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Abstract 

First-generation p-kernels have a reputation for being too slow 

and lacking sufficient flexibility. To determine whether LA, a 
lean second-generation p-kernel, has overcome these limitations, 

we have repeated several earlier experiments and conducted some 

novel ones. Moreover, we ported the Linux operating system to 

run on top of the L4 p-kernel and compared the resulting system 

with both Linux running native, and MkLinux, a Linux version that 

executes on top of a first-generation Mach-derived p-kernel. 

For L4Linux, the AIM benchmarks report a maximum through- 

put which is only 5% lower than that of native Linux. The corre- 

sponding penalty is 5 times higher for a co-located in-kernel ver- 

sion of MkLinux, and 7 times higher for a user-level version of 

MkLinux. These numbers demonstrate both that it is possible to 

implement a high-performance conventional operating system per- 

sonality above a p-kernel, and that the performance of the p-kernel 

is crucial to achieve this. 

Further experiments illustrate that the resulting system is highly 

extensible and that the extensions perform well. Even real-time 

memory management including second-level cache allocation can 

be implemented at user-level, coexisting with L4Linux. 

1 Introduction 

The operating systems research community has almost completely 

abandoned research on system architectures that are based on pure 

p-kernels, i. e. kernels that provide only address spaces, threads and 

IPC, or an equivalent set of primitives. This trend is due primarily 

to the poor performance exhibited by such systems constructed in 

the 1980’s and early 1990’s. This reputation has not changed even 
with the advent of faster p-kernels; perhaps because these p-kernel 

have for the most part only been evaluated using microbenchmarks. 
Many people in the OS research community have adopted the 

hypothesis that the layer of abstraction provided by pure p-kernels 

is either too low or too high. The “too low” faction concentrated 
on the extensible-kernel idea. Mechanisms were introduced to add 

functionality to kernels and their address spaces, either pragmat- 
ically (co-location in Chorus or Mach) or systematically. Vari- 

ous means were invented to protect kernels from misbehaving ex- 

tensions, ranging from the use of safe languages [S] to expensive 

transaction-like schemes [34]. The “too high” faction started build- 

ing kernels resembling a hardware architecture at their interface 
I 
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[12]. Software abstractions have to be built on top of that. It is 

claimed that ,u-kernels can be fast on a given architecture but can- 

not be moved to other architectures without losing much of their 

efficiency [19]. 
In contrast, we investigate the pure p-kernel approach by system- 

atically repeating earlier experiments and conducting some novel 

experiments using L.4, a second-generation /c-kernel. (Most first- 

generation p-kernels like Chorus [32] and Mach [ 131 evolved from 

earlier monolithic kernel approaches; second-generation II-kernels 

like QNX [16] and L.4 more rigorously aim at minimality and arc 

designed from scratch [24].) 

The goal of this work is to show that p-kernel based systems are 

usable in practice with good performance. L4 is a lean kernel fea- 

turing fast message-based synchronous IPC, a simple-to-use exter- 

nal paging mechanism and a security mechanism based on secure 

domains. The kernel implements only a minimal set of abstractions 

upon which operating systems can be built [22]. The following CX- 

periments were performed: 

A monolithic Unix kernel, Linux, was adapted to run as a 

user-level single server on top of L4. This makes L4 usable in 

practice, and gives us some evidence (at least an upper bound) 

on the penalty of using a standard OS personality on top of 

a fast p-kernel. The performance of the resulting system is 

compared to the native Linux implementation and MkLinux, 

a port of Linux to a Mach 3.0 derived ,&kernel [lo], 

Furthermore, comparing L4Linux and MkLinux gives US some 

insight in how the p-kernel efficiency influences the overall 

system performance. 

The objective of three fhrther experiments was to show the 

extensibility of the system and to evaluate the achievable pcr- 

formance. Firstly, pipe-based local communication was im- 

plemented directly on the ,u-kernel and compared to the native 
Linux implementation. Secondly, some mappidg-related OS 

extensions (also presented in the recent literature on cxtcnsi- 

ble kernels) have been implemented as user-level tasks on L4. 

Thirdly, the first part of a user-level real-time memo 
7 

man- 

agement system was implemented. Coexisting with L Linux, 

the system controls second-level cache allocation to improve 

the worst-case performance of real-time applications. 

To check whether the’L.4 abstractions are reasonably indc- 

pendent of the Pentium platform L4 was originally designed 

for, the p-kernel was reimplemented from scratch on an Alpha 

21164, preserving the original L4 interface. 

Starting from the IPC implementation in L4/Alpha, we also 

implemented a lower-level communication primitive, simi- 

lar to Exokemel’s protected control transfer [ 121, to find out 

whether and to what extent the L4 IPC abstraction can be out- 

performed by a lower-level primitive. 

After a short overview of L4 in Section 3, Section 4 explains 

the design and implementation of our Linux server. Section 5 then 
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presents and analyzes the system’s performance for pure Linux 
applications, based on microbenchmarks as well as macrobench- 

marks. Section 6 shows the extensibility advantages of implement- 

ing Linux above a p-kernel. In particular, we show (1) how perfor- 

mance can be improved by implementing some Unix services and 

variants of them directly above the L4 p-kernel, (2) how additional 

services can be provided efficiently to the application, and (3) how 

whole new classes of applications (e.g. real time) can be supported 

concurrently with general-purpose Unix applications. Finally, Sec- 

tion 7 discusses alternative basic concepts from a performance point 

of view. 

2 Related Work 

Most of this paper repeats experiments described by Bet-shad et 

al. [5], des Places, Stephen & Reynolds [lo], and Engler, Kaashoek 

& O’Toole [ 121 to explore the influence of a second-generation p 

kernel on user-level application performance. Kaashoek et al. de- 

scribe in [IS] how to build a Unix-compatible operating system on 

top of a small kernel. We concentrate on the problem of porting an 

existing monolithic operating system to a p-kernel. 

A large bunch of evaluation work exists which addresses how 

certain application or system iimctionality, e.g. a protocol imple- 

mentation, can be accelerated using system specialization [31], ex- 

tensible kernels [5, 12,341, layered path organisation [30], etc. Two 

alternatives to the pure ,n-kernel approach, grafting and the Exoker- 

nel idea, are discussed in more detail in Section 7. 

Most of the performance evaluation results published else- 

where deal with parts of the Unix fnnctionality. An analysis of 

two complete Unix-like OS implementations regarding memory- 

architecture-based influences, is described in [8]. Currently, we 

do not know of any other full Unix implementation on a second- 

generation p-kernel. And we know of no other recent end-to- 

end performance evaluation of p-kernel-based OS personalities. 

We found no substantiation for the “common knowledge” that 

early Mach 3.0-based Unix single-server implementations achieved 

a performance penalty of only 10% compared to bare Unix on the 
same hardware. For newer hardware, [9] reports penalties of about 

50%. 

3 L4 Essentials 

The L4 Cc-kernel [22] is based on two basic concepts, threads and 

address spaces. A thread is an activity executing inside an ad- 

dress space. Cross-address-space communication, also called inter- 

process communication (IPC), is one of the most fundamental p- 

kernel mechanisms. Other forms of communication, such as remote 

procedure call @PC) and controlled thread migration between ad- 

dress spaces, can be constructed from the IPC primitive. 

A basic idea’of L4 is to support recursive construction of ad- 

dress space.s by user-level servers outside the kernel. The initial 

address space o,, essentially represents the physical memory. Fur- 

ther address spaces can be constructed by granting, mapping and 

rrrnnupping flexpages, logical pages of size 2”, ranging from one 

physical page up to a complete address space. The owner of an 

address space can grant or map any of its pages to another address 

space, provided the recipient agrees. Afterwards, the page can be 

accessed in both address spaces. The owner can also uncap any 

of its pages from all other address spaces that received the page di- 

rectly or indirectly from the unmapper. The three basic operations 

are secure since they work on virtual pages, not on physical page 

frames. So the invoker can only map and unmap pages that have 

already been mapped into its own address space. 

