853 | 0.900 0.976 | 0.996 0.997 | 1.000 1.000 | 1.000 1.000

MBIC PQ 5 | 0.08 0.113 | 0.116 0.266 | 0.197 0.458 | 0.260 0.610 | 0.270 0.547
10 | 0.201 0.317 | 0.314 0.667 | 0.561 0.878 | 0.744 0.977 | 0.784 0.977
201 0.674 0.843 ] 0.881 0.969 | 0.991 0.995 | 1.000 0.999 | 1.000 1.000

SAIC 5 [ 0.087 0.104 | 0.124 0.270 | 0.207 0.435 | 0.265 0.586 | 0.263 0.524
10 | 0.200 0.288 | 0.320 0.662 | 0.559 0.856 | 0.736 0.973 | 0.781 0.965
20 |1 0.650 0.806 | 0.869 0.963 | 0.991 0.993 | 0.999 0.999 | 1.000 1.000

SMAIC 5 [0.093 0.120 | 0.130 0.283 | 0.208 0.458 | 0.276 0.608 | 0.293 0.541
10 | 0.222 0.339 | 0.338 0.687 | 0.587 0.882 | 0.761 0.976 | 0.801 0.972
20 1 0.736 0.864 | 0.907 0.972 | 0.995 0.996 | 1.000 1.000 | 1.000 1.000

SMAIC PQ | 5 0.120 0.285 0.454 0.605 0.546
10 0.339 0.690 0.880 0.977 0.974
20 0.866 0.975 0.995 1.000 1.000
t-sq(5%) 5 10.083 0.108 | 0.118 0.265 | 0.197 0.439 | 0.264 0.578 | 0.273 0.525

10 | 0.192 0.289 | 0.318 0.663 | 0.548 0.859 | 0.745 0.971 | 0.793 0.967
201 0.646 0.812 | 0.878 0.964 | 0.992 0.993 | 1.000 0.999 | 1.000 1.000

t-sq(10%) 5 [ 0.08 0.107 | 0.120 0.261 | 0.193 0.432 | 0.267 0.574 | 0.265 0.523
10 | 0.193 0.287 | 0.313 0.651 | 0.536 0.851 | 0.736 0.970 | 0.777 0.964
20 1 0.629 0.794 | 0.860 0.956 | 0.987 0.992 | 0.999 0.999 | 1.000 1.000

t-bm(10%) 5 10.082 0.105 | 0.122 0.267 | 0.196 0.435 | 0.272 0.579 | 0.266 0.520
10 | 0.197 0.290 | 0.316 0.658 | 0.546 0.856 | 0.746 0.971 | 0.778 0.964
20 |1 0.640 0.804 | 0.864 0.961 | 0.990 0.994 | 1.000 0.999 | 1.000 1.000

t-rt(10%) 5 [0.08 0.105 | 0.126 0.265 | 0.208 0.435 | 0.264 0.578 | 0.255 0.522
10 | 0.200 0.289 | 0.315 0.659 | 0.558 0.854 | 0.732 0.971 | 0.771 0.964
20 | 0.643 0.803 | 0.863 0.961 | 0.991 0.993 | 0.999 0.999 | 1.000 1.000
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Appendix Table A.4 (continued)

to t2 Fy Fio Fo12
c | OLS GLS|OLS GLS|OLS GLS|OLS GLS | OLS GLS
Panel B. ¢/ =12
AIC 5 1 0.086 0.109 | 0.122 0.268 | 0.203 0.451 | 0.280 0.578 | 0.257 0.529

10 | 0.183 0.296 | 0.327 0.657 | 0.564 0.866 | 0.754 0.971 | 0.774 0.970
201 0.643 0.829 | 0.885 0.969 | 0.993 0.995 | 1.000 1.000 | 1.000 1.000

MAIC 5 | 0.08 0.116 | 0.120 0.270 | 0.196 0.452 | 0.265 0.612 | 0.252 0.549
10 | 0.177 0.316 | 0.308 0.644 | 0.542 0.854 | 0.727 0.963 | 0.743 0.961
201 0.610 0.734 | 0.842 0.916 | 0.963 0.968 | 0.991 0.996 | 0.989 0.997

