
The Performance of p-Kernel-Based Systems

Hermann H&g Michael Hobmuth Jochen Liedtke* Sebastian SchGnberg Jean Wolter

Dresden University of Technology

Department of Computer Science

D-01062 Dresden, Germany

email: 14-linux@os.inf.tu-dresden.de

Abstract

First-generation p-kernels have a reputation for being too slow

and lacking sufficient flexibility. To determine whether LA, a
lean second-generation p-kernel, has overcome these limitations,

we have repeated several earlier experiments and conducted some

novel ones. Moreover, we ported the Linux operating system to

run on top of the L4 p-kernel and compared the resulting system

with both Linux running native, and MkLinux, a Linux version that

executes on top of a first-generation Mach-derived p-kernel.

For L4Linux, the AIM benchmarks report a maximum through-

put which is only 5% lower than that of native Linux. The corre-

sponding penalty is 5 times higher for a co-located in-kernel ver-

sion of MkLinux, and 7 times higher for a user-level version of

MkLinux. These numbers demonstrate both that it is possible to

implement a high-performance conventional operating system per-

sonality above a p-kernel, and that the performance of the p-kernel

is crucial to achieve this.

Further experiments illustrate that the resulting system is highly

extensible and that the extensions perform well. Even real-time

memory management including second-level cache allocation can

be implemented at user-level, coexisting with L4Linux.

1 Introduction

The operating systems research community has almost completely

abandoned research on system architectures that are based on pure

p-kernels, i. e. kernels that provide only address spaces, threads and

IPC, or an equivalent set of primitives. This trend is due primarily

to the poor performance exhibited by such systems constructed in

the 1980’s and early 1990’s. This reputation has not changed even
with the advent of faster p-kernels; perhaps because these p-kernel

have for the most part only been evaluated using microbenchmarks.
Many people in the OS research community have adopted the

hypothesis that the layer of abstraction provided by pure p-kernels

is either too low or too high. The “too low” faction concentrated
on the extensible-kernel idea. Mechanisms were introduced to add

functionality to kernels and their address spaces, either pragmat-
ically (co-location in Chorus or Mach) or systematically. Vari-

ous means were invented to protect kernels from misbehaving ex-

tensions, ranging from the use of safe languages [S] to expensive

transaction-like schemes [34]. The “too high” faction started build-

ing kernels resembling a hardware architecture at their interface
I

This research was supported in part by the Deutsche Forschungsgemein-
schaft (DFG) through the Sonderforschungsbereich 358.

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

SOSP-16 10197 Saint-Malo, France

0 1997 ACM 0.89731-916-5/97/0010...$3.50

* IBM T. J. Watson Research Center

30 Saw Mill River Road

Hawthorne, NY 10532, USA

email: jochen@watson.ibm.com

[12]. Software abstractions have to be built on top of that. It is

claimed that ,u-kernels can be fast on a given architecture but can-

not be moved to other architectures without losing much of their

efficiency [19].
In contrast, we investigate the pure p-kernel approach by system-

atically repeating earlier experiments and conducting some novel

experiments using L.4, a second-generation /c-kernel. (Most first-

generation p-kernels like Chorus [32] and Mach [131 evolved from

earlier monolithic kernel approaches; second-generation II-kernels

like QNX [16] and L.4 more rigorously aim at minimality and arc

designed from scratch [24].)

The goal of this work is to show that p-kernel based systems are

usable in practice with good performance. L4 is a lean kernel fea-

turing fast message-based synchronous IPC, a simple-to-use exter-

nal paging mechanism and a security mechanism based on secure

domains. The kernel implements only a minimal set of abstractions

upon which operating systems can be built [22]. The following CX-

periments were performed:

A monolithic Unix kernel, Linux, was adapted to run as a

user-level single server on top of L4. This makes L4 usable in

practice, and gives us some evidence (at least an upper bound)

on the penalty of using a standard OS personality on top of

a fast p-kernel. The performance of the resulting system is

compared to the native Linux implementation and MkLinux,

a port of Linux to a Mach 3.0 derived ,&kernel [lo],

Furthermore, comparing L4Linux and MkLinux gives US some

insight in how the p-kernel efficiency influences the overall

system performance.

The objective of three fhrther experiments was to show the

extensibility of the system and to evaluate the achievable pcr-

formance. Firstly, pipe-based local communication was im-

plemented directly on the ,u-kernel and compared to the native
Linux implementation. Secondly, some mappidg-related OS

extensions (also presented in the recent literature on cxtcnsi-

ble kernels) have been implemented as user-level tasks on L4.

Thirdly, the first part of a user-level real-time memo
7

man-

agement system was implemented. Coexisting with L Linux,

the system controls second-level cache allocation to improve

the worst-case performance of real-time applications.

To check whether the’L.4 abstractions are reasonably indc-

pendent of the Pentium platform L4 was originally designed

for, the p-kernel was reimplemented from scratch on an Alpha

21164, preserving the original L4 interface.

Starting from the IPC implementation in L4/Alpha, we also

implemented a lower-level communication primitive, simi-

lar to Exokemel’s protected control transfer [121, to find out

whether and to what extent the L4 IPC abstraction can be out-

performed by a lower-level primitive.

After a short overview of L4 in Section 3, Section 4 explains

the design and implementation of our Linux server. Section 5 then

66

presents and analyzes the system’s performance for pure Linux
applications, based on microbenchmarks as well as macrobench-

marks. Section 6 shows the extensibility advantages of implement-

ing Linux above a p-kernel. In particular, we show (1) how perfor-

mance can be improved by implementing some Unix services and

variants of them directly above the L4 p-kernel, (2) how additional

services can be provided efficiently to the application, and (3) how

whole new classes of applications (e.g. real time) can be supported

concurrently with general-purpose Unix applications. Finally, Sec-

tion 7 discusses alternative basic concepts from a performance point

of view.

2 Related Work

Most of this paper repeats experiments described by Bet-shad et

al. [5], des Places, Stephen & Reynolds [lo], and Engler, Kaashoek

& O’Toole [121 to explore the influence of a second-generation p

kernel on user-level application performance. Kaashoek et al. de-

scribe in [IS] how to build a Unix-compatible operating system on

top of a small kernel. We concentrate on the problem of porting an

existing monolithic operating system to a p-kernel.

A large bunch of evaluation work exists which addresses how

certain application or system iimctionality, e.g. a protocol imple-

mentation, can be accelerated using system specialization [31], ex-

tensible kernels [5, 12,341, layered path organisation [30], etc. Two

alternatives to the pure ,n-kernel approach, grafting and the Exoker-

nel idea, are discussed in more detail in Section 7.

Most of the performance evaluation results published else-

where deal with parts of the Unix fnnctionality. An analysis of

two complete Unix-like OS implementations regarding memory-

architecture-based influences, is described in [8]. Currently, we

do not know of any other full Unix implementation on a second-

generation p-kernel. And we know of no other recent end-to-

end performance evaluation of p-kernel-based OS personalities.

We found no substantiation for the “common knowledge” that

early Mach 3.0-based Unix single-server implementations achieved

a performance penalty of only 10% compared to bare Unix on the
same hardware. For newer hardware, [9] reports penalties of about

50%.

3 L4 Essentials

The L4 Cc-kernel [22] is based on two basic concepts, threads and

address spaces. A thread is an activity executing inside an ad-

dress space. Cross-address-space communication, also called inter-

process communication (IPC), is one of the most fundamental p-

kernel mechanisms. Other forms of communication, such as remote

procedure call @PC) and controlled thread migration between ad-

dress spaces, can be constructed from the IPC primitive.

A basic idea’of L4 is to support recursive construction of ad-

dress space.s by user-level servers outside the kernel. The initial

address space o,, essentially represents the physical memory. Fur-

ther address spaces can be constructed by granting, mapping and

rrrnnupping flexpages, logical pages of size 2”, ranging from one

physical page up to a complete address space. The owner of an

address space can grant or map any of its pages to another address

space, provided the recipient agrees. Afterwards, the page can be

accessed in both address spaces. The owner can also uncap any

of its pages from all other address spaces that received the page di-

rectly or indirectly from the unmapper. The three basic operations

are secure since they work on virtual pages, not on physical page

frames. So the invoker can only map and unmap pages that have

already been mapped into its own address space.