All address spaces are thus constructed and maintained by user- 

level servers, also calledpagers; only the grant, map and unmap op- 

erations are implemented inside the kernel. Whenever a page fault 

occurs, the ,o-kernel propagates it via IPC to the pager currently as- 

sociated with the faulting thread. The threads can dynamically as- 

sociate individual pagers with themselves. This operation specifies 

to which user-level pager the p-kernel should send the page-fault 

IPC. The semantics of a page fault is completely defined by the in- 

teraction of user thread and pager. Since the bottom-level pagers 

in the resulting address-space hierarchy are in fact main-memory 

managers, this scheme enables a variety of memory-management 

policies to be implemented on top of the p-kernel. 

I/O ports are treated as parts of address spaces so that they can 

be mapped and unmapped in the same manner as memory pages. 

Hardware interrupts are handled as IPC. The p-kernel transforms 

an incoming interrupt into a message to the associated thread. This 

is the basis for implementing all device drivers as user-level servers 

outside the kernel. 

In contrast to interrupts, exceptions and traps are synchronous to 

the raising thread. The kernel simply mirrors them to the user level. 

On the Pentium processor, L4 multiplexes the processor’s exception 

handling mechanism per thread: an exception pushes instruction 

pointer and flags on the thread’s user-level stack and invokes the 

thread’s (user-level) exception or trap handler. 

A Pentium-specific feature of L4 is the small-address-space opti- 

mization. Whenever the currently-used portion of an address space 

is “small”, 4 MB up to 5 12 MB, this logical space can be physically 

shared through all page tables and protected by Pentium’s segment 

mechanism. As described in [22], this simulates a tagged TLB for 

context switching to and f?om small address spaces. Since the vir- 

tual address space is limited, the total size of all small spaces is also 

limited to 512hIB by default. The described mechanism is solely 

used for optimization and does not change the functionality of the 

system. As soon as a thread accesses data outside its current small 

space, the kernel automatically switches it back to the normal 3 GB 

space model. Within a single task, some threads might use the nor- 

mal large space while others operate on the corresponding small 

space. 

Pentium -Alpha - MlPS 

Originally developed for the 486 and Pentium architecture, ex- 

perimental L.4 implementations now exist for Digital’s Alpha 

21164 [33] and MIPS R4600 [14]. Both new implementations 

were designed from scratch. L4/Pentium, LA/Alpha and L4/MIPS 

are different p-kernels with the same logical API. However, the 

p-kernel-internal algorithms and the binary API (use of registers, 

word and address size, encoding of the kernel call) are processor de- 

pendent and optimized for each processor. Compiler and libraries 

hide the binary API differences from the user. The most relevant 

user-visible difference probably is that the Pentium p-kernel runs 

in 32-bit mode whereas the other two are 64-bit-mode kernels and 

therefore support larger address spaces. 

The LNAlpha implementation is based on a complete replace- 

ment of Digital’s original PALcode [1 11. Short, time-critical op- 

erations are hand-tuned and completely performed in PALcode. 

Longer, interruptible operations enter PALcode, switch to kernel 

mode and leave PALcode to perform the remainder of the operation 

using standard machine instructions. A comparison of IPC perfor- 

mance of the three L4 p-kernels can be found in [25]. 

4 Linux on Top of L4 

Many classical systems emulate Unix on top of a p-kernel. For 

example, monolithic Unix kernels were ported to Mach [ 13,151 and 

Chorus [4]. Very recently, a single-server experiment was repeated 

with Linux and newer, optimized versions of Mach [lo]. 
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To add a standard OS personality to LA, we decided to port 

Linux. Linux is stable, performs well, and is on the way to be- 

coming a de-facto standard in the freeware world. Our goal was a 

lOO%-Linux-compatible system that could offer all the features and 

flexibility of the underlying p-kernel. 

To keep the porting effort low, we decided to forego any struc- 

tural changes to the Linux kernel. In particular, we felt that it was 

beyond our means to tune Linux to our p-kernel in the way the Mach 

team tuned their single-server Unix to the features of Mach. As a 

result, the performance measurements shown can be considered a 

baseline comparison level for the performance that can be achieved 

with more significant optimizations. A positive implication of this 

design decision is that new versions of Linux can be easily adapted 

to our system. 

4.1 Linux Essentials 

Although originally developed for x86 processors, the Linux ker- 

nel has been ported to several other architectures, including Alpha, 

M68k and SPARC [27]. Recent versions contain a relatively well- 

defined interface between architecture-dependent and independent 

parts of the kernel [ 171. All interfaces described in this paper cor- 
respond to Linux version 2.0. 

Linux’ architecture-independent part includes process and re- 

source management, file systems, networking subsystems and all 

device drivers. Altogether, these are about 98% of the Linw/x86 

source distribution of kernel and device drivers. Although the de- 

vice drivers belong to the architecture-independent part, many of 

them are of course hardware dependent. Nevertheless, provided 

the hardware is similar enough, they can be used in different Linux 

adaptions. 

Except perhaps exchanging the device drivers, porting Linux 

to a new platform should only entail changes to the architecture- 

dependent part of the system. This part completely encapsulates the 

underlying hardware architecture. It provides support for interrupt- 

service routines, low-level device driver support (e.g., for DMA), 

and methods for interaction with user processes. It also imple- 

ments switching between Linux kernel contexts, copyinlcopyout for 

transferring data between kernel and user address spaces, signaling, 

mapping/unmapping mechanisms for constructing address spaces, 

and the Linux system-call mechanism. From the user’s perspective, 

it defines the kernel’s application binary interface. 

For managing address spaces, Linux uses a three-level archi- 

tecture-independent page table scheme. By defining macros, the 

architecture-dependent part maps it to the underlying low-level 

mechanisms such as hardware page tables or software TLB han- 

dlers. 

Intermpt handlers in Linux are subdivided into top halves and 

bottom halves. Top halves run at the highest priority, are directly 

triggered by hardware interrupts and can interrupt each other. Bot- 

tom halves run at the next lower priority. A bottom-half handler can 

be interrupted by top halves but not by other bottom halves or the 

Linux kernel. 

4.2 L4Linux- Design and Implementation 

We chose to be fully binary compliant with Linux/x86. Our test for 

compatibility was that any off-the-shelf software for Linux should 

run on L!Linux. Therefore, we used all application-binary-interface 

definition header files unmodified from the native Linux/x86 ver- 

sion. 

In keeping with our decision to minimize L4-specific changes 

to Linux, we restricted all our modifications to the architecture- 

dependent part. Also, we restricted ourselves from making any 

Linux-specific modifications to the L4 p-kernel. Porting Linux was 

therefore also an experiment checking whether performance can be 

achieved without significant p-kernel-directed optimizations in the 

Linux kernel, and whether the L4 interface is truly general and flex- 

ible. 

Under the constraints mentioned above, the natural solution is 

the straightforward single-server approach, similar to [ 131: /f-kernel 

tasks are used for Linux user processes and provide Linux services 

via a single Linux server in a separate p-kernel task. This is indeed 

how we began our port. 

The Linux Server (“Linux Kernel”). Native Linux maps 

physical memory one-to-one to the the kernel’s address space. We 

used the same scheme for the L4Linux server. Upon booting, the 

Linux server requests memory from its underlying pager. Usually, 

this is 00, which maps the physical memory that is available for the 

Linus personality one-to-one into the Linux server’s address space 

(see Figure 1). The server then acts as a pager for the user processes 

it creates. 

tttttttttttttt 
initial space o,, Qhysical memory) 

Figure 1: L4LinuxAddress Spaces. Arrows denote mapping. The Linux 

server space can be a subset of 00. Although plotted as smaller boxes, the 

user address spaces can be larger than the server’s address space. 