MAIC PQ 5 0.117 0.269 0.449 0.608 0.555
10 0.321 0.656 0.860 0.967 0.967
20 0.804 0.948 0.983 0.998 0.998
BIC 5 | 0.088 0.105 | 0.121 0.270 | 0.207 0.460 | 0.286 0.598 | 0.264 0.535

10 | 0.187 0.298 | 0.328 0.663 | 0.569 0.878 | 0.767 0.976 | 0.783 0.971
201 0.662 0.836 | 0.894 0.975 | 0.995 0.997 | 1.000 1.000 | 1.000 1.000

MBIC PQ 5 | 0.08 0.112 | 0.120 0.266 | 0.205 0.455 | 0.277 0.610 | 0.264 0.548
10 | 0.177 0.314 | 0.312 0.658 | 0.559 0.874 | 0.748 0.977 | 0.765 0.974
201 0.612 0.814 | 0.859 0.959 [ 0.977 0.992 | 0.995 0.999 [ 0.995 0.999

SAIC 5 [0.093 0.104 | 0.135 0.253 | 0.198 0.416 | 0.268 0.543 | 0.251 0.478
101 0.190 0.281 | 0.317 0.593 | 0.519 0.811 | 0.692 0.945 | 0.722 0.934
201 0.589 0.735| 0.811 0.918 | 0.975 0.982 | 0.997 0.998 | 0.998 0.999

SMAIC 5 [ 0.111 0.120 | 0.139 0.279 | 0.209 0.456 | 0.257 0.602 | 0.282 0.546
10| 0.247 0.318 | 0.339 0.648 | 0.558 0.851 | 0.692 0.954 | 0.746 0.951
201 0.740 0.760 | 0.872 0.939 | 0.980 0.984 | 0.994 0.997 | 0.995 0.998

SMAIC PQ | 5 0.127 0.280 0.437 0.596 0.546
10 0.342 0.659 0.846 0.955 0.951
20 0.815 0.946 0.986 0.998 0.998
t-sq(5%) 5 [0.084 0.111 | 0.129 0.252 | 0.186 0.413 | 0.261 0.543 | 0.241 0.493

10 | 0.167 0.266 | 0.302 0.589 | 0.496 0.789 | 0.676 0.931 | 0.705 0.929
201 0.515 0.700 | 0.777 0.883 | 0.938 0.953 | 0.987 0.992 | 0.992 0.996

t-sq(10%) 5 [ 0.081 0.108 | 0.127 0.239 | 0.179 0.389 | 0.252 0.526 | 0.242 0.484
10 | 0.158 0.256 | 0.281 0.554 | 0.454 0.747 | 0.629 0.909 | 0.662 0.908
20 |1 0.453 0.625 | 0.714 0.838 | 0.903 0.928 | 0.978 0.989 | 0.986 0.993

t-bm(10%) 5 [ 0.088 0.100 | 0.131 0.260 | 0.202 0.415 | 0.277 0.545 | 0.259 0.486
10 | 0.185 0.267 | 0.307 0.615 | 0.528 0.811 | 0.710 0.942 | 0.739 0.936
201 0.579 0.722 | 0.826 0.922 | 0.974 0.976 | 0.998 0.998 | 0.998 0.999

t-rt(10%) 5 [0.092 0.101 | 0.134 0.249 | 0.193 0.405 | 0.264 0.547 | 0.256 0.471
10 | 0.193 0.268 | 0.310 0.583 | 0.509 0.801 | 0.682 0.943 | 0.724 0.932
201 0.593 0.718 | 0.803 0.912 | 0.970 0.979 | 0.997 0.998 | 0.998 0.999

Notes: As for Table 4, except that N = 100.
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Appendix Table A.5: Size-corrected power of quarterly sesonal unit root tests
for moving average disturbances with N = 100