All address spaces are thus constructed and maintained by user-

level servers, also calledpagers; only the grant, map and unmap op-

erations are implemented inside the kernel. Whenever a page fault

occurs, the ,o-kernel propagates it via IPC to the pager currently as-

sociated with the faulting thread. The threads can dynamically as-

sociate individual pagers with themselves. This operation specifies

to which user-level pager the p-kernel should send the page-fault

IPC. The semantics of a page fault is completely defined by the in-

teraction of user thread and pager. Since the bottom-level pagers

in the resulting address-space hierarchy are in fact main-memory

managers, this scheme enables a variety of memory-management

policies to be implemented on top of the p-kernel.

I/O ports are treated as parts of address spaces so that they can

be mapped and unmapped in the same manner as memory pages.

Hardware interrupts are handled as IPC. The p-kernel transforms

an incoming interrupt into a message to the associated thread. This

is the basis for implementing all device drivers as user-level servers

outside the kernel.

In contrast to interrupts, exceptions and traps are synchronous to

the raising thread. The kernel simply mirrors them to the user level.

On the Pentium processor, L4 multiplexes the processor’s exception

handling mechanism per thread: an exception pushes instruction

pointer and flags on the thread’s user-level stack and invokes the

thread’s (user-level) exception or trap handler.

A Pentium-specific feature of L4 is the small-address-space opti-

mization. Whenever the currently-used portion of an address space

is “small”, 4 MB up to 5 12 MB, this logical space can be physically

shared through all page tables and protected by Pentium’s segment

mechanism. As described in [22], this simulates a tagged TLB for

context switching to and f?om small address spaces. Since the vir-

tual address space is limited, the total size of all small spaces is also

limited to 512hIB by default. The described mechanism is solely

used for optimization and does not change the functionality of the

system. As soon as a thread accesses data outside its current small

space, the kernel automatically switches it back to the normal 3 GB

space model. Within a single task, some threads might use the nor-

mal large space while others operate on the corresponding small

space.

Pentium -Alpha - MlPS

Originally developed for the 486 and Pentium architecture, ex-

perimental L.4 implementations now exist for Digital’s Alpha

21164 [33] and MIPS R4600 [14]. Both new implementations

were designed from scratch. L4/Pentium, LA/Alpha and L4/MIPS

are different p-kernels with the same logical API. However, the

p-kernel-internal algorithms and the binary API (use of registers,

word and address size, encoding of the kernel call) are processor de-

pendent and optimized for each processor. Compiler and libraries

hide the binary API differences from the user. The most relevant

user-visible difference probably is that the Pentium p-kernel runs

in 32-bit mode whereas the other two are 64-bit-mode kernels and

therefore support larger address spaces.

The LNAlpha implementation is based on a complete replace-

ment of Digital’s original PALcode [1 11. Short, time-critical op-

erations are hand-tuned and completely performed in PALcode.

Longer, interruptible operations enter PALcode, switch to kernel

mode and leave PALcode to perform the remainder of the operation

using standard machine instructions. A comparison of IPC perfor-

mance of the three L4 p-kernels can be found in [25].

4 Linux on Top of L4

Many classical systems emulate Unix on top of a p-kernel. For

example, monolithic Unix kernels were ported to Mach [13,151 and

Chorus [4]. Very recently, a single-server experiment was repeated

with Linux and newer, optimized versions of Mach [lo].

67

To add a standard OS personality to LA, we decided to port

Linux. Linux is stable, performs well, and is on the way to be-

coming a de-facto standard in the freeware world. Our goal was a

lOO%-Linux-compatible system that could offer all the features and

flexibility of the underlying p-kernel.

To keep the porting effort low, we decided to forego any struc-

tural changes to the Linux kernel. In particular, we felt that it was

beyond our means to tune Linux to our p-kernel in the way the Mach

team tuned their single-server Unix to the features of Mach. As a

result, the performance measurements shown can be considered a

baseline comparison level for the performance that can be achieved

with more significant optimizations. A positive implication of this

design decision is that new versions of Linux can be easily adapted

to our system.

4.1 Linux Essentials

Although originally developed for x86 processors, the Linux ker-

nel has been ported to several other architectures, including Alpha,

M68k and SPARC [27]. Recent versions contain a relatively well-

defined interface between architecture-dependent and independent

parts of the kernel [171. All interfaces described in this paper cor-
respond to Linux version 2.0.

Linux’ architecture-independent part includes process and re-

source management, file systems, networking subsystems and all

device drivers. Altogether, these are about 98% of the Linw/x86

source distribution of kernel and device drivers. Although the de-

vice drivers belong to the architecture-independent part, many of

them are of course hardware dependent. Nevertheless, provided

the hardware is similar enough, they can be used in different Linux

adaptions.

Except perhaps exchanging the device drivers, porting Linux

to a new platform should only entail changes to the architecture-

dependent part of the system. This part completely encapsulates the

underlying hardware architecture. It provides support for interrupt-

service routines, low-level device driver support (e.g., for DMA),

and methods for interaction with user processes. It also imple-

ments switching between Linux kernel contexts, copyinlcopyout for

transferring data between kernel and user address spaces, signaling,

mapping/unmapping mechanisms for constructing address spaces,

and the Linux system-call mechanism. From the user’s perspective,

it defines the kernel’s application binary interface.

For managing address spaces, Linux uses a three-level archi-

tecture-independent page table scheme. By defining macros, the

architecture-dependent part maps it to the underlying low-level

mechanisms such as hardware page tables or software TLB han-

dlers.

Intermpt handlers in Linux are subdivided into top halves and

bottom halves. Top halves run at the highest priority, are directly

triggered by hardware interrupts and can interrupt each other. Bot-

tom halves run at the next lower priority. A bottom-half handler can

be interrupted by top halves but not by other bottom halves or the

Linux kernel.

4.2 L4Linux- Design and Implementation

We chose to be fully binary compliant with Linux/x86. Our test for

compatibility was that any off-the-shelf software for Linux should

run on L!Linux. Therefore, we used all application-binary-interface

definition header files unmodified from the native Linux/x86 ver-

sion.

In keeping with our decision to minimize L4-specific changes

to Linux, we restricted all our modifications to the architecture-

dependent part. Also, we restricted ourselves from making any

Linux-specific modifications to the L4 p-kernel. Porting Linux was

therefore also an experiment checking whether performance can be

achieved without significant p-kernel-directed optimizations in the

Linux kernel, and whether the L4 interface is truly general and flex-

ible.

Under the constraints mentioned above, the natural solution is

the straightforward single-server approach, similar to [131: /f-kernel

tasks are used for Linux user processes and provide Linux services

via a single Linux server in a separate p-kernel task. This is indeed

how we began our port.

The Linux Server (“Linux Kernel”). Native Linux maps

physical memory one-to-one to the the kernel’s address space. We

used the same scheme for the L4Linux server. Upon booting, the

Linux server requests memory from its underlying pager. Usually,

this is 00, which maps the physical memory that is available for the

Linus personality one-to-one into the Linux server’s address space

(see Figure 1). The server then acts as a pager for the user processes

it creates.

tttttttttttttt
initial space o,, Qhysical memory)

Figure 1: L4LinuxAddress Spaces. Arrows denote mapping. The Linux

server space can be a subset of 00. Although plotted as smaller boxes, the

user address spaces can be larger than the server’s address space.

For security reasons, the true hardware page tables are kept in-

side L4 and cannot be directly accessed by user-level processes. AS

a consequence, the Linux server has to keep and maintain additional
logical page tabIes in its own address space. For the sake of simplic-

ity, we use the original Pentium-adapted page tables in the server

unmodified as logical page tables. Compared to native Linux, this

doubles the memory consumption by page tables. Although current

memory pricing lets us ignore the additional memory costs, double

bookkeeping could decrease speed. However, the benchmarks in

Section 5 suggest that this is not a problem.

Only a single L4 thread is used in the L4Linux server for handling

all activities induced by system calls and page faults. Linux mul-

tiplexes this thread to avoid blocking in the kernel. Multithrcading

at the L4 level might have been more elegant and faster. However,

it would have implied a substantial change to the original Linux

kernel and was thus rejected.

The native uniprocessor Linux kernel uses interrupt disabling for

synchronization and critical sections. Since L4 also permits privi-

leged user-level tasks, e.g. drivers, to disable interrupts, WC could

use the existing implementation without modification.

Interrupt Handling and Device Drivers. The L4 ,u-kernel

maps hardware interrupts to messages (Figure 2). The Linux top-

half intexmpt handlers are implemented as threads waiting for such

messages, one thread per interrupt source:

interrupt handler thread:

d0

wait for interrupt { L4-IPC } ;

top half interrupt handler ()

od .