For security reasons, the true hardware page tables are kept in- 

side L4 and cannot be directly accessed by user-level processes. AS 

a consequence, the Linux server has to keep and maintain additional 
logical page tabIes in its own address space. For the sake of simplic- 

ity, we use the original Pentium-adapted page tables in the server 

unmodified as logical page tables. Compared to native Linux, this 

doubles the memory consumption by page tables. Although current 

memory pricing lets us ignore the additional memory costs, double 

bookkeeping could decrease speed. However, the benchmarks in 

Section 5 suggest that this is not a problem. 

Only a single L4 thread is used in the L4Linux server for handling 

all activities induced by system calls and page faults. Linux mul- 

tiplexes this thread to avoid blocking in the kernel. Multithrcading 

at the L4 level might have been more elegant and faster. However, 

it would have implied a substantial change to the original Linux 

kernel and was thus rejected. 

The native uniprocessor Linux kernel uses interrupt disabling for 

synchronization and critical sections. Since L4 also permits privi- 

leged user-level tasks, e.g. drivers, to disable interrupts, WC could 

use the existing implementation without modification. 

Interrupt Handling and Device Drivers. The L4 ,u-kernel 

maps hardware interrupts to messages (Figure 2). The Linux top- 

half intexmpt handlers are implemented as threads waiting for such 

messages, one thread per interrupt source: 

interrupt handler thread: 

d0 

wait for interrupt { L4-IPC } ; 

top half interrupt handler () 

od . 
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Another thread executes all bottom halves once the pending top 

halves have been completed. Executing the interrupt threads and 

the bottom-half thread on a priority level above that of the Linux 

server thread avoids concurrent execution of interrupt handlers and 

the Linux server, exactly as on native uniprocessor Linux. 

Linux Server 

ma,” 
0 

*----“r-” Y?!F e-“-----L 
0 

interrupt 

thread d- - - - bottom half thread * - - - - threads 

.*..--- . . . . . -, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
! Device 

*: ,“tempt 
; 

.J send 
y-.--,---...i messge 

‘. . . .”  . . . . . . . . *  
c .“ ...”  “ “ ..“ -f  

Figure 2: Interrupt handling in L4Linux. 

Since the I-4 platform is nearly identical to a bare Pentium archi- 

tecture platform, we reused most of the device driver support from 

Linux/x86. As a result, we are able to employ all Linux/x86 device 

drivers without modification. 

Llnux User Processes. Each Linus user process is imple- 

mented as an I-4 task, i.e. an address space together with a set of 

threads executing in this space. The Linux server creates these tasks 

and specifies itself as their associated pager. L4 then converts any 

Linux user-process page fault into an RPC to the Linux server. The 

server usually replies by mapping and/or unmapping one or more 

pages of its address space to/from the Linus user process. Thereby, 

it completeIy controls the Linux user spaces. 

In particular, the Linux server maps the emulation library and the 

signal thread code (both described in the following paragraphs) into 

an otherwise unused high-address part of each user address space. 

In accordance with our decision to keep Linux changes mini- 

mal, the “‘emulation” library handles only communication with the 

Linux server and does not emulate Unix functionality on its own. 

For example, a getpid or read system call is always issued to the 

server and never handled locally. 

System-Call Mechanisms. L4Linux system calls are imple- 

mented using remote procedure calls, i. e. IPCs between the user 

processes and the Linux server. There are three concurrently usable 

system-call interfaces: 

1. a modified version of the standard shared C library libc . so 

which uses L4 IPC primitives to call the Linux server; 

2. a correspondingly modified version of the libc. a library; 

3. a user-level exception handler (“trampoline”) which emulates 

the native system-call trap instruction by calling a correspond- 

ing routine in the modified shared library. 

The first two mechanisms are slightly faster, and the third one estab- 

lishes true binary compatibility. Applications that are linked against 

the shared library automatically obtain the performance advantages 

of the first mechanism. Applications statically linked against an 

unmodified libc suffer the performance degradation of the latter 

mechanism, All mechanisms can be arbitrarily mixed in any Linux 

process. 

Most of the available Linux software is dynamically linked 

against the shared library; many remaining programs can be stat- 

ically relinked against our modified libc. a. We consider therefore 

the trampoline mechanism to be necessary for binary compatibility 

but of secondary importance from a performance point of view. 

As required by the architecture-independent part of Linux, the 

server maps all available physical memory one-to-one into its own 

address space. Except for a small area used for kernel-internal vir- 

tual memory, the server’s virtual address space is otherwise empty, 

Therefore, all Linux server threads execute in a small address 

spaces which enables improved address-space switching by simu- 

lating a tagged TLB on the Pentium processor. This affects all IPCs 

with the Linux server: Linux system calls, page faults and hardware 

intermpts. Avoiding TLB flushes improves IPC performance by at 

least a factor of 2; factors up to 6 are possible for user processes 

with large TLB working sets. 

The native Linux/x86 kernel always maps the current user ad- 

dress space into the kernel space. Copyin and copyout are done by 

simple memory copy operations where the required address trans- 

lation is done by hardware. Surprisingly, this solution turned out to 

have bad performance implications under L4 (see Section 4.3). 

Instead, the L4Linux server uses physical copyin and copyout to 

exchange data between kernel and user processes. For each copy 

operation, it parses the server-internal logical page tables to trans- 

late virtual user addresses into the corresponding “physical” ad- 

dresses in the server’s address space, and then performs the copy 

operation using the physical addresses. 

Signaling. The native Linux kernel delivers signals to user pro- 

cesses by directly manipulating their stack, stack pointer and in- 

struction pointer. For security reasons, L4 restricts such inter-thread 

manipulations to threads sharing the same address space. There- 

fore, an additional signal-handler thread was added to each Linux 

user process (see Figure 3). Upon receiving a message from the 

Linux server, the signal thread causes the main thread (which runs 

in the same address space) to save its state and enter Linux by ma- 

nipulating the main thread’s stack pointer and instruction pointer. 

Linux User Process 

1 

I I 

Figure 3: Signal delivery in L4Linu.x. Arrows denote IPC. Numbers in 

parentheses indicate the sequence of actions. 

The signal thread and the emulation library are not protected 

against the main thread. However, the user process can only dam- 

age itself by modifying them. Global effects of signaling, e.g. 

killing a process, are implemented by the Linux server. The sig- 

nal thread only notifies the user process. 

Scheduling. All threads mentioned above are scheduled by the 

L.4 p-kernel’s internal scheduler. This leaves the traditional Linux 

schedule 0 operation with little work to do. It only multiplexes 

the single Linux server thread across the multiple coroutines result- 

ing from concurrent Linux system calls. 

Whenever a system call completes and the server’s reschedule 

flag is not set (meaning there is no urgent need to switch to a dif- 

ferent kernel coroutine, or there is nothing to do in the kernel), the 

server resumes the corresponding user thread and then sleeps wait- 

ing for a new system-call message or a wakeup message from one 

of the intermpt handling threads. 

This behaviour resembles the original Linux scheduling strategy. 

By deferring the call to schedule (> until a process’ time slice is 
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exhausted instead of calling it immediately as soon as a kernel activ- 
ity becomes ready, this approach minimizes the number of corou- 

tine switches in the server and gives user processes the chance to 

make several system calls per time slice without blocking. 