Cc

to
OLS GLS

to
OLS

GLS

Fy
OLS

GLS

Fia

OLS

GLS

Foio
OLS GLS

Panel A. MA(1): 6

=-08,0=0

AIC

)
10
20

0.079 0.102
0.174 0.258
0.527 0.671

0.187
0.405
0.857

0.201
0.371
0.557

0.162
0.475
0.960

0.375
0.769
0.954

0.255
0.630
0.989

0.389
0.754
0.930

0.266
0.704
0.997

0.405
0.826
0.980

MAIC

)
10
20

0.079 0.110
0.163 0.262
0.440 0.588

0.134
0.320
0.741

0.198
0.359
0.506

0.137
0.392
0.893

0.377
0.753
0.922

0.199
0.580
0.973

0.470
0.821
0.942

0.205
0.608
0.982

0.465
0.859
0.980

MAIC_PQ

)
10
20

0.113
0.274
0.633

0.204
0.364
0.521

0.375
0.754
0.927

0.469
0.818
0.945

0.463
0.858
0.983

BIC

)
10
20

0.082
0.183
0.544

0.108
0.272
0.699

0.172
0.392
0.886

0.188
0.361
0.575

0.170
0.474
0.953

0.396
0.787
0.965

0.239
0.643
0.988

0.335
0.664
0.876

0.257
0.688
0.995

0.358
0.740
0.962

MBIC_PQ

)
10
20

0.084
0.170
0.455

0.124
0.293
0.662

0.136
0.325
0.715

0.201
0.359
0.495

0.140
0.407
0.903

0.384
0.769
0.934

0.205
0.588
0.971

0.467
0.807
0.939

0.214
0.619
0.981

0.466
0.853
0.980

SAIC

)
10
20

0.083
0.168
0.472

0.099
0.236
0.565

0.165
0.380
0.828

0.186
0.344
0.517

0.149
0.414
0.918

0.353
0.735
0.921

0.237
0.619
0.982

0.390
0.744
0.909

0.247
0.666
0.991

0.401
0.804
0.964

SMAIC

)
10
20

0.107
0.217
0.518

0.118
0.280
0.616

0.139
0.321
0.757

0.202
0.347
0.500

0.153
0.412
0.904

0.386
0.765
0.923

0.236
0.627
0.984

0.466
0.818
0.943

0.257
0.684
0.992

0.457
0.859
0.982

SMAIC_PQ

)
10
20

0.123
0.290
0.628

0.200
0.342
0.511

0.378
0.756
0.923

0.457
0.809
0.938

0.457
0.859
0.982

t-sq(5%)

)
10
20

0.077
0.167
0.459

0.098
0.242
0.577

0.152
0.321
0.704

0.173
0.323
0.482

0.154
0.428
0.915

0.373
0.749
0.919

0.236
0.593
0.967

0.395
0.742
0.906

0.229
0.628
0.980

0.403
0.803
0.965

t-sq(10%)

)
10
20

0.083
0.160
0.420

0.100
0.236
0.535

0.133
0.302
0.717

0.192
0.336
0.492

0.147
0.403
0.886

0.366
0.741
0.911

0.208
0.581
0.971

0.415
0.774
0.918

0.221
0.630
0.981

0.412
0.813
0.969

t-bm(10%)

)
10
20

0.082
0.164
0.485

0.105
0.244
0.582

0.166
0.385
0.852

0.188
0.346
0.503

0.156
0.438
0.942

0.360
0.746
0.929

0.228
0.627
0.985

0.405
0.764
0.910

0.237
0.672
0.991

0.424
0.828
0.968

t-rt(10%)

)
10
20

0.081
0.164
0.463

0.101
0.237
0.565

0.161
0.377
0.821

0.187
0.349
0.517

0.156
0.418
0.919

0.347
0.726
0.914

0.237
0.620
0.981

0.392
0.744
0.908

0.243
0.662
0.991

0.404
0.809
0.965
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Appendix Table A.5 (continued)