68

Another thread executes all bottom halves once the pending top

halves have been completed. Executing the interrupt threads and

the bottom-half thread on a priority level above that of the Linux

server thread avoids concurrent execution of interrupt handlers and

the Linux server, exactly as on native uniprocessor Linux.

Linux Server

ma,”
0

*----“r-” Y?!F e-“-----L
0

interrupt

thread d- - - - bottom half thread * - - - - threads

.*..--- -, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
! Device

*: ,“tempt
;

.J send
y-.--,---...i messge

‘. . . .” *
c .“ ...” “ “ ..“ -f

Figure 2: Interrupt handling in L4Linux.

Since the I-4 platform is nearly identical to a bare Pentium archi-

tecture platform, we reused most of the device driver support from

Linux/x86. As a result, we are able to employ all Linux/x86 device

drivers without modification.

Llnux User Processes. Each Linus user process is imple-

mented as an I-4 task, i.e. an address space together with a set of

threads executing in this space. The Linux server creates these tasks

and specifies itself as their associated pager. L4 then converts any

Linux user-process page fault into an RPC to the Linux server. The

server usually replies by mapping and/or unmapping one or more

pages of its address space to/from the Linus user process. Thereby,

it completeIy controls the Linux user spaces.

In particular, the Linux server maps the emulation library and the

signal thread code (both described in the following paragraphs) into

an otherwise unused high-address part of each user address space.

In accordance with our decision to keep Linux changes mini-

mal, the “‘emulation” library handles only communication with the

Linux server and does not emulate Unix functionality on its own.

For example, a getpid or read system call is always issued to the

server and never handled locally.

System-Call Mechanisms. L4Linux system calls are imple-

mented using remote procedure calls, i. e. IPCs between the user

processes and the Linux server. There are three concurrently usable

system-call interfaces:

1. a modified version of the standard shared C library libc . so

which uses L4 IPC primitives to call the Linux server;

2. a correspondingly modified version of the libc. a library;

3. a user-level exception handler (“trampoline”) which emulates

the native system-call trap instruction by calling a correspond-

ing routine in the modified shared library.

The first two mechanisms are slightly faster, and the third one estab-

lishes true binary compatibility. Applications that are linked against

the shared library automatically obtain the performance advantages

of the first mechanism. Applications statically linked against an

unmodified libc suffer the performance degradation of the latter

mechanism, All mechanisms can be arbitrarily mixed in any Linux

process.

Most of the available Linux software is dynamically linked

against the shared library; many remaining programs can be stat-

ically relinked against our modified libc. a. We consider therefore

the trampoline mechanism to be necessary for binary compatibility

but of secondary importance from a performance point of view.

As required by the architecture-independent part of Linux, the

server maps all available physical memory one-to-one into its own

address space. Except for a small area used for kernel-internal vir-

tual memory, the server’s virtual address space is otherwise empty,

Therefore, all Linux server threads execute in a small address

spaces which enables improved address-space switching by simu-

lating a tagged TLB on the Pentium processor. This affects all IPCs

with the Linux server: Linux system calls, page faults and hardware

intermpts. Avoiding TLB flushes improves IPC performance by at

least a factor of 2; factors up to 6 are possible for user processes

with large TLB working sets.

The native Linux/x86 kernel always maps the current user ad-

dress space into the kernel space. Copyin and copyout are done by

simple memory copy operations where the required address trans-

lation is done by hardware. Surprisingly, this solution turned out to

have bad performance implications under L4 (see Section 4.3).

Instead, the L4Linux server uses physical copyin and copyout to

exchange data between kernel and user processes. For each copy

operation, it parses the server-internal logical page tables to trans-

late virtual user addresses into the corresponding “physical” ad-

dresses in the server’s address space, and then performs the copy

operation using the physical addresses.

Signaling. The native Linux kernel delivers signals to user pro-

cesses by directly manipulating their stack, stack pointer and in-

struction pointer. For security reasons, L4 restricts such inter-thread

manipulations to threads sharing the same address space. There-

fore, an additional signal-handler thread was added to each Linux

user process (see Figure 3). Upon receiving a message from the

Linux server, the signal thread causes the main thread (which runs

in the same address space) to save its state and enter Linux by ma-

nipulating the main thread’s stack pointer and instruction pointer.

Linux User Process

1

I I

Figure 3: Signal delivery in L4Linu.x. Arrows denote IPC. Numbers in

parentheses indicate the sequence of actions.

The signal thread and the emulation library are not protected

against the main thread. However, the user process can only dam-

age itself by modifying them. Global effects of signaling, e.g.

killing a process, are implemented by the Linux server. The sig-

nal thread only notifies the user process.

Scheduling. All threads mentioned above are scheduled by the

L.4 p-kernel’s internal scheduler. This leaves the traditional Linux

schedule 0 operation with little work to do. It only multiplexes

the single Linux server thread across the multiple coroutines result-

ing from concurrent Linux system calls.

Whenever a system call completes and the server’s reschedule

flag is not set (meaning there is no urgent need to switch to a dif-

ferent kernel coroutine, or there is nothing to do in the kernel), the

server resumes the corresponding user thread and then sleeps wait-

ing for a new system-call message or a wakeup message from one

of the intermpt handling threads.

This behaviour resembles the original Linux scheduling strategy.

By deferring the call to schedule (> until a process’ time slice is

69

exhausted instead of calling it immediately as soon as a kernel activ-
ity becomes ready, this approach minimizes the number of corou-

tine switches in the server and gives user processes the chance to

make several system calls per time slice without blocking.

However, there can be many concurrently executing user pro-

cesses, and the actual multiplexing of user threads to the proces-

sor is controlled by the L4 p-kernel and mostly beyond the control

of the Linux server. Native L4 uses hard priorities with round-

robin scheduling per priority. User-level schedulers can dynami-

cally change priority and time slice of any thread. The current ver-

sion of L4Linux uses 10 ms time slices and only 4 of 256 priorities,

in decreasing order: interrupt top-half, interrupt bottom-half, Linux

kernel, Linux user process. As a result, Linux processes are cur-

rently scheduled round robin without priority decay. Experiments

using more sophisticated user-level schedulers are planned, includ-

ing one for the classical Unix strategy.

Supporting Tagged TLBs or Small Spaces. TLBs are be-

coming larger in order to hide the increasing costs of misses relative

to processor speed. Depending on the TLB size, flushing a TLB

upon address-space switch induces high miss costs for reestablish-

ing the TLB working set when switching back to the original ad-

dress space. Tagged TLBs, currently offered by many processors,

form the architectural basis to avoid unnecessary TLB flushes. For

the Pentium processor, small address spaces offer a possibility to

emulate TLB tagging. However, frequent context switches-in the

near future, we expect time slices in the order of 10 p - can also

lead to TLB conflicts having effects comparable to flushes. Two

typical problems: (1) due to extensive use of huge libraries, the

‘hello-world’ program compiled and linked in the Linux standard

fashion has a total size of 800 KB and needs 32 TLB entries to ex-

ecute; (2) identical virtual allocation of code and data in all address

spaces maximizes TLB conflicts between independent applications.

In many cases, the overall effect might be negligible. However

some applications, e.g., a predictable multi-media file system or

active routing, might suffer significantly.

Constructing small, compact, application-dependent address-

space layouts can help to avoid the mentioned conllicts. For this

reason, PLinux offers a special library permitting the customiza-

tion of the code and data used for communicating with the L?Linux

server. In particular, the emulation library and the signal thread can

be mapped close to the application instead of always mapping to

the default high address-space region. By using this library, spe-

cial servers can be built that can execute in small address spaces,
avoiding systematic allocation conflicts with standard Linux pro-

cesses, while nevertheless using Linux system calls. Examples of

such servers are the pagers used for implementing the memory op-

erations described in Section 6.2.

4.3 The Dual-Space Mistake

In the engineering sciences, learning about mistakes and dead ends

in design is as important as telling success stories. Therefore, this

section describes a major design mistake we made in an early ver-

sion of L4Linux.

For each Linux process, native Linux/x86 creates a 4 GB address

space containing both the user space and the kernel space. This

makes it very simple for the Linux kernel to access user data: ad-

dress translation and page-fault signaling are done automatically by

the hardware. We tried to imitate this approach by also mapping the

current process’ user address space into the Linux server’s address

space (Figure 4). The implementation using a user-level pager was

simple. However, we could not map multiple 2.5 GB Linux-process

spaces simultaneously into the server’s 3 GB address space. Either

the user-space mapping had to be changed on each Linux context

switch . or the server space had to be replicated. Since the first

method was considered too expensive, we ended up creating one

server address space per Linux process. Code and data of the server

were shared through all server spaces. However, the server spnces

differed in their upper regions which had mapped the respective

Linux user space.