However, there can be many concurrently executing user pro- 

cesses, and the actual multiplexing of user threads to the proces- 

sor is controlled by the L4 p-kernel and mostly beyond the control 

of the Linux server. Native L4 uses hard priorities with round- 

robin scheduling per priority. User-level schedulers can dynami- 

cally change priority and time slice of any thread. The current ver- 

sion of L4Linux uses 10 ms time slices and only 4 of 256 priorities, 

in decreasing order: interrupt top-half, interrupt bottom-half, Linux 

kernel, Linux user process. As a result, Linux processes are cur- 

rently scheduled round robin without priority decay. Experiments 

using more sophisticated user-level schedulers are planned, includ- 

ing one for the classical Unix strategy. 

Supporting Tagged TLBs or Small Spaces. TLBs are be- 

coming larger in order to hide the increasing costs of misses relative 

to processor speed. Depending on the TLB size, flushing a TLB 

upon address-space switch induces high miss costs for reestablish- 

ing the TLB working set when switching back to the original ad- 

dress space. Tagged TLBs, currently offered by many processors, 

form the architectural basis to avoid unnecessary TLB flushes. For 

the Pentium processor, small address spaces offer a possibility to 

emulate TLB tagging. However, frequent context switches-in the 

near future, we expect time slices in the order of 10 p - can also 

lead to TLB conflicts having effects comparable to flushes. Two 

typical problems: (1) due to extensive use of huge libraries, the 

‘hello-world’ program compiled and linked in the Linux standard 

fashion has a total size of 800 KB and needs 32 TLB entries to ex- 

ecute; (2) identical virtual allocation of code and data in all address 

spaces maximizes TLB conflicts between independent applications. 

In many cases, the overall effect might be negligible. However 

some applications, e.g., a predictable multi-media file system or 

active routing, might suffer significantly. 

Constructing small, compact, application-dependent address- 

space layouts can help to avoid the mentioned conllicts. For this 

reason, PLinux offers a special library permitting the customiza- 

tion of the code and data used for communicating with the L?Linux 

server. In particular, the emulation library and the signal thread can 

be mapped close to the application instead of always mapping to 

the default high address-space region. By using this library, spe- 

cial servers can be built that can execute in small address spaces, 
avoiding systematic allocation conflicts with standard Linux pro- 

cesses, while nevertheless using Linux system calls. Examples of 

such servers are the pagers used for implementing the memory op- 

erations described in Section 6.2. 

4.3 The Dual-Space Mistake 

In the engineering sciences, learning about mistakes and dead ends 

in design is as important as telling success stories. Therefore, this 

section describes a major design mistake we made in an early ver- 

sion of L4Linux. 

For each Linux process, native Linux/x86 creates a 4 GB address 

space containing both the user space and the kernel space. This 

makes it very simple for the Linux kernel to access user data: ad- 

dress translation and page-fault signaling are done automatically by 

the hardware. We tried to imitate this approach by also mapping the 

current process’ user address space into the Linux server’s address 

space (Figure 4). The implementation using a user-level pager was 

simple. However, we could not map multiple 2.5 GB Linux-process 

spaces simultaneously into the server’s 3 GB address space. Either 

the user-space mapping had to be changed on each Linux context 

switch . or the server space had to be replicated. Since the first 

method was considered too expensive, we ended up creating one 

server address space per Linux process. Code and data of the server 

were shared through all server spaces. However, the server spnces 

differed in their upper regions which had mapped the respective 

Linux user space. 

I 
L4 address space of Llnux user process 

I I 

L timixpmcess space 

I 
--__ --w_ 

---__- --w_ -_ 

Linuxprocess space 

L4 address space of Llnux server 

Figure 4: Copyin/out using hardware address translation in an 

early version of L4Linux. Arrows denote memory read/write operations, 

Replicating the server space, unfortunately, also required rcpli- 

eating the server thread. To preserve the single-server semnntics 

required by the uniprocessor version of Linux, we thus had to add 

synchronization to the Linux kernel. Synchronization required ad- 

ditional cycles and turned out to be nontrivial and error-prone. 

Even worse, 3GB Linux-server spaces made it impossible to 

use the small-space optimization emulating tagged TLBs. Since 

switching between user and server therefore always required a TLB 

flush, the Linux server had to re-establish its TLB working set for 

every system call or page fault. Correspondingly, the user process 

was penalized by reloading its TLB working set upon return from 

the Linux server. 

We discarded this dual-space approach because it was compli- 
cated and not very efficient; getpid took 18 ,us instead of 4 11% 

Instead, we decided to use the single-space approach described in 

Section 4.2: only one address space per Linux user process is rc- 

quired and the server space is not replicated. However, virtual ad- 

dresses have to be translated by software to physical addresses for 

any copyin and copyout operation. 

Ironically, analytical reasoning could have shown us prior to im- 

plementation that the dual-space approach cannot outperform the 

single-space approach: a hardware TLB miss on the Pentium costs 
about 25 cycles when the page-table entries hit in the second-level 

cache because the Pentium Mh4U does not load page-table entries 

into the primary cache. On the same processor, translating a virtual 

address by software takes between 11 and 30 cycles, depending on 
whether the logical page-table entries hit in the first-level or in tho 

second-level cache. In general, hardware translation is nevertheless 

significantly faster because the TLB caches translntions for later 

reuse. However, the dual-space approach systematically made this 

reuse for the next system call impossible: due to the large server ad- 

dress space, the TLB was flushed every time the Linux-server WGS 

called. 

4.4 The Resulting L4Linux Adaption 

Table 1 compares the source code size of the L4Linux adaption 

with the size of the native Linux/x86 adaption and the Linux ker- 

nel. Comment lines and blank lines are not counted. 2000 lines of 

the original x86-dependent part could be reused unchanged for the 

L4 adaption; 6500 new lines of code had to be written, Starting 

from L4 and Linux, it took about 14 engineer months to build the 

L4Linux system, to stabilize it and to prepare the results presented 

in this paper. 

We appear to have been successful in our effort of achieving full 
Linux binary compatibility. We have used the system as a dcvelop- 

ment environment and regularly use such applications as the X Win- 

dow system, Emacs, Netscape and X-Pilot. PLinux appeas to bo 
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architecture 
dependent 
part 

Linux kernel 

drivers 

lines of C code 

Linuxlx86 L4Linux 

2,500 6,500 

2,000 E 2,000 

4,500 8,500 

105,000 

232,700 

Table 1: Source-code lines for LittuxLx86 and L4Linux. 

stable, and, as we’ll show, can run such extreme stress test as the 

AIM benchmark [2] to completion. 

5 Compatibility Performance 

In this section, we discuss the performance of L4Linux from the 

perspective of pure Linux applications. The conservative criterion 

for accepting a ,u-kernel architecture is that existing applications are 

not significantly penalized. So our first question is 

l What is the penalty of using PLinux instead of native Linux? 

To answer it, we ran identical benchmarks on native Linux and on 

L4Linux using the same hardware. Our second question is 

l Does the performance of the underlying p-kernel matter? 

To answer it, we compare L4Linux to MkLinux [lo], an OSF-de- 

veloped port of Linux running on the OSF Mach 3.0 p-kernel. Mk- 

Linux and L4Linux differ basically in the architecture-dependent 

part, except that the authors of MkLinux slightly modified Linux’ 

architecture-independent memory system to get better performance 

on Mach. Therefore, we assume that performance differences are 

mostly due to the underlying p-kernel. 

First, we compare I!Linux (which always runs in user mode) to 

the MkLinux variant that also runs in user mode. Mach is known 

for slow user-to-user IPC and expensive user-level page-fault han- 

dling [S, 211. So benchmarks should report a distinct difference 

between L4Linux and MkLinux if the p-kernel efficiency influences 

the whole system significantly. 