Cc

to
OLS GLS

OLS

to
GLS

OLS

GLS

OLS

GLS

Panel B. Seasonal MA: § =0, © =

0.5

AIC

5
10
20

0.112
0.311
0.827

0.111
0.270
0.617

0.172
0.473
0.942

0.249
0.507
0.717

0.304
0.744
0.991

0.434
0.695
0.798

0.401
0.840
0.997

0.504
0.792
0.897

0.372
0.826
0.997

0.443
0.764
0.922

MAIC

)
10
20

0.077
0.180
0.523

0.080
0.174
0.426

0.133
0.328
0.768

0.210
0.426
0.615

0.196
0.544
0.952

0.379
0.599
0.701

0.250
0.658
0.987

0.467
0.750
0.871

0.229
0.637
0.988

0.400
0.731
0.907

MAIC_PQ

)
10
20

0.086
0.205
0.524

0.216
0.456
0.677

0.385
0.622
0.755

0.476
0.764
0.900

0.383
0.739
0.927

BIC

)
10
20

0.217
0.554
0.972

0.139
0.365
0.760

0.273
0.647
0.986

0.257
0.568
0.822

0.344
0.758
0.999

0.478
0.772
0.901

0.354
0.802
1.000

0.588
0.896
0.973

0.314
0.754
1.000

0.515
0.895
0.983

MBIC_PQ

)
10
20

0.065
0.148
0.466

0.080
0.175
0.469

0.118
0.289
0.728

0.199
0.416
0.636

0.203
0.544
0.947

0.390
0.623
0.751

0.249
0.652
0.984

0.469
0.748
0.884

0.206
0.591
0.975

0.364
0.706
0.904

SAIC

5
10
20

0.131
0.368
0.873

0.128
0.314
0.620

0.194
0.508
0.950

0.254
0.532
0.729

0.293
0.721
0.989

0.400
0.661
0.769

0.334
0.790
0.997

0.483
0.779
0.893

0.293
0.740
0.991

0.395
0.722
0.872

SMAIC

5
10
20

0.184
0.506
0.962

0.151
0.358
0.647

0.202
0.578
0.984

0.267
0.566
0.780

0.270
0.727
0.996

0.433
0.718
0.852

0.323
0.791
0.999

0.526
0.822
0.928

0.289
0.759
0.998

0.476
0.808
0.942

SMAIC_PQ

5
10
20

0.155
0.388
0.731

0.276
0.582
0.802

0.424
0.709
0.853

0.526
0.827
0.938

0.476
0.808
0.942

t-sq(5%)

5
10
20

0.105
0.271
0.680

0.100
0.226
0.492

0.159
0.411
0.840

0.219
0.457
0.638

0.250
0.630
0.967

0.379
0.617
0.715

0.305
0.731
0.990

0.462
0.757
0.865

0.289
0.725
0.988

0.406
0.742
0.899

t-sq(10%)

5
10
20

0.097
0.232
0.609

0.099
0.216
0.463

0.148
0.371
0.805

0.227
0.461
0.638

0.224
0.595
0.959

0.356
0.584
0.681

0.281
0.715
0.991

0.446
0.740
0.855

0.274
0.724
0.990

0.389
0.735
0.894

t-bm(10%)

5
10
20

0.138
0.379
0.895

0.128
0.315
0.637

0.200
0.535
0.959

0.256
0.541
0.737

0.303
0.738
0.993

0.396
0.656
0.759

0.337
0.801
0.998

0.476
0.775
0.890

0.300
0.750
0.992

0.398
0.726
0.882

t-rt(10%)

5
10
20

0.135
0.368
0.865

0.126
0.312
0.617

0.191
0.507
0.945

0.256
0.532
0.730

0.290
0.719
0.988

0.396
0.652
0.760

0.331
0.788
0.997

0.479
0.774
0.891

0.290
0.735
0.991

0.389
0.716
0.869
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Appendix Table A.5 (continued)