I
L4 address space of Llnux user process

I I

L timixpmcess space

I
--__ --w_

---__- --w_ -_

Linuxprocess space

L4 address space of Llnux server

Figure 4: Copyin/out using hardware address translation in an

early version of L4Linux. Arrows denote memory read/write operations,

Replicating the server space, unfortunately, also required rcpli-

eating the server thread. To preserve the single-server semnntics

required by the uniprocessor version of Linux, we thus had to add

synchronization to the Linux kernel. Synchronization required ad-

ditional cycles and turned out to be nontrivial and error-prone.

Even worse, 3GB Linux-server spaces made it impossible to

use the small-space optimization emulating tagged TLBs. Since

switching between user and server therefore always required a TLB

flush, the Linux server had to re-establish its TLB working set for

every system call or page fault. Correspondingly, the user process

was penalized by reloading its TLB working set upon return from

the Linux server.

We discarded this dual-space approach because it was compli-
cated and not very efficient; getpid took 18 ,us instead of 4 11%

Instead, we decided to use the single-space approach described in

Section 4.2: only one address space per Linux user process is rc-

quired and the server space is not replicated. However, virtual ad-

dresses have to be translated by software to physical addresses for

any copyin and copyout operation.

Ironically, analytical reasoning could have shown us prior to im-

plementation that the dual-space approach cannot outperform the

single-space approach: a hardware TLB miss on the Pentium costs
about 25 cycles when the page-table entries hit in the second-level

cache because the Pentium Mh4U does not load page-table entries

into the primary cache. On the same processor, translating a virtual

address by software takes between 11 and 30 cycles, depending on
whether the logical page-table entries hit in the first-level or in tho

second-level cache. In general, hardware translation is nevertheless

significantly faster because the TLB caches translntions for later

reuse. However, the dual-space approach systematically made this

reuse for the next system call impossible: due to the large server ad-

dress space, the TLB was flushed every time the Linux-server WGS

called.

4.4 The Resulting L4Linux Adaption

Table 1 compares the source code size of the L4Linux adaption

with the size of the native Linux/x86 adaption and the Linux ker-

nel. Comment lines and blank lines are not counted. 2000 lines of

the original x86-dependent part could be reused unchanged for the

L4 adaption; 6500 new lines of code had to be written, Starting

from L4 and Linux, it took about 14 engineer months to build the

L4Linux system, to stabilize it and to prepare the results presented

in this paper.

We appear to have been successful in our effort of achieving full
Linux binary compatibility. We have used the system as a dcvelop-

ment environment and regularly use such applications as the X Win-

dow system, Emacs, Netscape and X-Pilot. PLinux appeas to bo

70

architecture
dependent
part

Linux kernel

drivers

lines of C code

Linuxlx86 L4Linux

2,500 6,500

2,000 E 2,000

4,500 8,500

105,000

232,700

Table 1: Source-code lines for LittuxLx86 and L4Linux.

stable, and, as we’ll show, can run such extreme stress test as the

AIM benchmark [2] to completion.

5 Compatibility Performance

In this section, we discuss the performance of L4Linux from the

perspective of pure Linux applications. The conservative criterion

for accepting a ,u-kernel architecture is that existing applications are

not significantly penalized. So our first question is

l What is the penalty of using PLinux instead of native Linux?

To answer it, we ran identical benchmarks on native Linux and on

L4Linux using the same hardware. Our second question is

l Does the performance of the underlying p-kernel matter?

To answer it, we compare L4Linux to MkLinux [lo], an OSF-de-

veloped port of Linux running on the OSF Mach 3.0 p-kernel. Mk-

Linux and L4Linux differ basically in the architecture-dependent

part, except that the authors of MkLinux slightly modified Linux’

architecture-independent memory system to get better performance

on Mach. Therefore, we assume that performance differences are

mostly due to the underlying p-kernel.

First, we compare I!Linux (which always runs in user mode) to

the MkLinux variant that also runs in user mode. Mach is known

for slow user-to-user IPC and expensive user-level page-fault han-

dling [S, 211. So benchmarks should report a distinct difference

between L4Linux and MkLinux if the p-kernel efficiency influences

the whole system significantly.

A faster version of MkLinux uses a co-located server run-

ning in kernel mode and executing inside the p-kernel’s address

space. Similar to Chorus’ supervisor tasks [32], co-located (in-

kernel) servers communicate much more efficiently with each other

and with the p-kernel than user-mode servers do. However, in

order to improve performance, co-location violates the address-

space boundaries of a p-kernel system, which weakens security and

safety. So our third question is

l How much does co-location improve performance?

This question is evaluated by comparing user-mode L4Linnx to the

in-kernel version of MkLinux.

5.1 Measurement Methodology

To obtain comparable and reproducible performance results, the

same hardware was used throughout all measurements, including

those of Section 6: a 133-MHz Pentium PC based on an ASUS

P55TP4N motherboard using Intel’s 430FX chipset, equipped with

a 256 KB pipeline-burst second-level cache and 64 MB of60 ns Fast

Page Mode RAM.

We used version 2 of the L.4 p-kernel.

L?Linux is based on Linux version 2.0.21, h&Linux on version

2.0.28. According to the ‘Linux kernel change summaries’ [7], only

71

performance-neutral bug fixes were added to 2.0.28, mostly in de-
vice drivers. We consider both versions comparable.

Microbenchmarks are used to analyze the detailed behaviour

of L4Linux mechanisms while macrobenchmarks measure the sys-

tem’s overall performance.

Different microbenchmarks give significantly different results

when measuring operations which take only I to 5 p. Statisti-

cal methods like calculating the standard deviation are mislead-

ing: two benchmarks report inconsistent results and both calculate

very small standard deviation and high confidence. The reason is

that a deterministic system is being measured that does not behave
stochastically. For fast operations, most measurement errors are

systematic. Some reasons are cache conflicts between measurement

code and the system to be measured or miscalculation of the mea-

surement overhead. We therefore do not only report standard devi-

ations but show different microbenchmarks. Their differences give

an impression of the absolute error. Fortunately, most measured

times are large enough to show only small relative deviations. For

larger operations, the above mentioned systematic errors probably

add up to a pseudo-stochastic behaviour.

5.2 Microbenchmarks

For measuring the system-call overhead, getpid, the shortest

Linus system call, was examined. To measure its cost under ideal

circumstances, it was repeatedly invoked in a tight loop. Table 2

shows the consumed cycles and the time per invocation derived

from the cycle numbers. The numbers were obtained using the cy-

cle counter register of the Pentium processor. L4Linux needs ap-

proximately 300 cycles more than native Linux. An additional 230

cycles are required whenever the trampoline is used instead of the

shared library. MkLinux shows 3.9 times (in-kernel) or 29 times

(user mode) higher system-call costs than L4Linux using the shared

library. Unfortunately, L4Linux still needs 2.4 times as many cycles

as native Linux.

System Time Cycles

Linux 1.68,us 223

L4Linux 3.95 p 526

L4Linux (trampoline) 5.66 p 753

MkL.inux in-kernel 15.41 ps 2050

MkLinux user 110.6Op 14710

Table 2: getpidsystem-callcosts on the dtrerent implementations.
(133 MHz Pentium)

Client

enter emulation library

send system call message

receive reply

Cycles Server

20

168 wait for message

131 -LINUX-

188 send reply

leave emulation library 19

526

Figure 5: Cycles spentfor getpid in L4Lintu: (133MHz Pentium)

Figure 5 shows a more detailed breakdown of the L4Linux over-

head. Under native Linux, the basic architectural overhead for en-

tering and leaving kernel mode is 82 cycles, the bare hardware

costs. In L?Linux, it corresponds to two IPCs taking 356 cycles

in total. After deducting the basic architectural overhead from the

write Jdevlnull [/or]

null process [h]
simple process [/or]

S&h process [/or]

mmap [/at]
2-proc context switch [/or]

8-proc context switch [/a~]

pipe [/of]
‘,

UDP [fof]

RPCAJDP [/of]

TCP [/of]

RPUTCP [lull

pipe IbW’]

TCP [bw-‘1

file rereadlbtv-‘1

mmnp pread [bw-‘]

4 64.5

-t 25.8

I I I 1 I , , I I I I 6 I

1’ 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6: bnbench results, normalized to native Linus. These are presented as slowdowns: a shorter bar is a better result. [/a~] is a latency measurement,

[by’] the inverse of a bandwidth one. Hardware is a 133 MHz Pentium.

total system-call costs, 141 cycles remain for native Linux, 170 cy-

cles for L4Limrx. The small difference of both values indicates that

indeed IPC is the major cause-for additional costs in L4Linux.