A faster version of MkLinux uses a co-located server run- 

ning in kernel mode and executing inside the p-kernel’s address 

space. Similar to Chorus’ supervisor tasks [32], co-located (in- 

kernel) servers communicate much more efficiently with each other 

and with the p-kernel than user-mode servers do. However, in 

order to improve performance, co-location violates the address- 

space boundaries of a p-kernel system, which weakens security and 

safety. So our third question is 

l How much does co-location improve performance? 

This question is evaluated by comparing user-mode L4Linnx to the 

in-kernel version of MkLinux. 

5.1 Measurement Methodology 

To obtain comparable and reproducible performance results, the 

same hardware was used throughout all measurements, including 

those of Section 6: a 133-MHz Pentium PC based on an ASUS 

P55TP4N motherboard using Intel’s 430FX chipset, equipped with 

a 256 KB pipeline-burst second-level cache and 64 MB of60 ns Fast 

Page Mode RAM. 

We used version 2 of the L.4 p-kernel. 

L?Linux is based on Linux version 2.0.21, h&Linux on version 

2.0.28. According to the ‘Linux kernel change summaries’ [7], only 
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performance-neutral bug fixes were added to 2.0.28, mostly in de- 
vice drivers. We consider both versions comparable. 

Microbenchmarks are used to analyze the detailed behaviour 

of L4Linux mechanisms while macrobenchmarks measure the sys- 

tem’s overall performance. 

Different microbenchmarks give significantly different results 

when measuring operations which take only I to 5 p. Statisti- 

cal methods like calculating the standard deviation are mislead- 

ing: two benchmarks report inconsistent results and both calculate 

very small standard deviation and high confidence. The reason is 

that a deterministic system is being measured that does not behave 
stochastically. For fast operations, most measurement errors are 

systematic. Some reasons are cache conflicts between measurement 

code and the system to be measured or miscalculation of the mea- 

surement overhead. We therefore do not only report standard devi- 

ations but show different microbenchmarks. Their differences give 

an impression of the absolute error. Fortunately, most measured 

times are large enough to show only small relative deviations. For 

larger operations, the above mentioned systematic errors probably 

add up to a pseudo-stochastic behaviour. 

5.2 Microbenchmarks 

For measuring the system-call overhead, getpid, the shortest 

Linus system call, was examined. To measure its cost under ideal 

circumstances, it was repeatedly invoked in a tight loop. Table 2 

shows the consumed cycles and the time per invocation derived 

from the cycle numbers. The numbers were obtained using the cy- 

cle counter register of the Pentium processor. L4Linux needs ap- 

proximately 300 cycles more than native Linux. An additional 230 

cycles are required whenever the trampoline is used instead of the 

shared library. MkLinux shows 3.9 times (in-kernel) or 29 times 

(user mode) higher system-call costs than L4Linux using the shared 

library. Unfortunately, L4Linux still needs 2.4 times as many cycles 

as native Linux. 

System Time Cycles 

Linux 1.68,us 223 

L4Linux 3.95 p 526 

L4Linux (trampoline) 5.66 p 753 

MkL.inux in-kernel 15.41 ps 2050 

MkLinux user 110.6Op 14710 

Table 2: getpidsystem-callcosts on the dtrerent implementations. 
(133 MHz Pentium) 

Client 

enter emulation library 

send system call message 

receive reply 

Cycles Server 

20 

168 wait for message 

131 -LINUX- 

188 send reply 

leave emulation library 19 

526 

Figure 5: Cycles spentfor getpid in L4Lintu: (133MHz Pentium) 

Figure 5 shows a more detailed breakdown of the L4Linux over- 

head. Under native Linux, the basic architectural overhead for en- 

tering and leaving kernel mode is 82 cycles, the bare hardware 

costs. In L?Linux, it corresponds to two IPCs taking 356 cycles 

in total. After deducting the basic architectural overhead from the 
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8-proc context switch [/a~] 
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Figure 6: bnbench results, normalized to native Linus. These are presented as slowdowns: a shorter bar is a better result. [/a~] is a latency measurement, 

[by’] the inverse of a bandwidth one. Hardware is a 133 MHz Pentium. 

total system-call costs, 141 cycles remain for native Linux, 170 cy- 

cles for L4Limrx. The small difference of both values indicates that 

indeed IPC is the major cause-for additional costs in L4Linux. 

When removing the part called LINUX in Figure 5, the QLinux 

overhead code remains. It uses 45 cache lines, 9% of the first-level, 

cache, including the cache L4 needs for IPC. 

The bnbench [29] microbenchmark suite measures basic oper- 

ations like system calls, context switches, memory accesses, pipe 

operations, network operations, etc. by repeating the respective op- 

eration a large number of times. Imbench’s measuremenf methods 

have recently been criticized by Brown and Seltzer [6]. Theirim- 

proved hbench:OS microbenchmark suite covers a broader spec- 

trum of measurements and measures short operations more pre2 1 

cisely. Both benchmarks have basically been developed to com- 

pare different hardware from the OS perspective and therefore also 

include a variety of OS-independent benchmarks, in particular mea- 

suring the hardware memory system and the disk Since we always 

use the same hardware for our experiments, we present only the OS- 

dependent parts. The hardware-related measurements gave indeed 

the same results on all systems. 

Table 3 shows selected results of bnbench and hbench. It com- 

pares native Linux, L!Linux with and without trampoline, and both 

versions of MkLinux. Figure 6 plots the slowdown of L4Linux, co- 

located and user-mode MkLinux, normalized to native Linux. Both 

versions of MkLinux have a much higher penalty than L4Linux. 

Surprisingly, the effect of co-location is rather small compared to 
the effect of using LA. However, even the L?Linux penalties are not 

as low as we hoped. 

5.3 Macrobenchmarks 

In the first macrobenchmark experiment, we measured the time 

needed to recompile the Linux server (Figure 7). L4Linux was 6- 
7% slower than native Linux but lO-20% faster than both MkLinux 

versions. 

Figure 7: Real time for compiling the Linux Server (133 MHz Pen- 

tium) 

AIMMNlafed!aad 

Figure 8: AIMMultiuser Benchmark Suite VII. Real time per bench- 
mark run depending on AIM load units. (133 MHz Pentium) 

0 al 40 so m 100 140 

AIM &dated load 

Figure 9: AIM Multiuser Benchmark Suite VII. Jobs completed per 

minute depending on AIM load units. (133 MHz Pentium) 

A more systematic evaluation was done using the commercial 

AIM multiuser benchmark suite VII. It uses Load Mix Modeling to 
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Test Llnux L?LhmX 

libc. eo trampoline 

MkLInux 

in-kernel user 

Imhench Results 

write to /dev/null 

Null Process 

Simple Process 

lbinlsh Process 

Mmap Latency 

2-proc ctxsw 

8-proc ctxsw 

Pipe 

UDP 

RPUUDP 

TCP 

RPC/TCP 

Pipe 

2.00 (0%) 

973 (1%) 

7400 (1%) 

42412 (1%) 

52.20 (2%) 

7.00 (0%) 

12.40 (4%) 

29.00 (2%) 

159.40 (3%) 

321.40 (1%) 

207.40 (2%) 

459.60 (2%) 

~tency IPI 
5.26 (10%) 7.80 (6%) 

2749 (4%) 2765 (1%) 

12058 (2%) 12393 (1%) 

61115 (7%) 62353 (1%) 

64.28 (7%) 69.35 (8%) 

16.22 (6%) 18.20 (6%) 

22.22 (6%) 28.00 (4%) 

52.07 (7%) 69.40 (6%) 

243.02 (4%) 263.80 (2%) 

526.57 (3%) 528.80 (3%) 

287.57 (4%) 308.80 (5%) 

24.33 (9%) 

3038 (1%) 

14066 (1%) 

73201 (2%) 

345.33 (2%) 

78.67 (9%) 

85.67 (3%) 

128.97 (2%) 

3601 (1%) 