Cc

to
OLS GLS

OLS

to
GLS

OLS

GLS

OLS

GLS

Panel C. Seasonal MA: § =0, © =

-0.5

AIC

5
10
20

0.085
0.164
0.432

0.118
0.242
0.568

0.106
0.234
0.607

0.250
0.539
0.864

0.178
0.422
0.847

0.373
0.743
0.958

0.219
0.532
0.936

0.490
0.870
0.996

0.220
0.530
0.949

0.429
0.836
0.998

MAIC

)
10
20

0.069
0.129
0.352

0.103
0.238
0.601

0.079
0.188
0.535

0.260
0.564
0.885

0.122
0.341
0.833

0.360
0.751
0.966

0.165
0.480
0.945

0.505
0.908
0.997

0.161
0.501
0.963

0.444
0.897
0.998

MAIC_PQ

)
10
20

0.107
0.255
0.605

0.257
0.563
0.886

0.354
0.747
0.966

0.506
0.910
0.998

0.442
0.897
0.998

BIC

)
10
20

0.090
0.180
0.538

0.113
0.271
0.684

0.134
0.307
0.769

0.268
0.599
0.918

0.239
0.606
0.967

0.529
0.898
0.989

0.297
0.734
0.986

0.644
0.950
0.998

0.283
0.743
0.984

0.561
0.934
0.996

MBIC_PQ

)
10
20

0.027
0.037
0.197

0.039
0.096
0.460

0.031
0.064
0.358

0.170
0.389
0.882

0.067
0.170
0.718

0.262
0.582
0.968

0.070
0.206
0.879

0.350
0.777
0.998

0.052
0.173
0.906

0.267
0.720
0.999

SAIC

5
10
20

0.083
0.168
0.447

0.100
0.214
0.551

0.128
0.282
0.676

0.248
0.534
0.872

0.180
0.438
0.886

0.383
0.766
0.957

0.219
0.549
0.953

0.479
0.873
0.993

0.195
0.509
0.942

0.390
0.819
0.989

SMAIC

5
10
20

0.093
0.199
0.372

0.115
0.275
0.600

0.103
0.246
0.479

0.273
0.597
0.867

0.166
0.442
0.685

0.416
0.812
0.948

0.194
0.534
0.718

0.552
0.923
0.973

0.210
0.557
0.710

0.473
0.887
0.845

SMAIC_PQ

5
10
20

0.121
0.298
0.503

0.277
0.607
0.747

0.399
0.797
0.855

0.554
0.924
0.898

0.473
0.887
0.845

t-sq(5%)

5
10
20

0.077
0.141
0.372

0.100
0.211
0.512

0.101
0.213
0.546

0.268
0.546
0.850

0.158
0.383
0.835

0.360
0.722
0.944

0.210
0.519
0.942

0.487
0.877
0.990

0.196
0.523
0.952

0.443
0.860
0.994

t-sq(10%)

5
10
20

0.078
0.139
0.360

0.096
0.205
0.489

0.100
0.212
0.528

0.263
0.531
0.832

0.160
0.384
0.827

0.373
0.727
0.939

0.209
0.523
0.936

0.484
0.873
0.988

0.197
0.528
0.950

0.437
0.856
0.992

t-bm(10%)

5
10
20

0.085
0.170
0.471

0.104
0.222
0.562

0.125
0.283
0.682

0.246
0.536
0.871

0.184
0.456
0.891

0.383
0.757
0.957

0.218
0.554
0.954

0.507
0.887
0.993

0.195
0.523
0.946

0.415
0.841
0.989

t-rt(10%)

5
10
20

0.084
0.169
0.442

0.101
0.215
0.548

0.130
0.283
0.677

0.250
0.534
0.874

0.183
0.444
0.885

0.383
0.762
0.956

0.218
0.543
0.951

0.477
0.871
0.992

0.195
0.509
0.941

0.385
0.812
0.988

Notes: As for Table 5, except that N = 100.
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Appendix Table A.6: Size-corrected power of quarterly seasonal unit root tests
for autoregressive disturbances with N = 100