When removing the part called LINUX in Figure 5, the QLinux

overhead code remains. It uses 45 cache lines, 9% of the first-level,

cache, including the cache L4 needs for IPC.

The bnbench [29] microbenchmark suite measures basic oper-

ations like system calls, context switches, memory accesses, pipe

operations, network operations, etc. by repeating the respective op-

eration a large number of times. Imbench’s measuremenf methods

have recently been criticized by Brown and Seltzer [6]. Theirim-

proved hbench:OS microbenchmark suite covers a broader spec-

trum of measurements and measures short operations more pre2 1

cisely. Both benchmarks have basically been developed to com-

pare different hardware from the OS perspective and therefore also

include a variety of OS-independent benchmarks, in particular mea-

suring the hardware memory system and the disk Since we always

use the same hardware for our experiments, we present only the OS-

dependent parts. The hardware-related measurements gave indeed

the same results on all systems.

Table 3 shows selected results of bnbench and hbench. It com-

pares native Linux, L!Linux with and without trampoline, and both

versions of MkLinux. Figure 6 plots the slowdown of L4Linux, co-

located and user-mode MkLinux, normalized to native Linux. Both

versions of MkLinux have a much higher penalty than L4Linux.

Surprisingly, the effect of co-location is rather small compared to
the effect of using LA. However, even the L?Linux penalties are not

as low as we hoped.

5.3 Macrobenchmarks

In the first macrobenchmark experiment, we measured the time

needed to recompile the Linux server (Figure 7). L4Linux was 6-
7% slower than native Linux but lO-20% faster than both MkLinux

versions.

Figure 7: Real time for compiling the Linux Server (133 MHz Pen-

tium)

AIMMNlafed!aad

Figure 8: AIMMultiuser Benchmark Suite VII. Real time per bench-
mark run depending on AIM load units. (133 MHz Pentium)

0 al 40 so m 100 140

AIM &dated load

Figure 9: AIM Multiuser Benchmark Suite VII. Jobs completed per

minute depending on AIM load units. (133 MHz Pentium)

A more systematic evaluation was done using the commercial

AIM multiuser benchmark suite VII. It uses Load Mix Modeling to

72

Test Llnux L?LhmX

libc. eo trampoline

MkLInux

in-kernel user

Imhench Results

write to /dev/null

Null Process

Simple Process

lbinlsh Process

Mmap Latency

2-proc ctxsw

8-proc ctxsw

Pipe

UDP

RPUUDP

TCP

RPC/TCP

Pipe

2.00 (0%)

973 (1%)

7400 (1%)

42412 (1%)

52.20 (2%)

7.00 (0%)

12.40 (4%)

29.00 (2%)

159.40 (3%)

321.40 (1%)

207.40 (2%)

459.60 (2%)

~tency IPI
5.26 (10%) 7.80 (6%)

2749 (4%) 2765 (1%)

12058 (2%) 12393 (1%)

61115 (7%) 62353 (1%)

64.28 (7%) 69.35 (8%)

16.22 (6%) 18.20 (6%)

22.22 (6%) 28.00 (4%)

52.07 (7%) 69.40 (6%)

243.02 (4%) 263.80 (2%)

526.57 (3%) 528.80 (3%)

287.57 (4%) 308.80 (5%)

24.33 (9%)

3038 (1%)

14066 (1%)

73201 (2%)

345.33 (2%)

78.67 (9%)

85.67 (3%)

128.97 (2%)

3601 (1%)

19667 (1%)

106853 (1%)

566.06 (1%)

79.87 (7%)

96.26 (6%)

308.33 (1%)

613.33 (4%)

1095133 (4%)

562.00 (4%)

1243.33 (4%)

722.42 (2%)

1040.26 (2%)

1743.29 (2%)

1047.03 (2%)

2014.90 (2%) 1 729.76 (5%) 736.20 (4%) /

Bandwidth [MB/s

1 40.50 (2%) 1 37.61 (3%) 35.25 (3%) 1 13.11 (2%) 10.57 (2%)

TCP 13.23 (2%) 13.41 (3%) 11.54 (1%) 10.88 (2%)

File reread 40.43 (1%) 40.26 (3%) 37.51 (3%) 34.04 (2%)

Mman reread 54.96 (6%) 55.03 (7%) 61.54 (0%) 58.66 (7%)

hhench:OS Results

getpid

write ~o/dev/null

Null Process

Simple Process

Ibinlsh Process

Mmap Latency 4KB

Mmap Latency 8MB

ctxOK2

~1x2 OK 2

Pipe

UDP

RPCAJDP

rccp

RPCITCP

1.69 (0%)

2.74 (0%)

983 (1%)

7490 (1%)

40864 (3%)

25.2 (0%)

53.7 (1%)

8.05 (2%)

8.45 (3%)

31.0 (2%)

154 (1%)

328 (2%)

206 (2%)

450 (2%)

Latency I.1
4.55 (1%) 6.91 (1%)

6.67 (5%) 8.20 (4%)

2561 (1%) 2904 (1%)

12431 (1%) 12433 (1%)

58845 (1%) 57968 (1%)

35.0 (2%) 49.4 (2%)

54.0 (2%) 74.9 (1%)

17.1 (4%) 20.0 (3%)

17.0 (3%) 16.7 (6%)

62.3 (3%) 78.99 (3%)

214 (1%) 251 (3%)

554 (2%) 577 (3%)

264 (2%) 302 (1%)

19.14 (1%) 111.9 (1%)

26.30 (1%) 124.1 (1%)

3101 (1%) 3572 (1%)

14144 (1%) 19255 (0%)

69990 (1%) 100763 (1%)

242.7 (1%) 439.6 (1%)

360.1 (1%) 561.9 (1%)

69.6 (3%) 79.9 (2%)

76.2 (2%) 88.6 (3%)

316.1 (1%) 721.6 (1%)

625 (1%) 1037 (1%)

1174 (1%) 1763 (1%)

568 (1%) 1030 (1%)

1344 (1%) 2035 (1%) 1 754 (2%) 760 (3%) 1

Bandwidth [MB/!]

Pipe 64KB 1 40.3 (1%) 1 35.5 (1%) 32.6 (2%) 1 12.7 (1%) 10.4 (2%)

rCP 64KB 18.8 (1%) 14.6 (1%) 14.1 (1%) I 11.6 (1%) 9.4 (2%)

Tile read 64/64 35.3 (1%) 34.5 (4%) 32.2 (1%) 32.7 (3%) 30.1 (4%)

timapreread64m I 97.5 (1%) I 91.4 (1%) 78.8 (1%) 1 89.4 (1%) 77.7 (3%)

Table 3: Selected OS-dependent lmbench and hbench-OS results. (133 MHz Pentium.) Standard deviations are shown in parentheses.

test how well multiuser systems perform under different application

loads [2]. (The AIM benchmark results presented in this paper are

not certified by AIM Technology.)

AIM uses the shared libc . so so that the trampoline overhead

is automatically avoided. Depending on simulated load, Figures 8

and 9 show the required time and the achieved throughput (jobs

per minute) for native Linux, L4Linux, and b&h MkLinux versions.

The AIM benchmark successively increases the load until the max-

imum throughput of the system is determined. (For this reason,

it stops at a lower load for MkLinux than for L4Linux and native

Linux.)

For native Linux, AIM measures a maximum load of 130 jobs

per minute. L?Linux achieves 123 jobs per minute, 95% of native

Linux. The corresponding numbers for user-mode h4kLinux are 81

jobs per minute, 62% of native Linwc, and 95 (73%) for the in-

kernel version.

Averaged over all loads, L4Linux is 8.3% slower than native

Linux, and 6.8% slower at the maximum load. This is consistent

with the 6-7% we measured for recompiling Linux.

User-mode MkLinux is on average 49% slower than native

Linux, and 60% at its maximum load. The co-located in-kernel ver-

sion of MkLinux is 29% slower on average than Linux, and 37% at

maximum load.

5.4 Analysis

The macrobenchmarks answer our first question. The current im-

plementation of L4Linux comes reasonably close to the behavior of

native Linus, even under high load. Typical penalties range from

5% to 10%.