19667 (1%) 

106853 (1%) 

566.06 (1%) 

79.87 (7%) 

96.26 (6%) 

308.33 (1%) 

613.33 (4%) 

1095133 (4%) 

562.00 (4%) 

1243.33 (4%) 

722.42 (2%) 

1040.26 (2%) 

1743.29 (2%) 

1047.03 (2%) 

2014.90 (2%) 1 729.76 (5%) 736.20 (4%) / 

Bandwidth [MB/s 

1 40.50 (2%) 1 37.61 (3%) 35.25 (3%) 1 13.11 (2%) 10.57 (2%) 

TCP 13.23 (2%) 13.41 (3%) 11.54 (1%) 10.88 (2%) 

File reread 40.43 (1%) 40.26 (3%) 37.51 (3%) 34.04 (2%) 

Mman reread 54.96 (6%) 55.03 (7%) 61.54 (0%) 58.66 (7%) 

hhench:OS Results 

getpid 

write ~o/dev/null 

Null Process 

Simple Process 

Ibinlsh Process 

Mmap Latency 4KB 

Mmap Latency 8MB 

ctxOK2 

~1x2 OK 2 

Pipe 

UDP 

RPCAJDP 

rccp 

RPCITCP 

1.69 (0%) 

2.74 (0%) 

983 (1%) 

7490 (1%) 

40864 (3%) 

25.2 (0%) 

53.7 (1%) 

8.05 (2%) 

8.45 (3%) 

31.0 (2%) 

154 (1%) 

328 (2%) 

206 (2%) 

450 (2%) 

Latency I.1 
4.55 (1%) 6.91 (1%) 

6.67 (5%) 8.20 (4%) 

2561 (1%) 2904 (1%) 

12431 (1%) 12433 (1%) 

58845 (1%) 57968 (1%) 

35.0 (2%) 49.4 (2%) 

54.0 (2%) 74.9 (1%) 

17.1 (4%) 20.0 (3%) 

17.0 (3%) 16.7 (6%) 

62.3 (3%) 78.99 (3%) 

214 (1%) 251 (3%) 

554 (2%) 577 (3%) 

264 (2%) 302 (1%) 

19.14 (1%) 111.9 (1%) 

26.30 (1%) 124.1 (1%) 

3101 (1%) 3572 (1%) 

14144 (1%) 19255 (0%) 

69990 (1%) 100763 (1%) 

242.7 (1%) 439.6 (1%) 

360.1 (1%) 561.9 (1%) 

69.6 (3%) 79.9 (2%) 

76.2 (2%) 88.6 (3%) 

316.1 (1%) 721.6 (1%) 

625 (1%) 1037 (1%) 

1174 (1%) 1763 (1%) 

568 (1%) 1030 (1%) 

1344 (1%) 2035 (1%) 1 754 (2%) 760 (3%) 1 

Bandwidth [MB/!] 

Pipe 64KB 1 40.3 (1%) 1 35.5 (1%) 32.6 (2%) 1 12.7 (1%) 10.4 (2%) 

rCP 64KB 18.8 (1%) 14.6 (1%) 14.1 (1%) I 11.6 (1%) 9.4 (2%) 

Tile read 64/64 35.3 (1%) 34.5 (4%) 32.2 (1%) 32.7 (3%) 30.1 (4%) 

timapreread64m I 97.5 (1%) I 91.4 (1%) 78.8 (1%) 1 89.4 (1%) 77.7 (3%) 

Table 3: Selected OS-dependent lmbench and hbench-OS results. (133 MHz Pentium.) Standard deviations are shown in parentheses. 

test how well multiuser systems perform under different application 

loads [2]. (The AIM benchmark results presented in this paper are 

not certified by AIM Technology.) 

AIM uses the shared libc . so so that the trampoline overhead 

is automatically avoided. Depending on simulated load, Figures 8 

and 9 show the required time and the achieved throughput (jobs 

per minute) for native Linux, L4Linux, and b&h MkLinux versions. 

The AIM benchmark successively increases the load until the max- 

imum throughput of the system is determined. (For this reason, 

it stops at a lower load for MkLinux than for L4Linux and native 

Linux.) 

For native Linux, AIM measures a maximum load of 130 jobs 

per minute. L?Linux achieves 123 jobs per minute, 95% of native 

Linux. The corresponding numbers for user-mode h4kLinux are 81 

jobs per minute, 62% of native Linwc, and 95 (73%) for the in- 

kernel version. 

Averaged over all loads, L4Linux is 8.3% slower than native 

Linux, and 6.8% slower at the maximum load. This is consistent 

with the 6-7% we measured for recompiling Linux. 

User-mode MkLinux is on average 49% slower than native 

Linux, and 60% at its maximum load. The co-located in-kernel ver- 

sion of MkLinux is 29% slower on average than Linux, and 37% at 

maximum load. 

5.4 Analysis 

The macrobenchmarks answer our first question. The current im- 

plementation of L4Linux comes reasonably close to the behavior of 

native Linus, even under high load. Typical penalties range from 

5% to 10%. 

Both macro and microbenchmarks clearly indicate that the per- 

formance of the underlying p-kernel matters. We are particular con- 

fident in this result because we did not compare different Unix vari- 

ants but two p-kernel implementations of the samd OS. * 

Furthermore, all benchmarks illustrate that co-location on its 

own is not sufficient to overcome performance deficiencies when 

the basic p-kernel does not perform well. It would be an interest- 
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ing experiment to see whether introducing co-location in L4 would 

have a visible effect or not. 

6 Extensibility Perfojmahce _ 

No customer would use a p-kernel if it offered only the classical 

Unix API, even if the p-kernel imposed zero penalty on the OS 

personality on top. So we have to ask for the “added value” the 

p-kernel gives us. One such is that it enables specialization (im- 

proved implementation of special OS functionality [31]) and buys 

us extensibility i. e., permits the orthogonal implementation of new 

services and policies that are not covered by and cannot easily be 

added to a conventional workstation OS. Potential application fields 

are databases, real-time, multi-media and security. 

In this section, we are interested in the corresponding perfor- 

mance aspects for L4 with L?Linux running on top. We ask three 
questions: 

Can we add services outside L4Linux to improve performance 

by specializing Unix ,functionality? 

Can we improve certain applications by using native pzkemel 

mechanisms in addition to the classical-API? 

Can we achieve high performance for non-classical, Unix- 

incompatible systems coexisting with L4Linux? 

Currently, these questions can only be discussed on the basis of 

selected examples. The overall quantitative effects on large sys- 

tems remain still unknown. Nevertheless, we consider the “exis- 

tence proofs” of this section to be a necessary precondition to an- 

swer the aforementioned questions positively for a broad variety of 

applications. 

6.1 Pipes and RPC 

It is widely accepted that IPC can be implemented significantly 

faster in a p-kernel environment than in classical monolithic sys- 

tems. However, applications have to be rewritten to make use of 

it. Therefore, in this section we compare classical Unix pipes, pipe 

emulations through p-kernel IPC, and blocking RPC to get an esti- 

mate for the cost of emulation on various levels. 

We compare four variants of data exchange. The first is the 
standard pipe mechanism provided by the Linux kernel: (1) runs 

on native Linux/x86; (la) runs on L4Linux and uses the shared li- 

brary, (1 b) uses the trampoline mechanism instead; (lc) runs on the 

user-mode server of MkLinux, and (Id) on the co-located MkLinux 

server. 

Although the next three variants run on L!Linux, they do not use 

the Linux server’s pipe implementation. Asynchronouspipes on L4 
(2) is a user-level pipe implementation that runs on bare IA, uses L4 

IPC for communication, and needs no Linnx kernel. The emulated 

pipes are POSIX compliant, except that they do not support signal- 

ing. Since IA IPC is strictly synchronous, an additional thread is 

responsible for buffering and cross-address-space communication 

with the receiver. 