Cc

to
OLS GLS

to
OLS

GLS

Fy
OLS

GLS

Fia

OLS GLS

Foio
OLS GLS

A. Seasonal AR: ¢

—0,2=05

AIC

)
10
20

0.087 0.105
0.157 0.245
0.426 0.595

0.110
0.249
0.626

0.274
0.581
0.910

0.150
0.423
0.886

0.434
0.839
0.994

0.196
0.573
0.971

0.576
0.950
0.999

0.208
0.603
0.986

0.502
0.938
0.999

MAIC

)
10
20

0.088 0.110
0.157 0.250
0.356 0.561

0.103
0.244
0.544

0.270
0.577
0.871

0.133
0.395
0.787

0.440
0.841
0.982

0.195
0.564
0.901

0.587
0.946
0.997

0.198
0.571
0.901

0.532
0.937
0.997

MAIC_PQ

)
10
20

0.112
0.258
0.548

0.278
0.594
0.865

0.440
0.843
0.976

0.593
0.948
0.995

0.535
0.940
0.996

BIC

)
10
20

0.087
0.160
0.435

0.108
0.250
0.609

0.108
0.256
0.639

0.280
0.593
0.918

0.147
0.423
0.897

0.444
0.848
0.995

0.203
0.593
0.975

0.588
0.956
0.999

0.213
0.611
0.987

0.513
0.942
0.999

MBIC_PQ

)
10
20

0.032
0.011
0.016

0.049
0.022
0.039

0.048
0.022
0.058

0.172
0.114
0.335

0.082
0.093
0.225

0.318
0.359
0.749

0.095
0.096
0.273

0.404
0.383
0.883

0.075
0.067
0.182

0.343
0.262
0.810

SAIC

5
10
20

0.085
0.152
0.383

0.093
0.214
0.535

0.114
0.250
0.595

0.247
0.533
0.863

0.155
0.405
0.839

0.381
0.777
0.977

0.203
0.546
0.946

0.518
0.915
0.996

0.197
0.545
0.955

0.434
0.886
0.994

SMAIC

5
10
20

0.108
0.205
0.459

0.122
0.289
0.649

0.117
0.285
0.606

0.247
0.586
0.884

0.177
0.489
0.816

0.462
0.854
0.985

0.231
0.618
0.873

0.603
0.950
0.993

0.241
0.623
0.870

0.557
0.932
0.959

SMAIC_PQ

5
10
20

0.127
0.303
0.626

0.251
0.589
0.846

0.461
0.855
0.956

0.594
0.947
0.972

0.557
0.932
0.959

t-sq(5%)

5
10
20

0.084
0.150
0.384

0.104
0.232
0.543

0.114
0.238
0.572

0.265
0.551
0.867

0.148
0.401
0.828

0.405
0.792
0.975

0.200
0.556
0.942

0.549
0.924
0.997

0.206
0.571
0.960

0.482
0.914
0.997

t-sq(10%)

5
10
20

0.080
0.140
0.348

0.099
0.221
0.498

0.108
0.223
0.526

0.252
0.536
0.834

0.142
0.377
0.784

0.382
0.760
0.962

0.197
0.542
0.923

0.525
0.903
0.995

0.190
0.541
0.937

0.446
0.886
0.994

t-bm(10%)

5
10
20

0.101
0.164
0.423

0.104
0.225
0.564

0.119
0.258
0.614

0.257
0.549
0.864

0.160
0.420
0.849

0.390
0.781
0.978

0.217
0.581
0.953

0.523
0.916
0.997

0.211
0.579
0.960

0.469
0.903
0.996

t-rt(10%)

5
10
20

0.091
0.159
0.394

0.089
0.210
0.516

0.114
0.248
0.588

0.245
0.527
0.852

0.154
0.404
0.829

0.379
0.765
0.974

0.203
0.545
0.943

0.518
0.909
0.996

0.197
0.544
0.953

0.432
0.884
0.994
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Appendix Table A.6 (continued)