Both macro and microbenchmarks clearly indicate that the per-

formance of the underlying p-kernel matters. We are particular con-

fident in this result because we did not compare different Unix vari-

ants but two p-kernel implementations of the samd OS. *

Furthermore, all benchmarks illustrate that co-location on its

own is not sufficient to overcome performance deficiencies when

the basic p-kernel does not perform well. It would be an interest-

73

ing experiment to see whether introducing co-location in L4 would

have a visible effect or not.

6 Extensibility Perfojmahce _

No customer would use a p-kernel if it offered only the classical

Unix API, even if the p-kernel imposed zero penalty on the OS

personality on top. So we have to ask for the “added value” the

p-kernel gives us. One such is that it enables specialization (im-

proved implementation of special OS functionality [31]) and buys

us extensibility i. e., permits the orthogonal implementation of new

services and policies that are not covered by and cannot easily be

added to a conventional workstation OS. Potential application fields

are databases, real-time, multi-media and security.

In this section, we are interested in the corresponding perfor-

mance aspects for L4 with L?Linux running on top. We ask three
questions:

Can we add services outside L4Linux to improve performance

by specializing Unix ,functionality?

Can we improve certain applications by using native pzkemel

mechanisms in addition to the classical-API?

Can we achieve high performance for non-classical, Unix-

incompatible systems coexisting with L4Linux?

Currently, these questions can only be discussed on the basis of

selected examples. The overall quantitative effects on large sys-

tems remain still unknown. Nevertheless, we consider the “exis-

tence proofs” of this section to be a necessary precondition to an-

swer the aforementioned questions positively for a broad variety of

applications.

6.1 Pipes and RPC

It is widely accepted that IPC can be implemented significantly

faster in a p-kernel environment than in classical monolithic sys-

tems. However, applications have to be rewritten to make use of

it. Therefore, in this section we compare classical Unix pipes, pipe

emulations through p-kernel IPC, and blocking RPC to get an esti-

mate for the cost of emulation on various levels.

We compare four variants of data exchange. The first is the
standard pipe mechanism provided by the Linux kernel: (1) runs

on native Linux/x86; (la) runs on L4Linux and uses the shared li-

brary, (1 b) uses the trampoline mechanism instead; (lc) runs on the

user-mode server of MkLinux, and (Id) on the co-located MkLinux

server.

Although the next three variants run on L!Linux, they do not use

the Linux server’s pipe implementation. Asynchronouspipes on L4
(2) is a user-level pipe implementation that runs on bare IA, uses L4

IPC for communication, and needs no Linnx kernel. The emulated

pipes are POSIX compliant, except that they do not support signal-

ing. Since IA IPC is strictly synchronous, an additional thread is

responsible for buffering and cross-address-space communication

with the receiver.

Synchronous RPC (3) uses blocking IPC directly, without buffer-

ing data. This approach is not semantically equivalent to the previ-

ous variants but provides blocking RPC semantics. We include it in

this comparison because applications using PPC in many cases do

not need asynchronous pipes, so they can benefit from this special-

ization.

For synchronous mapping RPC (4), the sender temporarily maps

pages into the receiver’s address space. Since mapping is a spedia1

form of L4 IPC, it can be freely used between user processes and

is secure: mapping requires agreement between sender and receiver

and the sender can only map its own pages. The measured times in-

clude the cost for subsequent mu-napping operations. For hardware

reasons, latency here is measured by mapping one page, not one

byte. The bandwidth measurements map aligned 64 KB regions,

For measurements, we used the corresponding lmbench routines,

They measure latency by repeatedly sending 1 byte back and forth

synchronously (ping-pong) and bandwidth by sending about 50 MB

in 64KB blocks to the receiver. The results of Table 4 show thnt

the latency and the bandwidth of the original monolithic pipe im-

plementation (1) on native Linux can be improved by emulating

asynchronous pipe operations on synchronous L4 IPC (2). Using

synchronous L4 RPC (2) requires changes to some applications but

delivers a factor of 6 improvement in latency over native Linux.

System 1 I Latency Bandwidth

(1) Linux pipe 29P 41 MB/s

(1 a) L4Linux pipe 46/s 40 MB/s

(lb) L4Linux (trampoline) pipe 56P 38 MB/s

(lc) MkLinux (user) pipe 722 /ts IO MB/s

(Id) MlcLinux (in-kernel) pipe 316~ 13 MB/s

(2) IA pipe I 22/s 48-70 MB/s

(3) synchronous I.4 RPC 5/s 65-l 05 MB/s

(4) synchronous mapping RPC 12 ,us 2470-2900 MB/s

Table 4: Pipe and RPCperjbmzance. (133 MHz Pentium.) Only com-
munication costs are measured, not the costs to generate or consume data.

Since the bandwidth measurement moves 64 KB chunks of data,

its performance is basically determined by the memory hardwnrc, in

particular by the direct-mapped second-Ievel cache. As proposed by

Jonathan Shapiro [35], L4 IPC simulates a write-allocate cache by

prereading the destination area when copying longer messages, In

the best case, Linux allocates pages such that source and destination

do not overlap in the cache; in the worst case, the copy operation

flushes every data prior to its next usage. A similar effect can can

be seen for L4 pipes.

Linux copies data twice for pipe communication but uses only a
tied one-page buffer in the kernel. Since, for long streams, rend-

ing/writing this buffer always hit in the primary cache, this specinl

double copy performs nearly as fast as a single bcopy. The devin-

tion is small because the lmbench program always sends the same
64KB and the receiver never reads the data from memory, As n

consequence, the source data never hits the primary cache, nlwnys

hits the secondary cache and the destination data nlwnys misses

both caches since the Pentium caches do not allocate cache lines

on write misses.

Method (4) achieves a nearly infinite bandwidth due to the low

costs of mapping. To prevent misinterpretations: infinite bnndwidth

only means that the receiver gets the data without communication

penalty. Memory reads are still required to use the data.

6.2 Virtual Memory Operations

Table 5 shows the times for selected memory management oper-

ations. The first experiment belongs to the extensibility category,

i.e., it tests a feature that is not available under pure Linux: Fiult
measures the time needed to resolve a page fault by a user-defined

pager in a separate user address space that simply mnps an existing

page. The measured time includes the user instruction, pnge fault,

notification of the pager by IPC, mapping a page and completing

the original instruction.

The next three experiments are taken from Appel and Li [3],

We compare the Liner version with an implementation using nn-

74

Fault

Trap

Appell

Appel2

L4 Linux

6.2~ nfa

3.4/s 12P

12 P 55P

IQ/Is M/6

Table 5: Processor time for virtual-memory benchmarks. (133 MHz
Pentium)

tive L4 mechanisms. Trap measures the latency between a write

operation to a write-protected page and the invocation of the re-

lated exception handler. Appell measures the time to access a

randomly selected protected page where the fault handler unpro-

tects the page, protects some other page and and resumes the fault-

ing access (‘trap+protl+unprot’). Appel2 first protects 100 pages,

then accesses them in a random sequence where the fault han-

dler only unprotects the page and resumes the faulting operation

(‘protN+trap+unprot’). For L4, we reimplemented the fault han-

dlers by associating a specialized pager to the thread executing the

test. The new pager handles resolvable page faults as described

above and propagates unresolvable page faults to the Linus server.

6.3 Cache Partitioning

Real-time applications need a memory management different from

the one Linux implements. L4’s hierarchical user-level pagers al-

lows both the L4Linux memory system and a dedicated real-time

one to be run in parallel. This section evaluates how well this works

in practice.

In real-time systems, the optimization criterion is not the average

but the worst-case execution time. Since a real-time task has to meet

its deadline under all circumstances, sufficient resources for the

worst-case must always be allocated and scheduled. The real-time

load is limited by the sum of worst-case execution times, worst-case

memory consumption, etc. In contrast to conventional applications,

the average behaviour is only of secondary importance.

All real-time applications rely on predictable scheduling. Unfor-

tunately, memory caches make it very hard to schedule processor

time predictably. If two threads use the same cache lines, execut-

ing both threads interleaved increases the total time not only by the

context-switching costs but additionally by the cache-interference

costs which are much harder to predict. If the operating system

does not know or cannot control the cache usage of all tasks, the

cache-interference costs are unpredictable.

In [26], we described how a main-memory manager (a pager) on

top of L4 can be used to partition the second-level cache between

multiple real-time tasks and to isolate real-time from timesharing

applications.

In one of the experiments, a 64x64-matrix multiplication is pe-

riodically interrupted by a synthetic load that maximizes cache con-

flicts. Uninterrupted, the matrix multiplication takes 10.9 ms. In-

terrupted every 100 p, its worst-case execution time is 96.1 ms, a

slowdown by a factor of 8.85.