Synchronous RPC (3) uses blocking IPC directly, without buffer- 

ing data. This approach is not semantically equivalent to the previ- 

ous variants but provides blocking RPC semantics. We include it in 

this comparison because applications using PPC in many cases do 

not need asynchronous pipes, so they can benefit from this special- 

ization. 

For synchronous mapping RPC (4), the sender temporarily maps 

pages into the receiver’s address space. Since mapping is a spedia1 

form of L4 IPC, it can be freely used between user processes and 

is secure: mapping requires agreement between sender and receiver 

and the sender can only map its own pages. The measured times in- 

clude the cost for subsequent mu-napping operations. For hardware 

reasons, latency here is measured by mapping one page, not one 

byte. The bandwidth measurements map aligned 64 KB regions, 

For measurements, we used the corresponding lmbench routines, 

They measure latency by repeatedly sending 1 byte back and forth 

synchronously (ping-pong) and bandwidth by sending about 50 MB 

in 64KB blocks to the receiver. The results of Table 4 show thnt 

the latency and the bandwidth of the original monolithic pipe im- 

plementation (1) on native Linux can be improved by emulating 

asynchronous pipe operations on synchronous L4 IPC (2). Using 

synchronous L4 RPC (2) requires changes to some applications but 

delivers a factor of 6 improvement in latency over native Linux. 

System 1 I Latency Bandwidth 

(1) Linux pipe 29P 41 MB/s 

(1 a) L4Linux pipe 46/s 40 MB/s 

(lb) L4Linux (trampoline) pipe 56P 38 MB/s 

(lc) MkLinux (user) pipe 722 /ts IO MB/s 

(Id) MlcLinux (in-kernel) pipe 316~ 13 MB/s 

(2) IA pipe I 22/s 48-70 MB/s 

(3) synchronous I.4 RPC 5/s 65-l 05 MB/s 

(4) synchronous mapping RPC 12 ,us 2470-2900 MB/s 

Table 4: Pipe and RPCperjbmzance. (133 MHz Pentium.) Only com- 
munication costs are measured, not the costs to generate or consume data. 

Since the bandwidth measurement moves 64 KB chunks of data, 

its performance is basically determined by the memory hardwnrc, in 

particular by the direct-mapped second-Ievel cache. As proposed by 

Jonathan Shapiro [35], L4 IPC simulates a write-allocate cache by 

prereading the destination area when copying longer messages, In 

the best case, Linux allocates pages such that source and destination 

do not overlap in the cache; in the worst case, the copy operation 

flushes every data prior to its next usage. A similar effect can can 

be seen for L4 pipes. 

Linux copies data twice for pipe communication but uses only a 
tied one-page buffer in the kernel. Since, for long streams, rend- 

ing/writing this buffer always hit in the primary cache, this specinl 

double copy performs nearly as fast as a single bcopy. The devin- 

tion is small because the lmbench program always sends the same 
64KB and the receiver never reads the data from memory, As n 

consequence, the source data never hits the primary cache, nlwnys 

hits the secondary cache and the destination data nlwnys misses 

both caches since the Pentium caches do not allocate cache lines 

on write misses. 

Method (4) achieves a nearly infinite bandwidth due to the low 

costs of mapping. To prevent misinterpretations: infinite bnndwidth 

only means that the receiver gets the data without communication 

penalty. Memory reads are still required to use the data. 

6.2 Virtual Memory Operations 

Table 5 shows the times for selected memory management oper- 

ations. The first experiment belongs to the extensibility category, 

i.e., it tests a feature that is not available under pure Linux: Fiult 
measures the time needed to resolve a page fault by a user-defined 

pager in a separate user address space that simply mnps an existing 

page. The measured time includes the user instruction, pnge fault, 

notification of the pager by IPC, mapping a page and completing 

the original instruction. 

The next three experiments are taken from Appel and Li [3], 

We compare the Liner version with an implementation using nn- 
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Fault 

Trap 

Appell 

Appel2 

L4 Linux 

6.2~ nfa 

3.4/s 12P 

12 P 55P 

IQ/Is M/6 

Table 5: Processor time for virtual-memory benchmarks. (133 MHz 
Pentium) 

tive L4 mechanisms. Trap measures the latency between a write 

operation to a write-protected page and the invocation of the re- 

lated exception handler. Appell measures the time to access a 

randomly selected protected page where the fault handler unpro- 

tects the page, protects some other page and and resumes the fault- 

ing access (‘trap+protl+unprot’). Appel2 first protects 100 pages, 

then accesses them in a random sequence where the fault han- 

dler only unprotects the page and resumes the faulting operation 

(‘protN+trap+unprot’). For L4, we reimplemented the fault han- 

dlers by associating a specialized pager to the thread executing the 

test. The new pager handles resolvable page faults as described 

above and propagates unresolvable page faults to the Linus server. 

6.3 Cache Partitioning 

Real-time applications need a memory management different from 

the one Linux implements. L4’s hierarchical user-level pagers al- 

lows both the L4Linux memory system and a dedicated real-time 

one to be run in parallel. This section evaluates how well this works 

in practice. 

In real-time systems, the optimization criterion is not the average 

but the worst-case execution time. Since a real-time task has to meet 

its deadline under all circumstances, sufficient resources for the 

worst-case must always be allocated and scheduled. The real-time 

load is limited by the sum of worst-case execution times, worst-case 

memory consumption, etc. In contrast to conventional applications, 

the average behaviour is only of secondary importance. 

All real-time applications rely on predictable scheduling. Unfor- 

tunately, memory caches make it very hard to schedule processor 

time predictably. If two threads use the same cache lines, execut- 

ing both threads interleaved increases the total time not only by the 

context-switching costs but additionally by the cache-interference 

costs which are much harder to predict. If the operating system 

does not know or cannot control the cache usage of all tasks, the 

cache-interference costs are unpredictable. 

In [26], we described how a main-memory manager (a pager) on 

top of L4 can be used to partition the second-level cache between 

multiple real-time tasks and to isolate real-time from timesharing 

applications. 

In one of the experiments, a 64x64-matrix multiplication is pe- 

riodically interrupted by a synthetic load that maximizes cache con- 

flicts. Uninterrupted, the matrix multiplication takes 10.9 ms. In- 

terrupted every 100 p, its worst-case execution time is 96.1 ms, a 

slowdown by a factor of 8.85. 

In the cache-partitioning case, the pager allocates 3 secondaty- 

cache pages exclusively to the matrix multiplication out of a total of 

64 such pages. This neither avoids primary-cache interference nor 

secondary-cache misses for the matrix multiplication whose data 

working set is 64 KB. However, by avoiding secondary-cache inter- 

ference with other tasks, the worst-case execution time is reduced 

to 24.9 ms, a slowdown of only 2.29. From a real-time perspective, 

the partitioned matrix multiplication is nearly 4 times “faster” than 

the unpartitioned one. 

Allocating resources to the real-time system degrades timeshar- 

ing performance. However, the described technique enables cus- 

tomized dynamic partitioning of system resources between real- 

time and timesharing system. 

6.4 Analysis 

Pipes and some VM operations are examples for improving Unix- 

compatible functionality by using p-kernel primitives. RPC and 

the use of user-level pagers for VM operations illustrate that Unix- 

incompatible or only partially compatible functions can be added 

to the system that outperform implementations based on the Unix 

API. 

The real-time memory management shows that a ,u-kernel can 

offer good possibilities for coexisting systems that are based on 

completely different paradigms. There is some evidence that the 

,u-kernel architecture enables to implement high-performance non- 

classical systems cooperating with a classical timesharing OS. 