Cc

to
OLS GLS

OLS

to
GLS

OLS

GLS

OLS

GLS

Panel B. Seasonal AR: ¢ =0, & =

-0.5

AIC

5
10
20

0.088
0.186
0.627

0.124
0.273
0.739

0.122
0.318
0.842

0.265
0.554
0.864

0.159
0.485
0.980

0.340
0.681
0.889

0.212
0.678
0.999

0.496
0.873
0.989

0.234
0.729
1.000

0.474
0.900
0.997

MAIC

)
10
20

0.090
0.183
0.591

0.121
0.268
0.608

0.119
0.305
0.798

0.258
0.538
0.786

0.153
0.467
0.955

0.343
0.666
0.819

0.195
0.636
0.987

0.492
0.849
0.948

0.221
0.688
0.988

0.475
0.869
0.971

MAIC_PQ

)
10
20

0.130
0.287
0.711

0.265
0.551
0.834

0.333
0.662
0.855

0.492
0.855
0.967

0.478
0.876
0.983

BIC

)
10
20

0.094
0.195
0.650

0.125
0.281
0.751

0.126
0.321
0.862

0.270
0.563
0.877

0.158
0.489
0.985

0.346
0.689
0.903

0.217
0.689
0.999

0.498
0.877
0.991

0.235
0.733
1.000

0.477
0.903
0.998

MBIC_PQ

)
10
20

0.095
0.183
0.606

0.128
0.282
0.710

0.120
0.310
0.814

0.265
0.552
0.840

0.155
0.476
0.959

0.344
0.676
0.866

0.205
0.655
0.989

0.497
0.861
0.972

0.223
0.703
0.990

0.484
0.891
0.986

SAIC

5
10
20

0.106
0.236
0.740

0.124
0.284
0.714

0.138
0.373
0.883

0.266
0.563
0.852

0.187
0.545
0.974

0.357
0.690
0.861

0.216
0.686
0.997

0.481
0.849
0.968

0.236
0.711
0.998

0.438
0.852
0.977

SMAIC

5
10
20

0.125
0.329
0.875

0.144
0.338
0.709

0.152
0.423
0.947

0.290
0.596
0.859

0.186
0.590
0.989

0.405
0.740
0.894

0.232
0.715
0.997

0.530
0.865
0.960

0.249
0.727
0.997

0.493
0.878
0.980

SMAIC_PQ

5
10
20

0.152
0.363
0.795

0.297
0.618
0.884

0.398
0.737
0.911

0.524
0.871
0.977

0.493
0.878
0.980

t-sq(5%)

5
10
20

0.083
0.173
0.554

0.110
0.243
0.617

0.120
0.308
0.779

0.246
0.499
0.787

0.156
0.457
0.947

0.317
0.625
0.804

0.198
0.622
0.989

0.469
0.822
0.948

0.231
0.693
0.995

0.440
0.850
0.976

t-sq(10%)

5
10
20

0.107
0.232
0.559

0.083
0.166
0.502

0.120
0.292
0.729

0.228
0.458
0.736

0.155
0.431
0.922

0.309
0.599
0.759

0.193
0.589
0.983

0.444
0.790
0.925

0.220
0.659
0.991

0.416
0.815
0.962

t-bm(10%)

5
10
20

0.102
0.231
0.741

0.134
0.294
0.730

0.141
0.376
0.891

0.268
0.561
0.849

0.194
0.563
0.980

0.341
0.672
0.848

0.218
0.692
0.999

0.476
0.849
0.965

0.233
0.704
0.999

0.436
0.854
0.974

t-rt(10%)

5
10
20

0.110
0.238
0.734

0.120
0.273
0.701

0.139
0.369
0.878

0.268
0.558
0.846

0.187
0.541
0.972

0.353
0.683
0.853

0.214
0.686
0.997

0.485
0.848
0.966

0.229
0.697
0.998

0.435
0.850
0.975

Notes: As for Table 6, except that N = 100.
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