In the cache-partitioning case, the pager allocates 3 secondaty-

cache pages exclusively to the matrix multiplication out of a total of

64 such pages. This neither avoids primary-cache interference nor

secondary-cache misses for the matrix multiplication whose data

working set is 64 KB. However, by avoiding secondary-cache inter-

ference with other tasks, the worst-case execution time is reduced

to 24.9 ms, a slowdown of only 2.29. From a real-time perspective,

the partitioned matrix multiplication is nearly 4 times “faster” than

the unpartitioned one.

Allocating resources to the real-time system degrades timeshar-

ing performance. However, the described technique enables cus-

tomized dynamic partitioning of system resources between real-

time and timesharing system.

6.4 Analysis

Pipes and some VM operations are examples for improving Unix-

compatible functionality by using p-kernel primitives. RPC and

the use of user-level pagers for VM operations illustrate that Unix-

incompatible or only partially compatible functions can be added

to the system that outperform implementations based on the Unix

API.

The real-time memory management shows that a ,u-kernel can

offer good possibilities for coexisting systems that are based on

completely different paradigms. There is some evidence that the

,u-kernel architecture enables to implement high-performance non-

classical systems cooperating with a classical timesharing OS.

7 Alternative Basic Concepts

In this section, we address questions whether a mechanism lower-

level than IPC or a grafting model could improve the p-kernel per-

formance.

7.1 Protected Control Transfers

vM/370 [28] was built on the paradigm of virtualizing and mul-

tiplexing the underlying hardware. Recently, Engler, Kaashoek

and O’Toole [121 applied a similar principle to p-kernels. Instead

of a complete one-to-one virtualization of the hardware (which

had turned out to be inefficient in VM/370), they support selected

hardware-similar primitives and claim: “The lower the level of a

primitive, the more efficiently it can be implemented and the more

latitude it grants to implementors of higher-level abstractions.” In-

stead of implementing abstractions like IPC or address spaces, only

hardware mechanisms such as TLBs should be multiplexed and ex-

ported securely.
From this point of view, IPC might be too high-level an abstrac-

tion to be implemented with optimum efficiency. Instead, a pro-

tected control transfer (PCT) as proposed in [12] might be more

faster. PCT is similar to a hardware interrupt: a parameterless cross-

address-space procedure call via a callee-defined call gate.

Indeed, when we started the design of L4/Alpha, we first had the

impression that PCT could be implemented more efficiently than

simple IPC. We estimated 30 cycles against 80 cycles (no TLB or

cache misses assumed).
However, applying techniques similar to those used for IPC-path

optimization in the Pentium version of L4, we ended up with 45

cycles for IPC versus 38 cycles for PCT on the Alpha processor.

A detailed description can be found in table 6. The 7 additional

cycles required for IPC provide synchronization, message transfer

and stack allocation. Most server applications need these features

and must therefore spend the cycles additionally to the PCT costs.

Furthermore, IPC makes l-to-n messages simple since it includes

starting the destination threads.

In addition, L4-style IPC provides message diversion (using

Clans & Chiefs [20, 231). A message crossing a clan border is

redirected to the user-level chief of the clan which can inspect and

handle the message. This can be used as a basis for the implemen-

tation of mandatory access control policies or isolation of suspi-

cious objects. For security reasons, redirection has to be enforced

by the kernel. Clan-based redirection also enables distributed IPC

by means of a user-level network server. Each machine is encapsu-

lated by a clan so that inter-machine IPC is automatically redirected

to the network server which forwards it through the network.

75

Operation PCT IPC Comment

enter PAL mode 5 5

open frame 1 7 setup stack frame to allow multiple

interrupts, TLB misses and simplify

thread switching

send/receive - 0.5 determine operation

test receiver valid 2 2

test no chief xfer - 0.5

receiver accepts? - 1 can we do the transfer

set my rev timeout - I

save rev parameters - 2 perform the receive

verify queuing status - I to set wakeupqueueing invalid, if

timeout NEVER

context switch 10 10 switch address-space number

kernel thread switch - 6

set caller id 2 - save caller id for petret

tindcalleeentry 2 - pet entry address in callee

close frame 7 I

leave PAL mode 2 2

tot4 38 45

Table 6: PCT versus IPC; required cycfes on Alpha 21164. For the
PCT implementation we made the assumptions that (a) the entry address

for the callee is maintained in some kernel control structure; (b) the callee

must be able to specie a stack for the PCT call or - if the caller specifies

it-the eallee must be able to check it (the latter &se requires the kernel to

supply the callers identity); (c) stacking of return address and address space

is needed. The cycles needed on user level to check the identity are left out

of the comparison.

Taking the additionally required user-level cycles into account,

we currently see no performance. benefit for PCT. However, a con-

ceptual difference should be noted: A PCT takes the thread to an-

other address space so that the set of active threads does not change.

An IPC transfers a message Corn a sender thread to a destination

thread; both threads remain in their respective address spaces but

the set of active threads changes. Lazy scheduling techniques [21]

remove the additional costs of the second model so that in most

cases both are equivalent from a performance point of view.

However, IPC requires a preallocated system resource, the desti-

nation thread. If n threads want to execute RPCs to the same server

domain simultaneously, at least n threads have to be allocated in

the server. This problem is not as significant with PCT: only n user-

level stacks have to be allocated, no kernel resources. On the other
hand, in the IPC model, a server can easily preallocate kernel and

user resources, threads and stacks, dedicated to specific upplica-

tiom This helps to implement guaranteed real-time services.

7.2 Grafting

Grafting in general deals with the problem of how to insert a grail

into a server. We concentrate on the special situation when this

server is the kernel. We do not address the software-technological

advantages and limitations of the grafiing model. Here, we are only

interested whether downloading extensions into the kernel could

perform better than executing them as a user-level server (or down-

loading them into a user-level server).

Grafts executing in kernel mode can reduce the number of

user/kernel mode switches and address-space switches. However,

they either have to be completely trusted or need sand-boxing.

Various systems have been built on that basis. They range from

very pragmatic co-location techniques [1, IO] that simply trust co-

located code to more sophisticated techniques that confine the po-

tential damage of kernel extensions. However, Section 5 shows that

simple co-location is not necessarily a promising technique. Co-

located MkLinux performs worse than user-mode L?Linux.

Vino [34] introduces a sophisticated yet expensive transaction

mechanism; Exokemel [12, 361 enables application-specific han-

dlers using a variety of mechanisms ranging from interpretable in-

termediate code to run time checking.

SPIN [5] is an example ofa well-performing, sophisticated grafl-

ing technique. Its kernel extensions use compile-time sand-boxing

as much as possible and thus avoid additional runtime sand-boxing

overhead except for subscript checking. Of the performance results

published in [5], the virtual memory benchmarks favor SPIN’s up-
preach most. This makes sense, because for these tiny operations,

the system-call and context-switching overhead counts heavily, Ta-

ble 5 shows equivalent benchmarks on L4, running in user-mode,

The L4 times are between 2 and 4.7 times better (geometric mcnn:

3.1) than the times published for SPM [5]. However, due to tho

different hardware platforms (SPIN: 133-MHz Alpha 21064, L4:

133 MHz Pentium) this comparison must be interpreted very cau-

tiously. Given that both processors are double-issue, use a larga

second-level cache and no byte operations are required for thcso

examples (which are expensive on the Alpha), we think that the

current implementations perform roughly comparably; perhaps L4

is slightly faster.

Currently, it is still an open question whether downloading grafts

into the kernel can outperform the p-kernel approach.

8 Conclusions

The comparison of MkLinux and our Linux single-server approach

on L4 demonstrates that the performance improvements of second-

generation p-kernels significantly affect OS personalities and ap

plications. We demonstrated that fast IPC and efficient mapping

abstractions are more effective than techniques such as co-location.

The comparison ofL?Linux and monolithic Linux shows that in a

practical scenario, the penalty for usingkkemels can be kept somc-

where between 5% and 10% for applications. When working on n

workstation there is no visible difference whether the workstation

is numing native Linux or L4Linux.

Using a few simple experiments, we compared extensibility us-
ing libraries and servers to extensibility using kernel extension

mechanisms. We found no indication that kernel extensions achieve

better results.

The goal of this work has been to understand whether the L4

pkemel can provide a basis on which specialized applications, in-

cluding those with real-time requirements, can be built such thnt

they run along with normal operating systems and their applications

on a single machine. The results described in this paper encourage

us to pursue that line of development.

Availability

L4 and L?Linux are available from the L4Linux Web site at

http://os.inf.tu-dresden.de/M/LinuxOnLB/.