7 Alternative Basic Concepts 

In this section, we address questions whether a mechanism lower- 

level than IPC or a grafting model could improve the p-kernel per- 

formance. 

7.1 Protected Control Transfers 

vM/370 [28] was built on the paradigm of virtualizing and mul- 

tiplexing the underlying hardware. Recently, Engler, Kaashoek 

and O’Toole [ 121 applied a similar principle to p-kernels. Instead 

of a complete one-to-one virtualization of the hardware (which 

had turned out to be inefficient in VM/370), they support selected 

hardware-similar primitives and claim: “The lower the level of a 

primitive, the more efficiently it can be implemented and the more 

latitude it grants to implementors of higher-level abstractions.” In- 

stead of implementing abstractions like IPC or address spaces, only 

hardware mechanisms such as TLBs should be multiplexed and ex- 

ported securely. 
From this point of view, IPC might be too high-level an abstrac- 

tion to be implemented with optimum efficiency. Instead, a pro- 

tected control transfer (PCT) as proposed in [12] might be more 

faster. PCT is similar to a hardware interrupt: a parameterless cross- 

address-space procedure call via a callee-defined call gate. 

Indeed, when we started the design of L4/Alpha, we first had the 

impression that PCT could be implemented more efficiently than 

simple IPC. We estimated 30 cycles against 80 cycles (no TLB or 

cache misses assumed). 
However, applying techniques similar to those used for IPC-path 

optimization in the Pentium version of L4, we ended up with 45 

cycles for IPC versus 38 cycles for PCT on the Alpha processor. 

A detailed description can be found in table 6. The 7 additional 

cycles required for IPC provide synchronization, message transfer 

and stack allocation. Most server applications need these features 

and must therefore spend the cycles additionally to the PCT costs. 

Furthermore, IPC makes l-to-n messages simple since it includes 

starting the destination threads. 

In addition, L4-style IPC provides message diversion (using 

Clans & Chiefs [20, 231). A message crossing a clan border is 

redirected to the user-level chief of the clan which can inspect and 

handle the message. This can be used as a basis for the implemen- 

tation of mandatory access control policies or isolation of suspi- 

cious objects. For security reasons, redirection has to be enforced 

by the kernel. Clan-based redirection also enables distributed IPC 

by means of a user-level network server. Each machine is encapsu- 

lated by a clan so that inter-machine IPC is automatically redirected 

to the network server which forwards it through the network. 
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Operation PCT IPC Comment 

enter PAL mode 5 5 

open frame 1 7 setup stack frame to allow multiple 

interrupts, TLB misses and simplify 

thread switching 

send/receive - 0.5 determine operation 

test receiver valid 2 2 

test no chief xfer - 0.5 

receiver accepts? - 1 can we do the transfer 

set my rev timeout - I 

save rev parameters - 2 perform the receive 

verify queuing status - I to set wakeupqueueing invalid, if 

timeout NEVER 

context switch 10 10 switch address-space number 

kernel thread switch - 6 

set caller id 2 - save caller id for petret 

tindcalleeentry 2 - pet entry address in callee 

close frame 7 I 

leave PAL mode 2 2 

tot4 38 45 

Table 6: PCT versus IPC; required cycfes on Alpha 21164. For the 
PCT implementation we made the assumptions that (a) the entry address 

for the callee is maintained in some kernel control structure; (b) the callee 

must be able to specie a stack for the PCT call or - if the caller specifies 

it-the eallee must be able to check it (the latter &se requires the kernel to 

supply the callers identity); (c) stacking of return address and address space 

is needed. The cycles needed on user level to check the identity are left out 

of the comparison. 

Taking the additionally required user-level cycles into account, 

we currently see no performance. benefit for PCT. However, a con- 

ceptual difference should be noted: A PCT takes the thread to an- 

other address space so that the set of active threads does not change. 

An IPC transfers a message Corn a sender thread to a destination 

thread; both threads remain in their respective address spaces but 

the set of active threads changes. Lazy scheduling techniques [21] 

remove the additional costs of the second model so that in most 

cases both are equivalent from a performance point of view. 

However, IPC requires a preallocated system resource, the desti- 

nation thread. If n threads want to execute RPCs to the same server 

domain simultaneously, at least n threads have to be allocated in 

the server. This problem is not as significant with PCT: only n user- 

level stacks have to be allocated, no kernel resources. On the other 
hand, in the IPC model, a server can easily preallocate kernel and 

user resources, threads and stacks, dedicated to specific upplica- 

tiom This helps to implement guaranteed real-time services. 

7.2 Grafting 

Grafting in general deals with the problem of how to insert a grail 

into a server. We concentrate on the special situation when this 

server is the kernel. We do not address the software-technological 

advantages and limitations of the grafiing model. Here, we are only 

interested whether downloading extensions into the kernel could 

perform better than executing them as a user-level server (or down- 

loading them into a user-level server). 

Grafts executing in kernel mode can reduce the number of 

user/kernel mode switches and address-space switches. However, 

they either have to be completely trusted or need sand-boxing. 

Various systems have been built on that basis. They range from 

very pragmatic co-location techniques [ 1, IO] that simply trust co- 

located code to more sophisticated techniques that confine the po- 

tential damage of kernel extensions. However, Section 5 shows that 

simple co-location is not necessarily a promising technique. Co- 

located MkLinux performs worse than user-mode L?Linux. 

Vino [34] introduces a sophisticated yet expensive transaction 

mechanism; Exokemel [12, 361 enables application-specific han- 

dlers using a variety of mechanisms ranging from interpretable in- 

termediate code to run time checking. 

SPIN [5] is an example ofa well-performing, sophisticated grafl- 

ing technique. Its kernel extensions use compile-time sand-boxing 

as much as possible and thus avoid additional runtime sand-boxing 

overhead except for subscript checking. Of the performance results 

published in [5], the virtual memory benchmarks favor SPIN’s up- 
preach most. This makes sense, because for these tiny operations, 

the system-call and context-switching overhead counts heavily, Ta- 

ble 5 shows equivalent benchmarks on L4, running in user-mode, 

The L4 times are between 2 and 4.7 times better (geometric mcnn: 

3.1) than the times published for SPM [5]. However, due to tho 

different hardware platforms (SPIN: 133-MHz Alpha 21064, L4: 

133 MHz Pentium) this comparison must be interpreted very cau- 

tiously. Given that both processors are double-issue, use a larga 

second-level cache and no byte operations are required for thcso 

examples (which are expensive on the Alpha), we think that the 

current implementations perform roughly comparably; perhaps L4 

is slightly faster. 

Currently, it is still an open question whether downloading grafts 

into the kernel can outperform the p-kernel approach. 

8 Conclusions 

The comparison of MkLinux and our Linux single-server approach 

on L4 demonstrates that the performance improvements of second- 

generation p-kernels significantly affect OS personalities and ap 

plications. We demonstrated that fast IPC and efficient mapping 

abstractions are more effective than techniques such as co-location. 

The comparison ofL?Linux and monolithic Linux shows that in a 

practical scenario, the penalty for usingkkemels can be kept somc- 

where between 5% and 10% for applications. When working on n 

workstation there is no visible difference whether the workstation 

is numing native Linux or L4Linux. 

Using a few simple experiments, we compared extensibility us- 
ing libraries and servers to extensibility using kernel extension 

mechanisms. We found no indication that kernel extensions achieve 

better results. 

The goal of this work has been to understand whether the L4 

pkemel can provide a basis on which specialized applications, in- 

cluding those with real-time requirements, can be built such thnt 

they run along with normal operating systems and their applications 

on a single machine. The results described in this paper encourage 

us to pursue that line of development. 

Availability 

L4 and L?Linux are available from the L4Linux Web site at 

http://os.inf.tu-dresden.de/M/LinuxOnLB/. 
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