Acknowledgments

We would like to thank our shepherd John Wilkes and our anony-

mous reviewers for their valuable comments. Robert Bnumgartl,

Martin Borriss, Peter Dickman, Kevin Elphinstone, Bryan Ford,

Guemey Hunt, Nayeem Islam, Trent Jaeger, Frans Kaashoek, Orran

Krieger, Sven Rudolph, Dan Sturman, and John Tracey provided

helpful feedback and commentary on earlier versions of this paper,

Many thanks to AIM Technology for providing us with the AIM

Multiuser Benchmark Suite VII.

76

References

[]I

PI

[31

[41

PI

Fl

[71

PI

191

WI

u31

I141

u51

WI

r171

V, Abrossimov, A. Demers, and C. Hauser. Generic virtual memory

management for operating system kernels. In IZfh ACMSymposium

on Operating System Principles (SOSP), pages 123-136, Lichlield

Park, AZ, December 1989.

AIM Technology. AIM Multiuser Benchmark, Suite VII, 1996.

A. W, Appel and K Li. Vntual memory primitives for user programs.

In 4th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), pages 73-

80, Santa Clam, CA, April 1991.

N. Batlivala, B. Gleeson, J. Hamrick, S Lumdal, D. Price, J. Soddy,

and V, Abrossimov. Experience with SVR4 over Chorus. In USENLK

IVorhshop on Micro-Kernels and Other Kernel Architectures, pages

223-241. Seattle, WA, April 1992.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiucxynski,

D. Becker, S. Eggers, and C. Chambers. Extensibility, safety and per-

formance in the Spin operating system. In 15th ACMSymposium on

Operating System Principles (SOSP), pages 267-284, Copper Moun-

tain Resort, CO, December 1995.

A. B. Brown and M. I. Seltzer. Operating system benchmarking in

the wake of lmbench: A case study of the performance of NetBSD on

the Intel x86 architecture. In ACMSIGMETRICS Conference on Mea-

surement and Modeling of Computer @terns, pages 214-224, Seattle,

WA, June 1997.

M. E. Chastain. Linux kernel change summaries. URLz

ftp://ftp.shout.net/pub/users/mec/kcs/.

J. B. Chen and B. N. Bershad. The impact of operating system struc-

ture on memory system performance. In 14th ACM Symposium on

Operating System Principles (SOSP), pages 120-133, Asheville, NC,

December 1993.

M. Condict, D. Bolinger, E. McManus, D. Mitchell, and S. Lewontin.

Microkemel modularity with integrated kernel performance. Techni-

cal report, OSF Research Institute, Cambridge, MA, April 1994.

E B. des Places, N. Stephen, and F. D. Reynolds. Linux on the

OSF Mach3 microkemel. In Conference on Freely Distributable Soft-

ware, Boston, MA, February 1996. Free Software Foundation, 59

Temple Place, Suite 330, Boston, MA 02111. Available from URLz

http://uuw.gr.osf.org/‘stephen/fsf96.ps.

Digital Equipment Corp., Maynard, Massachusetts. Alpha 21164 Mi-

croprocessor Hardware Reference Manual, July 96.

D. Engler, M. F. Kaashoek, and J O’Toole. Exokemel, an operat-

ing system architecture for application-level resource management In

15th ACMSymposium on Operating System Principles (SOSP), pages

251-266, Copper Mountain Resort, CO, December 1995.

D. Golub, R. Dean, A. Forin, and R Rashid. Unix as an application

program. In USENLK I990Summer Conference, pages 87-95, June

1990.

G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke.

Implementation and performance of the Mungi single-address-space

operating system. UNSW-CSE-TR 9704, University of New South

Wales, School of Computer Science, Sydney 2052, Australia, June

1997.

Johannes Helander. Unix under Mach: The Lites server. Master’s

thesis, Helsinki University of Technology, 1994. Available from:

http://nmf.cs.hut.fi/‘jvh/lites.MASTERS.ps.

D. Hildebmnd. An architectural overview of QNX. In 1st CJSENZX

Workshop on Micro-kernels and Other Kernel Architecturfl, pages

113-126, Seattle, WA, April 1992.

M. Hohmuth. Linw Architecture-Spec@ Kernel Interfaces. TU

Dresden, March 1996. Available from URLz http: //wuw . inf . tu-

dresden.de/‘rahl~prj/linux-on-14/.

WI

WI

PI

P11

WI

1231

v41

[251

WI

t271

WI

WI

[301

[311

t321

[331

[341

[351

t361

M. F. Kaashoek, D. R Engler, G. R Ganger, H. Briceno, R Hunt,

D. Mazieres, T. Pinckney, R Grimm, and T. Pinclmey. Application

performance and flexibility on exokemel systems. In 16th ACM Sym-

posium on Operating System Principles (SOSP), Saint-Malo, France,

October 1997.

A. I. Karshmer and J. N. Thomas. Are operating systems at RISC?

Lecture Notes in Computer Science, 563:48, 199 1.

J. Liedtke. Clans &chiefs. In 12. GI’ITG-Fachtagung Architehtur von

Recheqvstemen, pages 294-305, Kiel, March 1992. Springer.

J. Liedtke. Improving IPC by kernel design. In 14th ACMSymposium

on Operating System Principles (SOSP);pages 175-188, Asheville,

NC, December 1993.

J. Liedtke. On,u-kernel construction. In 15th ACMSymposium on Op-

erating System Principles (SOSP), pages 237-250, Copper Mountain

Resort, CO, December 1995.

J. Liedtke. I.4 reference manual (486, Pentium, PPro). Ar-

beitspapiere der GMD No. 1021, GMD - German National Re-

search Center for Information Technology, Sankt Augustin, Septem-

ber 1996. Also Research Report RC 20549, IBM T. J. Watson Re-

search Center, Yorktown Heights, NY, Sep 1996; available from URL:

ftp://borneo.gnrd.de/pub/rs/I.4/14refxg6.ps.

J. Liedtke. Toward real p-kernels. Communications of the ACM,

39(9):70-77, September 1996.

J. Liedtke, K. Elphiitone, S. Schonberg, H. Hartig, G. Heiser, N. Is-

lam, and T. Jaeger. Achieved IPC performance (still the foundation for

extensibility). In 6th Wor,khop on Hot Topics in Operating Systems

(HotOS), pages 28-31, Chatham (Cape Cod), MA, May 1997.

J. Liedtke, H. H%tig, and M. Hohmuth. Predictable caches in real-

time systems. In Third IEEE Real-time Technology and Applications

Symposium (RTAS), pages 213-223, Montreal, Canada, June 1997.

Linux website. URL: http : //WV. linnx . org.

R A. Mayer and L. H. Seawright. A virtual machine time sharing

system. IBMSystems Journal, 9(3):199-218, 1970.

L. McVoy and C. Staelin. hnbench: Portable tools for performance

analysis. In USENLYAnnual Technical Conference, pages 279-294,

1996.

D. Mosberger and L.L. Peterson. Making paths explicit in the Scout

operating system. In 2nd USENLYSymposium on Operating Systems

Design ond Implementation (OSDI), pages 153-167, Seattle, WA, OC-

tober 1996.

C. Pu, T Autrey, A. Black, C. Consel, C. Cowan, J. Inouye,

L. Kethana, J. Walpole, and K. Zhang. Optimistic incremental special-

ization: Streamlining a commercial operating system. In 15th ACM

Symposium on Operating System Principles (SOSP), pages 3 14-324,

Copper Mountain Resort, CO, December 1995.

M. Rozier, A. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guille-

mont, F. Herrmann, C. Kaiser, S. Langlois, P. Leonard, and

W. Neuhauser. CHORUS distributed operating system. Computing

Systems, 1(4):305-370, 1988.

S. Schonberg. L4 on Alpha, design and implementation. Technical

Report CS-TR-407, University of Cambridge, 1996.

M.I. Seltzer, Y. Endo, C. Small, and K.A. Smith. Dealing with disas-

ter: Surviving misbehaved kernel extensions. In 2nd USENIXSympo-

sium on Operating Systems Design and Implementation (OSDB, pages

213-227, Seattle, WA, October 1996.

J. Shapiro, D. Farber, and J. M. Smith. The measured performance of

B fast local ipc. In 5th International Worlrshop on Object Orientation

in Operating Systems (IWOOOS), pages 89-94, Seattle, WA, October

1996.

D. A. Wallach. High Performance Application-Specgc Nehvorking.

PhD thesis, MIT Laboratory, Jan&y 1997.

77

